当前位置:文档之家› 植物的形态结构变化

植物的形态结构变化

植物的形态结构变化
植物的形态结构变化

植物在不同环境中形态结构的变化

摘要:植物与其生长的环境是一个统一的整体,为了适应不同的逆境环境,植物在形态和结构上都发生了相应的变化,依此来保持自身正常的生命活动。本文详细阐述了植物的根茎叶在高CO2、低CO2、缺氧、高温、低温、干旱、盐因子等不同逆境下所发生的形态和结构变化。

关键词:植物;环境;变化

The plants variation of morphology and structure in different

environments

Abstract: The growth of the plants and their environment is a unified whole. In order to adapt to the different adversity environments, the plants have corresponding variations in morphology and structure to keep their normal life activities. This paper expounds the plants variation of morphology and structure in different environments, such as high CO2, low CO2, hypoxia, high temperature, low temperature, drought and salt factor.

Key words:plants; environments;variation

植物体是一个开放体系,生存于自然环境,而自然环境不是恒定不变的,为了适应不良环境,植物在形态结构和生理上都发生了相应的变化。那么,植物面

对高CO

2、低CO

2

、高温、低温、缺氧、干旱、盐渍等不同环境会发生增氧的变化

呢? 本文讨论了在各种不良环境中植物形态和结构发生的相应变化。

1 大气

大气是植物赖以生存的物质条件,空气质量直接影响植物的生长发育。植物生长在各种各样的大气环境中,长期的大气变化使其获得了一些适应某种大气环境的相对稳定的遗传特征,其中也包括形态结构方面适应的特征。因此某种大气环境因子突然改变就必然导致植物在形态结构上出现某种变化[1]。

1.1 高浓度CO2

CO

2

是植物光合作用的原料, 也是温室气体之一,其浓度变化对全球生态环

境和气候变迁带来了深刻影响,对植物的生长也有直接作用。植物对大气 CO

2

浓度变化的适应与响应已经引起科学界的普遍关注,在叶片形态解剖结构方面也进

行了大量研究。高CO

2

浓度条件下, 叶片厚度似乎呈增加趋势, 但不同的受试植物叶表皮、叶肉薄壁组织及厚角组织等的厚度以及它们所占叶片总厚度的比例变化趋势不相同。由于叶片薄壁组织厚度及细胞尺寸增加,使总厚度和横切面积明显增大而宽度不变,进一步发现叶表皮、木质部及中柱的相对面积减小,而韧皮

部的相对面积明显增大。研究表明, 高浓度CO

2

可抑制叶片厚壁组织的形成,而促进薄壁组织细胞的分裂和生长。不同光合途径的植物叶片形态解剖结构对高浓

度CO

2的响应存在很大差异,CO

2

浓度倍增使C

3

植物叶片厚度明显增加, 且上表

面气孔减少, 但C

4植物叶片厚度无明显变化, 而表皮气孔有增加趋势; 并且C

3

植物叶片叶绿素含量和维管束鞘细胞中叶绿体数目及体积比C

4

植物明显减小。

有研究表明,CO

2

浓度升高对气孔密度和气孔指数没有影响, 甚至呈增加趋势。

1.2 低浓度CO2

高山环境中CO

2和O

2

分压降低,植物增强气体交换力度则是面临的主要矛盾,

气孔作为换的门户,对CO2和O2等分压的变化较敏感。一般认为高山植物有下陷的气孔,主要是由于低温带来的生理干旱所致。但贺金生等研究表明,高山植物叶表皮气孔向外突出,气孔面积减小,而密度和孔下室变大,并且随着海拔的升高外突出的程度增加,气孔分布从叶片央部分向中脉外的表皮各处扩展。气孔外突现象可使其开口增大,能够减小因外被附属物所引起的气孔阻力,从而提高叶片与外界环境的气体交换能力,而分布范围的扩大可增强叶片CO

2

的摄入, 以

提高光合作用速率, 是植物对高山环境中低CO

2和O

2

分压的适应。目前对叶肉解

剖结构的变化报道相对较少。

1.3 缺氧

玉米苗缺氧时形成两类新的蛋白:首先是过渡多肽,后来形成厌氧多肽。后者中有一些是糖酵解酶或与糖代谢有关的酶. 这些酶的出现会催化产生ATP,供应能量;也通过调节碳代谢以避免有毒物质的形成和累积。淹水缺氧还促使植物

体内形成通气组织,例如水稻的根和茎有发达的通气组织,能把地上部吸收的氧输送到根部,所以抗涝性就强。而小麦的茎和根缺乏这样的通气组织,所以对淹水胁迫的适应能力弱。但小麦、玉米等根部缺氧, 也可诱导形成通气组织。淹水缺氧之所以能诱导根部通气组织形成,主要因为缺氧刺激乙烯的生物合成,乙烯的增加刺激纤维素酶活性加强,于是把皮层细胞的胞壁溶解,最后形成通气组织。

2 光照

2.1 光强度

光照条件也是影响叶片形态解剖结构的一种经常性环境因子。自然状况下, 光照强度和光质的时空差异很大, 对植物形态解剖结构及生理代谢活动等产生多方面且不同程度的影响, 进而影响植物生长发育。长期生长在弱光环境中,植物叶片大而薄、比叶重小、柔软且叶柄较长。叶解剖结构对阴生环境的适应主要体现在表皮细胞和栅栏组织细胞的形状及其排列方式两方面。表皮形态结构表现为细胞凸透、层数减少、体积增大、细胞壁薄、常含叶绿素、表皮角质膜薄或无角质膜。这种变化可增强叶片细胞对光的捕获能力,有利于光辐射穿透叶表皮到达叶肉组织,或直接在叶片表皮中进行光化学反应, 提高光合能力。而叶肉是叶片光合的主要部位, 栅栏组织和海绵组织厚度、细胞层数及栅栏细胞的形态变化等组合的差异必然影响到叶绿体的分布和光合作用的效率。近方形栅栏细胞可以提高近轴面和侧面叶绿体分布的密度, 增加了受光面积, 是植物对弱光条件的适应[2]。

2.2 光质

光质方面,科学家对叶片形态解剖结构对UV-B 辐射增强的响应与适应开展

层的变薄使抵达地球表面的UV-B辐射量增加, 对地表植物了大量研究。大气O

3

可能产生巨大的影响。多数研究表明, UV-B辐射影响细胞分裂和细胞壁发生,从而形成较小的细胞,限制了叶面积扩展。在一定范围内,蓝光数量与叶片厚度、栅栏组织薄壁细胞中的叶绿体数目、栅栏组织和海绵组织厚度等呈正相关,而红光和远红光的数量对叶片解剖结构的影响不显著。另外,与自然状况下相比,生长在滤掉远红光的光谱照射下的植物叶面积、栅栏组织细胞长度和胞间隙变小,色素含量增加,但叶厚度不变; 而生长在滤掉红光的光谱照射下, 叶形态结构和

色素含量未受影响。可能是由于叶片形态解剖结构的变化(尤其是栅栏组织细胞的伸长及排列)对红外光较敏感, 而对红光不敏感。

3 温度

温度是一个十分重要而复杂的环境因子。地表温度条件总随时间和空间而变化,对植物带来多方面深刻的影响。

3.1 高温

高温是影响植物生理过程的重要环境因素之一,研究热胁迫对植物的影响, 在理论和应用方面具有重要意义。草酸处理对热胁迫下辣椒叶片膜透性和钙分布的影响的实验结果表明,热胁迫使叶肉细胞的膜的相对透性升高,使叶片中的谷胱甘肽和抗坏血酸含量下降。生长在高温条件下的植物, 比叶面积显著增加, 而叶片厚度、栅栏组织和海绵组织细胞的层数及厚度、叶绿素含量等则减少。叶表皮气孔特征参数与环境温度变化也有密切关系,随着温度升高, 气孔密度增加,

同化速率也降低。

而气孔器面积和气孔长宽指数减小, 气孔导度和CO

2

热胁迫可使叶肉细胞外钙离子分布发生变化。经过6h热胁迫后,细胞质中聚集大量钙离子沉淀颗粒, 液泡中钙离子沉淀颗粒大量消失,细胞核中钙离子沉淀颗粒密度很大,叶绿体中钙离子沉淀颗粒密度有增大趋势,线粒体中未见到钙离子沉淀颗粒;淀粉粒消失,核膜模糊,核内染色质聚集, 空隙增大。热胁迫12 h 后,钙离子在细胞中呈散乱分布;叶绿体超微结构被破坏, 叶绿体膜破裂,基粒解体, 细胞中形成一些泡状结构[3]。而在供水不足时,叶片则失水而萎蔫、皱缩,减少了光照面积,气孔大部分关闭。保证了体内正常需水,种子休眠时耐热性最强,随着种子吸水胀大,耐热性就逐渐下降,开花期耐热性最差[4]。3.2 低温

植物在长期进化过程中对冬季低温在形态结构方面产生各种特殊的适应方式,如大多数木本植物和冬季作物面对低温,常常在形态上形成或加强了保护组织,如芽有鳞,树皮具有较发达的木栓层,芽和叶片表面常有油脂类物质,器官表面有蜡粉和密毛等,或落叶以降低代谢强度和营养消耗。叶面积缩小,上下表皮厚度、栅栏组织和海绵组织厚度及叶总厚度增加等都是植物对低温环境的反应。对于长期生长在高山、低温且干旱环境中的植物, 叶角质膜呈增厚趋势,这

种变化可减小叶片表面空气的流动,提高植物叶片的热稳定性,对保持植物正常的光合作用和呼吸作用非常重要。对太白红杉的研究指出, 随着寒冷指数增大, 叶片数呈现减少趋势, 而叶片厚度、管胞直径、叶片的输导组织和维管束厚度、内皮层厚度以及输导组织和维管束厚度与叶片总厚度之比均呈增大趋势。

4 干旱

当植物处于干旱逆境下,植物细胞内自由基产生和清除的平衡会遭到破坏,自由基的增加首先攻击膜系统,膜脂、脂肪酸中的不饱和键被过氧化[5],造成膜脂过氧化产物MDA含量增加,膜脂流动性降低[6],膜脂流动性保证了膜结合酶的功能。所以,膜脂流动性的降低势必对膜结合酶功能产生影响。由此可见随干旱加强,膜伤害加重,最后解体细胞内脂类小滴增多增大,导致膜脂的释放和膜结构的破坏,其中间质片层对干旱最为敏感[7]。

4.1 干旱条件下叶的变化

水对植物的生长至关重要,长期生长在缺水条件下植物叶片具有耐旱性形态结构特征。干旱环境中,叶表皮细胞变小,切向壁加厚,具有内皮层,说明水分短缺限制细胞的生长,也体现了植物对环境胁迫的适应。缺水条件下, 气孔多分布于叶片下表皮,该分布模式既可促进植物与外界环境气体交换, 又能保持水分。气孔密度随着环境中水分和湿度减少而增加,但气孔面积则向小型化发展,气孔多下陷形成气孔窝或其上有突出的角质膜。叶厚度增加也有利于防止水分的过分蒸腾。叶片细胞壁厚度和弹性增加有利于维持组织膨胀和气孔开张,可能是植物适应干旱环境的生理机制。随着环境水分减少,有些植物叶肉内含有胶质和粘液物质的异细胞,或细胞中单宁类物质含量增多而使叶片渗透势减小,因而叶片内水分轻微减少可导致其水势大幅度下降,从而提高了植物对土壤水分的利用率和抗旱能力。随着植物叶水分的散失,物理结构不同的叶脉和叶肉就会产生不同程度的变形,叶肉部分的细胞在沿叶肉平面的切向方向面积大幅收缩,最终它会导致叶子局部向叶子上表面方向自身弯曲,即三维空间中几何形态的变化(见下图1)[8]。

图1 随着水分的变化叶子进一步变形和卷曲

4.1 干旱条件下根的变化

在干旱条件下,植物根系在土壤中分布的深度和广度常不同。有些植物的主根发达,向下垂直生长,深入土壤达2~5m,甚至10m以上。某些生长在干旱沙漠的植物,如骆驼刺的根系可伸入土层达20m左右。一般直根系多为深根系,如大豆、蓖麻、马尾松等;而另一些植物的主根不发达,不定根或侧根较主根发达,或主根形成后不久,即从胚轴基部发生几条不定根,以后在分蘖节上继续产生不定根,不定根的数目和伸出的迟早,一般随植物的种类而有所不同。这类根系以水平方向朝四周扩展,占有较大的面积,常分布在土壤的浅中层,称浅根系。一般须根系多为浅根系,如车前、小麦、水稻等。

5盐因子

植物各器官的生理特征和形态结构受盐度的影响较大。林鹏[9]研究了土壤盐度对桐花树叶片形态结构的影响,结果表明叶面上单位面积的气孔数随土壤盐度提高而减少;角质层厚度随土壤盐度的提高增厚;栅栏组织随土壤盐度的提高而增厚;海绵组织随土壤盐度的提高而细胞间隙加大;叶片厚度随土壤盐度的提高而加厚。叶庆华等[10,11]有关海滩盐度对秋茄叶肉细胞超微结构影响的研究表明:生长在高盐度海滩的比生长在低盐度海滩的细胞膜与细胞壁之间的间隙增大;叶绿体的基粒和基粒片层都显著膨胀,基粒与基粒片层之间的界限模糊,以至好象没有基粒。林益明等[12]对秋茄次生木质部生态解剖学的比较研究表明:盐度高造成秋茄较低导管分布频率、低单管孔率、低双管率。邓传远[13]通过对红海榄和海桑木材的解剖证明,在研究的土壤盐度范围内,导管密度和管孔直径没有显著影响,但随盐度增大,导管的聚合度增大,单孔率下降。

5.1叶对盐生环境的结构适应

叶肉质化是盐生植物最普遍的特征。叶的主要功能是进行光合作用,也是植物体与外界进行物质交换的主要器官, 所以叶片的形态乃至结构对环境的变化非常敏感。叶肉质化是植物对盐生环境的适应。在盐浓度较高条件下, 假红树叶片和茎部的肉质化程度不断提高, 从而使胞内盐分浓度降低到不使植物受伤害的水平。叶片等器官肉质化,是组织中的薄壁细胞大量增加,吸收和储存大量水

分,以降低体内盐浓度,从而实现对盐生环境的适应[14]。盐生环境下某些植物根、茎的直径加粗,以增加对盐的胁迫能力。而这种根茎的加粗,与其解剖结构的变化是直接相关的。

5.2 茎对盐生环境的结构适应

茎是植物地上的重要部分,其主要功能是运输,盐生环境下茎的皮层要比中生植物的宽,而维管束则较紧密,这种构造可能是一种适应机制。有些盐生植物茎中还发育出储水的薄壁组织,使茎表现为肉质化。盐胁迫下小花碱茅茎的角质层、表皮层及机械组织均加厚,这样可以减少水分的散失,提高植株的抗倒伏性。小花碱茅茎横切面上维管束的数目以及所有导管面积之和都随着盐浓度的增加而显著增大,说明高盐胁迫下茎运输能力显著提高,从而既能减轻某些离子的毒害作用,又降低了渗透势,以利于由土壤中吸取大量水分[15]。高盐胁迫下的小花碱茅茎叶绿体内淀粉粒数目显著增多,体积也大,这样既可缓解在能量短缺情况下保证细胞正常的生命活动,又能提高渗透压利于水分的吸收与保持,提高植物的抗盐性[16]。

6 结语

总的来看,解剖学的工作仍然在不断进行,但各方面的研究不平衡,随着组织、细胞培养技术的改进,研究单生态因子对形态建成的工作增多了。由于电子显微镜的广泛应用和实验技术的发展,超微结构观察,定量化研究生态因子对植物形态结构的研究日益加强。利用植物形态结构指标只是环境质量和变化是解刨学的新动向。

参考文献:

[1] 林植芳.叶片上下表面的光谱特性[J].植物学报,1984,2(1):35-38.

[2] 李芳兰,包维楷.植物叶片形态解剖结构对环境变化的响应与适应[J].植物

学通报,2005,22:118-127.

[3] 周革,倪福太,张立娟.植物在逆境中的形态结构及生理变化[J].吉林师范大

学学报, 2004,2:63-67.

[4] 左爱仁.植物适应变温逆境的生理机制[J].生物数学,2000,25(6):38-39.

[5] 王以柔,刘鸿先,李平.植物生理学报,1986,12(2):109-115.

[6] 张志鸿,刘文龙.膜生物物理学. 北京:高等教育出版社.

[7] 徐世昌,沈秀瑛,顾慰连.土壤干旱下玉米叶细胞膜脂过氧化和膜磷脂脱醋化

反应以及膜超微结构的变化[J].作物学报,1994,9,20(5):555-562.

[8] 迟小羽,盛斌,陈彦云.基于物理的植物叶子形态变化过程仿真造型[J].计算

机学报, 2009 ,2,32 (2) :221-229.

[9] 林鹏.红树林[M].北京:海洋出版社,1984,1-48.

[10] 叶庆华,林鹏.海滩盐度对两种红树叶肉细胞超微结构影响的研究[A].北京:

科学出版社,1995,65—70.

[11] 叶庆华,林鹏.两种盐度下桐花树叶肉细胞结构变化[J].厦门大学学报,

1995,34(1):104—108.

[12] 马永泽,阎隆飞.花粉管收缩蛋白与钙离子调节的细胞质凝胶化及收缩运动

[J].植物学报, 1991,33(12):913- 917.

[13] 蒋明义.Active oxygen damage effect of chlorophyll degradation in rice

seedlings under osmotic stress[J].植物学报, 1994,36: 289-295.

[14] 张锡然,施国新,袁生等.分子和细胞生物学进展[M].南京: 南京师范大学

出版社, 1996,249- 261 .

[15] 朱宇旌,张勇,胡自治.小花碱茅茎适应盐胁迫的显微结构研究[J].中国草

地,2000,5:6-9.

[16] 朱宇旌,张勇.盐胁迫下小花碱茅超微结构的研究[J].中国草地,2000,

(4):30-32.

植物叶的形态结构与环境关系

植物叶的形态结构的比较 棉花叶横切(禾本科):有维管束延伸层,栅栏组织为圆柱形细胞,海绵组织细胞不规则排列,间隙发达。 松树叶横切(裸子植物):有树脂道,叶肉部分化成栅栏组织和海绵组织,有一圈内形成层,有气孔。 夹竹桃叶横切(旱生):表皮由2至3层细胞组成复表皮,排列紧密,外被厚的角质层,下表皮有下陷的气孔窝结构,气孔窝内的表皮细胞常特化成表皮毛,叶肉细胞分化成栅栏组织和海绵组织。叶脉是叶肉中的维管组织 眼子菜叶横切(水生):表皮细胞壁薄,细胞内含叶绿体,外壁没有角质层,不具气孔,叶肉细胞不分化成多层的栅栏组织和海绵组织,细胞间隙发达或分化成大型的气室。

玉米叶横切(C4):表皮细胞较小,形状较规则,上表皮两个维管束之间有几个大型的薄壁细胞,没有栅栏组织和海绵组织的分化,叶肉细胞小排列紧密,细胞间隙较小,内含叶绿体,维管束鞘为大型单层薄壁细胞,内涵较大的叶绿体,与毗邻的叶肉细胞组成“花环形”结构,为C4植物所特有。 水稻叶横切(C3):表皮细胞较大,细胞疏松排列,叶肉细胞有栅栏组织和海绵组织的分化,含有正常的叶绿体,维管束较小,维管束鞘细胞没有叶绿体。 植物叶的形态和结构的观察 名科叶形叶序叶脉叶尖叶缘 银杏叶扇形簇生 二叉平行 叶脉叶基(楔形) 不规则 三节 状,中 间凹入 鹅掌楸 叶马褂形互生网状脉截形(叶尖) 掌状半 裂 玉簪叶椭圆形簇生 弧形平行 脉 急尖(叶尖)全缘

金钱松 叶披针形簇生 急形异短尖 (叶尖) 铁树 (复叶)羽片条 形 对生叶 序 侧出平行 脉 急尖(叶尖) 羽状全 裂 红花木倒形羽互生网状脉 急形异短尖 (叶尖) 细锯状苦楮披针形互生网状脉尾尖锯状 野生豌豆羽状复 叶 叶须卷 羽状全 裂 植物叶的形态结构与生态环境的关系 摘要:植物由于外界生态因素的影响,逐渐演化出各种各样的形态和结构来适应所生长的环境。其中影响最大的是植物生长周围水分的供应状况。因此,依照植物与水分的关系,可以将植物分为旱生植物、中生植物、水生植物。叶子是花植物的一种主要进行蒸腾的器官,所以旱生植物的叶子为了减少蒸腾,其相适应的结构产生变化。水生植物的叶浸没在水里,在结构上与旱生植物迥然不同。可见不同环境植物叶的形态结构有很大的不同和差距,即使生长在同一环境,它们克

被子植物果实的形态结构及胚的发育实验报告

被子植物果实的形态结构及胚的发育实验报告 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

被子植物果实的形态结构及胚的发育实验报告 一.目的及内容 (1)通过对百合子房横切面的观察,认识胚囊的发育过程; (2)通过整体染色与透明技术观察垂柳幼胚、荠菜胚或其他植物,了解植物发育过程中各时期胚的形状变化及种子的形成。 (3)通过对典型果实类型的观察,对分类有一个初步的了解,为学习植物分类学打好基础。二.实验材料 (1)百合子房横切片(单核期,双核期,四核期)。 (2)垂柳幼嫩果序、荠菜不同发育时期的新鲜角果,校园其他植物幼果,番茄、柑桔、黄瓜(瓜类)、苹果、梨、桃或李、向日葵、八角、板栗、菠萝等各类新鲜或贮存的果实标本。三.用具及试剂 显微镜、凹玻片、盖玻片、镊子、解剖刀等。 爱氏苏木精、45%醋酸、50%乙醇、无水乙醇、蒸馏水 四、步骤与方法 (一)百合子房横切片的观察

单核期 双核期

(二)校园植物胚的观察 1.垂柳 1 胚珠的获取从果序摘下一个幼嫩的果实,剖开,取出受精后的胚珠 2 胚珠染色 1)浅染将胚珠放入稀释后的爱氏苏木精染液中染色2-10 min, 然后用蒸馏水冲洗。 2)脱水冲洗后,将胚珠转入凹玻片的凹槽内,加上1-3滴无水乙醇与香柏油的混合液进行脱水,待乙醇挥发至胚珠周围几乎无液体时,再次滴加无水乙醇与香柏油的混合液,约重复3-5次。 3)透明在凹槽内滴上数滴香柏油对受精后的胚珠进行透明。 4)封片透明后放置一会或不经放置,盖上盖玻片即完成制片。 胚发育时期染色5min染色10min染色15min 幼胚效果较好,黑色较少, 透明度好效果一般,黑色较多, 透明度差 效果较好,黑色较多, 透明度一般 中胚效果较好,黑色较少, 透明度好效果较好,黑色较少, 透明度一般 效果一般,黑色较多, 透明一般 四核期

被子植物叶的形态结构和功能

第六章被子植物叶的形态结构和功能 本章学习的目的和要求: 通过本章内容的学习,要求同学们了解被子植物叶的发生、生长和基本结构及其相关概念。掌握叶的形态、结构、生理功能及其与生态环境间的相互关系及其在生产中的意义。 本章学习的难点和重点: 叶营养器的解剖结构特征的层次性、差异性及其同一性; 本章教学与学习的方法: 多媒体教学(自制课件) 讲授与板书相结合 提问 学习本章,在理解教材时建议用两种学习方法: 1.联系观点:(1)与植物的有关组织相联系,初生结构与次生结构相联系; (2)形态结构特点与功能相联系。 2.对比方法:(1)单、双子叶植物叶的结构特点对比; (2)不同生态条件下叶结构特点分别对比,找出某些结构之间的共同点和不同点。 本章板书内容(见讲稿黑体字) 本章讲授内容如下: 第一节、叶的形态与功能 一、叶的主要生理功能 1、进行光合作用、制造有机物 2、进行蒸腾作用和呼吸作用 3、繁殖与贮藏等 二、叶的基本形态 (一)双子叶植物叶的形态 叶:由叶片、叶柄和托叶三部分组成。—完全叶单叶 不完全叶复叶 叶片由叶尖、叶缘、叶基等部分组成。 (二)禾本科植物叶的形态 叶鞘、叶片、叶环、叶耳、叶舌 第二节、叶的解剖结构 一、双子叶植物叶片的结构 结构分为表皮、叶肉和叶脉三个基本部分。 1、表皮:由表皮细胞、气孔器和表皮毛组成,分为上表皮和下表皮,为良好的保护组织。 (1)表皮细胞:横切面为长方形,表面观为不规则的波浪状,排列紧密。细胞外壁角质层发达(上表皮的角质层比下表皮发达),或有蜡被,上有表皮毛。 (2)气孔器:由两个肾形的保卫细胞及其之间的气孔组成,一般在下表皮数目较多。 保卫细胞:内含叶绿素、淀粉粒等,细胞壁在近气孔处较厚。 气孔器—气孔:张开或关闭,控制蒸腾作用和气体的交换。 副卫细胞:或无。 (3 2、叶肉:叶肉主要由栅栏组织和海绵组织(或同化组织)组成,并常有分泌腔、含晶

被子植物花的形态结构和功能

第八章被子植物花的形态结构和功能 本章学习的目的和要求: 通过本章内容的学习,要求同学们了解被子植物花、花芽分化、开花、传粉和双受精等的基本概念,掌握被子植物的生殖器官中雌雄蕊的发生、分化和成熟过程中的形态、结构和功能。懂得影响植物开花、传粉、受精结实的内外在因素及其生物学意义。 本章学习的难点和重点: 花芽分化的过程及其结构特征; 雌雄蕊的发育和分化的解剖结构特征; 双受精过程及其意义; 本章教学与学习的方法: 多媒体教学(自制课件) 讲授与板书相结合 提问 本章板书内容(见讲稿黑体字) 本章讲授内容如下: 繁殖:植物生长发育到一定时期,由旧个体产生新个体,以延续种族的现象称为繁殖或生殖。植物的繁殖主要有三种类型: 1、营养繁殖:植物营养体的某一部分再生直接形成新个体。如扦插、嫁接等。 2、无性繁殖:在植物体上产生具有繁殖能力的孢子,在适宜的条件下孢子直接发育成为新 个体。 3、有性生殖:植物产生雌、雄性细胞(配子),两者结合形成合子(受精卵),再由合子发 育成新的个体。 生殖器官:花、果实和种子都与植物的生殖有关,称为生殖器官。 第一节花的组成和发生 一、花是适应于生殖而节间缩短的变态短枝条。 (一)花梗(花柄):是连接茎的小枝,也是茎和花相连的通道,并支持着花。有长、有短、或无。 (二)花托:是花梗顶端略膨大的部分,着生花萼、花冠等部分,有多种形状。 (三)花萼:花最外轮的变态叶,由若干萼片组成;常绿色,有离萼、合萼、副萼。有保护幼花的作用。 (四)花冠:花第二轮的变态叶,由若干花瓣组成;常有各种颜色和芳香味。有离瓣花、合瓣花。可吸引昆虫传粉,并保护雄蕊、雌蕊。 花被:花萼和花冠的合称。常分为两被花、单被花、无被花(裸花)三类。 (五)雄蕊群:一朵花内所有雄蕊的总称,有多种类型,但每个雄蕊的结构如下: 花丝:常细长,有支持和输导的作用。 雄蕊 花药:呈囊状,产生大量花粉粒。 (六)雌蕊群:一朵花内所有雌蕊的总称。多数植物的花,只有一个雌蕊。 柱头:承受划分的地方,有各种形状。 雌蕊花柱:花粉管进入子房的通道。 子房壁———果皮 子房—果实 胚珠————种子

植物的形态结构变化

植物在不同环境中形态结构的变化 摘要:植物与其生长的环境是一个统一的整体,为了适应不同的逆境环境,植物在形态和结构上都发生了相应的变化,依此来保持自身正常的生命活动。本文详细阐述了植物的根茎叶在高CO2、低CO2、缺氧、高温、低温、干旱、盐因子等不同逆境下所发生的形态和结构变化。 关键词:植物;环境;变化 The plants variation of morphology and structure in different environments Abstract: The growth of the plants and their environment is a unified whole. In order to adapt to the different adversity environments, the plants have corresponding variations in morphology and structure to keep their normal life activities. This paper expounds the plants variation of morphology and structure in different environments, such as high CO2, low CO2, hypoxia, high temperature, low temperature, drought and salt factor. Key words:plants; environments;variation 植物体是一个开放体系,生存于自然环境,而自然环境不是恒定不变的,为了适应不良环境,植物在形态结构和生理上都发生了相应的变化。那么,植物面 对高CO 2、低CO 2 、高温、低温、缺氧、干旱、盐渍等不同环境会发生增氧的变化 呢? 本文讨论了在各种不良环境中植物形态和结构发生的相应变化。 1 大气 大气是植物赖以生存的物质条件,空气质量直接影响植物的生长发育。植物生长在各种各样的大气环境中,长期的大气变化使其获得了一些适应某种大气环境的相对稳定的遗传特征,其中也包括形态结构方面适应的特征。因此某种大气环境因子突然改变就必然导致植物在形态结构上出现某种变化[1]。

被子植物果实类型实验报告

竭诚为您提供优质文档/双击可除被子植物果实类型实验报告 篇一:实验报告---被子植物果实的结构观察 实验4被子植物果实的形态结构及胚的发育 14级生物科学1班李明320XX092654120XX.4.27 一、实验目的 (1)通过对百合子房横切面的观察,认识胚囊的发育过程; (2)通过整体染色与透明技术观察垂柳幼胚、荠菜胚或其他植物,了解植物发育过程中各时期胚的形状变化及种子的形成。(3)通过对典型果实类型的观察,对分类有一个初步的了解,为学习植物分类学打好基础。 二、实验材料 (1)百合子房横切片(几个不同时期)。 (2)垂柳幼嫩果序、荠菜不同发育时期的新鲜角果。 (3)番茄、柑桔、梨、桃、向日葵、花生、香蕉、草莓、菠萝等各类新鲜或贮存的果实标本。 三、用具及试剂

显微镜、解剖镜、凹玻片、盖玻片、镊子、解剖刀、 爱氏苏木精、5%Koh、50%乙醇、无水乙醇、蒸馏水、香柏油 四、实验内容 (1)百合子房横切面的永久切片观察。 略 (2)荠菜的整体透明法 分离:从果序中摘下一个幼嫩的果实,在解剖镜下(可以不用,直接用肉眼)用解剖针把胚珠从果实中解剖出来,放在普通载玻片上。 透明:每个果实有20—30个胚珠,滴上1-2滴5%Koh 溶液,10分钟左右以后胚珠和珠心组织变得松软易碎,而胚则完好。 清洗:用吸水纸吸取Koh溶液,再滴上1-2滴蒸馏水,盖上盖玻片。观察:可在显微镜下观察到芥菜的胚。 (3)垂柳的整体染色与透明 分离:从果序中摘下一个幼嫩的果实,在解剖镜下(可以不用,直接用肉眼)用解剖针把受精后的胚珠从果实中解剖出来,放在凹玻片上。(因为垂柳的胚珠太大,发在普通载玻片上就无法盖盖玻片) 浅染:滴加稀释后的苏爱氏木精,染色5-20min,然后用蒸馏水冲洗。

植物花形态结构及解剖研究

一、实验名称:植物花形态结构及解剖研究 二、实验目的 (1)识辨数种常见花卉; (2)掌握花的基本结构和常见类型; (3)掌握描述花形态结构的基本术语; 三、实验用具 3.1. 实验材料:新鲜的金鱼草花、百合花、玫瑰花、菊花、水稻花,百合子房横切片 3.2. 实验设备:WiFi光学显微镜(Motic麦克奥迪),互动光学显微镜(Motic麦克奥迪),体视显微镜,镊子,解剖针,解剖刀,载玻片,盖玻片,吸水纸,洗瓶等 3.3. 实验试剂:蒸馏水 四、实验内容 4.1. 花的各部分结构解剖 金鱼草花的观察:在体视镜下解剖金鱼草花,自内向外观察其组成。 (1)花柄(花梗):着生在茎上,支持花朵。 (2)花托:花柄顶端着生花萼、花冠、雄蕊群、雌蕊群的部分。 (3)花萼:为花的最外一轮,萼片为(绿)色,共(5)片,萼片(分离)。 (4)花冠:位于花萼内轮,花冠由(2)片(白)色的花瓣

组成,花瓣基部愈合,分离部分呈唇形,上唇(二) 裂直立,下唇(三)裂开展外曲,故称唇形花冠。花 瓣形状、大小各异,通过花的中心只有一根对称轴能 将花分成相等的两半,故属不完整花(两侧对称)。(5)雄蕊群:位于花冠的内方,共(4)枚,其中(2)枚较短,(2)枚较长,称二强雄蕊。每枚雄蕊由两部分 构成:细长的部分为花丝;顶端的囊状物称为花药。(6)雌蕊群:位于花的中央,形似一瓶装物即雌蕊。雌蕊顶端扩大部分为柱头,基部膨大部位为子房;二者之 间较细的部分为花柱。子房的基部着生于花托上,为 子房上位。用刀片将子房做若干个横切,用体视显微 镜进行观察,课间子房分为(2)室,由此可推断这 种雌蕊为(2)心皮合生的复雌蕊。 按上述内容解剖观察百合花、玫瑰花、菊花、水稻花。 4.2 百合子房结构 取百合子房横切片于显微镜下观察。百合的雌蕊是由三心皮联合而成的复雌蕊。 百合子房主要有子房壁、子房室、胎座和胚珠租车那个,横切面上可见有(6)个子房室,每室中可见(1)个胚珠(实为纵向两列)。胚珠着生处为胎座,百合胚珠着生在中轴上所以为(中轴)胚座。子房壁最外面一层的细胞叫外表皮,最内一层细胞叫内边皮,内外表皮之间为薄壁细胞;在对着

植物叶的形态结构与环境关系

植物叶的形态结构的比较 棉花叶横切(禾本科):有维管束延伸层,栅栏组织为圆柱形细胞,海绵组织细胞不规则排列,间隙发达。 松树叶横切(裸子植物):有树脂道,叶肉部分化成栅栏组织与海绵组织,有一圈内形成层,有气孔。 夹竹桃叶横切(旱生):表皮由2至3层细胞组成复表皮,排列紧密,外被厚的角质层,下表皮有下陷的气孔窝结构,气孔窝内的表皮细胞常特化成表皮毛,叶肉细胞分化成栅栏组织与海绵组织。叶脉就是叶肉中的维管组织 眼子菜叶横切(水生):表皮细胞壁薄,细胞内含叶绿体,外壁没有角质层,不具气孔,叶肉细胞不分化成多层的栅栏组织与海绵组织,细胞间隙发达或分化成大型的气室。

玉米叶横切(C4):表皮细胞较小,形状较规则,上表皮两个维管束之间有几个大型的薄壁细胞,没有栅栏组织与海绵组织的分化,叶肉细胞小排列紧密,细胞间隙较小,内含叶绿体,维管束鞘为大型单层薄壁细胞,内涵较大的叶绿体,与毗邻的叶肉细胞组成“花环形”结构,为C4植物所特有。 水稻叶横切(C3):表皮细胞较大,细胞疏松排列,叶肉细胞有栅栏组织与海绵组织的分化,含有正常的叶绿体,维管束较小,维管束鞘细胞没有叶绿体。 植物叶的形态与结构的观察 名科 叶形 叶序 叶脉 叶尖 叶缘 银杏叶 扇形 簇生 二叉平行 叶脉 叶基(楔形) 不规则三节 状,中间凹入 鹅掌楸 叶 马褂形 互生 网状脉 截形(叶尖) 掌状半 裂 玉簪叶 椭圆形 簇生 弧形平行脉 急尖(叶尖) 全缘 金钱松 叶 披针形 簇生 急形异短尖(叶尖) 铁树(复叶) 羽片条形 对生叶序 侧出平行脉 急尖(叶尖) 羽状全 裂 红花木 倒形羽 互生 网状脉 急形异短尖(叶尖) 细锯状 苦楮 披针形 互生 网状脉 尾尖 锯状 野生豌豆 羽状复 叶 叶须卷 羽状全 裂

被子植物茎的形态结构和功能

第五章被子植物茎的形态结构和功能 本章学习的目的和要求: 通过本章内容的学习,要求同学们了解被子植物茎的发生、生长和基本结构及其相关概念。掌握茎的形态、结构、生理功能及其与生态环境间的相互关系。 本章学习的难点和重点: 茎解剖结构特征的层次性、差异性及其同一性; 本章教学与学习的方法: 多媒体教学(自制课件) 讲授与板书相结合 提问 学习本章,在理解教材时建议用两种学习方法: 1.联系观点:(1)与植物的有关组织相联系,初生结构与次生结构相联系; (2)形态结构特点与功能相联系。 2.对比方法:(1)根与茎结构特点的对比; (2)双子叶植物与单子叶植物的根、茎结构特点分别对比,找出某些结构之间的共同点和不同点。 本章板书内容(见讲稿黑体字) 本章讲授内容如下: 第一节茎的主要生理功能 茎是植物体内物质输导的主要通道;正常的茎都生长在地面上,下部连着根,上部支持着叶、花和果实,故茎地输导和机诫支持作用是主要功能;茎也有贮藏和繁殖地功能;绿色幼茎还能进行光合作用。 第二节、茎的基本形态和分枝 茎分节和节间两部分。着生叶和芽的茎称为枝条,分长枝和短枝(花枝)。木本植物的枝条上有叶痕、叶迹、皮孔、芽鳞痕等。 一、芽及其类型 1、芽的基本结构(叶芽的结构) 芽是未发育的枝条、花和花序的原始体,是茎尖中央的幼嫩部分。芽中央为幼嫩的茎尖,茎尖上部节和节间的距离极近,界线不明显,周围有叶原基、腋芽原基和幼叶,中央是生长锥。 生长锥 叶叶原基 芽腋芽原基叶芽 结芽轴 构叶原基————幼叶 和幼叶—————叶枝条 发腋芽原基———侧芽 育芽轴—————茎 2 按芽生长位置、性质、结构和生理状态可将芽分为下列几种类型: (1)定芽和不定芽 (2)叶芽和花芽、混合芽

植物茎形态结构与功能的适应--宋姗姗

植物茎的形态结构与功能的适应 姓名:宋姗姗学号:20121070219 学院:生命科学学院专业:园艺 【摘要】:提出植物形态结构与功能相适应的观点,以旱生植物为例,从旱生植物的茎方面的形态结构的变化来解释植物是如何与抗旱的功能相适应的。最后对文章进行一些总结。 现存的每一种植物都具有与环境相适应的形态结构和生理功能特征[1]。植物的根、茎、叶、花、果实和种子等器官,都具有明显的适应性特征。 植物由于外界生态因素的影响,逐渐演化出各种各样的形态和结构来适应所生长的环境。外界的各种生态因素都有可能引起植物的形态发生变化,而其中影响最大的是植物生长周围水分的供应状况。因此,本文主要谈由于水分引起的植物的形态结构与功能的适应关系。依照植物与水分的关系,可以将植物分为陆生植物与水生植物,陆生植物又分为旱生植物、中生植物和湿生植物[2]。具体以旱生植物的适应性特征来解释其形态结构与功能的适应关系。 可适应干旱条件而正常生活的植物称为旱生植物,,一般在严重缺水和强烈光照下生长的植物,植株往往变得粗壮矮化。地上气生部分发育出种种防止过分失水的结构,而地下根系则深入土层,或者形成了储水的地下器官。另一方面,茎干上的叶子变小或丧失以后,幼枝或幼茎就替代了叶子的作用,在它们的皮层细胞或其他组织中可具有丰富的叶绿体,进行光合作用。 旱生植物的形态和结构的变化,可从茎方面表现出来[4]: 茎是地上的重要部分,经受干旱的影响,远比根部显著,也比较容易观察,它们在形态解剖上的变化是: 沙漠里生长的多年生植物的叶子往往非常退化,幼枝代替了叶子的功能,例如各种梭梭(Haloxylon spp. )和沙拐枣(Calligonum spp. ),茎上已不发育出叶片(或有一些非常退化的鳞片叶,),却在幼小的绿色枝条上进行光合作用,形成所谓同化茎。有的这些枝条以后也可能脱落。有些沙漠植物的枝条,在干旱季节可以及时枯死,以减少水分的蒸发,同时使植物体内需水的程度减到最低限度,但是一到雨季,它们又能够迅速长出新的枝条。 沙生植物,特别是沙生灌木,常可看到的一种特征,就是形成分裂的茎。例如一种蒿(Artemisia herba- alba),骆驼蓬(Peganum harmala)和一种霸王(Zygophyllum dumosum)的茎部都可以裂开成几部分。分裂形成的几个分开部分,由于所遇到的小生境的条件可能不同,因此,有的干死了,而有的却可能存活下来,继续生长。 旱生植物的皮层和中柱的比率较大,茎中的皮层要比中生植物的宽,而维管束则较紧密,

第七章 叶的形态与结构

第七章叶的形态与结构 第一节叶的发生组成和叶序 叶是先于根发育出现的结构,是植物光合作用制造养分的重要场所,是植物重要的营养器官之一。本章主要讲述叶的形态、结构特征及其与功能间的相互关系。 第一节叶的发生、组成与叶序 一、叶的发生与生长 (一)叶的发生与生长 1.叶的发生 叶由叶原基生长分化而来。当芽形成和生长时,在茎的生长锥的亚顶端,周缘分生组织区的外层细胞不断分裂,形成侧生的突起。这些突起是叶分化发育的起点,因而被称为叶原基。叶原基是一团原分生组织细胞,将朝着长、宽、厚三个方向进一步生长,逐渐形成具有叶片、叶柄、托叶等结构雏形的幼叶,最终发育成为成熟叶。叶的这种起源发育方式称为外起源(图7-1)。 2.叶的生长 由叶原基发育成叶的过程包括顶端生长、边缘生长和居间生长三个阶段。 叶原基形成后,首先进行顶端生长,不断伸长,成为圆柱状的结构,称为叶轴。叶轴是尚未分化的叶柄和叶片。具有托叶的植物,叶原基上部形成叶轴;叶原基基部的细胞分裂较上部快,且发育较早,分化成为托叶,包围着上部叶轴,起到保护作用。具有叶鞘的植物(如禾本科),叶原基基部生长活跃,侧向延伸可以包围整个茎端分生组织。在叶轴伸长的同时,叶轴两侧边缘的细胞开始分裂,进行边缘生长(边缘生长进行一段时间后,顶端生长停止)。叶轴的边缘生长,使叶轴变宽,形成具有背腹性的、扁平的叶片雏形;如果是复叶,则通过边缘生长形成多数小叶片。没有进行边缘生长的叶轴基部分化为叶柄,当幼叶叶片展开时叶柄才随之迅速伸长(图7-2)。 当幼叶由芽内逐渐伸出、展开时,边缘生长逐渐停止,整个叶片进入居间生长,最后发育成熟。大多数幼叶叶片的生长基本上是等速生长,但有些幼叶各部分细胞的生长速度并非完全一致,因而在叶的生长过程中,便出现了不同的叶缘、叶形等。叶片在不断增大的同时,伴随着内部组织的分化成熟。 在边缘生长时期,叶轴两侧的边缘分生组织经垂周分裂产生原表皮,将来发育成为表皮;近边缘分生组织平周分裂和垂周分裂交替进行,形成了基本分生组织和原形成层。在一种植物中叶肉的层数基本是恒定的,是由平周分裂决定的。在各层形成后,细胞停止了平周分裂,只进行垂周分裂,增大叶片面积,但不增加叶片厚度。 一般说来,叶的生长期是有限的,这和具有形成层的无限生长的根、茎不同。叶在短期内生长达一定大小后,生长即停止。但有些单子叶植物的叶的基部保留着居间分生组织,可以有较长期的居间生长。如禾本科植物的叶鞘可以随节间生长而伸长,葱、韭菜等剪去上部叶片,叶仍可继续生长(即割一茬又长一茬),就是由于叶基部居间分生组织活动的结果。 3.叶的发育、生长与调控 叶是植物进行光合作用的器官。不同物种叶的大小、颜色、形状差别非常大,同一植物在不同阶段其叶形也可能完全不同。 (二)叶在植物系统进化与个体发育中的地位和意义 二、叶的生理功能和利用 (一)叶的生理功能 (二)叶的利用 (三)叶序 三、叶的形态多样性

植物叶的形态结构与环境的关系

植物叶的形态结构与环境的关系 刘新秦 (西北大学生命科学学院,2004级生物科学专业)依据各类植物与水的关系,把其分为陆生植物与水生植物,陆生植物又分为旱生植物,中生植物和湿生植物. 可适应干旱条件而正常生活的植物称为旱生植物.旱生植物的叶具有保持水分和降低蒸腾作用,其通常向着两个方向发展: 一类是减小蒸腾的适应:就外型而言,一般植株矮小,根系发达,叶小而厚,蜡被和表皮毛发达,有的植物形成复表皮.就结构而言,叶的表皮细胞壁厚,角质层发达.气孔下陷或限定在气孔窝内.栅栏组织细胞层数多,甚至上下表皮内方均有栅栏组织分布.海绵组织和细胞间隙不发达.叶脉发达,可提高输水率和机械强度,如夹竹桃和松叶.这些形态上的结构特征,或是减少了蒸腾面,或是尽量是蒸腾作用迟缓进行,再加上原生质体的少水性,以及一些细胞液的高渗透压,使旱生植物具有了高度的抗旱性,来适应干旱环境; 夹竹桃黄花夹竹桃黄花夹竹桃叶 夹竹桃叶切片图 另一类为肉质叶片,叶片肥厚多汁,叶肉中有发达的储水组织薄壁组职,保水力强.这些植物的细胞,能保持大量水份,水的消耗也少,因此可耐干旱.如芦荟,景天,龙舌兰等. 芦荟白景天翡翠景天金边龙舌兰 水生植物的整个植株生在水中,因此,可以获得充分的水分和溶于水中的营养物质,但它们的叶--尤其是沉水叶,不怕缺水,而因为水中溶解的空气少,光线为散射光叶绿体,,如何解决获得它所需要的气体和阳光成为所要面对的问题.适应这种生态环境的水生植物,通常叶片较薄,叶面无气孔和表皮毛(浮水叶仅在上表皮有气孔),表皮细胞具叶绿体,可营吸收,光合作用和气体交换的功能表皮细胞所含的叶绿体,对于光的吸收是极为有利的,因此,沉水叶的表皮不仅是保护组织,也是吸收组织和同化组织(光合组织).叶肉不发达,无栅栏组织和海绵组织的分化,形成发达的通气系统.机械组织和维管组织退化,导管不发达.胞间隙特别发达,形成通气组织,即具大液泡间隙的薄壁组织.有些水生植物中具气生叶或漂浮叶,后者仅上表皮有气孔,叶肉中也句发达的通气系统.如芦竹、石菖蒲、芦荻和水生美人蕉等。 芦竹石菖蒲芦荻水生美人蕉水生植物在分类群上由多个植物门类组成,包括非维管束植物,如大型藻类和苔藓类管束植物,其中被子植物占绝大多数,典型的水生植物多为被子植物中的单个叶纲. 水生植物有挺水、浮叶、沉水等生活型,以下将做详细介绍: 湿地植物(包括挺水型、浮叶型)-- 生长在浅水湿地,其根系发达且深,下部淹没水中或在陆地上全部暴露在空气中均可生长,可形成净化带,对地表径流流入湖中的水起过滤作用,阻拦、吸收、转化可能进入水体的有机质及营养盐,有利于水体自净,防止水体的富营养化。 挺水型:挺水植物指根生底质中、茎直立、一般植株高大,根部生活在水中,植物大部分挺出水面.光合作用组织气生的植物生活型,主要为单子叶植物. 黄鸢尾水竹 浮叶型:根生浮叶植物是一面叶气生的水生植物活型。一般茎细弱不能直立,根状茎发达,有根在水下泥中,不会随风漂移。 萍莲草荇菜 沉水植物--生长在湖底,整个植物浸没水下,多为观叶植物,能防止底泥的再悬浮而影

被子植物根的形态

第四章被子植物根的形态、结构和功能 本章学习的目的和要求: 通过本章内容的学习,要求同学们了解被子植物根的发生、生长和基本结构及其相关概念。掌握根的形态、结构、生理功能及其与生态环境间的相互关系。 本章学习的难点和重点: 根的解剖结构特征的层次性、差异性及其同一性; 本章教学与学习的方法: 多媒体教学(自制课件) 讲授与板书相结合 提问 学习本章,在理解教材时建议用两种学习方法: 1.联系观点:(1)与植物的有关组织相联系,初生结构与次生结构相联系; (2)形态结构特点与功能相联系。 2.对比方法:(1)直根系与须根系的比较 (2)双子叶植物与单子叶植物根的初生结构特点的对比; 本章板书内容(见讲稿黑体字) 本章讲授内容如下: 由不同的组织,按一定顺序有机结合形成器官,植物的器官分为营养器官和生殖器官。营养器官:植物体中根、茎、叶三部分共同负担着营养生长活动,这些部分称为营养器官。 研究植物的器官,首先应从研究形态结构开始,才能在此基础上了解其有关的生理功能。本章重点是掌握根、茎、叶的形态结构特点与其主要生理功能,掌握根、茎生长(伸长、加粗)及变态的基本知识。并了解这些知识在农业上的应用。 形态结构特点:指各部分的位置、细胞层数与形状、细胞排列、主要特征等。在横切面上一般是由外向内分别说明其结构特点的。 第一节根的发生、类型和生理功能 一、根的基本概念 根:是植物的重要营养器官,它的主要功能是固定植株并吸收土壤中的水分以及溶于水中的无机盐类,然后通过根的维管组织输送到地上部分,根还具有合成、储藏和繁殖的功能。 主根:种子萌发时,胚根突破种皮,直接生长而成的根。主根一般垂直向地下生长。 侧根:主根产生的各级大小分支。侧根从主根向四周生长,与主根成一定的角度,侧根又可产生分枝。 定根:主根和侧根都从植物体固定的部位生长出来,称之为定根。 不定根:发生位置不固定,而由茎、叶、老根或胚轴上发生的根。不定根同样可产生各级侧根。 根系:一株植物地下部分所有根的总体。 直根系:由胚根发育产生的主根及各级侧根组成,主根发达,较各级侧根粗壮而长,能明显的区分出主根和侧根。是大多数双子叶植物根系的特征。 须根系:主根生长或停止,主要由不定根组成的根系,称为须根系。是大多数单子叶植物根系的特征。 二、根系在土壤中的生长和分布 深根性:具有发达主根,深入土层,垂直向下生长的根系称为深根性。 浅根性:主根不发达,侧根或不定根向四周扩展长度远远超过主根,根系大部分分布在土壤表层。

叶的形态、结构和生理

第三节 叶的形态结构与生理 一、选择题; 1、下列哪一说法是错误的 A 、绿叶只含叶绿素 B 、绿叶只有在光下才能制造淀粉 C 、绿叶时刻发生呼吸作用 D 、绿叶的上表面一侧产生氧气多 2、从物质变化来说,光合作用的实质是 A 、把废物变成有用物 B 、把无机物变成有机物 C 、使气态物变成另一气态物 D 、气态物变成固态物 3、移栽树木时,人们常要去掉几片叶,这样做是为了 A 、减轻重量 B 、降低呼吸作用 C 、减少光合作用 D 、减少水分蒸发 4、活的植物体在白天 A 、只进行光合作用 B 、只进行呼吸作用 C 、只进行光合作用与蒸腾作用 D 、光合、呼吸与蒸腾同时进行 5、植物进行呼吸作用的时间是 A 、只在白天 B 、白天和黑夜 C 、只在黑夜 D 、只在光下 6、植物体进行呼吸作用的部位是 A 、只在种子中 B 、只在叶片内 C 、只在根系中 D 、在植物体的各个器官中 二、填充题: 1、叶片的结构一般包括 、 、 三部分,叶绿体较集中的部位是 部分的 组织。 2、叶片的表皮主要起 作用,表皮上有一种气体和水分出入的通道叫 ,它的开闭,由 控制。 3 (储存能量) 4、光合作用中的能量转化过程是指光能转变为储存在 里的能量;光合作用中的物质转化过程是指简单的 转变成复杂的 ,并且释放出 。 5、如果自然界中的森林大面积的减少,那么,大气中的 就会不断的增多, 就会不断的减少。 6、植物在光合作用中吸收利用的气体是 ,在呼吸作用中吸收利用的气体是 ;植物在光合作用中释放的气体是 ,在呼吸作用中释放的气体是 。 7、植物在光合作用中 有机物,在呼吸作用中 有机物。 一、分析说明题: 1、有一位科学家曾经把一棵2.5千克重的柳树苗栽种道一只木桶里,桶里的土壤事先称了重量。在这以后,他只给树苗浇纯净的雨水。5年以后,柳树长大了,重量增加了80多千克,而土壤却只减少了不足100克,你从这个实验里可以得出什么结论? 2、把两段绿色枝条按图中装置分别放在甲、乙两个玻璃罩内。在甲玻璃罩内放清水,以玻璃罩内放氢氧化钠溶液(氢氧化钠可以吸收二氧化碳)。把它们放在黑暗中一天,然后

植物叶的形态结构与环境的关系.

植物叶的形态结构与环境的关系 依据各类植物与水的关系 , 把其分为陆生植物与水生植物 , 陆生植物又分为旱生植物 , 中生植物和湿生植物 . 可适应干旱条件而正常生活的植物称为旱生植物 . 旱生植物的叶具有保持水分和降低蒸腾作用 , 其通常向着两个方向发展 : 一类是减小蒸腾的适应 :就外型而言 , 一般植株矮小 , 根系发达 , 叶小而厚 , 蜡被和表皮毛发达 , 有的植物形成复表皮 . 就结构而言 , 叶的表皮细胞壁厚 , 角质层发达 . 气孔下陷或限定在气孔窝内 . 栅栏组织细胞层数多 , 甚至上下表皮内方均有栅栏组织分布 . 海绵组织和细胞间隙不发达 . 叶脉发达 , 可提高输水率和机械强度 , 如夹竹桃和松叶 . 这些形态上的结构特征 , 或是减少了蒸腾面 , 或是尽量是蒸腾作用迟缓进行 , 再加上原生质体的少水性 , 以及一些细胞液的高渗透压 , 使旱生植物具有了高度的抗旱性 , 来适应干旱环境 ;

夹竹桃黄花夹竹桃黄花夹竹桃叶 夹竹桃叶切片图另一类为肉质叶片 , 叶片肥厚多汁 , 叶肉中有发达的储水组织薄壁组职 , 保水力强 . 这些植物的细胞 , 能保持大量水份 , 水的消耗也少 , 因此可耐干旱 . 如芦荟 , 景天 , 龙舌兰等 . 芦荟白景天翡翠景天金边龙舌兰

水生植物的整个植株生在水中 , 因此 , 可以获得充分的水分和溶于水中的营养物质 , 但它们的叶 --尤其是沉水叶 , 不怕缺水 , 而因为水中溶解的空气少 , 光线为散射光叶绿体, , 如何解决获得它所需要的气体和阳光成为所要面对的问题 . 适应这种生态环境的水生植物 , 通常叶片较薄 , 叶面无气孔和表皮毛 (浮水叶仅在上表皮有气孔 , 表皮细胞具叶绿体 , 可营吸收 , 光合作用和气体交换的功能表皮细胞所含的叶绿体 , 对于光的吸收是极为有利的 , 因此 , 沉水叶的表皮不仅是保护组织 , 也是吸收组织和同化组织 (光合组织 . 叶肉不发达 , 无栅栏组织和海绵组织的分化 , 形成发达的通气系统 . 机械组织和维管组织退化 , 导管不发达 . 胞间隙特别发达 , 形成通气组织 , 即具大液泡间隙的薄壁组织 . 有些水生植物中具气生叶或漂浮叶 , 后者仅上表皮有气孔 , 叶肉中也句发达的通气系统 . 如芦竹、石菖蒲、芦荻和水生美人蕉等。 芦竹石菖蒲芦荻水生美人蕉

相关主题
文本预览
相关文档 最新文档