当前位置:文档之家› 结构可靠度FORM方法的混沌动力学分析

结构可靠度FORM方法的混沌动力学分析

结构可靠度FORM方法的混沌动力学分析
结构可靠度FORM方法的混沌动力学分析

可靠性计算公式大全

常运行的概率,用R(t)表示. 所谓失效率是指单位时间内失效的元件数与元件总数的比例,以λ表示,当λ为常数时,可靠性与 失效率的关系为: R(λ)=e-λu(λu为次方) 两次故障之间系统能够正常工作的时间的平均值称为平均为故障时间(MTBF) 如:同一型号的1000台计算机,在规定的条件下工作1000小时,其中有10台出现故障 ,计算机失效率:λ=10/(1000*1000)=1*10-5(5为次方) 千小时的可靠性:R(t)=e-λt=e(-10-5*10^3(3次方)=0.99 平均故障间隔时间MTBF=1/λ=1/10-5=10-5小时. 1)表决系统可靠性 表决系统可靠性:表决系统是组成系统的n个单元中,不失效的单元不少于k(k介于1和n之间),系统就不会失效的系统,又称为k/n系统。图12.8-1为表决系统的可靠性框图。通常n个单元的可靠度相同,均为R,则可靠性数学模形为: 这是一个更一般的可靠性模型,如果k=1,即为n个相同单元的并联系统,如果k=n,即为n个相同单元的串联系统。 2)冷储备系统可靠性 冷储备系统可靠性(相同部件情况):n个完全相同部件的冷贮备系统,(待机贮备系统),转换开关s 为理想开关Rs=1,只要一个部件正常,则系统正常。所以系统的可靠度: 图12.8.2 待机贮备系统

3)串联系统可靠性 串联系统可靠性:串联系统是组成系统的所有单元中任一单元失效就会导致整流器个系统失效的系统。下图为串联系统的可靠性框图。假定各单元是统计独立的,则其可靠性数学模型为 式中,Ra——系统可靠度;Ri——第i单元可靠度 多数机械系统都是串联系统。串联系统的可靠度随着单元可靠度的减小及单元数的增多而迅速下降。图12.8.4表示各单元可靠度相同时Ri和nRs的关系。显然,Rs≤min(Ri),因此为提高串联系统的可靠性,单元数宜少,而且应重视串联系统的可靠性,单元数宜少,而且应重视改善最薄弱的单元的可靠性。 4)并联系统可靠性 并联系统可靠性:并联系统是组成系统的所有单元都失效时才失效的失效的系统。图12.8.5为并联轴系统的可靠性框图。假定各单元是统计独立的,则其可靠性数学模型为 式中 Ra——系统可靠度 Fi——第i单元不可靠度

多种可靠度计算方法学位论文

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包括任何其他个人或集体已经发表或撰写的成果作品。本人完全意识到本声明的法律后果由本人承担。 作者签名: 年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保障、使用学位论文的规定,同意学校保留并向有关学位论文管理部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权省级优秀学士论文评选机构将本学位论文的全部或部分内容编入有关数据进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 本学位论文属于1、保密囗,在年解密后适用本授权书 2、不保密囗。 作者签名:年月日 导师签名:年月日

摘要 压力容器作为一种重要设备广泛应用于工程领域,其安全性和可靠性是现在研究的重要课题。压力容器在生产和使用过程中存在各种不确定性因素,如构件、缺陷尺寸参数的不确定性,工况载荷的随机波动,材料机械性能的随机性。本文将这些不确定性参数当作随机变量,考虑其概率分布形式,采用应力强度-干涉模型,利用一次二阶矩法,蒙特卡洛法和随机有限元法等可靠度计算方法对容器结构进行了可靠性分析,并讨论了各随机变量对可靠度结果的灵敏度。 本文对无缺陷压力容器的安全评定采用弹性失效判据,利用四种不同的方法计算了圆筒形和球形压力容器的可靠度,分析比较了各方法的优缺点。对于含凹坑缺陷的压力容器,文中采用基于塑性极限的塑性失效准则,其中极限荷载采用弹塑性增量法得到,通过ANSYS 软件批处理操作模拟蒙特卡洛法实现可靠性分析,并对GB/T 19624-2004《含缺陷压力容器安全评定》规范中的极限载荷安全系数进行了评估。本文最后对 GB/T 19624-2004《含缺陷压力容器安全评定》规范中给出的含凹坑缺陷压力容器安全评定方法做出了改进,提出了基于分项安全系数的含凹坑缺陷压力容器的安全评定方法。 关键字:压力容器;可靠性;应力强度-干涉模型;分项安全系数

可靠性计算公式大全

计算机系统的可靠性是制从它开始运行(t=0)到某时刻t这段时间内能正常运行的概率,用R(t)表示. 所谓失效率是指单位时间内失效的元件数与元件总数的比例,以λ表示,当λ为常数时,可靠性与 失效率的关系为: R(λ)=e-λu(λu为次方) 两次故障之间系统能够正常工作的时间的平均值称为平均为故障时间(MTBF) 如:同一型号的1000台计算机,在规定的条件下工作1000小时,其中有10台出现故障 ,计算机失效率:λ=10/(1000*1000)=1*10-5(5为次方) 千小时的可靠性:R(t)=e-λt=e(-10-5*10^3(3次方)=0.99 平均故障间隔时间MTBF=1/λ=1/10-5=10-5小时. 1)表决系统可靠性 表决系统可靠性:表决系统是组成系统的n个单元中,不失效的单元不少于k(k介于1和n之间),系统就不会失效的系统,又称为k/n系统。图12.8-1为表决系统的可靠性框图。通常n个单元的可靠度相同,均为R,则可靠性数学模形为: 这是一个更一般的可靠性模型,如果k=1,即为n个相同单元的并联系统,如果k=n,即为n个相同单元的串联系统。 2)冷储备系统可靠性 冷储备系统可靠性(相同部件情况):n个完全相同部件的冷贮备系统,(待机贮备系统),转换开关s为理想开关Rs=1,只要一个部件正常,则系统正常。所以系统的可靠度: 图12.8.2 待机贮备系统

3)串联系统可靠性 串联系统可靠性:串联系统是组成系统的所有单元中任一单元失效就会导致整流器个系统失效的系统。下图为串联系统的可靠性框图。假定各单元是统计独立的,则其可靠性数学模型为 式中,Ra——系统可靠度;Ri——第i单元可靠度 多数机械系统都是串联系统。串联系统的可靠度随着单元可靠度的减小及单元数的增多而迅速下降。图12.8.4表示各单元可靠度相同时Ri和nRs的关系。显然,Rs≤min(Ri),因此为提高串联系统的可靠性,单元数宜少,而且应重视串联系统的可靠性,单元数宜少,而且应重视改善最薄弱的单元的可靠性。 4)并联系统可靠性 并联系统可靠性:并联系统是组成系统的所有单元都失效时才失效的失效的系统。图12.8.5为并联轴系统的可靠性框图。假定各单元是统计独立的,则其可靠性数学模型为 式中 Ra——系统可靠度 Fi——第i单元不可靠度

系统可靠性和安全性区别和计算公式

2.1 概述 2.1.1 安全性和可靠性概念 [10] 安全性是指不发生事故的能力,是判断、评价系统性能的一个重要指标。它表明系 统在规定的条件下,在规定的时间内不发生事故的情况下,完成规定功能的性能。其中事故指的是使一项正常进行的活动中断,并造成人员伤亡、职业病、财产损失或损害环境的意外事件。 可靠性是指无故障工作的能力,也是判断、评价系统性能的一个重要指标。它表明 系统在规定的条件下,在规定的时间内完成规定功能的性能。系统或系统中的一部分不能完成预定功能的事件或状态称为故障或失效。系统的可靠性越高,发生故障的可能性越小,完成规定功能的可能性越大。当系统很容易发生故障时,则系统很不可靠。 2.1.2 安全性和可靠性的联系与区别 [10] 在许多情况下,系统不可靠会导致系统不安全。当系统发生故障时,不仅影响系统 功能的实现,而且有时会导致事故,造成人员伤亡或财产损失。例如,飞机的发动机发生故障时,不仅影响飞机正常飞行,而且可能使飞机失去动力而坠落,造成机毁人亡的后果。故障是可靠性和安全性的联结点,在防止故障发生这一点上,可靠性和安全性是一致的。因此,采取提高系统可靠性的措施,既可以保证实现系统的功能,又可以提高系统的安全性。 但是,可靠性还不完全等同于安全性。它们的着眼点不同:可靠性着眼于维持系统 功能的发挥,实现系统目标;安全性着眼于防止事故发生,避免人员伤亡和财产损失。可靠性研究故障发生以前直到故障发生为止的系统状态;安全性则侧重于故障发生后故障对系统的影响。 由于系统可靠性与系统安全性之间有着密切的关联,所以在系统安全性研究中广泛 利用、借鉴了可靠性研究中的一些理论和方法。系统安全性分析就是以系统可靠性分析为基础的。 2.1.3 系统安全性评估 系统安全性评估是一种从系统研制初期的论证阶段开始进行,并贯穿工程研制、生 产阶段的系统性检查、研究和分析危险的技术方法。它用于检查系统或设备在每种使用模式中的工作状态,确定潜在的危险,预计这些危险对人员伤害或对设备损坏的可能性,并确定消除或减少危险的方法,以便能够在事故发生之前消除或尽量减少事故发生的可能性或降低事故有害影响的程度 [11] 。 系统安全性评估主要是分析危险、识别危险,以便在寿命周期的所有阶段中能够消 除、控制或减少这些危险。它还可以提供用其它方法所不能获得的有关系统或设备的设计、使用和维修规程的信息,确定系统设计的不安全状态,以及纠正这些不安全状态的7方法。如果危险消除不了,系统安全性评估可以指出控制危险的最佳方法和减轻未能控制的危险所产生的有害影响的方法。此外,系统安全性评估还可以用来验证设计是否符合规范、标准或其他文件规定的要求,验证系统是否重复以前的系统中存在的缺陷,确定与危险有关的系统接口。 从广义上说,系统安全性评估解决下列问题: 1、什么功能出现错误? 2、它潜在的危害是什么?

多种结构可靠度计算方法的快速实现

多种结构可靠度计算方法的快速实现 徐 港 1,3  王 青2 王永明 3 (1.华中科技大学土木与力学学院,武汉430074;2.广西大学土木建筑工程学院,南宁530004;3.三峡大学土木水电学院,宜昌440332) [摘 要] 本文在总结多种结构可靠度计算方法的基础上,提出了应用Matlab 快速实现这些算法的设想,并对常用的一 次二阶矩法、蒙特卡罗法以实例的形式介绍了计算过程。 [关键词] 结构可靠度;一次二阶矩法;Matlab ;蒙特卡罗法 [中图分类号] T U31112 [文献标识码] A [文章编号] 10012523X (2004)0620007203 FAST REALIZATION OF SEVERAL CALCU LATION METH ODS OF STRUCTURAL RE LIABI LITY Xu G ang Qing Wang Y ong 2ming [Abstract ] Summing up several calculation method of structural reliability ,the thesis presents the assumption that we can realize it fleetly on Matlab ,and the fast realization of s ome usually method such as first 2order second 2m oment method and M onte Carlo method. [K eyw ords ] S tructural reliability ;First 2order second 2m oment method ;Matlab ;M onte Carlo method 收稿日期:2004-02-28 作者简介:徐 港(19742),男,内蒙古包头市人,毕业于武汉水利电 力大学,现为华中科技大学在读硕士生。 1 概述 可靠度的计算方法从研究的对象来说可分为点可靠度计算方法和体系可靠度计算方法。由于可靠度研究本身的复杂性,目前对结构体系可靠度的研究还很不成熟,仍处于探索阶段。而结构点可靠度的计算方法已较成熟,主要有:一次二阶矩法、高次高阶矩法、响应面法、蒙特卡罗法及随机限元法等[1]。但这些方法在研究或应用中存在的一个共同难点,就是涉及到大量的数学运算。通常的做法是利用计算机高级语言编程求解,但这样一来无疑增大了这些计算方法应用的难度。因为它不仅要求人们要有较好的编程能力,同时还应熟练掌握各种数学算法。那么,是否有一种能快速、准确地实现多种结构可靠度计算方法的好办法呢?经笔者实践,认为充分利用Matlab 的强大数值计算功能,便可很好地实现这一设想。 2 Matlab 简介 Matlab 是由Mathw orks 公司开发的,它不仅是一个强大 的集数值计算、符号运算及图形处理等功能于一体的可跨操作系统平台的科学计算软件,同时又是一种更高级,更自由的计算机语言,几乎能满足所有的计算需求。Matlab 有20多个工具箱,如:统计工具箱、偏微分工具箱、优化工具箱、神 经网络工具箱、模糊逻辑工具箱等等,汇集了大量数学、统计、科学和工程所需的函数[2]。其中与可靠度分析最直接相关的便是统计工具箱,包含了20多种随机变量分布类型的概率分布、参数估计与假设检验、线性模型与非线性模型分析、多元统计分析、试验设计以及统计工序管理的相关函数。 下面以点可靠度分析计算中最常用的一次二阶矩法和蒙特卡罗法为例来阐述本文的观点。 3 一次二阶矩法 一次二阶矩法是实际工程中最主要的计算结构可靠度的方法,按计算精度及简化条件的不同又可分为:均值一次二阶矩法、改进一次二阶矩法、JC 法及几何法等。而其中较常用的是改进一次二阶矩法和JC 法。 改进一次二阶矩法适用于结构功能函数所含基本随机变量为独立、正态变量情况。其主要计算难点就是解方程组困难,传统的做法无论是手算还是机算都要迭代求解,故绝大多数情况也只能求得近似解,且求解过程繁杂。但在 Matlab 中则可利用其强大的符号计算功能快速的求得精确 解,如以下算例: 例:已知极限状态方程为Z =g (f ,w )=fw -1140=0,且 f 、w 均服从正态分布,方差μ,变异系数δ分别为:μf =38,δf =0110;μw =54,δw =0105。 求可靠指标β。对本题详细求解过程见参考文献[3],代入相关数据运算便可得出如下方程组: cos θf = - 3.8w 3 (2.7f 3)2+(3.8w 3)2 7 第31卷第6期2004年6月 建 筑 技 术 开 发 Building T echnique Development V ol.31,N o.6 Jun.2004

《建筑结构可靠度设计统一标准》学习要点及理解

《建筑结构可靠度设计统一标准》 (GB50068-2001)学习要点及理解 一、前言中关于修订内容的说明(相对原《建筑结构统一标准》(GBJ68-84)) 1、标准的适用范围:鉴于《建筑地基基础设计规范》、《建筑抗震设计规范》在结构可靠度设计方法上有一定特殊性,从原标准要求的“应遵守”本标准,改为“宜遵守”本标准; [1.0.3条] 2、根据《工程结构可靠度设计统一标准》(GB50153-92)的规定,增加了有关设计工作状况的规定,并明确了设计状况与极限状态的关系; [3.0.3条、3.0.4条] 3、借鉴最新国际标准JSO2394:1998《结构可靠度总原则》,给出了不同类型建筑结构的设计使用年限; [1.0.5条] 4、在承载能力极限状态的设计表达式中,对于荷载效应的基本组合,增加了永久荷载效应为主时起控制作用的组合式; [7.0.2条(7.0.2-2)式] 5、对楼面活荷载、风荷载、雪荷载标准值的取值原则和结构构件的可靠指标以及结构重要性系数等作了调整; [4.0.6条、3.0.11条、7.0.3条]

6、首次对结构构件正常使用的可靠度做出了规定,这将促进房屋使用性能的改善和可靠度设计方法的发展; [3.0.12条] 7、取消了原标准的附件。 [原标准有五个附件:附件一荷载的统计特性、代表值及其效应组合;附件二结构抗力的统计特性;附件三结构可靠度的计算方法;附件四极限状态设计表达式及其分项系数的确定;附件五结构材料的质量要求及质量控制。此五个附件对正确理解本标准仍具有重要作用,有精力的专业技术骨干,特别是技术把关人应该一读。] 二、标准的主线 可靠度设计原则(建筑结构在规定的设计使用年限内应具有 采用以概率理论为基础的极限状态设计方 法(影响建筑结构可靠性的各种因素都是随机因素,只能用概率来度量。以极限状态为目标的设计方法为公认的合理的设计方法)变通为多系数表达式(这是为广大设计人员所熟悉和乐 于接受的形式。使概率极限状态设计方法具有实用性。) 三、条文理解 1、总则 1.0.3(原文略) [明确规定《建筑结构荷载规范》、《钢结构设计规范》、《薄壁型钢结构设计规范》、《混凝土结构设计规范》、《砌体设计规范》、

可靠性数据分析的计算方法

可靠性数据分析的计算方法

PROCEEDINGS,Annual RELIABILITY and MAINTAINABILITY Symposium(1996) 可靠性数据分析的计算方法 Gordon Johnston, SAS Institute Inc., Cary 关键词:寿命数据分析加速试验修复数据分析软件工具 摘要&结论 许多从事组件和系统可靠度研究的专业人员并没有意识到,通过廉价的台式电脑的普及使用,很多用于可靠度分析的功能强大的统计工具已经用于实践中。软件的计算功能还可以将复杂的计算统计和图形技术应用于可靠度分析问题。这大大的便利了工业统计学家和可靠性工程师,他们可以将这些灵活精确的方法应用于在可靠度分析时所遇到的许多不同类型的数据。 在本文中,我们在SAS@系统中将一些最有用的统计数据和图形技术应用到例子的当中,这些例子主要包涵了寿命数据,加速试验数据,以及可修复系统中的数据。随着越来越多的人意识到创新性软件在可靠性数据分析中解决问题的需要,毫无疑问,计算密集型技术在可靠性数据分析中的应用的趋势将会继续扩大。 1.介绍 本文探讨了人们在可靠性数据分析普遍遇到的三个方面: 寿命数据分析 试验加速数据分析 可修复系统数据的分析 在上述各领域,图形和分析的统计方法已被开发用于探索性数据分析,可靠性预测,并用于比较不同的设计系统,供应商等的可靠性性能。 为了体现将现代统计方法用于结合使用高分辨率图形的使用价值,在下面的章节中图形和统计方法将被应用于含有上述三个方面的可靠性数据的例子中。2.寿命数据分析 概率统计图的寿命数据分析中使用的最常见的图形工具之一。Weibull 图是最常见的使用可靠性的概率图的类型,但是当Weibull概率分布并不符合实际数据的时候,类似于对数正态分布和指数分布这一类的概率图在寿命数据分析中也能够起到帮助。 在许多情况下,可用的数据不仅包含故障时间,但也包含在分析时没有发生故障的单位的运行时间。在某些情况下,只能够知道两次故障发生之间的时间间隔。例如,在测试大量的电子元件时,如果记录每一个发生故障的元件的故障时间,那么这可能不经济。相反,在固定的时间间隔内

结构可靠性复习题及解答

一﹑单项选择题 1.我国现行规范中一般建筑物的设计使用年限为 C A .5年 B 。25年 C .50年 D 。100年 2.对普通房屋和构筑物,《建筑结构可靠度设计统一标准》给出的设计使用年限为C A .5年 B 。25年 C .50年 D 。100年 3.对临时性结构,《建筑结构可靠度设计统一标准》给出的设计使用年限为A A .5年 B 。25年 C .50年 D 。100年 4.我国现行建筑规范中设计基准期为 C A .10年 B 。30年 C .50年 D 。100年 5. 现行《建筑结构荷载规范》规定的基本风压值的重现期为B A.30年 B.50年 C.100年 D.150年 6. 称确定可变作用及与时间有关的材料性能的取值而选用的时间参数为 A A. 结构设计基准期 B. 结构设计使用年限 C. 结构使用年限 D. 结构全寿命 7.下面哪一个变量不是随机变量? D A .结构构件抗力 B .荷载最大值T Q C .功能函数Z D .永久荷载标准值 8.结构可靠性是指 D A .安全性 B 。适用性 C .耐久性 D 。安全性﹑适用性和耐久性的总称 9.在结构可靠度分析中,描述结构的极限状态一般用 A A .功能函数 B 。极限状态方程 C .可靠度 D 。失效概率 10.裂缝超标破坏属于哪个极限状态范畴.B A .承载力极限状态 B. 正常使用极限状态 C. 稳定极限状态 D. 强度极限状态 11.规定时间规定条件预定功能相同时,可靠指标 越大,结构的可靠程度A A.越高 B.越低 C.不变 D.视情况而定 12. 结构的失效概率与可靠度之和A A.等于1 B.大于1 C.小于1 D.不确定 13.当功能函数服从哪一个分布时,可靠指标与失效概率具有一一对应关系。 A A .正态分布 B 。均匀分布 C .极值分布 D .指数分布 14. 结构的失效概率f P 与结构抗力R 和荷载效应S 的概率密度干涉面积。D

可靠度分析方法的一般概念

精心整理基于性能的设计过程为分为三个步骤: ①按照建筑物的用途以及用户对建筑物的需求来确定性能的要求,从而建立一个目标性能; ②根据建立好的目标性能选用一种合适的结构设计方法; ③对各项性能指标进行综合评定,判断所设计的建筑物能否满足目标性能的要求。一般采用风险率 (1 (2 (3 (4 在实际工程中,极限状态函数往往是很难用显式表达出来,响应面法是在设计验算点附近用多项式来拟合复杂的极限状态函数,然后用一般的可靠度计算方法计算结构可靠度,因此响应面法在实际工程的计算当中得到广泛应用。 蒙特卡洛法的原理是: 对所研究的问题建立相似的概率模型,根据其统计特征值(如均值、方差等),采用某种特定方法

产生随机数和随机变量来模拟随机事件,然后对所得的结果进行统计处理,从而得到问题的解。(1)根据待求的问题构造一个合适的随机模型,所求问题的解应该对应于该 模型中随机变量的均值和方差等统计特征值;在主要特征参数方面,所构造的模 型也应该与实际问题相一致。 (2)根据模型中各个随机变量的统计参数和概率分布,随机产生一定数量的 随机数。通常我们先产生服从均匀分布的随机数,然后通过某种变换转化为服从 (3 (4 (5 1 2 3 4、重复2、3过程过程N次(N=600)。 5、统计分析上述过程产生的组抗力,得到偏压柱在偏心距为时的抗力 平均值和标准差。 6、给出一组偏心距值,重复以上步骤,便可得到混凝土偏心受压柱截面抗 力—曲线,平均值及标准差。

验算点法(JC): 洛赫摩和汉拉斯在研究荷载组合时提出了按当量正态化条件,将非正态随机变量当量为正态随机变量进行可靠度计算的新方法。该方法较为直观、易于理解,是国际安全度联合会推荐(JCSS)推荐使用的方法,又称为JC法。 需要已知验算点的坐标值,但对于非正态随机变量和非线性极限状态方程,其坐标值不能预先求得,所以需进行迭代计算。 JC (2)BP 1957 则应对边界条件具 有“最小偏见”的,这实际上是个优化问题,即最大熵原理的定义。 随机有限元法 采用有限元法分析具有确定性物理模型的结构可靠度,可先确定极限状态函数中每项参数如作用效应和结构抗力等的统计参数和概率分布;再通过有限元分析求出结构的随机反应,如结构反应的平

结构可靠度分析方法.

工程结构可靠度 论文 《浅谈工程结构可靠度的计算与设计》 学院:建设工程学部 专业:结构工程 学生姓名:张崇凤 指导老师:贡金鑫 完成日期:2013年12月3日

摘要:结构可靠度理论研究是内容极其丰富且复杂的重大研究课题,不仅仅在理论上有许多重大问题需要解决,而且将其应用到结构设计、评估及维修决策之中尚有许多细致的工作要做。本文阐述了结构可靠度的概念、基本理论,计算方法及设计,可以作为今后工作前的理论指导。 关键词:工程结构可靠度计算方法设计 Abstact:Structure reliability theory is extremely rich content and complex significant research subject, not only in theory be many important problems to be solved, and its application to structural design, evaluation and maintenance decision of there is much careful work to do. This paper expounds the structure reliability of the concept, basic theory, the calculation and design, can work as the future before theoretical guidance. Keywords: Engineering structure reliability calculation method design 1.引言 我国正处在大规模建设阶段,工业和民用建筑以钢筋混凝土结构为主。我国现行规范明确规定,建筑结构必须满足安全性、适用性和耐久性三项要求, 统称为可靠性。工程结构往往为大量构件组成的超静定结构, 一个构件或多个构件失后 , 剩下的结构仍然可以完成规定的功能, 因此单个构件的可靠性并不能完全反映整个结构体系的可靠性。结构的可靠性不仅取决于结构构件的可靠性,而且取决于构件的组合方式以及组合方式之间的相关性。本篇论文从可靠度的理论、方法、分析、设计来探讨工程结构可靠度,希望在以后从事的结构设计中能有所启迪和进一步发展。 2.可靠度基本理论

工程结构可靠度设计统一标准规定

工程结构可靠度设计统一标准 第一章总则 第二章极限状态设计原则 第三章结构上的作用 第四章材料和岩土的性能及几何参数 第五章结构分析 第六章分项系数设计方法 第七章质量控制要求 附录一结构可靠指标计算的一次二阶矩法 附录二永久作用、可变作用和偶然作用举例 附录三永久作用标准值的确定原则 附录四可变作用标准值的确定原则 附录五可变作用准永久值和频遇值的确定原则 附录六本标准用词说明 附加说明 第一章总则 第1.0.1条为统一工程结构可靠度设计的基本原则和方法,使设计符合技术先进、经济合理、安全适用、确保质量的要求,制定本标准。

第1.0.2条本标准是制定房屋建筑、铁路、公路、港口、水利水电工程结构可靠度设计统一标准应遵守的准则。在各类工程结构的统一标准中尚应制定相应的具体规定。 第1.0.3条本标准适用于整个结构、组成整个结构的构件以及地基基础,适用于结构的施工阶段和使用阶段。 第1.0.4条工程结构必须满足下列功能要求: 一、在正常施工和正常使用时,能承受可能出现的各种作用; 二、在正常使用时,具有良好的工作性能; 三、在正常维护下,具有足够的耐久性能; 四、在设计规定的偶然事件发生时和发生后,能保持必需的整体稳定性。 第1.0.5条结构在规定的时间内,在规定的条件下,对完成其预定功能应具有足够的可靠度,可靠度一般可用概率度量。 确定结构可靠度及其有关设计参数时,应结合结构使用期选定适当的设计基准期作为结构可靠度设计所依据的时间参数。 第1.0.6条工程结构设计宜采用分项系数表达的以概率理论为基础的极限状态设计方法。 第1.0.7条工程结构设计时,应根据结构破坏可能产生的后果(危及人的生命,造成经济损失,产生社会影响等)的严重性,采用表1.0.7规定的安全等级。 工程结构的安全等级表1.0.7 注:对特殊结构,其安全等级可按具体情况确定。 第1.0.8条工程结构中各类结构构件的安全等级宜与整个结构的安全等级相同。对其中部分结构构件的安全等级可适当提高或降低,但不得低于三级。 第1.0.9条对不同安全等级的结构构件,应规定相应的可靠度。 第1.0.10条工程结构应按其破坏前有无明显变形或其它预兆区别为延性破坏和脆性破坏两种破坏类型。对脆性破坏的结构,其规定的可靠度应比延性破坏的结构适当提高。

结构可靠度理论及应用复习题

结构可靠度理论及应用复习题 1 什么是施加于结构上的作用?荷载与作用有什么区别? 结构上的作用是指能使结构产生效应的各种原因的总称,包括直接作用和间接作用。引起结构产生作用效应的原因有两种,一种是施加于结构上的集中力和分布力,例如桥梁结构自重,作用于桥面的车辆、人群,施加于结构物上的风压力、水压力、土压力等,它们都是直接施加于结构,称为直接作用。另一种是施加于结构上的外加变形和约束变形,例如基础沉降导致结构外加变形引起的内力效应,温度变化引起结构约束变形产生的内力效应,由于地震造成地面运动致使结构产生惯性力引起的作用效应等。它们都是间接作用于结构,称为间接作用。 “荷载”仅指施加于结构上的直接作用;而“作用”泛指使结构产生内力、变形的所有原因。 2 结构上的作用如何按时间变异、空间位置变异、结构反应性质分类? 结构上的作用按随时间变化可分永久作用、可变作用和偶然作用;按空间位置变异可分为固定作用和自由作用;按结构反应性质可分为静态作用和动态作用。 3 什么是荷载的代表值?它们是如何确定的? 荷载代表值是考虑荷载变异特征所赋予的规定量值,工程建设相关的国家标准给出了荷载四种代表值:标准值,组合值,频遇值和准永久值。荷载可根据不同设计要求规定不同的代表值,其中荷载标准值是荷载的基本代表值,其它代表值都可在标准值的基础上考虑相应的系数得到。 4试述公路桥梁汽车荷载的等级和组成?车道荷载的计算图式和标准值? 公路桥梁汽车荷载分为公路—Ⅰ级和公路—Ⅱ级两个级别,分别由车道荷载和车辆荷载组成。桥梁结构的整体计算采用车道荷载,车道荷载由均布荷载和集中荷载组成。桥梁结构的局部加载、涵洞、桥台和挡土墙土压力等的计算采用车辆荷载。车辆荷载和车道荷载的作用不得叠加。 车道荷载是个虚拟荷载,它的荷载标准值k q 和k p 是在不同车流密度、车型、车重的公路上,对实际汽车车队车重和车间距的测定和效应分析得到。车道荷载的均布荷载标准值应满布于使结构产生最不利效应的同号影响线上;集中荷载标准值只作用于相应影响线中一个最大影响线峰值处。 车道荷载的计算图式见图2.28。公路—Ⅰ级车道荷载的均布荷载的标准值为 k 10.5kN/m q =;集中荷载标准值按以下的规定选取:桥梁计算跨径小于或等于5m , k 180kN p = ;桥梁计算跨径等于或大于50m 时, k 360kN p =;桥梁的计算跨径在5m~50m 之间时,k p 值采用直线内插求得。计算剪力的效应时, 上述集中荷载的标准值k p 应乘以1.2的系数。 公路—Ⅱ级车道荷载的均布荷载标准值 k q 和集 中荷载标准值k p 按公路—Ⅰ级车道荷载的0.75倍采 图1 车道荷载的计算图式

可靠性计算公式大全

所谓失效率是指单位时间内失效的元件数与元件总数的比例,以λ表示,当λ为常数时,可靠性与 失效率的关系为: R(λ)=e-λu(λu为次方) 两次故障之间系统能够正常工作的时间的平均值称为平均为故障时间(MTBF) 如:同一型号的1000台计算机,在规定的条件下工作1000小时,其中有10台出现故障 ,计算机失效率:λ=10/(1000*1000)=1*10-5(5为次方) 千小时的可靠性:R(t)=e-λt=e(-10-5*10^3(3次方)= 平均故障间隔时间M TBF=1/λ=1/10-5=10-5小时. 1)表决系统可靠性 表决系统可靠性:表决系统是组成系统的n个单元中,不失效的单元不少于k(k介于1和n之间),系统就不会失效的系统,又称为k/n系统。图为表决系统的可靠性框图。通常n个单元的可靠度相同,均为R,则可靠性数学模形为: 这是一个更一般的可靠性模型,如果k=1,即为n个相同单元的并联系统,如果k=n,即为n个相同单元的串联系统。 2)冷储备系统可靠性 冷储备系统可靠性(相同部件情况):n个完全相同部件的冷贮备系统,(待机贮备系统),转换开关s 为理想开关Rs=1,只要一个部件正常,则系统正常。所以系统的可靠度: 图12.8.2 待机贮备系统 3)串联系统可靠性 串联系统可靠性:串联系统是组成系统的所有单元中任一单元失效就会导致整流器个系统失效的系统。下图为串联系统的可靠性框图。假定各单元是统计独立的,则其可靠性数学模型为 式中,Ra——系统可靠度;Ri——第i单元可靠度

多数机械系统都是串联系统。串联系统的可靠度随着单元可靠度的减小及单元数的增多而迅速下降。图12.8.4表示各单元可靠度相同时Ri和nRs的关系。显然,Rs≤min(Ri),因此为提高串联系统的可靠性,单元数宜少,而且应重视串联系统的可靠性,单元数宜少,而且应重视改善最薄弱的单元的可靠性。 4)并联系统可靠性 并联系统可靠性:并联系统是组成系统的所有单元都失效时才失效的失效的系统。图12.8.5为并联轴系统的可靠性框图。假定各单元是统计独立的,则其可靠性数学模型为 式中 Ra——系统可靠度 Fi——第i单元不可靠度 Ri——第i单元可靠度 并联系统对提高系统的可靠度有显著的效果,图12.8.6表示各单元可靠度相同时Ri和n与Rs的关系,机械系统采用并联时,尺寸、重量、价格都随并联数n成倍地增加,因此不如电子、电讯设备中用得广泛。采用时并联数也不多。例如在动力装置、安全装置、制动装置采用并联时,常取n=2~3。 5)混联系统可靠性 混联系统可靠性:混联系统是由串联和并联混合组成的系统。图12.8.7a为混联系统的可靠性框图,其数学模型可运用串联和并联两种基本模型将系统中一些串联及半联部分简化为等效单元。例如图的a可按图中b,c,d的次序依次简化,则 图12.8.7混联系统及其简化 混联系统的两个典型情况为串并联系统(12.8.8a)和并串联系统()。 串半联系统的数学模型为:

第九章结构可靠度分析习题

第九章结构可靠度分析习题 1、结构需满足的四项基本要求是什么? 答: (1)能承受在正常施工和正常使用时可能出现的各种作用; (2)在正常使用时具有良好的工作性能; (3)在正常维护下具有足够的耐久性能; (4)在偶然事件发生时及发生后,仍能保持必需的整体稳定性。 2、简述结构可靠度的含义并绘图说明当功能函数为线性函数时,结构可靠指标β的几何意义。 答:含义:结构在规定的时间内,在规定的条件下,完成预定功能的 概率。 几何意义:可靠指标β是标准空间R S ''-坐标系中坐标原点到极限状态曲面0 Z =的最短距离。 3、结构的极限状态分哪两类?并分别说明包含哪些方面? O R ' R

答:结构的极限状态分为承载能力极限状态和正常使用极限状态。 承载能力极限状态包括: (1)整个结构或结构的一部分作为刚体失去平衡; (2)结构构件或连接因材料强度被超过而破坏,或因过度的塑 性变形而不适合于继续承载; (3)结构转变为机动体系; (4)结构或结构构件丧失稳定; 正常使用极限状态包括; (1)影响正常的使用和外观的变形; (2)影响正常使用或耐久性能的局部损坏; (3)影响正常使用的振动; (4)影响正常使用的其它状态。 4、已知某钢梁截面的塑性抵抗矩W 服从正态分布, 5 3 9.010mm W μ=?,0.04W δ=,钢梁材料的屈服强度?服从对 数正态分布,3 234N /m m f μ=,0.12f δ=。钢梁承受确定性弯矩 M=130.0KN.m 。试用均值一次二阶矩法计算该梁的可靠指标β。 解:(1) 取用抗力作为功能函数。 6 130.010 Z fW M fW =-=-? 极限状态方程为6 130.0100 Z fW M fW =-=-?= 5 6 7 234 9.0 10 130.0 10 8.06 Z f W M μμμ= -=??-?=?? 2 2 22 2 2 2 22 2 2 1 4 1 ()()7.1010 i n Z X f W W f f W W f i i g X μ σ σ μσμσμ μδδ=?= = +=+=??∑ 7 2.66 10N m Z σ=??

系统可靠性计算

系统可靠性计算是软件设计师考试的一个重点,近些年几乎每次考试都会考到,但这个知识点的难度不高,了解基本的运算公式,即可轻松应对。 可靠性计算主要涉及三种系统,即串联系统、并联系统和冗余系统,其中串联系统和并联系统的可靠性计算都非常简单,只要了解其概念,公式很容易记住。冗余系统要复杂一些。在实际的考试当中,考得最多的就是串并混合系统的可靠性计算。所以要求我们对串联系统与并联系统的特点有基本的了解,对其计算公式能理解、运用。 系统可靠性是指从它可是运行(t=0)到某时刻t这段时间内能正常运行的 概率,用R(t)表示。所谓失效率,是指单位时间内失效的原件数与元件总数的比例,用λ表示,当λ为常数时,可靠性与失效率的关系为 R(t)=е^(-λt) 计算机的RAS技术就是指用可靠性R、可用性A和可维护性S三个指标衡量一个计算机系统。 下面将对这些计算的原理及公式进行详细的说明。 1.串联系统 假设一个系统由n个子系统组成,当且仅当所有的子系统都能正常工作时,系统才能正常工作,这种系统称为串联系统,如图1所示 设系统各个子系统的可靠性分别用表示, 则系统的可靠性。 如果系统的各个子系统的失效率分别用来表示,

则系统的失效率。 系统越多可靠性越差,失效率越大。 2.并联系统 假如一个系统由n个子系统组成,只要有一个子系统能够正常工作,系统就能正常工作,如图2所示。 设系统各个子系统的可靠性分别用表示, 则系统的可靠性 。 假如所有子系统的失效率均为l,则系统的失效率为m: 在并联系统中只有一个子系统是真正需要的,其余n-1个子系统都被称为冗余子系统。该系统随着冗余子系统数量的增加,其平均无故障时间也会增加。 串联就是一个有问题就会瘫痪,并联只要有一个能用就没有问题。 3.串并混合系统 串并混合系统实际上就是对串联系统与并联系统的综合应用。我们在此以实例说明串并混合系统的可靠性如何计算。

可靠度计算方法

一次二阶矩法 当基本状态变量X i (i =1,2,···,n )的概率密度未知,或者在概率密度函数复杂不易求其分布参数的积分时,可利用泰勒级数展开后忽略二次以上的项,只考虑它们的一阶原点矩和二阶中心矩这两个特征参数,近似地计算状态函数的均值和方差,求得可靠指标和破坏概率,故称作一次二阶矩法(First order second moment method),包括中心点法和验算点法。 中心点法 中心点法[56]是早期结构可靠度研究所提出的分析方法,只考虑随机变量的平均值和标准差,作为一种简单的计算方法,对于结构功能函数为 S R Z -= 的可靠度问题,可靠度指标为 Z Z σμβ= 当随机变量R 和S 服从正态分布时,式可变为 22 S R S R σ σ μμβ+-= 上式表示的是两个随机变量的情形,对于多个随机变量的一般形式的结构功能函数 ),,,(21n X X X X g Z = 其中:X 1,X 2,···,X n 为结构中的n 个相互独立的随机变量,其平均值为n X X X μμμ,,,2 1 ,标准差为n X X X σσσ,,,2 1 。 将功能函数在随机变量的平均值处展开泰勒级数展开,取一次项近似 )()(),,,(1 21i X i n i i n X L X X g g Z Z μμμμμ-??+ =≈∑ = 函数的均值和方差分别为 ),,,(21n X Z Z g EZ μμμμμ ==≈ ∑=??? ? ????=-=≈n i X i X Z L Z Z i L L X g Z E 12 2 )()(σμμσσ 由中心点法的可靠度指标的定义,从而有 ∑ =??? ? ? ???≈ = n i X i X X X X X Z Z i n X g g 1 2 )() ,,,(21σμμμμσμβ 从式和的推导可以看出,中心点法使用了结构功能函数的的一次泰勒级数展开式和随机变量的的前两阶矩(均值和方差),故称为一次二阶矩方法,早期也称

相关主题
文本预览
相关文档 最新文档