当前位置:文档之家› 复合材料在大飞机中的应用

复合材料在大飞机中的应用

复合材料在大飞机中的应用
复合材料在大飞机中的应用

复合材料在大飞机中的应用

1复合材料

1.1复合材料的定义

复合材料指“由有机高分子、无机非金属或金属等几类不同材料通过复合工艺组合而成的新型材料”1。

1.2复合材料的特性

由于复合材料通常由两种及两种以上材料复合而成,通常其不仅具有原组分的主要特点,而且会产生一些不同于原组分的新特点。例如在空客A380中大量使用的Glare 层板,其抗疲劳特性,缺口强度,抗湿热性能和抗腐蚀性都表现较好。此外,相较于同体积铝板,其质量可减少15%~30%,非常适合用于飞机制造。

2复合材料在大飞机制造中的应用

2.1飞机材料变迁

飞机的材料变迁大致经历了以下五个过程(表1)

表1飞机机体和发动机的材料结构变化2

1师昌绪.材料大辞典[M].北京:化学工业出版社,1994:244

2钟元.一代材料一代飞机——曹春晓院士从材料进化史看中国大飞机项目[J].航空制造技术,2008,1:37

*第四阶段后期复合材料开始逐步进入发动机

2.2复合材料的应用现状

复合材料的应用大致经历了四个阶段(表2),这四个阶段体现了由小到大,循序渐进的特点。

表2复合材料应用的发展阶段

此外,复合材料占飞机总质量比也逐渐增大(图1),如今其比例已超过50%。

2.3大飞机制造中应用复合材料的优缺点

A.优点

a提高了飞机的经济性

b提高了飞机的舒适性

c提高了飞机的安全性

d提高了飞机的环保性

B.缺点

其主要缺点集中在制造成本高,制造技术复杂等方面。

图1大型客机中复合材料的质量占比3

3陈绍杰.复合材料技术与大型飞机[J].航空学报,2008,29(3):606

阻燃高分子复合材料的研究进展

阻燃高分子复合材料的研究进展 王增加 李辅安 李翠云 (中国航天科技集团第四研究院43所,西安710025) 摘 要 综述了阻燃高分子复合材料的发展概况,并介绍了几种典型的阻燃复合材料的分类及特性。指出了阻燃高分子复合材料的发展方向。 关键词 阻燃,复合材料,极限氧指数(LOI),纳米复合材料 Development of flame retardant polymer2based composite Wang Z engjia Li Fuan Li Cuiyun (The43rd Institute of the F ourth Academy of C ASC,X i’an710025) Abstract The development on the research of flame retardant polymer2based composite were reviewed and discussed in this paper,and the classification and characteristics of s ome typical flame retardant polymer2based composites was introduced,meanwhile the development orientation were put forward. K ey w ords flame retardancy,composite,limiting qxygen index(LOI),nano2composite 一般高分子复合材料的阻燃性能比较差,其阻燃性能主要是通过添加阻燃剂来获得。按照化学组成,阻燃剂可分为无机阻燃剂和有机阻燃剂。无机阻燃剂主要包括无机硅系阻燃剂、纳米无机物阻燃剂、石墨阻燃剂、无卤阻燃剂等;而有机阻燃剂主要是指有机硅系、卤系等阻燃剂。目前我国使用的阻燃剂主要以有机卤系阻燃剂为主,尽管它与有机高聚物相容性好,阻燃效果好,添加量很少,对材料的其它性能影响很小,但在燃烧过程中发烟量较大,且释放出有毒性、腐蚀性的卤化氢气体。与有机阻燃剂不同,无机阻燃剂虽具有无卤、无毒、低烟等优点,但却存在添加量大且与基材亲和力差的缺点,对材料的加工和机械性能影响很大[1,2]。下面介绍几种典型的、新发展的阻燃高分子复合材料。 1 几种典型的阻燃复合材料 1.1 添加型硅系阻燃复合材料 添加型硅系阻燃复合材料在阻燃材料中占有重要的地位,添加型硅系阻燃剂分为有机硅系阻燃剂和无机硅系阻燃剂两大类。有机硅系阻燃剂的研究主要通过改进分子结构、提高分子量等来提高阻燃效果,改善成炭性能和被阻燃材料的加工及物理机械性能。无机硅系阻燃剂的研究,主要是提高其与被阻燃材料的相容性和增加阻燃效率[3]。 1.1.1 有机硅系阻燃剂 有机硅系阻燃剂是一种高效、低毒、防熔滴、环境友好的非卤阻燃剂,也是一种成炭型抑烟剂。成炭技术是阻燃技术的新发展方向之一。一般通过添加成炭剂促进成炭或者促进交联反应产生炭层而达到阻燃目的。据相关报道[4,5],加入Al(OH)3或SiO2可提高聚丙烯膨胀体系的绝热性能,但有限氧指数(LOI)却下降;添加一定量的有机硅化合物可使蜂窝状炭结构更加稳定和致密,提高了聚丙烯的有限氧指数。用Mg(OH)2阻燃乙烯2醋酸乙烯酯共聚物(E VA)时,加入有机硅能改善Mg(OH)2在E VA中的分散性并增加炭化残渣的生成量,进一步提高E VA/ Mg(OH)2有机硅体系的氧指数。所以,有机硅系阻燃剂能促进炭的生成,提高炭层的稳定性和改善炭层结构,该炭层还具有一定的抑烟作用。 1.1.2 无机硅系阻燃剂 第32卷第10期2004年10月 化工新型材料 NEW CHE MIC A L M ATERI A LS V ol132N o110 ?11? 作者简介:王增加(1979-),男,硕士研究生,主要研究方向为结构复合材料成型工艺。

复合材料在飞机上的应用

新视点 NEW VIEWPOINT 64航空制造技术2006年第3期 目前,复合材料在飞机上的应用已非常广泛,但在20世纪90年代初复合材料市场曾一度陷入低靡,究其原因是由于复合材料设计制造的复杂性造成了成本壁垒,人们开始认识到只有重视性能和成本的平衡,才能使复合材料展现辉煌。随着复合材料先进技术的成熟,使其性能最优和低成本成为可能,大大推动了复合材料在飞机上的广泛应用。本文在介绍国外复合材料在飞机上广泛应用的基础 上,对作为技术保障的数字化设计技术和先进制造技术进行了分析研究。从国外情况看,各种先进的飞机都与复合材料的应用密不可分,复合材料在飞机上的用量和应用部位已成为衡量飞机结构先进性的重要指标之一。下面介绍复合材料在飞机上应用的发展趋势。 (1) 复合材料在飞机上的用量日益增多。 复合材料在飞机上 的应用评述 北京航空航天大学机械工程及自动化学院 张丽华 范玉青 复合材料用量通常用其所占飞机机体结构重量的百分比表示,纵观复合材料在民机上的发展情况发现,无论是波音公司还是空中客车公司,随着时间推移,复合材料的用量都呈增长趋势。最具代表意义的是空客公司的A380客机和波音公司最新推出的787客机。在A380上仅碳纤维复合材料的用量就达32t左右,占结构总重的15%,再加上其他种类的复合材料,估计其总用量可达25%左右。787 上初步估计复合材料用量可达50%,远远超过了A380。另外,复合材料 在军机和直升机上的用量也有同样的 增长趋势。(2) 应用部位由次承力结构向主承力结构过渡。 飞机上最初采用复合材料的部位有舱门、整流罩、安定面等次承力结 构,目前已广泛应用于机翼、机身等部位,向主承力结构过渡。从1982年开始用复合材料制造飞行操纵面(如A310-200飞机的升降舵和方向舵),空客公司在主承力结构上使用复合材 料已有20多年的经验。在A380上采用的碳纤维复合材料大型构件主要有中央翼盒、翼肋、机身上蒙皮壁板、机身后段、机身尾段、地板梁、后承压框、垂尾等,大量的主承力结构都采用了复合材料。787复合材料的应用则更让世人瞩目,其机身和机翼部位采用碳纤维增强层合板结构代替铝合金;发动机短舱、水平尾翼和垂直尾翼、舵面、翼尖等部位采用碳纤维增强夹芯板结构;机身与机翼衔接处的整流蒙皮采用玻璃纤维增强复合材料。与A380相比其用量更大,主承载部位的应用更加广泛,这将是世界上采用复合材料最多的大型商用喷气客机。 (3) 复合材料在复杂曲面构件上的应用越来越多。 飞机上复杂曲面零件很多,复合材料的应用也越来越多,比如A380机身19段、19.1段和球面后压力隔框等均为采用复合材料的具有复杂曲 复合材料在飞机上的用量和应用部位已成为衡量飞机结构先进性的重要指标之一;复合材料构件的整体成型、共固化技术不断进展,复杂曲面构件不断扩大应用;复合材料的数字化设计,设计、制造一体化,以及基于三维模型铺层展开的专用设计/制造软件等技术的开发是先进复合材料发展的基本技术保障 复合材料在飞机上的应用

航空航天复合材料技术发展现状

航空航天复合材料技术发展现状 2008-11-25 中国复合材料在线[收藏该文章] 材料的水平决定着一个领域乃至一个国家的科技发展的整体水平;航空、航天、空天三大领域都 对材料提出了极高的要求;材料科技制约着宇航事业的发展。 固体火箭发动机以其结构简单,机动、可靠、易于维护等一系列优点,广泛应用于武器系统及航 天领域。而先进复合材料的应用情况是衡量固体火箭发动机总体水平的重要指标之 一。在固体发动机研制及生产中尽量使用高性能复合材料已成为世界各国的重要发展目标, 目前已拓展到液体动力领域。科技发达国家在新材料研制中坚持需求牵引和技术创新相结合,做到了需求牵引带动材料技术发展,同时材料技术创新又推动了发动机水平提高的良性发展。 目前,航天动力领域先进复合材料技术总的发展方向是高性能、多功能、高可靠及低成本。 作为我国固体动力技术领域专业材料研究所,四十三所在固体火箭发动机各类结构、功能复合材料研究及成型技术方面具有雄厚的技术实力和研究水平,突破了我国固体火箭发动 机用复合材料壳体和喷管等部件研制生产中大量的应用基础技术和工艺技术难关,为我国的 固体火箭发动机事业作出了重要的贡献,同时牵引我国相关复合材料与工程专业总体水平的 提高。建所以来,先后承担并完成了通讯卫星东方红二号远地点发动机,气象卫星风云二号 远地点发动机,多种战略、战术导弹复合材料部件的研制及生产任务。目前,四十三所正在 研制多种航天动力先进复合材料部件,研制和生产了载人航天工程的逃逸系统发动机部件。 二、国内外技术发展现状分析 1、国外技术发展现状分析 1.1结构复合材料 国外发动机壳体材料采用先进的复合材料,主要方向是采用炭纤维缠绕壳体,使发动机质量比有较大提高。如美国“侏儒”小型地地洲际弹道导弹三级发动机(SICBM-1 、-2、- 3 )燃烧室壳体由IM-7炭纤维/HBRF-55A 环氧树脂缠绕制作,IM-7炭纤维拉伸强度为 5 300MPa , HBRF-55A 环氧树脂拉伸强度为84.6MPa,壳体容器特性系数(PV/Wc )>3 9KM ;美国的潜射导弹“三叉戟II (D5 )”第一级采用炭纤维壳体,质量比达0.944,壳 体特性系数43KM,其性能较凯芙拉/环氧提高30% 国外炭纤维的开发自八十年代以来,品种、性能有了较大幅度改观,主要体现在以下两个方 面:①性能不断提高,七、八十年代主要以3000MPa的炭纤维为主,九十年代初普遍使用 的IM7、IM8纤维强度达到5300MPa,九十年代末T1000纤维强度达到7000MPa,并已开始工程应用;②品种不断增多,以东丽公司为例,1983年产的炭纤维品种只有4种,至U 1995 年炭纤维品种达21种之多。不同种类、不同性能的炭纤维满足了不同的需要,为炭纤维复合材料的广泛应用提供了坚实的基础。 芳纶纤维是芳族有机纤维的总称,典型的有美国的Kevlar、俄罗斯的APMOC,均已在多 个型号上得到应用,如前苏联的SS24、SS25洲际导弹。俄罗斯的APMOC纤维生产及其应 用技术相当成熟,APMOC纤维强度比Kevlar高38%、模量高20%,纤维强度转化率已达到75%以上。PBO纤维是美国空军1970年开始作为飞机结构材料而着手研究的产品,具有刚

航空航天先进复合材料

航空航天先进复合材料现状 2014-08-10 Lb23742 摘要:回顾了树脂基复合材料的发展史;综述了先进复合材料工业上通常使用环氧树脂的品种、性能和特性;复合材料使用的增强纤维;国防、军工及航空航天用树脂基复合材料;用于固体发动机壳体的树脂基体;用于固体发动机喷管的耐热树脂基体;火箭发动机壳体用韧性环氧树脂基体;树脂基结构复合材料;防弹结构复合材料;先进战斗机用复合材料;树脂基体;航天器用外热防护涂层材料;飞机结构受力构件用的高性能环氧树脂复合材料;碳纤维增强树脂基复合材料在航空航天中的其它应用;民用大飞机复合材料;国产大飞机的软肋还是技术问题;复合材料之惑。 关键词:树脂基体;复合材料;国防;军工;航空航天;结构复合材料 0 前言 复合材料与金属、高聚物、陶瓷并称为四大材料。今天,一个国家或地区的复合材料工业水平,已成为衡量其科技与经济实力的标志之一。先进复合材料是国家安全和国民经济具有竞争优势的源泉。到2020年,只有复合材料才有潜力获得20-25%的性能提升。 环氧树脂是优良的反应固化型性树脂。在纤维增强复合材料领域中,环氧树脂大显身手。它与高性能纤维:PAN基碳纤维、芳纶纤维、聚乙烯纤维、玄武岩纤维、S或E玻璃纤维复合,便成为不可替代的重要的基体材料和结构材料,广泛运用在电子电力、航天航空、运动器材、建筑补强、压力管雄、化工防腐等六个领域。本文重点论述航空航天先进树脂基体复合材料的国内外现状及中国的技术软肋问题 1 树脂基复合材料的发展史 树脂基复合材料(Resin Matrix Composite)也称纤维增强塑料(Fiber Reinforced Plastics),是技术比较成熟且应用最为广泛的一类复合材料。这种材料是用短切的或连续纤维及其织物增强热固性或热塑性树脂基体,经复合而成。以玻璃纤维作为增强相的树脂基复合材料在世界范围内已形成了产业,在我国不科学地俗称为玻璃钢。 树脂基复合材料于1932年在美国出现,1940年以手糊成型制成了玻璃纤维增强聚酯的军用飞机的雷达罩,其后不久,美国莱特空军发展中心设计制造了一架以玻璃纤维增强树脂为机身和机翼的飞机,并于1944年3月在莱特-帕特空军基地试飞成功。1946年纤维缠绕成型技术在美国出现,为纤维缠绕压力容器的制造提供了技术贮备。1949年研究成功玻璃纤维预混料并制出了表面光洁,尺寸、形状准确的复合材料模压件。1950年真空袋和压力袋成型工艺研究成功,并制成直升飞机的螺旋桨。60年代在美国利用纤维缠绕技术,制造出北极星、土星等大型固体火箭发动机的壳体,为航天技术开辟了轻质高强结构的最佳途径。在此期间,玻璃纤维-聚酯树脂喷射成型技术得到了应用,使手糊工艺的质量和生产效率大为提高。1961年片状模塑料(Sheet Molding Compound, 简称SMC)在法国问世,利用这种技术可制出大幅面表面光洁,尺寸、形状稳定的制品,如汽车、

复合材料在飞机上的应用

复合材料在飞机航空中的应用与发展 学校:西安航空职业技术学院 专业:金属材料与热处理技术 姓名:郭远 摘要 复合材料在飞机上的用量和应用部位已成为衡量飞机结构先进性的重要指标之一;复合材料构件的整体成型、共固化技术不断进展,复杂曲面构件不断扩大应用;复合材料的数字化设计,设计、制造一体化,以及基于三维模型铺层展开的专用设计/制造软件等技术的开发是先进复合材料发展的基本技术保障. 复合材料在飞机航空中的应用与发展 复合材料大量用于航空航天工业和汽车工业,特别是先进碳纤维复合材料用于飞机尤为值得注意。不久前,碳纤维复合材料只能在军用飞机用作主结构,但是,由于技术发展的进步,先进复合材料已开始在民航客机止也应用作主结构,如机身、机翼等。 一.飞机结构用复合材料的优势 现今新一代飞机的发展目标是“轻质化、长寿命、高可靠、高效能、高隐身、低成本”。而复合材料正具备了上面的几个条件,成为实现新一代飞机发展目标的重要途径。

复合材料具有质轻、高强、可设计、抗疲劳、易于实现结构/功能一体化等优点,因此,继铝、钛、钢之后迅速发展成为四大飞机结构材料之一。 复合材料在飞机结构上的应用首先带来的是显着的减重效益,复合材料尤其是碳纤维复合材料其密度仅为cm3左右,如等量代替铝合金,理论上可有42%的减重效果。 近年来随着复合材料技术的深入研究和应用实践的积累,人们清楚地认识到:复合材料在飞机结构上应用效益绝不仅仅是减重,而且给设计带来创新舞台,通过合理设计,还可提供诸如抗疲劳、抗振、耐腐蚀、耐久性和吸透波等其它传统材料无法实现的优异功能特性,可极大地提高其使用效能,降低维护成本,增加未来发展的潜力和空间。尤其与铝合金等传统材料相比,可明显减少使用维护要求,降低寿命周期成本,特别是当飞机进入老龄化阶段后效果更明显,据说B787较之B767机体维修成本会降低30%,这在很大程度上应归功于复合材料的大量应用。同时,大部分复合材料飞机构件可以整体成型,大幅度减少零件数目,减少紧固件数目,减轻结构质量,降低连接和装配成本,从而有效地降低了总成本,如F/A-18E/F零件数减少42%,减重158kg。复合材料整体成型技术还可消除缝隙、台阶和紧固件,无疑对提高军机的隐身性能也具有非常重要的贡献。 二.飞机结构用复合材料的发展过程 先进复合材料于上世纪60年代中期一问世,即首先用于飞行器结构上。30多年来先进复合材料在飞机结构上应用走过了一条由小到大、由次到主、由局部到整体、由结构到功能、由军机应用扩展到民机应用的发展道路。 1.复合材料在军用飞机上的发展过程

航空航天复合材料设计要求比较

航空航天复合材料结构设计要求的比较 复合材料是指由有机高分子、无机非金属或金属等几类不同材料通过复合工艺组合而成的新型材料,它既能保留原有组分材料的主要特色,又通过材料设计使各组分的性能互相补充并彼此关联与协同,从而获得原组分材料无法比拟的优越性能, 复合化是当代材料技术发展的重要趋势之一,而大量采用高性能复合材料是航空航天飞行器发展的重要方向。航空航天追求性能第一的特点,使其成为先进复合材料技术的率先实验和转化的战场,航空航天工业的发展和需求推动了先进复合材料的发展,而先进复合材料的发展和应用又促进了航空航天的进步。先进复合材料继铝、钢、钛之后,迅速发展成四大结构材料之一,其用量成为航空航天结构的先进性标志之一。将先进复合材料用于航空航天结构上可相应减重20%~30%,这是其他先进技术很难达到的效果。美国NASA的Langley 研究中心在航空航天用先进复合材料发展报告中指出,各种先进技术的应用可以使亚音速运输机获得51%的减重(相对于起飞重量)效益,其中,气动设计与优化技术减重4·6%,复合材料机翼机身和气动剪裁技术减重24·3%,发动机系统和热结构设计减重13.1%,先进导航与飞行控制系统减重9%,说明了先进复合材料的应用减重最明显。这不仅带来相当大的经济效益,而且可以增加装备的机动性,还可以提高其抗疲劳、耐腐蚀性能。 由于航天与航空的使用环境和应用范围存在区别,因而造成复合

材料在航空飞行器与航天飞行器上使用的设计要求也有很多不同之处。而且由于任务目标和使用环境差异,飞机结构的要求不能直接作为空间飞行器的结构设计要求。空间飞行器的飞行环境和承受的载荷很特殊,并且几乎没有可能再去检查和维修航天器的结构或在其任务条件下验证其结构的性能。因此,空间飞行器复合结构设计必须比飞机复合材料结构设计更加稳定可靠。虽然如此,飞机行业的复合材料结构设计方面的经验仍然可以为航天器的复合材料结构设计提供一定的参考和借鉴。 航空和航天复合材料结构设计要求具体在哪些方面存在差异呢? 第一点是两者的生成规模差别很大。航空产品通常进行大规模生产,不仅整机生产数量多,而且因为需要维修等等,这样更换损坏的零件同样数量巨大;而航天产品则大多生产较少。因此在结构设计时,航空产品对结构设计时需要对加工工艺等配套设施进行细致的考虑,以达到成本、周期。效益的均衡,而航天结构设计则大多不需要考虑。同时生产数量的差异也使后续的设计工作产生了很大不同。 第二点是初始设计要求。飞机工业需要通过测试数量庞大的样本总结设计出一套模块建立的方法。但航天器的生产数量很有限,因此用于航空专业的样本采集到模块建立的方法,要想应用于航天器,从成本和进度的角度来看,是不切实际的。 第三点是强度要求。在航空和航天器中,对于强度的要求二者是一致的,但因工作环境不同存在一定的区别。航空和航天器复合材料

复合材料在航空中的应用

《飞行器设计与工程专业技术讲座(三)》结课报 告 班级: 学号: 姓名:

日期:2016年10 月09 日

复合材料在航空中的应用 前言 现代高科技的发展离不开复合材料,复合材料[1]对现代科学技术的发展,有着十分重要的作用。复合材料的研究深度和应用广度及其生产发展的速度和规模,已成为衡量一个国家科学技术先进水平的重要标志之一。进入21 世纪以来,全球复合材料市场快速增长,亚洲尤其中国市场增长较快。2003~2008 年间中国年均增速为15%,印度为9.5%,而欧洲和北美年均增幅仅为4%。 一.复合材料的简介 复合材料,是由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观(微观)上组成具有新性能的材料。各种材料在性能上互相取长补短,产生协同效应,使复合材 料的综合性能优于原组成材料而满足各种不同的要求。复合材料的基体材料分为金属和非金属两大类。金属基体常用的有铝、镁、铜、钛及其合金。非金属基体主要有合成树脂、橡胶、陶瓷、石墨、碳等。增强材料主要有玻璃纤维、碳纤维、硼纤维、芳纶纤维、碳化硅纤维、石 棉纤维、晶须、金属丝和硬质细粒等。 复合材料使用的历史可以追溯到古代。从古至今沿用的稻草或麦秸增强粘土和已使用上百年的钢筋混凝土均由两种材料复合而成。20 世纪40 年代,因航空工业的需要,发展了玻璃纤维增强塑料(俗称玻璃钢),从此出现了复合材料这一名称。50 年代以后,陆续发展了碳纤维、石墨纤维和硼纤维等高强度和高模量纤维。70 年代出现了芳纶纤维和碳化硅纤维。这些高强度、高模量纤维能与合成树脂、碳、石墨、陶瓷、橡胶等非金属基体或铝、镁、钛等金 属基体复合,构成各具特色的复合材料。 二.在航空中常用的复合材料 60 年代,为满足航空航天等尖端技术所用材料的需要,先后研制和生产了以高性能纤维(如碳纤维、硼纤维、芳纶纤维、碳化硅纤维等)为增强材料的复合材料,其比强度大于4×10 厘米(cm),比模量大于4×10cm。为了与第一代玻璃纤维增强树脂复合材料相区别,将这 种复合材料称为先进复合材料。按基体材料不同,先进复合材料分为树脂基、金属基和陶瓷基复合材料。其使用温度分别达250~350℃、350~1200℃和1200℃以上。先进复合材料除作为结构材料外,还可用作功能材料,如梯度复合材料(材料的化学和结晶学组成、结构、空隙等在空间连续梯变的功能复合材料)、机敏复合材料(具有感觉、处理和执行功能,能适应环境变化的功能复合材料)、仿生复合材料、隐身复合材料等。 目前航空航天领域应用较广的复合材料航空主要包括树脂基复合材料、金属基复合材料、碳基复合材料和陶瓷基复合材料。 1.树脂基复合材料树脂基复合材料有玻璃/酚醛、高硅氧/酚醛、石英/酚醛、碳/酚醛、涤纶/酚醛材料和以不同树脂为基体的低密度烧蚀材料。其中玻璃/酚醛、高硅氧/酚醛和石英/酚醛材料属于碳化--熔化型烧蚀村料,适用于中等焓值和中等热流密度的工作环境再入飞行器和中等推力的固体火箭发动机防热材料;碳/酚醛材料属于碳化--升华型烧蚀材料,适用于能发 挥升华效应的较高焓值和较高热流密度的工作环境,可用于更远距离再入飞行器和高性能固体火箭发动机喷管等;涤纶/酚醛材料和低密度烧蚀材料适用于高焓、低热流和较长时间再入的航天飞行器如返回式卫星和飞船等。树脂基介电--防热材料有高硅氧/聚四氟乙烯材料, 它属于升华--熔化型烧蚀材料,烧蚀过程中不生成碳,具有良好的透波性能,烧蚀性能与高硅氧/酚醛相匹配,用作航天器天线窗口材料。 先进树脂基复合材料是以高性能纤维为增强体、高性能树脂为基体的复合材料。与传统 的钢、铝合金结构材料相比,它的密度约为钢的1/5,铝合金的1/2,且比强度与比模量远高于 后

复合材料在航天航空领域的应用现状与展望

复合材料在航天航空领域的应用现状与展望 摘要现代飞机和卫星的制造材料应具有质量轻、强度高、耐高温、耐腐蚀等特性,先进复合材料的独有性能使它成为制造卫星和飞机的理想材料。本文重点介绍了我国航天用符合材料的研究情况,并展望了今后的发展趋势。 关键词复合材料;航空航天;应用现状;发展趋势 Prospect and Application of Composites in Aviation and Aerospace Abstract Nowadays, the material of producing planes and satellites should be light, strong and should resist high temperature, corrosion and so on. Because of the unique peculiarities, advanced composites become the ideal material of producing planes and satellites. In this paper, the present status and prospect of applied research on composite materials for aero-space application in China are given. Key words composites; aviation and aerospace ; application and development; development trends

复合材料在航空中的应用

《飞行器设计与工程专业技术讲座(三)》结课报告 班级: 学号: 姓名: 日期:2016年10月09日

复合材料在航空中的应用 前言 现代高科技的发展离不开复合材料,复合材料[1] 对现代科学技术的发展,有着十分重要的作用。复合材料的研究深度和应用广度及其生产发展的速度和规模,已成为衡量一个国家科学技术先进水平的重要标志之一。进入21世纪以来,全球复合材料市场快速增长,亚洲尤其中国市场增长较快。2003~2008年间中国年均增速为15%,印度为9.5%,而欧洲和北美年均增幅仅为4%。 一.复合材料的简介 复合材料,是由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观(微观)上组成具有新性能的材料。各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料而满足各种不同的要求。复合材料的基体材料分为金属和非金属两大类。金属基体常用的有铝、镁、铜、钛及其合金。非金属基体主要有合成树脂、橡胶、陶瓷、石墨、碳等。增强材料主要有玻璃纤维、碳纤维、硼纤维、芳纶纤维、碳化硅纤维、石棉纤维、晶须、金属丝和硬质细粒等。 复合材料使用的历史可以追溯到古代。从古至今沿用的稻草或麦秸增强粘土和已使用上百年的钢筋混凝土均由两种材料复合而成。20世纪40年代,因航空工业的需要,发展了玻璃纤维增强塑料(俗称玻璃钢),从此出现了复合材料这一名称。50年代以后,陆续发展了碳纤维、石墨纤维和硼纤维等高强度和高模量纤维。70年代出现了芳纶纤维和碳化硅纤维。这些高强度、高模量纤维能与合成树脂、碳、石墨、陶瓷、橡胶等非金属基体或铝、镁、钛等金属基体复合,构成各具特色的复合材料。 二.在航空中常用的复合材料 60年代,为满足航空航天等尖端技术所用材料的需要,先后研制和生产了以高性能纤维(如碳纤维、硼纤维、芳纶纤维、碳化硅纤维等)为增强材料的复合材料,其比强度大于 4×10厘米(cm),比模量大于4×10cm。为了与第一代玻璃纤维增强树脂复合材料相区别,将这种复合材料称为先进复合材料。按基体材料不同,先进复合材料分为树脂基、金属基和陶瓷基复合材料。其使用温度分别达250~350℃、350~1200℃和1200℃以上。先进复合材料除作为结构材料外,还可用作功能材料,如梯度复合材料(材料的化学和结晶学组成、结构、空隙等在空间连续梯变的功能复合材料)、机敏复合材料(具有感觉、处理和执行功能,能适应环境变化的功能复合材料)、仿生复合材料、隐身复合材料等。 目前航空航天领域应用较广的复合材料航空主要包括树脂基复合材料、金属基复合材料、碳基复合材料和陶瓷基复合材料。 1.树脂基复合材料 树脂基复合材料有玻璃/酚醛、高硅氧/酚醛、石英/酚醛、碳/酚醛、涤纶/酚醛材料和以不同树脂为基体的低密度烧蚀材料。其中玻璃/酚醛、高硅氧/酚醛和石英/酚醛材料属于碳化--熔化型烧蚀村料,适用于中等焓值和中等热流密度的工作环境再入飞行器和中等推力的固体火箭发动机防热材料;碳/酚醛材料属于碳化--升华型烧蚀材料,适用于能发挥升华效应的较高焓值和较高热流密度的工作环境,可用于更远距离再入飞行器和高性能固体火箭发动机喷管等;涤纶/酚醛材料和低密度烧蚀材料适用于高焓、低热流和较长时间再入的航天飞行器如返回式卫星和飞船等。树脂基介电--防热材料有高硅氧/聚四氟乙烯材料,它属于升华--熔化型烧蚀材料,烧蚀过程中不生成碳,具有良好的透波性能,烧蚀性能与高硅氧/酚醛相匹配,用作航天器天线窗口材料。 先进树脂基复合材料是以高性能纤维为增强体、高性能树脂为基体的复合材料。与传统的钢、铝合金结构材料相比,它的密度约为钢的1/5,铝合金的1/2,且比强度与比模量远高于后

航天复合材料数字化集成技术的研究与应用

航天复合材料数字化集成技术的研究与应用 摘要:当前小型化、轻质化、高可靠性的新形势对航天复合材料的性能提出了 更高的要求和挑战。为了进一步提升航天复合材料的性能,数字化集成技术在其 中的应用已刻不容缓。本文在分析传统复合材料结构设计所存在问题的基础上, 提出了复合材料的一体化研制模式,并详细说明一体化研制模式的主要内容,为 实现航天复合材料结构的高效高质奠定基础。 关键词:航天,复合材料,结构,数字化,一体化 0 引言 经对航天产品发展趋势的研究可知,未来航天产品将朝着轻质化、小型化、 高可靠性的方向发展。鉴于如上发展趋势,对于航天产品相关的复合材料的性能 和质量也提出了的新的要求和挑战,即对复合材料研制中的技术和工艺有了更高 的要求[1]。此外,在当前计算机技术与信息技术高度发达新形势下,将数字化设 计技术与集成产品开发模式应用于复合材料的设计和研发中。其中,上述技术应 用相对成功的公司主要有波音公司和空客集团等。这些成功的案例说明,复合材 料的数字化集成技术对提升复合材料的性能,实现复合材料的数字化生产线的建 设具有重要意义。因此,在我国航天航天复合材料的研发和生产中,也应积极将 数字化集成技术应用于其中,为提升我国航天产品的质量和可靠性奠定基础。 1 传统复合材料产品结构设计研究 我国传统复合材料产品结构设计的人员分配如下:设计人员主要完成产品的 接口和尺寸设计;工艺人员主要完成产品的铺层和工艺设计。但是,在实际工作中,部分工艺人员也充当了设计人员的角色[2]。具体产品产品设计研发流程如图 1所示: 图1 传统复合材料研发、制造流程示意图 如图1所示,传统复合材料的研发、制造过程中设计与工艺是分离开来的, 且其研制流程相对单一。上述缺陷导致设计和工艺配合度低,设计过程不受控制;制造时主要依靠二维图纸,使得复合材料的研制周期大大延长。 2 复合材料的一体化研制模式 2.1 复合材料一体化研制模式的总体思路 为了有效解决“1”中所述的复合材料设计和工艺过程的相互隔离的问题,本文 提出一体化研制模式。具体阐述如下: 在相关仿真分析、试验的基础上建立复合材料的铺层构型库;以复合材料的 设计技术和工艺技术为关键建立复合材料的关键技术层;以全三维在线协同设计 平台为主构建复合材料的平台层,并制定相应的设计、工艺规范体系[3]。此外, 根据产品研制流程的进程,决定工艺人员介入产品研制的程度。 2.2 复合材料一体化研制模式的主要内容 复合材料的设计工艺研制的内容包括有:协同设计文件、MBD设计方法、 IPD管理模式以及资源库应用技术等。其中的核心内容为MBD产品设计方法和 IPD管理模式。 (1)协同设计文件及规范体系文件建设 为了确保复合材料在研发、设计以及制造等各个阶段工作的规范性,项目组 成员搭建了全三维数字设计规范体系。该规范体系主要涵盖了复合材料的产品设 计标准、模板、设计手册以及产品开发等相关文件的管理手册。此外,严格对参

航天动力复合材料技术发展现状及设想

航天动力复合材料技术发展现状及设想 增大字体复位著名科学家师昌绪院士在北京科技大学举办的“中国材料名师讲坛”上讲到:材料的水平决定着一个领域乃至一个国家的科技发展的整体水平;航空、航天、空天三大领域都对材料提出了极高的要求;材料科技制约着宇航事业的发展。 固体火箭发动机以其结构简单,机动、可靠、易于维护等一系列优点,广泛应用于武器系统及航天领域。而先进复合材料的应用情况是衡量固体火箭发动机总体水平的重要指标之一。在固体发动机研制及生产中尽量使用高性能复合材料已成为世界各国的重要发展目标,目前已拓展到液体动力领域。科技发达国家在新材料研制中坚持需求牵引和技术创新相结合,做到了需求牵引带动材料技术发展,同时材料技术创新又推动了发动机水平提高的良性发展。目前,航天动力领域先进复合材料技术总的发展方向是高性能、多功能、高可靠及低成本。 作为我国固体动力技术领域专业材料研究所,四十三所在固体火箭发动机各类结构、功能复合材料研究及成型技术方面具有雄厚的技术实力和研究水平,突破了我国固体火箭发动机用复合材料壳体和喷管等部件研制生产中大量的应用基础技术和工艺技术难关,为我国的固体火箭发动机事业作出了重要的贡献,同时牵引我国相关复合材料与工程专业总体水平的提高。建所以来,先后承担并完成了通讯卫星东方红二号远地点发动机,气象卫星风云二号远地点发动机,多种战略、战术导弹复合材料部件的研制及生产任务。目前,四十三所正在研制多种航天动力先进复合材料部件,研制和生产了载人航天工程的逃逸系统发动机部件。 二、国内外技术发展现状分析 1、国外技术发展现状分析 1.1结构复合材料 国外发动机壳体材料采用先进的复合材料,主要方向是采用炭纤维缠绕壳体,使发动机质量比有较大提高。如美国“侏儒”小型地地洲际弹道导弹三级发动机(SICBM-1、-2、-3)燃烧室壳体由IM-7炭纤维/HBRF-55A环氧树脂缠绕制作,IM-7炭纤维拉伸强度为5300MPa,HBRF-55A环氧树脂拉伸强度为84.6MPa,壳体容器特性系数(PV/Wc)≥39KM;美国的潜射导弹“三叉戟II(D5)”第一级采用炭纤维壳体,质量比达0.944,壳体特性系数43KM,其性能较凯芙拉/环氧提高30% 。 国外炭纤维的开发自八十年代以来,品种、性能有了较大幅度改观,主要体现在以下两个方面:①性能不断提高,七、八十年代主要以3000MPa的炭纤维为主,九十年代初普遍使用的IM7、IM8纤维强度达到5300MPa,九十年代末T1000纤维强度达到7000MPa,并已开始工程应用;②品种不断增多,以东丽公司为例,1983年生产的炭纤维品种只有4种,到1995年炭纤维品种达21种之多。不同种类、不同性能的炭纤维满足了不同的需要,为炭纤维复合材料的广泛应用提供了坚实的基础。 芳纶纤维是芳族有机纤维的总称,典型的有美国的Kevlar、俄罗斯的APMOC,均已在多个型号上得到应用,如前苏联的SS-24、SS-25洲际导弹。俄罗斯的APMOC纤维生产及其应用技术相当成熟,APMOC纤维强度比Kevlar高38%、模量高20%,纤维强度转化率已达到75%以上。PBO纤维是美国空军1970年开始作为飞机结构材料而着手研究的产品,具有刚性极强的线形伸直链结构。美国Bruswick公司用抗

复合材料在飞机航空中的应用与发展

复合材料在飞机航空中的应用与发展

复合材料在飞机航空中的应用与发展 姓名:李经纬学号:0823020124 复合材料大量用于航空航天工业和汽车工业,特别是先进碳纤维复合材料用于飞机尤为值得注意。不久前,碳纤维复合材料只能在军用飞机用作主结构,但是,由于技术发展的进步,先进复合材料已开始在民航客机止也应用作主结构,如机身、机翼等。 一.飞机结构用复合材料的优势 现今新一代飞机的发展目标是“轻质化、长寿命、高可靠、高效能、高隐身、低成本”。而复合材料正具备了上面的几个条件,成为实现新一代飞机发展目标的重要途径。 复合材料具有质轻、高强、可设计、抗疲劳、易于实现结构/功能一体化等优点,因此,继铝、钛、钢之后迅速发展成为四大飞机结构材料之一。 复合材料在飞机结构上的应用首先带来的是显著的减重效益,复合材料尤其是碳纤维复合材料其密度仅为1.6g/cm3左右,如等量代替铝合金,理论上可有42%的减重效果。

近年来随着复合材料技术的深入研究和应用实践的积累,人们清楚地认识到:复合材料在飞机结构上应用效益绝不仅仅是减重,而且给设计带来创新舞台,通过合理设计,还可提供诸如抗疲劳、抗振、耐腐蚀、耐久性和吸透波等其它传统材料无法实现的优异功能特性,可极大地提高其使用效能,降低维护成本,增加未来发展的潜力和空间。尤其与铝合金等传统材料相比,可明显减少使用维护要求,降低寿命周期成本,特别是当飞机进入老龄化阶段后效果更明显,据说B787较之B767机体维修成本会降低30%,这在很大程度上应归功于复合材料的大量应用。同时,大部分复合材料飞机构件可以整体成型,大幅度减少零件数目,减少紧固件数目,减轻结构质量,降低连接和装配成本,从而有效地降低了总成本,如F/A-18E/F零件数减少42%,减重158kg。复合材料整体成型技术还可消除缝隙、台阶和紧固件,无疑对提高军机的隐身性能也具有非常重要的贡献。 二.飞机结构用复合材料的发展过程 先进复合材料于上世纪60年代中期一问世,

先进复合材料在航空航天中的应用及发展

先进复合材料在航空航天中的应用及发展 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

摘要:21世纪是新型材料为物质基础的时代。各种高分子材料以它优异的性能在各种方面领域有广泛的应用。在飞机制造工业中,由于高分子材料的使用,飞机本身的质量的减轻性能更加稳定的同时也减少了能源的消耗。本文主要是列举了几种常见的高分子材料在飞机上的应用。 关键词:航空航天;国防 1. 前言 材料是人们生活和生产必须的物质基础。也是人类进化的重要里程碑。材料科学主要研究材料的成分、分子或原子机构、微观及宏观组织以及加工制造工艺和性能之间的关系。它是一门边缘新科学,主要一固态物理和固态化学、晶体学、热力学等位基础,结合冶金化工及各种高新科技术来探讨材料内在规律和应用。材料是人类用来制造、构件、器件和其他产品的物质。但并不是所有物质都可称为材料,如燃料和化工原料、工业化学品、食物和药品等,一般都不算作材料。 2.材料可按多种方法进行分类。 按属性分为金属材料、无机非金属材料、有机材料和复合材料。按用途分为电子材料、宇航材料、建筑材料、、生物材料等。实际应用中又常分为和。结构材料是以性质为基础,用以制造以受力为主的构件。结构材料也有或化学性质的要求,如光泽、热导率、抗辐照能力、抗氧化、抗腐蚀能力等,根据材料用途不同,对

性能的要求也不一样。功能材料主要是利用物质的物理、化学性质或现象等对外界变化产生的不同反应而制成的一类材料。如、超导材料、、等。 材料是人类赖以生存和发展的物质基础。20世纪70年代,人们把信息、材料和作为社会文明的。80年代,随着高技术群的兴起,又把新材料与信息技术、并列作为新技术革命的重要标志。现代社会,材料已成为建设、国防建设和人民生活的重要组成部分。 3.材料的发展简史 人类社会的发展历程,是以材料为主要标志的。100万年以前,原始人以石头作为工具,称旧。1万年以前,人类对石器进行加工,使之成为器皿和精致的工具,从而进入新石器时代。新石器时代后期,出现了利用粘土烧制的陶器。人类在寻找石器中认识了矿石,并在烧陶生产中发展了冶铜术,开创了。5000年,人类进入青铜器时代。公元前1200年,人类开始使用铸铁,从而进入了。随着技术的进步,又发展了钢的制造技术。18世纪,钢铁工业的发展,成为产业革命的重要内容和物质基础。19世纪中叶,现代平炉和转炉炼钢技术的出现,使人类真正进入了钢铁时代。与此同时,铜、铅、锌也大量得到应用,铝、镁、钛等金属相继问世并得到应用。直到20世纪中叶,金属材料在材料工业中一直占有主导地位。20世纪中叶以后,迅猛发展,作为发明之母和产业粮食的新材料又出现了划时代的变化。首先是人工合成问世,并得到广泛应用。先后出现尼龙、聚乙烯、聚丙烯、聚四氟乙烯等塑料,以及维尼

复合材料在航空领域中的应用

复合材料在航空领域中的应用 先进复合材料具有高比强、高比模、耐疲劳、多功能、各向异性和可设计性、材料与结构的同一性等优异性能,自上世纪60年代年问世以来,先进复合材料很快获得广泛应用,成为航空航天四大材料之一。下面就让我们对先进复合材料的应用情况和其优异性能做一简要介绍。 1.应用先进复合材料可以显著提高战斗机作战性能 为满足新一代战斗机对高机动性、超音速巡航及隐身的要求,进入90年代后,西方的战斗机无一例外的大量采用复合材料结构,用量一般都在25%以上,有的甚至达到35%,结构减重效率达30%。应用部位几乎遍布飞机的机体,包括垂直尾翼、水平尾翼、机身蒙皮以及机翼的壁板和蒙皮等。如美国第四代战斗机F-22复合材料用量已达到24%,而EF2000更高达43%,EF2000除鸭翼外,机身、机翼、腹鳍、方向舵都采用复合材料,结构的“湿润”表面的70%为复合材料,阵风也是如此,70%的“湿润”表面为复合材料,约947kg之重。F-35的复合材料几乎覆盖了整个飞机外表面。 2.应用先进复合材料可以明显增大军用运输机有效载重量 C-17是上世纪先进大型军用运输机的典型代表,C-17是1986年设计的,限于当时的水平,复合材料主要用于次要结构,如雷达罩、整流罩、操纵面、口盖、翼梢小翼蒙皮等,复合材料重约7258k,占该机结构重量8.1%。树脂基复合材料从非承力结构发展到次承力构件。在复合材料中碳纤维增强复合材料约占结构重量6%,玻璃纤维塑料、Kevlar纤维增强材料占2%。而欧洲EADS正在研究的A400M 属于新一代大型军用运输机,在材料应用技术上有了一个新的飞跃,主要表现为先进复合材料占结构重量的35%~40%。与C-17不同的是,在A400M上,碳纤维复合材料用于一些主承力结构,而C-17的复合材料结构重量比仅为8%,且主要用于操纵面及次要结构。A400M的机身仍由传统的铝合金制成,但却开创了采用碳纤维复合材料制造大型运输机机翼的先河,机翼长达19米,令业界颇为瞩目。 3.应用先进复合材料是高超声速飞行器能否上天的关键因素 高超声速技术主要指研制高超声速(Ma>5)飞行器所需的相关技术。近中期将采用的材料将包括陶瓷纤维增强的金属基复合材料、陶瓷及碳碳复合材料以

复合材料与航空航天

复合材料与航空航天 摘要 先进复合材料(advanced composite materials ,ACM)成功地用于航空航天领域仅有20多年的历史.它具有比强度比模量高、可设计性强、抗疲劳性能好、耐腐蚀性能优越以及便于大面积整体成型等显著优点,在飞机上已获得大量应用。作为21世纪的主导材料,先进复合材料的用量已成为飞机先进性,乃至航空航天领域先进性的一个重要标志,是世界强国竞相发展的核心技术,也是我国的重点发展领域。本文介绍了复合材料在航空航天上的发展状况,其后讨论了目前复合材料使用上存在的问题,如碳纤维质量差,成本高,针对这些问题,本文最后着重叙述了先进的碳化硅陶瓷纤维的制备方法,特点,以及NL-200陶瓷级纤维在航空航天上的使用。 关键词:复合材料碳化硅陶瓷纤维航空航天 1先进复合材料现状 复合材料是指由两种或两种以上具有不同物理、化学性质的材料,以微观、介观或宏观等不同的结构尺度与层次,经过复杂的空间组合而形成的一种多相固体材料。先进复合材料(Advanced Composite Materials)指的是在性能和功能上远远超出其单质组分性能与功能的类新材料。它是国防军工和国民经济发展最重要的一类工程材料,也是应用于飞机、火箭、卫星、飞船等航空航天飞行器的理想材料。根据美国航空航天局(NASA)的划分,航空航天所使用的各种先进复合材料可以分为以下几种:树脂基复合材料、金属基复合材料、陶瓷基复合材料以及碳/碳复合材料等[1]。 1.1.1先进树脂基复合材料 先进树脂基复合材料是以高性能纤维为增强体、高性能树脂为基体的复合材料.与传统的钢、铝合金结构材料相比,它的密度约为钢的1/5,铝合金的1/2,且比强度与比模量远高于后二者.目前用途最广的主要有碳纤维复合材料(CFRP)和芳纶纤维复合材料(AFRP).CFRP具有比强度高、耐高温、减振性好、耐疲劳性能优越等突出优点,是目前民用飞机上用量最大,也是航空航天等尖端科技领域发展较为成熟的先进复合材料[2].AFRP热稳定性好,耐介质性能优良,可作为复合装甲材料,有较强的防护力.国外近年致力于将该种材料用于制作军、民用飞机的"光谱屏蔽"材料,其关键性能指标———抗冲击性能相当出色. 1.1.2 金属基复合材料 金属基复合材料主要是指以Al、Mg等轻金属为基体的复合材料.在航空和宇航方面主要用它来代替轻但有毒的铍. 这类材料具有优良的导电性能、导热性能、耐高温性能,横向性能、低消耗和优良的可加工性能。近20年来,镁基、铝基、钛基等轻质金属基复合材料在航空航天高技术领域起到了支撑作用[3],SiC晶须增强的铝基复合材料薄板将用于先进战斗机的蒙皮和机尾的加强筋,钨纤维增强高温合金基复合材料可用于飞机发动机部件,石墨/铝、石墨/镁复合材料具有很高的比刚度和抗热变形性,是卫星和宇宙飞行器用的良好的结构材料。美国航天航空局采用石墨/铝复合材料作为航天飞机中部长20m的货舱架。这类材料具有优良的横向性能、低消耗和优良的可加工性,已成为在许多应用领域最具商业吸引力的材料,并且在国外已实现商品化.而在我国仅有少量批量生产,以汽车及机械零件为主,年产量仅5000吨左右,与国外差距较大[4].

相关主题
文本预览
相关文档 最新文档