当前位置:文档之家› 生物化学重点大题

生物化学重点大题

生物化学重点大题
生物化学重点大题

1.简述Chargaff定律的主要容。

答案:(1)不同物种生物的DNA碱基组成不同,而同一生物不同组织、器官的DNA碱基组成相同。(2)在一个生物个体中,DNA的碱基组成并不随年龄、营养状况和环境变化而改变。

(3)几乎所有生物的DNA中,嘌呤碱基的总分子数等于嘧啶碱基的总分子数,腺嘌呤(A)和胸腺嘧啶(T)的分子数量相等,鸟嘌呤(G)和胞嘧啶(C)的分子数量相等,即A+G=T+ C。

这些重要的结论统称为Chargaff定律或碱基当量定律。

2.简述DNA右手双螺旋结构模型的主要容。

答案:DNA右手双螺旋结构模型的主要特点如下:

(1)DNA双螺旋由两条反向平行的多核苷酸链构成,一条链的走向为5′→3′,另一条链的走向为3′→5′;两条链绕同一中心轴一圈一圈上升,呈右手双螺旋。

(2)由脱氧核糖和磷酸构成的骨架位于螺旋外侧,而碱基位于螺旋侧。

(3)两条链间A与T或C与G配对形成碱基对平面,碱基对平面与螺旋的虚拟中心轴垂直。

(4)双螺旋每旋转一圈上升的垂直高度为3.4nm(即34?),需要10个碱基对,螺旋直径是2.0nm。(5)双螺旋表面有两条深浅不同的凹沟,分别称为大沟和小沟。

3.简述DNA的三级结构。

答案:在原核生物中,共价闭合的环状双螺旋DNA分子,可再次旋转形成超螺旋,而且天然DNA中多为负超螺旋。真核生物线粒体、叶绿体DNA也是环形分子,能形成超螺旋结构。真核细胞核染色体是DNA 高级结构的主要表现形式,由组蛋白H2A、H2B、H3、H4各两分子形成组蛋白八聚体,DNA双螺旋缠绕其上构成核小体,核小体再经多步旋转折叠形成棒状染色体,存在于细胞核中。

4.简述tRNA的二级结构与功能的关系。

答案:已知的tRNA都呈现三叶草形的二级结构,基本特征如下:(1)氨基酸臂,由7bp组成,3′末端有-CCA-OH结构,与氨基酸在此缩合成氨基酰-tRNA,起到转运氨基酸的作用;(2)二氢尿嘧啶环(DHU、I 环或D环),由8~12个核苷酸组成,以含有5,6-二氢尿嘧啶为特征;(3)反密码环,其环中部的三个碱基可与mRNA的三联体密码子互补配对,在蛋白质合成过程中可把正确的氨基酸引入合成位点;(4)额外环,也叫可变环,通常由3~21个核苷酸组成;(5)TψC环,由7个核苷酸组成环,和tRNA与核糖体的结合有关。

5.简述真核生物mRNA 3′端polyA尾巴的作用。

答案:真核生物mRNA的3′端有一段多聚腺苷酸(即polyA)尾巴,长约20~300个腺苷酸。该尾巴与mRNA 由细胞核向细胞质的移动有关,也与mRNA的半衰期有关;研究发现,polyA的长短与mRNA寿命呈正相关,刚合成的mRNA寿命较长,“老”的mRNA寿命较短。

6.简述分子杂交的概念及应用。

答案:把不同来源的DNA(RNA)链放在同一溶液中进行热变性处理,退火时,它们之间某些序列互补的区域可以通过氢键重新形成局部的DNA-DNA或DNA-RNA双链,这一过程称为分子杂交,生成的双链称杂合双链。DNA与DNA的杂交叫做Southern杂交,DNA与RNA杂交叫做Northern杂交。

核酸杂交已被广泛应用于遗传病的产前诊断、致癌病原体的检测、癌基因的检测和诊断、亲子鉴定和动植物检疫等方面。

7.DNA热变性有何特点?

答案:将DNA溶液加热到70~100℃几分钟后,双螺旋结构即发生破坏,氢键断裂,两条链彼此分开,形成无规则线团状,此过程为DNA的热变性。有以下特点:变性温度围很窄;260nm处的紫外吸收增加;粘度下降;生物活性丧失;比旋度下降;酸碱滴定曲线改变。

8. 试述下列因素如何影响DNA的复性过程:(1)阳离子的存在;(2)低于Tm的温度;(3)高浓度的DNA 链。

答案:(1)阳离子可中和DNA分子中磷酸基团的负电荷,减弱DNA链间的静电作用,促进DNA的复性;(2)低于Tm的温度可以促进DNA复性;(3)DNA链浓度增高可以加快互补链随机碰撞的速度和机会,从而促进DNA复性。

9.对一双链DNA而言,若一条链中(A+ G)/(T+ C)= 0.8,则:

(1)互补链中(A+G)/(T+C)= ?

(2)在整个DNA分子中(A+G)/(T+C)= ?

(3)若一条链中(A+T)/(G+C)= 0.8,则互补链中(A+T)/(G+C)= ?

(4)在整个DNA分子中(A+T)/(G+C)= ?

答案:

(1)互补链中(A+G)/(T+C)= 1/0.8 =1.25

(2)在整个DNA分子中,因为A = T, G = C,所以,A+G = T+C,(A+G)/(T+C)= 1

(3)互补链中(A+T)/(G+C)= 0.8

(4)整个DNA分子中(A+T)/(G+C)= 0.8

10.在pH7.0,0.165mol/L NaCl条件下,测得某一组织DNA样品的Tm为89.3℃,求出四种碱基百分组成。

答案:

大片段DNA的Tm计算公式为: (G+C)% =(Tm-69.3)×2.44%,小于20bp的寡核苷酸的Tm的计算公式为: Tm =4(G+C)+2(A+T)。

(G + C)% = (Tm –69.3) × 2.44 %= (89.3-69.3) × 2.44 %=48.8%,那么 G%= C%= 24.4%

(A + T)% = 1-48.8% =51.2%,A %= T% = 25.6%]

11. 为什么说蛋白质是生命活动所依赖的重要物质基础?

答案:

1. ①论述蛋白质的催化、代调节、物质运输、信息传递、运动、防御与进攻、营养与贮存、保护与支持等生物学功能。②综上所述,蛋白质几乎参与生命活动的每一个过程,在错综复杂的生命活动过程中发挥着极其重要的作用,是生命活动所依赖的重要物质基础。没有蛋白质,就没有生命。

12.谷胱甘肽分子在结构上有何特点?有何生理功能?

答案:

谷胱甘肽(GSH)是由谷氨酸、半胱氨酸和甘氨酸组成的三肽。GSH的第一个肽键与一般肽键不同,是由谷氨酸以γ-羧基而不是α-羧基与半胱氨酸的α-氨基形成肽键。GSH分子中半胱氨酸的巯基是该化合物的主要功能基团。

GSH的巯基具有还原性,可作为体重要的还原剂保护体蛋白质或酶分子中巯基免遭氧化,使蛋白质或酶处在活性状态。此外,GSH的巯基还有嗜核特性,能与外源的嗜电子毒物如致癌剂或药物等结合,从而阻断这些化合物与机体DNA、RNA或蛋白质结合,以保护机体免遭毒物损害。

13. 简述蛋白质变性与沉淀的关系。

答案:

蛋白质沉淀和变性的概念是不同的。沉淀是指在某些因素的影响下,蛋白质从溶液中析出的现象;而变性是指在变性因素的作用下蛋白质的空间结构被破坏,生物活性丧失,理化性质发生改变。变性的蛋白质溶解度明显降低,易结絮、凝固而沉淀;但是沉淀的蛋白质却不一定变性,如加热引起的蛋白质沉淀

是由于蛋白质热变性所致,而硫酸铵盐析所得蛋白质沉淀一般不会变性。

14. 概述蛋白质一级结构测定的一般程序。

答案:

蛋白质一级结构测定的一般程序为:①测定蛋白质(要求纯度必须达到97%以上)的相对分子质量和它的氨基酸组成,推测所含氨基酸的大致数目。②测定多肽链N-末端和C-末端的氨基酸,从而确定蛋白质分子中多肽链的数目。然后通过对二硫键的测定,查明蛋白质分子中二硫键的有无及数目。如果蛋白质分子中多肽链之间含有二硫键,则必须拆开二硫键,并对不同的多肽链进行分离提纯。③用裂解点不同的两种裂解方法(如胰蛋白酶裂解法和溴化氰裂解法)分别将很长的多肽链裂解成两套较短的肽段。④分离提纯所产生的肽段,用蛋白质序列仪分别测定它们的氨基酸序列。⑤应用肽段序列重叠法确定各种肽段在多肽链中的排列次序,即确定多肽链中氨基酸排列顺序。⑥如果有二硫键,需要确定其在多肽链中的位置。

15. 试论蛋白质一级结构与空间结构的关系。

答案:

①以RNA酶变性与复性实验、有活性牛胰岛素的人工合成为例证实蛋白质一级结构决定其空间结构。

②Anfinsen发现蛋白质二硫键异构酶(PDI)能加速蛋白质正确二硫键的形成;如RNA酶复性的过程是十分缓慢的,有时需要几个小时,而PDI在体外能帮助变性后的RNA酶在2min复性。分子伴侣在细胞能够帮助新生肽链正确组装成为成熟的蛋白质。由此可见,蛋白质空间结构的形成既决定于其一级结构,也与分子伴侣、蛋白质二硫键异构酶等助折叠蛋白的助折叠作用密不可分。

16. 概述凝胶过滤法测蛋白质相对分子质量的原理。

答案:

层析过程中,混合样品经过凝胶层析柱时,各个组分是按分子量从大到小的顺序依次被洗脱出来的;并且蛋白质相对分子质量的对数和洗脱体积之间呈线性关系。因此,将几种已知相对分子质量(应小于所用葡聚糖凝胶的排阻极限)的标准蛋白质混合溶液上柱洗脱,记录各种标准蛋白质的洗脱体积;然后,以每种蛋白质相对分子质量的对数为纵坐标,以相对应的洗脱体积为横坐标,绘制标准曲线;再将待测蛋白质溶液在上述相同的层析条件下上柱洗脱,记录其洗脱体积,通过查标准曲线就可求得待测蛋白质的相对分子质量。

17. 概述SDS-PAGE法测蛋白质相对分子质量的原理。

答案:

(1)聚丙烯酰胺凝胶是一种凝胶介质,蛋白质在其中的电泳速度决定于蛋白质分子的大小、形状和所带电荷数量。(2)十二烷基硫酸钠(SDS)可与蛋白质大量结合,结合带来两个后果:①由于SDS是阴离子,故使不同的亚基或单体蛋白质都带上大量的负电荷,掩盖了它们自身所带电荷的差异;②使它们的形状都变成杆状。这样,它们的电泳速度只决定于其相对分子质量的大小。(3)蛋白质分子在SDS-PAGE凝胶中的移动距离与指示剂移动距离的比值称相对迁移率,相对迁移率与蛋白质相对分子质量的对数呈线性关系。因此,将含有几种已知相对分子质量的标准蛋白质混合溶液以及待测蛋白溶液分别点在不同的点样孔中,进行SDS-PAGE;然后以标准蛋白质相对分子质量的对数为纵坐标,以相对应的相对迁移率为横坐标,绘制标准曲线;再根据待测蛋白的相对迁移率,即可计算出待测蛋白的相对分子质量。

18.简述蛋白质的抽提原理和方法。

答案:

抽提是指利用某种溶剂使目的蛋白和其他杂质尽可能分开的一种分离方法。其原理:不同蛋白质在某种溶剂中的溶解度不同,所以可以通过选择溶剂,使得目的蛋白溶解度大,而其他杂蛋白溶解度小,然后经过离心,可以去除大多数杂蛋白。方法:溶剂的选择是抽提的关键,由于大多数蛋白质可溶于水、稀

盐、稀碱或稀酸,所以可以选择水、稀盐、稀碱或稀酸为抽提溶剂;对于和脂类结合比较牢固或分子中非极性侧链较多的蛋白质分子可以选用有机溶剂进行抽提。

19. 根据蛋白质一级氨基酸序列可以预测蛋白质的空间结构。假设有下列氨基酸序列:Ile-Ala-His-Thr-Tyr-Gly-Pro-Glu-Ala-Ala-Met-Cys-Lys-Try-Glu-Ala-Gln-Pro-Asp-Gly-Met-Glu-C ys-Ala-Phe-His-Arg

(1)预测在该序列的哪一部位可能会出卷曲或β-转角。

(2)何处可能形成链二硫键?

(3)假设该序列只是大的球蛋白的一部分,试分析在Asp、Try、Gln、Val、Lys、Thr、Leu中,哪些可能分布在该蛋白的外表面,哪些分布在部?

答案:

(1)可能在7位和18位氨基酸打弯,因为脯氨酸常出现在打弯处。

(2)12位和23位的半胱氨酸可形成二硫键。

(3)分布在外表面的为极性带电荷的残基:Asp、Gln和Lys;分布在部的是非极性的氨基酸残基:Try、Leu和Val;Thr尽管有极性,但疏水性也很强,因此,它出现在外表面和部的可能性都有。

20. 简述抑制剂对酶活性的抑制作用与酶变性的不同点。

答案:(1)抑制剂对酶有一定的选择性,一种抑制剂只能引起某一类或某几类酶的抑制;而使酶变性失活的因素,如强酸、强碱等,对酶没有选择性;(2)抑制剂虽然可使酶失活,但它并不明显改变酶的结构,不引起酶蛋白变性,去除抑制剂后,酶又可恢复活性。而变性因素常破坏酶分子的非共价键,部分或全部地改变酶的空间结构,从而导致酶活性的降低或丧失。

21. 在很多酶的活性中心均有His残基参与,请解释?

答案:酶蛋白分子中组氨酸的侧链咪唑基pK值为6.0~7.0,在生理条件下,一半解离,一半不解离,因此既可以作为质子供体(不解离部分),又可以作为质子受体(解离部分),既是酸,又是碱,可以作为广义酸碱共同催化反应,因此常参与构成酶的活性中心。

22. 以糖原磷酸化酶激活为例,说明级联系统是怎样实现反应信号放大的?

答案:(1)级联系统:在连锁代反应中一个酶被激活后,连续地发生其它酶被激活,导致原始调节信号的逐级放大,这样的连锁代反应系统称为级联系统。糖原磷酸化酶的激活过程就是一个例子。

(2)放大过程:激素(如肾上腺素)使腺苷酸环化酶活化,催化ATP和生成cAMP;

cAMP使蛋白激酶活化,使无活力的磷酸化酶b激酶转变成有活力的磷酸化酶b激酶;磷酸化酶b激酶使磷酸化酶b转变成激活态磷酸化酶a;磷酸化酶a使糖原分解为磷酸葡萄糖。

23.对活细胞的实验测定表明,酶的底物浓度通常就在这种底物的Km值附近,请解释其生理意义?为什么底物浓度不是大大高于Km或大大低于Km呢?

答案:据V-[S]的米氏曲线可知,当底物浓度大大低于Km值时,酶不能被底物饱和,从酶的利用角度而言,很不经济;当底物浓度大大高于Km值时,酶趋于被饱和,随底物浓度改变,反应速度变化不大,不利于反应速度的调节;当底物浓度在Km值附近时,反应速度对底物浓度的变化较为敏感,有利于反应速度的调节。

24.举例说明竞争性抑制的特点及实际意义。有时别构酶的活性可以被低浓度的竞争性抑制剂激活,请解释?

答案:竞争性抑制剂的特点:(1)抑制剂以非共价键与酶结合,用超滤、透析等物理方法能够解除抑制;(2)抑制剂的结构与底物结构相似,可与底物竞争酶的活性中心;(3)抑制剂使反应速度降低,Km值增大,但对Vmax并无影响,(4)增加底物浓度可降低或解除对酶的抑制作用。

竞争性抑制作用的原理可用来阐明某些药物的作用原理和指导新药合成。例如某些细菌以对氨基苯甲酸、二氢喋呤啶及谷氨酸为原料合成二氢叶酸,并进一步生成四氢叶酸,四氢叶酸是细菌核酸合成的辅酶。磺胺药物与对氨基苯甲酸结构相似,是细菌二氢叶酸合成酶的竞争性抑制剂。它通过降低菌体四氢叶酸的合成能力,阻碍核酸的生物合成,抑制细菌的繁殖,达到抑菌的作用。

25. 在一个符合米氏方程的酶促反应体系中,已知:无抑制剂时,双倒数图中横轴的截距是-2L/mmol,纵轴的截距是2min.L/mmol,当加入可逆抑制剂后,横轴的截距没有变,而纵轴的截距是3min.L/mmol。问:

(1)上述双倒数示意图怎么表示?

(2)无抑制剂时,反应最大速度和米氏常数各是多少?

(3)有抑制剂时,反应最大速度和米氏常数又分别是多少?

(4) 该抑制剂是何种类型的?

答案:(略)

26.简述G蛋白耦联受体介导的跨膜信号转导的基本过程。

激素是第一信使,与靶细胞膜上的受体结合,使G蛋白活化,进而激活膜上的腺苷酸环化酶(AC)系统。AC催化ATP转变为cAMP。cAMP作为第二信使可激活蛋白激酶A(PKA),继而激活磷酸化酶并催化细胞磷酸化反应,引起靶细胞特定的生理效应:腺细胞分泌、肌细胞收缩与舒、神经细胞膜电位变化、细胞通透性改变、细胞分裂与分化以及各种酶促反应等。

(该题也可问:简述依赖于cAMP的蛋白激酶A的激活机制)

答案:(略)

27.简述酶耦联受体介导的跨膜信号转导的基本过程。

答案:(1)具有酪氨酸激酶的受体:该受体简单,只有一个横跨细胞膜的α螺旋,有两种类型,①受体具有酪氨酸激酶的结构域,即受体与酪氨酸激酶是同一个蛋白质分子;当与相应的化学信号结合时,直接激活自身的酪氨酸激酶结构域,导致受体自身或细胞靶蛋白的磷酸化。②受体本身没有酶的活性,但当它被配体激活时立即与酪氨酸激酶结合,并使之激活,通过对自身和底物蛋白的磷酸化作用,把信号传入细胞。

(2)具有鸟苷酸环化酶的受体:该受体也只有一个跨细胞膜的α螺旋,其膜侧有鸟苷酸环化酶,当配体与它结合后,即将鸟苷酸环化酶激活,催化细胞GTP生成cGMP,cGMP又可激活蛋白激酶G(PKG),PKG 促使底物蛋白质磷酸化,产生效应。

上述几种跨膜信号转导过程并不是截然分开的,相互之间存在着错综复杂的联系,形成所谓的信号网络。

28. 1分子乙酰CoA彻底氧化生成CO2和H2O,可提供几分子ATP?为什么?

答案:可提供10分子ATP。具体情况如下:(1) 在异柠檬酸脱氢酶作用下,异柠檬酸脱下两个氢生成α-酮戊二酸和NADH+H+;(2)在α-酮戊二酸脱氢酶系作用下,α-酮戊二酸脱氢生成琥珀酰CoA 和NADH +H+;(3)在琥珀酰CoA合成酶作用下,琥珀酰CoA水解生成琥珀酸,产生1分子GTP;(4)在琥珀酸脱氢酶作用下,琥珀酸脱氢生成延胡索酸和FADH2;(5)在苹果酸脱氢酶催化下,苹果酸脱氢生成草酰乙酸和NADH+H+。

1分子NADH进入NADH呼吸链氧化可提供2.5分子ATP,而1分子FADH2进入FADH2呼吸链氧化可提供1.5分子ATP,所以1分子乙酰CoA彻底氧化生成CO2和H2O,可提供10分子ATP(3×2.5+1.5+1)。

29. 何谓三羧酸循环?它有何生理意义?

答案:在线粒体中,乙酰CoA和草酰乙酸缩合生成柠檬酸,经过一系列酶促反应重新生成草酰乙酸,而

将乙酰CoA彻底氧化生成H2O和CO2,并释放能量。这个循环反应称为三羧酸循环,又称柠檬酸循环或Krebs循环。

生理学意义:(1)糖的有氧分解是产生动物生理活动所需能量的主要来源;(2)三羧酸循环是糖、脂肪、蛋白质在体彻底氧化的共同代途径;(3)三羧酸循环是糖、脂肪、蛋白质及其他有机物质代的联系枢纽。

30. 为什么说三羧酸循环是糖类、脂类和蛋白质分解的共同通路?

答案:(1)葡萄糖经甘油醛-3-磷酸、丙酮酸等物质生成乙酰CoA,而乙酰CoA必须进入三羧酸循环才能被彻底氧化分解。(2)脂肪分解产生的甘油和脂肪酸,甘油可以经磷酸二羟丙酮进入糖有氧氧化途径,最终的氧化分解也需要进入三羧酶循环途径;而脂肪酸经β-氧化途径产生乙酰CoA,乙酰CoA可进入三羧酸循环氧化。(3)蛋白质分解产生氨基酸,氨基酸脱去氨基后产生的碳骨架可进入三羧酸循环,同时,三羧酸循环的中间产物可作为氨基酸的碳骨架,接受NH3重新生成氨基酸。所以,三羧酸循环是三大物质共同通路。

31. 磷酸戊糖途径的主要生理意义是什么?

答案:(1)中间产物核糖-5-磷酸是动物体合成多种物质的重要原料;(2)产生的NADPH(还原力)参与多种代反应;(3)磷酸戊糖途径与糖的有氧分解及糖的无氧分解相互联系;(4)通过转酮基和转醛基反应,使丙糖、丁糖、戊糖、己糖、庚糖互相转化。

32. 简述葡萄糖激酶和己糖激酶的差别。

答案:己糖激酶和葡萄糖激酶的主要差别在于:①葡萄糖激酶只存在于肝脏中,而己糖激酶在肝脏和肌肉中都存在;②己糖激酶的Km值为0.1mmol/L,葡萄糖激酶的Km值为10mmol/L;③己糖激酶受产物葡萄糖-6-磷酸的反馈抑制,葡萄糖激酶不受产物葡萄糖-6-磷酸的反馈抑制。

所以,当血液中葡萄糖浓度低时,己糖激酶起主要作用;当血液中葡萄糖浓度高时,葡萄糖激酶起主要作用,结果肝脏糖原浓度高于肌肉糖原浓度。

33.试述丙酮酸氧化脱羧反应受哪些因素调控?

答案:(1)变构调控:丙酮酸氧化脱羧作用的两个产物乙酰CoA和NADH都抑制丙酮酸脱氢酶复合体,乙酰CoA抑制二氢硫辛酰胺乙酰转移酶(E2),NADH抑制二氢硫辛酰胺脱氢酶(E3)组分。

(2)化学修饰调控:丙酮酸脱氢酶磷酸化后,酶活性受到抑制,去磷酸化后活性恢复。

(3)丙酮酸脱氢酶(E1)组分受GTP抑制,为AMP所活化。

34. 呼吸链是由哪些成分组成的?各有何作用?

答案:主要有五大类:①NAD+,在呼吸链中传递氢,传递氢和电子;②FMN和FAD,传递氢;③铁硫蛋白,传递电子;④CoQ,传递氢;⑤细胞色素体系,是一类以铁卟啉为辅基的结合蛋白,传递电子,电子在细胞色素中的传递顺序为b→c1→c→aa3。

35. 为什么说在呼吸链中,辅酶Q是一种特殊灵活的载体?

答案:辅酶Q是呼吸链中唯一的非蛋白质组分,其结构中含有由数目不同的类异戊二烯组成的侧链,所以它是非极性分子,可以在线粒体膜的疏水相中快速扩散,也有的CoQ结合于膜上。另外,它也是呼吸链中惟一不与蛋白质紧密结合的传递体,因此,可以在黄素蛋白和细胞色素类之间作为一种特殊灵活的载体而起作用。

36. 铁硫蛋白和细胞色素是如何传递电子的?

答案:铁硫蛋白和细胞色素传递电子的方式是相同的,都是通过铁的价变,即Fe2+和Fe3+的互变来进行电子的传递。这两类蛋白质的差别在于细胞色素中的铁是血红素铁,铁与血红素分子紧密结合;而铁硫蛋白中的铁是非血红素铁,与蛋白质中半胱氨酸的硫和无机硫原子结合在一起,形成一个铁硫中心。

37. 试述体能量的生成方式以及水的生成。

答案:ATP的生成有两种方式,分别为底物水平磷酸化作用和氧化磷酸化作用(二者概念略),后者是主要的。

体水的生成方式主要是代物脱氢经呼吸链传递与激活的氧化合;除此以外,非线粒体氧化体系中的氧化酶、过氧化氢酶等催化的反应也能生成水。

38. 阐述一对电子从NADH传递至氧是如何生成2.5个ATP的?

答案:每对电子通过呼吸链传递复合体I 、复合体Ⅲ和复合体Ⅳ时,分别有4个H+、4个H+和2个H +从基质泵出,导致线粒体膜两侧形成跨膜的质子梯度。当这些质子通过ATP合酶返回基质时,能够促使ATP合成。已知每3个H+通过ATP合酶可促使1分子ATP合成,同时,产生的ATP从线粒体基质进入胞质需消耗1个H+,所以每形成1个ATP需4个H+,这样一对电子从NADH传递至氧共生成2.5个ATP[(4+4+2)/4

39. 一对电子从FADH2传递至氧可产生多少分子ATP?为什么?

答案:一对电子从FADH2传递至氧产生1.5个ATP。由于FADH2直接将电子传送给呼吸链传递复合体II,不经过呼吸链传递复合体I,所以当一对电于从FADH 2传递至氧时只有6个H+由基质泵出,合成1分子ATP需4个H+,共形成1.5个ATP[(4+2)/4]。

40. 化学渗透学说的要点是什么?

答案:化学渗透学说的要点是:(1)呼吸链中各递氢体和递电子体按特定的顺序排列在线粒体膜上;(2)呼吸链中复合体Ⅰ、复合体Ⅲ和复合体Ⅳ都具有质子泵的作用,在传递电子的过程中将H+泵出膜,所以呼吸链的电子传递系统是一个主动运输质子的体系;(3)质子不能自由通过线粒体膜,泵出膜外的H +不能自由返回膜侧,使膜外形成H+浓度的跨膜梯度;(4)线粒体膜上有ATP合酶,当质子通过ATP 合酶返回线粒体基质时,释放出自由能,驱动ADP和Pi合成ATP。

41. 简述ATP合成酶的结构特点及功能。

答案:ATP合酶主要有两个功能单位:F1和F0。

(1)F1由5种亚基组成(α3β3γδε),是一种可溶性的膜周边蛋白,具有催化ATP合成的功能;其中,α和β亚基上有ADP和ATP结合位点;β亚基为催化亚基,单独存在时,不具有ATP合酶的作用,但能使ATP水解。

(2)F0是由多亚基组成的不溶于水的跨膜蛋白,含有大量的疏水性氨基酸,在膜中形成了跨膜的质子通道,便于质子回流。

42. 试述影响氧化磷酸化的因素及其作用机制。

答案:(1)呼吸链抑制剂:鱼藤酮、杀粉蝶菌素、安密妥与复合体I中的铁硫蛋白结合,抑制电子传递;抗霉素A、二巯基丙醇抑制复合体Ⅲ;一氧化碳、氰化物、叠氮化物、硫化氢抑制复合体Ⅳ。

(2)解偶联剂:该类典型代表是2,4-二硝基苯酚。在线粒体膜外侧pH较低,2,4-二硝基苯酚的羟基不能解离,可自由进入线粒体;进入线粒体后,2,4-二硝基苯酚的羟基解离带负电荷。1分子2,4-二硝基苯酚进入线粒体就相当于从膜外侧带入线粒体1个H+,破杯了膜两侧的H+梯度,使ATP不能合成,而电子传递继续进行,结果使电子传递的氧化和磷酸化两个过程分离。

(3)氧化磷酸化抑制剂:寡霉素可阻止质子从F0质子通道回流,抑制磷酸化并间接抑制电子在呼吸链上传递。

(4)ADP的调节作用:ADP浓度升高,氧化磷酸化速度加快,反之,氧化磷酸化速度减慢。

43. 试比较电子传递抑制剂、氧化磷酸化抑制剂和解偶联剂对生物氧化作用的影响。

答案:(1)电子传递抑制剂使电子传递链的某一部位阻断,电子不能传递,氧的消耗停止,同时ATP的合成停止。(2)氧化磷酸化抑制剂的作用位点在ATP合酶,使ATP合酶被抑制,而不能合成ATP,结果电子传递也被抑制,氧消耗停止。(3)解偶联剂的作用是使电子传递和氧化磷酸化两个过程分离,结果是电子传递失去控制,氧消耗增加,ATP却不能合成,产生的能量以热的形式散失,使体温升高。

44. 在脂肪酸合成中,乙酰CoA.羧化酶起什么作用?乙酰CoA羧化酶受哪些因素调控?

答案:乙酰CoA羧化酶的作用是催化乙酰CoA和CO2合成丙二酸单酰CoA,为脂肪酸合成提供二碳化合物。乙酰CoA羧化酶是脂肪酸合成反应中的一种限速调节酶,柠檬酸和异柠檬酸可增强该酶的活性,而长链脂肪酸则抑制该酶的活性。此酶经磷酸化后活性丧失,胰高血糖素及肾上腺素等能促进这种磷酸化作用,从而抑制脂肪酸的合成;而胰岛素则能促进酶的去磷酸化作用、增强乙酰CoA羧化酶的活性。

45.试比较脂肪酸β-氧化与其生物合成的差异。

答案:(1)进行的部位不同,脂肪酸β-氧化在线粒体进行,脂肪酸的合成在胞液中进行。

(2)主要中间代物不同,脂肪酸β-氧化的主要中间产物是乙酰CoA,脂肪酸合成的主要中间产物是丙二酸单酚CoA 。

(3)脂肪酰基的转运载体不同,脂肪酸β-氧化的脂肪酰基转运载体是CoA,脂肪酸合成的脂肪酰基转运载体是ACP 。

(4)参与的辅酶不同,参与脂肪酸β-氧化的辅酶是FAD和NAD+,参与脂肪酸合成的辅酶是NADPH。(5)脂肪酸β-氧化不需要CO2,而脂肪酸的合成需要CO2。

(6)反应发生时ADP/ATP比值不同,脂肪酸β-氧化在 ADP/ATP 比值高时发生,而脂肪酸合成在ADP/ATP 比值低时进行。

(7)柠檬酸发挥的作用不同,柠檬酸对脂肪酸β-氧化没有激活作用,但能激活脂肪酸的生物合成。(8)脂酰CoA的作用不同,脂酰辅酶A对脂肪酸β-氧化没有抑制作用,但能抑制脂肪酸的生物合成。

46. 图示鸟氨酸循环的过程,并简述该途径的生理意义。

答案:图略

意义:(1)机体,氨是有毒化合物,通过该途径合成尿素,尿素是中性无毒物质,从而起到解氨毒的作用,这是哺乳动物最终排出氨的方式;(2)通过该途径也可以清除氨基氮及二氧化碳,能够减少体CO2溶于血液所造成的酸性。

47.简述天冬氨酸在体转变成葡萄糖的主要代途径。

答案:(1)天冬氨酸经转氨基作用或联合脱氨基作用形成草酰乙酸;(2)草酰乙酸由磷酸烯醇式丙酮酸羧激酶催化形成磷酸烯醇式丙酮酸;(3)然后沿着糖酵解途径的逆反应,依次生成甘油酸-2-磷酸、甘油酸-3-磷酸、甘油酸-1,3-二磷酸、甘油醛-3-磷酸、磷酸二羟丙酮和果糖-1,6-二磷酸;果糖-1,6-二磷酸在果糖二磷酸酶的催化下形成果糖-6-磷酸、葡萄糖-6-磷酸;(4)葡萄糖-6-磷酸水解生成葡萄糖,反应由葡萄糖-6-磷酸酶催化。

48.鸟氨酸循环、三羧酸循环和转氨基作用是如何联系的?

答案:图略,

鸟氨酸循环过程中,天冬氨酸不断被消耗转变为延胡索酸。延胡索酸可以经过三羧酸循环转化为苹果酸,苹果酸再氧化成草酰乙酸,后者可再与谷氨酸进行转氨基反应,重新生成天冬氨酸。而谷氨酸又可通过其他的各种氨基酸把氨基转移给α-酮戊二酸生成。因此,其他的各种氨基酸的氨基可以通过天冬氨酸的形式用于合成尿素。天冬氨酸和延胡索酸可使尿素循环、三羧酸循环和转氨基作用联系起来。

50.简述保证DNA复制忠实性的因素及其功能?

(1)半保留复制的原则,

(2)碱基互补配对的规律,A-T G-C 。

(3)DNA聚合酶I的校对作用,

(4)引物的切除,

51. 简述DNA复制时所需的主要酶类及其功能。

答案:(1)DNA聚合酶:催化核苷酸之间生成磷酸二酯键,也具有一定的校正功能;(2)拓扑异构酶:催化DNA超螺旋解开,使之变为双螺旋;(3)解旋酶:解开DNA双链,使之变为单链;(4)单链结合蛋白:和单链DNA结合,使之变为能够作为复制模板的稳定单链;(5)引物酶:以解旋后的单链DNA为模板,催化合成一小段带有3′-OH的RNA;(6)DNA连接酶:催化DNA双链中的一条单链缺口处游离的3′末端-OH与5′末端磷酸形成磷酸二酯键,从而把两段相邻的DNA链连成完整的链。

52.真核生物染色体的端粒是怎样复制的?

答案:(1)端粒DNA的3′端和端粒酶所含的RNA分子的3′端形成碱基配对;(2)端粒酶利用RNA为模板,将dNTP加到端粒DNA的3′端,这个逆转录过程一直进行到RNA模板的第35位;(3)DNA-RNA杂交链之间发生相对滑动,新生长的端粒DNA链3′端再和RNA 3′端形成新的碱基配对,重新暴露出部分RNA模板序列;(4)继续逆转录过程。该结合→聚合→转位的过程周而复始,直至在端粒DNA的3′端形成了足够长度(提供后随链回旋时所需的长度)的单链突出;(5)该3′突出端能够弯转过来成为后随链合成的起始端,然后由DNA聚合酶复制DNA 5′端空缺的DNA,最后由连接酶连接。

53.简述转录过程和复制过程的不同点。

答案:(1)复制时两条DNA链均为模板,转录时一条DNA链均为模板;(2)复制时dNTP为底物,转录时NTP 为底物;(3)复制时需要DNA聚合酶、连接酶等,转录时仅需要RNA聚合酶;(4)复制产物为子产物代双链DNA ,转录产物为mRNA、tRNA 、rRNA;(5)复制时A=T 、G≡C配对,转录时A=U、G≡C、T=A 配对;(6)复制时需要一小段RNA为引物,转录时不需引物。

54.简述转录起始阶段的几个反应。

答案:起始阶段包括下面几个反应:①RNA聚合酶全酶的σ亚基识别模板DNA的启动子,并与之紧密结合;②局部解开双螺旋,以使模板链可与核糖核苷酸进行碱基配对;③RNA聚合酶催化底物核苷酸脱去焦磷酸形成磷酸二酯键,合成RNA链最初的2~9个核苷酸后,σ亚基脱离,起始阶段结束。

55. 简述真核生物与原核生物转录的不同点。

答案:真核生物的转录在很多方面与原核生物不同,具有某些特殊规律,主要包括:

(1)转录单位一般为单基因(单顺反子),而原核生物的转录单位多为多基因(多顺反子);

(2)真核生物的三种成熟的RNA分别由三种不同的RNA聚合酶催化合成;

(3)在转录的起始阶段,RNA聚合酶必须在特定的转录因子的参与下才能起始转录;

(4)组织或时间特异表达的基因转录常与增强子有关,增强子是位于转录起始点上游的远程调控元件,具有增强转录效率的作用;

(5)转录调节方式以正调节为主,调节蛋白的种类是转录因子或调节转录因子活性的蛋白因子。

56. 简述操纵子模型,并阐明各组分的功能。

答案:操纵子是原核生物基因表达调控的功能单位,由调节基因、启动子、操纵基因和一个或多个功能相关的结构基因组成。

各组分的功能如下:①启动子是与RNA聚合酶结合并启动转录的特异性DNA序列;②调节基因位于操纵子的上游,编码阻遏蛋白,阻遏蛋白能与一些小分子诱导物或辅阻遏物结合,从而决定它能否与操纵基因结合,并进一步调控操纵基因的“开”与“关”;③操纵基因在启动子和结构基因之间,是激活阻遏

蛋白的结合位点,由它来开启和关闭相应结构基因的转录;④结构基因是转录mRNA的模板。

57. 简述乳糖操纵子的正调控机理。为什么葡萄糖水平对正调控作用有影响?

答案:乳糖操纵子的启动子是弱启动子,RNA聚合酶与之结合的能力很弱。但乳糖操纵子中有降解物基因激活蛋白(CAP)结合位点。当细胞cAMP浓度较高时,cAMP与CAP结合形成复合物,该复合物结合到启动子上游的CAP结合位点,可促进RNA聚合酶与启动子结合,使转录得以进行。所以说CAP是一种转录起始的正调节物,对结构基因的转录起正调节作用。

因为细胞CAP的正调控作用与cAMP水平有关,而cAMP水平又与葡萄糖水平密切相关。当有葡萄糖时,葡萄糖分解代的降解物能抑制腺苷酸环化酶活性,同时活化磷酸二酯酶,所以cAMP水平很低;当葡萄糖缺乏时,腺苷酸环化酶活性升高,催化ATP生成cAMP。因此,葡萄糖水平对CAP的正调控作用有影响。

58. 简述色氨酸操纵子的反馈阻遏调控机理。

答案:(1)当大肠杆菌培养基中没有色氨酸时,大肠杆菌色氨酸操纵子的调节基因编码产生没有活性的阻遏蛋白,它不能与操纵基因结合,结构基因可以转录,并翻译生成合成色氨酸所需要的5种酶。(2)当大肠杆菌培养基中有色氨酸时,色氨酸作为辅阻遏物与阻遏蛋白结合,使阻遏蛋白由无活性的构象变成有活性的构象,辅阻遏物-阻遏蛋白复合物与操纵基因结合,RNA聚合酶不能移动,结构基因不能转录。这种以结构基因表达的酶所催化产生的终产物来阻止基因转录的作用称为反馈阻遏。

59. 某一肽链中有一段含 15圈α-螺旋的结构,问:

(1)这段肽链的长度为多少毫微米?含有多少个氨基酸残基?

(2)翻译的模板链是何种生物分子?它对应这段α -螺旋片段至少由多少个基本结构单位组成?(3)在合成这段肽链过程中,若以氨基酸为原料,活化阶段至少消耗多少 ATP?延长阶段至少消耗多少GTP?

答案:(1)肽链长度:15*0.54=8.1nm 氨基酸残基数:15*3.6=54( 个)

(2)模板是mRNA分子,对应这段α -螺旋片段的mRNA至少含有162个核苷酸(54*3=162)。

(3)活化阶段消耗ATP数:54*2=108 延长阶段消耗GTP数:54*2=108

60.简要真核生物的蛋白质合成特点。

答案:真核生物的蛋白质合成与原核生物基本相同,只是过程更加复杂一些,其特点如下:

(1)真核生物核糖体更大更复杂,分子量为80S,小亚基40S、大亚基60S。

(2)真核细胞的起始氨基酸也是甲硫氨酸(蛋氨酸),但不需要进行甲酰化。

(3)真核细胞的mRNA无SD序列,但其5′端有“帽子”结构,该结构可促进mRNA与核糖体的结合及蛋白质合成起始复合物的形成。

(4)真核细胞mRNA是单顺反子,即一种RNA只能翻译产生一种蛋白质。

(5)真核生物的蛋白质合成与mRNA的转录过程不同时进行。

(6)真核生物的翻译过程需要更多的蛋白因子参与。有13种起始因子、2种延长因子和1种终止因子。

生物化学期末考试试题及答案范文

《生物化学》期末考试题 A 一、判断题(15个小题,每题1分,共15分)( ) 2、糖类化合物都具有还原性( ) 3、动物脂肪的熔点高在室温时为固体,是因为它含有的不饱和脂肪酸比植物油多。( ) 4、维持蛋白质二级结构的主要副键是二硫键。( ) 5、ATP含有3个高能磷酸键。( ) 6、非竞争性抑制作用时,抑制剂与酶结合则影响底物与酶的结合。( ) 7、儿童经常晒太阳可促进维生素D的吸收,预防佝偻病。( ) 8、氰化物对人体的毒害作用是由于它具有解偶联作用。( ) 9、血糖基本来源靠食物提供。( ) 10、脂肪酸氧化称β-氧化。( ) 11、肝细胞中合成尿素的部位是线粒体。( ) 12、构成RNA的碱基有A、U、G、T。( ) 13、胆红素经肝脏与葡萄糖醛酸结合后水溶性增强。( ) 14、胆汁酸过多可反馈抑制7α-羟化酶。( ) 15、脂溶性较强的一类激素是通过与胞液或胞核中受体的结合将激素信号传递发挥其生物() 二、单选题(每小题1分,共20分) 1、下列哪个化合物是糖单位间以α-1,4糖苷键相连:( ) A、麦芽糖 B、蔗糖 C、乳糖 D、纤维素 E、香菇多糖 2、下列何物是体内贮能的主要形式( ) A、硬酯酸 B、胆固醇 C、胆酸 D、醛固酮 E、脂酰甘油 3、蛋白质的基本结构单位是下列哪个:( ) A、多肽 B、二肽 C、L-α氨基酸 D、L-β-氨基酸 E、以上都不是 4、酶与一般催化剂相比所具有的特点是( ) A、能加速化学反应速度 B、能缩短反应达到平衡所需的时间 C、具有高度的专一性 D、反应前后质和量无改 E、对正、逆反应都有催化作用 5、通过翻译过程生成的产物是:( ) A、tRNA B、mRNA C、rRNA D、多肽链E、DNA 6、物质脱下的氢经NADH呼吸链氧化为水时,每消耗1/2分子氧可生产ATP分子数量( ) A、1B、2C、3 D、4.E、5 7、糖原分子中由一个葡萄糖经糖酵解氧化分解可净生成多少分子ATP?( ) A、1 B、2 C、3 D、4 E、5 8、下列哪个过程主要在线粒体进行( ) A、脂肪酸合成 B、胆固醇合成 C、磷脂合成 D、甘油分解 E、脂肪酸β-氧化 9、酮体生成的限速酶是( )

《生物化学》考研复习重点大题

中国农业大学研究生入学考试复习资料 《生物化学》重点大题 1.简述Chargaff 定律的主要内容。 答案:(1)不同物种生物的DNA 碱基组成不同,而同一生物不同组织、器官的DNA 碱基组成相同。(2)在一个生物个体中,DNA 的碱基组成并不随年龄、营养状况和环境变化而改变。 (3)几乎所有生物的DNA 中,嘌呤碱基的总分子数等于嘧啶碱基的总分子数,腺嘌呤(A)和胸腺嘧啶(T) 的分子数量相等,鸟嘌呤(G)和胞嘧啶(C)的分子数量相等,即A+G=T+C。这些重要的结论统称 为Chargaff 定律或碱基当量定律。 2.简述DNA 右手双螺旋结构模型的主要内容。 答案:DNA 右手双螺旋结构模型的主要特点如下: (1)DNA 双螺旋由两条反向平行的多核苷酸链构成,一条链的走向为5′→3′,另一条链的走向为3′→5′;两条链绕同一中心轴一圈一圈上升,呈右手双螺旋。 (2)由脱氧核糖和磷酸构成的骨架位于螺旋外侧,而碱基位于螺旋内侧。 (3)两条链间A 与T 或C 与G 配对形成碱基对平面,碱基对平面与螺旋的虚拟中心轴垂直。 (4)双螺旋每旋转一圈上升的垂直高度为3.4nm(即34?),需要10 个碱基对,螺旋直径是2.0nm。(5)双螺旋表面有两条深浅不同的凹沟,分别称为大沟和小沟。 3.简述DNA 的三级结构。 答案:在原核生物中,共价闭合的环状双螺旋DNA 分子,可再次旋转形成超螺旋,而且天然DNA 中多为负超螺旋。真核生物线粒体、叶绿体DNA 也是环形分子,能形成超螺旋结构。真核细胞核内染色体是DNA 高级结构的主要表现形式,由组蛋白H2A、H2B、H3、H4 各两分子形成组蛋白八聚体,DNA 双螺旋缠绕其上构成核小体,核小体再经多步旋转折叠形成棒状染色体,存在于细胞核中。 4.简述tRNA 的二级结构与功能的关系。 答案:已知的tRNA 都呈现三叶草形的二级结构,基本特征如下:(1)氨基酸臂,由7bp 组成,3′末端有-CCA-OH 结构,与氨基酸在此缩合成氨基酰-tRNA,起到转运氨基酸的作用;(2)二氢尿嘧啶环(DHU、I 环或D 环),由8~12 个核苷酸组成,以含有5,6-二氢尿嘧啶为特征;(3)反密码环,其环中部的三个碱基可与mRNA 的三联体密码子互补配对,在蛋白质合成过程中可把正确的氨基酸引入合成位点;(4)额外环,也叫可变环,通常由3~21 个核苷酸组成;(5)TψC 环,由7 个核苷酸组成环,和tRNA 与核糖体的结合有关。 5.简述真核生物mRNA 3′端polyA 尾巴的作用。 答案:真核生物mRNA 的3′端有一段多聚腺苷酸(即polyA)尾巴,长约20~300 个腺苷酸。该尾巴与mRNA 由细胞核向细胞质的移动有关,也与mRNA 的半衰期有关;研究发现,polyA 的长短与mRNA 寿命呈正相关,刚合成的mRNA 寿命较长,“老”的mRNA 寿命较短。 6.简述分子杂交的概念及应用。 答案:把不同来源的DNA(RNA)链放在同一溶液中进行热变性处理,退火时,它们之间某些序列互补的区域可以通过氢键重新形成局部的DNA-DNA 或DNA-RNA 双链,这一过程称为分子杂交,生成的双链称杂合双链。DNA 与DNA 的杂交叫做Southern 杂交,DNA 与RNA 杂交叫做Northern 杂交。 核酸杂交已被广泛应用于遗传病的产前诊断、致癌病原体的检测、癌基因的检测和诊断、亲子鉴定和动

生物化学试题及答案

第五章脂类代谢 【测试题】 一、名词解释 1.脂肪动员 2.脂酸的β-氧化 3.酮体 4.必需脂肪酸 5.血脂 6.血浆脂蛋白 7.高脂蛋白血症 8.载脂蛋白 受体代谢途径 10.酰基载体蛋白(ACP) 11.脂肪肝 12.脂解激素 13.抗脂解激素 14.磷脂 15.基本脂 16.可变脂 17.脂蛋白脂肪酶 18.卵磷脂胆固醇脂酰转移酶(LCAT) 19.丙酮酸柠檬酸循环 20.胆汁酸 二、填空题 21.血脂的运输形式是,电泳法可将其为、、、四种。 22.空腹血浆中含量最多的脂蛋白是,其主要作用是。 23.合成胆固醇的原料是,递氢体是,限速酶是,胆固醇在体内可转化为、、。 24.乙酰CoA的去路有、、、。 25.脂肪动员的限速酶是。此酶受多种激素控制,促进脂肪动员的激素称,抑制脂肪动员的激素称。 26.脂肪酰CoA的β-氧化经过、、和四个连续反应步骤,每次β-氧化生成一分子和比原来少两个碳原子的脂酰CoA,脱下的氢由和携带,进入呼吸链被氧化生成水。 27.酮体包括、、。酮体主要在以为原料合成,并在被氧化利用。 28.肝脏不能利用酮体,是因为缺乏和酶。 29.脂肪酸合成的主要原料是,递氢体是,它们都主要来源于。 30.脂肪酸合成酶系主要存在于,内的乙酰CoA需经循环转运至而用 于合成脂肪酸。 31.脂肪酸合成的限速酶是,其辅助因子是。 32.在磷脂合成过程中,胆碱可由食物提供,亦可由及在体内合成,胆碱及乙醇胺由活化的及提供。 33.脂蛋白CM 、VLDL、 LDL和HDL的主要功能分别是、,和。 34.载脂蛋白的主要功能是、、。 35.人体含量最多的鞘磷脂是,由、及所构成。

生物化学期末考试试卷与答案

安溪卫校药学专业生物化学期末考试卷选择题 班级 _____________姓名 _____________座号 _________ 一、单项选择题(每小题 1 分,共30 分) 1、蛋白质中氮的含量约占 A 、 6.25% B 、10.5%C、 16% D 、19%E、 25% 2、变性蛋白质分子结构未改变的是 A 、一级结构B、二级结构C、三级结构 D 、四级结构E、空间结构 3、中年男性病人,酗酒呕吐,急腹症,检查左上腹压痛,疑为急性胰腺炎,应测血中的酶是 A 、碱性磷酸酶 B 、乳酸脱氢酶C、谷丙转氨酶D、胆碱酯酶E、淀粉酶 4、酶与一般催化剂相比所具有的特点是 A 、能加速化学反应速度 C、具有高度的专一性 E、对正、逆反应都有催化作用B、能缩短反应达到平衡所需的时间D、反应前后质和量无改 5、酶原之所以没有活性是因为 A 、酶蛋白肽链合成不完全C、酶原是普通的蛋白质E、是已 经变性的蛋白质B、活性中心未形成或未暴露D、缺乏辅酶或辅基 6、影响酶促反应速度的因素 A 、酶浓度B、底物浓度C、温度D、溶液pH E、以上都是 7、肝糖原能直接分解葡萄糖,是因为肝中含有 A 、磷酸化酶 B 、葡萄糖 -6-磷酸酶C、糖原合成酶D、葡萄糖激酶E、己糖激酶 8、下列不是生命活动所需的能量形式是 A 、机械能B、热能C、 ATP D、电能E、化学能 9、防止动脉硬化的脂蛋白是 A、CM B 、VLDL C、 LDL D、 HDL E、 IDL 10、以下不是血脂的是 A 、必需脂肪酸 B 、磷脂C、脂肪D、游离脂肪酸E、胆固醇 11、一分子软脂酸在体内彻底氧化净生成多少分子ATP A、38 B、 131 C、 129 D、146 E、 36 12、没有真正脱掉氨基的脱氨基方式是 A 、氧化脱氨基B、转氨基C、联合脱氨基D、嘌呤核苷酸循环E、以上都是 13、构成 DNA 分子的戊糖是 A 、葡萄糖B、果糖C、乳糖 D 、脱氧核糖E、核糖 14、糖的有氧氧化的主要生理意义是: A 、机体在缺氧情况下获得能量以供急需的有效方式 B 、是糖在体内的贮存形式 C、糖氧化供能的主要途径 D 、为合成磷酸提供磷酸核糖 E、与药物、毒物和某些激素的生物转化有关 15、体内氨的主要运输、贮存形式是 A 、尿素B、谷氨酰胺C、谷氨酸 D 、胺E、嘌呤、嘧啶 16、DNA作为遗传物质基础,下列叙述正确的是 A 、 DNA 分子含有体现遗传特征的密码 B 、子代 DNA 不经遗传密码即可复制而成

生化复习题大专

前言 生物化学是从分子水平上研究正常人体的化学组成及其在生命活动中代谢变化规律的科学。是医学院校一门十分重要的医学基础课程。本门课程的学习效果直接影响到学生对其它医学基础课和临床课的学习,而且本学科内容抽象、新知识较多,历届学生普遍反映难以理解和掌握。为使广大同学能在较短时间内掌握生化课的基础知识和重点要求,根据中等卫生职业学校生化课的培养目标及教学大纲,我们编写了本复习资料,以期为中等卫生职业学校的学生学习、掌握生物化学这门课程提供帮助。 本书为全国中等卫生职业学校教材的同步练习册,共十三章,每章包括选择题、填空题、判断正误题、名词解释、综合题五种类型。每章试题后均附有参考答案。最后还附有全国中等卫生职业学校生化考试模拟试题五套,以供参考。 第一章绪论 一、名词解释 1、生物化学 2、新陈代谢 二、综合题 1、简述生物化学的研究内容。 2、简述生物化学发展的过程。 3、生物化学与医学有何联系。 参考答案 一、名词解释 1、生物化学:是研究生物体的物质组成和结构以及生物体内发生的各种化学变化的科学。 2、新陈代谢:是生物体与外界环境之间、以及生物体内发生的物质和能量代谢。是生物和非生物的根本区别。 二、综合题 1、(1)物质组成:组成人体的物质可分为有机物和无机物,它们为生命活动的进行提供必要的环境和条件。 (2)物质代谢 (3)遗传信息的传递 (4)生物分子的结构和功能:对生物分子的化学组成和结构以及它们与生命活动的联系应有一个基本的了解。 (5)物质代谢的调节:通过体内对代谢速度和代谢方向的调节,使机体在内外环境不断变化时能够保持稳态和进行各种活动的能力。 2、(1)18世纪中叶,随着化学、物理学的发展以及医学、农学的发展的需要,生物化学逐步发展 (2)1903年,生物化学于有机化学、生理学脱离,走向独立学科 (3)20世纪50年代,生物化学迅速发展:对于生物分子的结构与功能的关系、代谢途径与生理功能的关系有了深入的了解。 3、医学的发展和生物化学的发展紧密联系,相互促进。为了保证人的健康、预防疾病的发生和治疗疾病,医学必须建立在对人体形态和功能详尽了解的基础上、建立在对内外环境的致病因子是如何引起疾病的基础上,医学在发展的过程中形成了多种学科,生物化学也渗透到基础医学领域。

生化考试试题汇总

------------------------------------------------------------精品文档-------------------------------------------------------- 生物化学习题 一、最佳选择题:下列各题有A、B、C、D、E五个备选答案,请选择一个最佳答案。 1、蛋白质一级结构的主要化学键是( ) A、氢键 B、疏水键 C、盐键 D、二硫键 E、肽键 D*2、蛋白质变性后可出现下列哪种变化( ) A、一级结构发生改变 B、构型发生改变 C、分子量变小 D、构象发生改变 E、溶解度变大 3、下列没有高能键的化合物是( ) A、磷酸肌酸 B、谷氨酰胺 C、ADP D、1,3一二磷酸甘油酸 E、磷酸烯醇式丙酮酸 4、嘌呤核苷酸从头合成中,首先合成的是( ) A、IMP B、AMP C、GMP D、XMP E、ATP 5、脂肪酸氧化过程中,将脂酰~SCOA载入线粒体的是( ) 、柠檬酸B、肉碱C A、ACP A E、乙酰辅酶、乙酰肉碱D) 、体内氨基酸脱氨基最主要的方式是( b6 A、氧化脱氨基作用、联合脱氨基作用 B 、转氨基作用 C D、非氧化脱氨基作用 、脱水脱氨基作用E ) 、关于三羧酸循环,下列的叙述哪条不正确d7( FADH2 和NADH、产生A B、有GTP生成 C、氧化乙酰COA D、提供草酰乙酸净合成 E、在无氧条件下不能运转 c8、胆固醇生物合成的限速酶是( ) A、HMG COA合成酶 B、HMG COA裂解酶 C、HMG COA还原酶 D、乙酰乙酰COA脱氢酶 E、硫激酶 9、下列何种酶是酵解过程中的限速酶( ) A、醛缩酶 B、烯醇化酶 C、乳酸脱氢酶 D、磷酸果糖激酶 E、3一磷酸甘油脱氢酶

2014生物化学期末考试试题

《生物化学》期末考试题 A 1、蛋白质溶液稳定的主要因素是蛋白质分子表面形成水化膜,并在偏离等电点时带有相同电荷 2、糖类化合物都具有还原性 ( ) 3、动物脂肪的熔点高在室温时为固体,是因为它含有的不饱和脂肪酸比植物油多。( ) 4、维持蛋白质二级结构的主要副键是二硫键。 ( ) 5、ATP含有3个高能磷酸键。 ( ) 6、非竞争性抑制作用时,抑制剂与酶结合则影响底物与酶的结合。 ( ) 7、儿童经常晒太阳可促进维生素D的吸收,预防佝偻病。 ( ) 8、氰化物对人体的毒害作用是由于它具有解偶联作用。 ( ) 9、血糖基本来源靠食物提供。 ( ) 10、脂肪酸氧化称β-氧化。 ( ) 11、肝细胞中合成尿素的部位是线粒体。 ( ) 12、构成RNA的碱基有A、U、G、T。 ( ) 13、胆红素经肝脏与葡萄糖醛酸结合后水溶性增强。 ( ) 14、胆汁酸过多可反馈抑制7α-羟化酶。 ( ) 15、脂溶性较强的一类激素是通过与胞液或胞核中受体的结合将激素信号传递发挥其生物() 1、下列哪个化合物是糖单位间以α-1,4糖苷键相连: ( ) A、麦芽 B、蔗糖 C、乳糖 D、纤维素 E、香菇多糖 2、下列何物是体内贮能的主要形式 ( ) A、硬酯酸 B、胆固醇 C、胆酸 D、醛固酮 E、脂酰甘油

3、蛋白质的基本结构单位是下列哪个: ( ) A、多肽 B、二肽 C、L-α氨基酸 D、L-β-氨基酸 E、以上都不是 4、酶与一般催化剂相比所具有的特点是 ( ) A、能加速化学反应速度 B、能缩短反应达到平衡所需的时间 C、具有高度的专一性 D、反应前后质和量无改 E、对正、逆反应都有催化作用 5、通过翻译过程生成的产物是: ( ) A、tRNA B、mRNA C、rRNA D、多肽链E、DNA 6、物质脱下的氢经NADH呼吸链氧化为水时,每消耗1/2分子氧可生产ATP分子数量( ) A、1B、2 C、3 D、4. E、5 7、糖原分子中由一个葡萄糖经糖酵解氧化分解可净生成多少分子ATP? ( ) A、1 B、2 C、3 D、4 E、5 8、下列哪个过程主要在线粒体进行 ( ) A、脂肪酸合成 B、胆固醇合成 C、磷脂合成 D、甘油分解 E、脂肪酸β-氧化 9、酮体生成的限速酶是 ( ) A、HMG-CoA还原酶 B、HMG-CoA裂解酶 C、HMG-CoA合成酶 D、磷解酶 E、β-羟丁酸脱氢酶 10、有关G-蛋白的概念错误的是 ( ) A、能结合GDP和GTP B、由α、β、γ三亚基组成 C、亚基聚合时具有活性 D、可被激素受体复合物激活 E、有潜在的GTP活性 11、鸟氨酸循环中,合成尿素的第二个氮原子来自 ( ) A、氨基甲酰磷酸 B、NH3 C、天冬氨酸 D、天冬酰胺 E、谷氨酰胺 12、下列哪步反应障碍可致苯丙酮酸尿症 ( )

生物化学试题及答案(6)

生物化学试题及答案(6) 默认分类2010-05-15 20:53:28 阅读1965 评论1 字号:大中小 生物化学试题及答案(6) 医学试题精选2010-01-01 21:46:04 阅读1957 评论0 字号:大中小 第六章生物氧化 【测试题】 一、名词解释 1.生物氧化 2.呼吸链 3.氧化磷酸化 4. P/O比值 5.解偶联剂 6.高能化合物 7.细胞色素 8.混合功能氧化酶 二、填空题 9.琥珀酸呼吸链的组成成分有____、____、____、____、____。 10.在NADH 氧化呼吸链中,氧化磷酸化偶联部位分别是____、____、____,此三处释放的能量均超过____KJ。 11.胞液中的NADH+H+通过____和____两种穿梭机制进入线粒体,并可进入____氧化呼吸链或____氧化呼 吸链,可分别产生____分子ATP或____分子ATP。 12.ATP生成的主要方式有____和____。 13.体内可消除过氧化氢的酶有____、____和____。 14.胞液中α-磷酸甘油脱氢酶的辅酶是____,线粒体中α-磷酸甘油脱氢酶的辅基是____。 15.铁硫簇主要有____和____两种组成形式,通过其中的铁原子与铁硫蛋白中的____相连接。 16.呼吸链中未参与形成复合体的两种游离成分是____和____。 17.FMN或FAD作为递氢体,其发挥功能的结构是____。 18.参与呼吸链构成的细胞色素有____、____、____、____、____、____。 19.呼吸链中含有铜原子的细胞色素是____。 20.构成呼吸链的四种复合体中,具有质子泵作用的是____、____、____。 21.ATP合酶由____和____两部分组成,具有质子通道功能的是____,____具有催化生成ATP 的作用。 22.呼吸链抑制剂中,____、____、____可与复合体Ⅰ结合,____、____可抑制复合体Ⅲ,可抑制细胞色 素c氧化酶的物质有____、____、____。 23.因辅基不同,存在于胞液中SOD为____,存在于线粒体中的 SOD为____,两者均可消除体内产生的 ____。 24.微粒体中的氧化酶类主要有____和____。 三、选择题

生物化学期末考试试题及答案

《生物化学》期末考试题 A 一、判断题(15个小题,每题1分,共15分) ( ) 1、蛋白质溶液稳定的主要因素是蛋白质分子表面形成水化膜,并在偏离等电点时带有相同电荷 2、糖类化合物都具有还原性 ( ) 3、动物脂肪的熔点高在室温时为固体,是因为它含有的不饱和脂肪酸比植物油多。( ) 4、维持蛋白质二级结构的主要副键是二硫键。 ( ) 5、ATP含有3个高能磷酸键。 ( ) 6、非竞争性抑制作用时,抑制剂与酶结合则影响底物与酶的结合。( ) 7、儿童经常晒太阳可促进维生素D的吸收,预防佝偻病。 ( ) 8、氰化物对人体的毒害作用是由于它具有解偶联作用。 ( )

9、血糖基本来源靠食物提供。 ( ) 10、脂肪酸氧化称β-氧化。 ( ) 11、肝细胞中合成尿素的部位是线粒体。 ( ) 12、构成RNA的碱基有A、U、G、T。 ( ) 13、胆红素经肝脏与葡萄糖醛酸结合后水溶性增强。 ( ) 14、胆汁酸过多可反馈抑制7α-羟化酶。 ( ) 15、脂溶性较强的一类激素是通过与胞液或胞核中受体的结合将 二、单选题(每小题1分,共20分)

1、下列哪个化合物是糖单位间以α-1,4糖苷键相连:() A、麦芽糖 B、蔗糖 C、乳糖 D、纤维素 E、 香菇多糖 2、下列何物是体内贮能的主要形式 ( ) A、硬酯酸 B、胆固醇 C、胆酸 D、醛固酮 E、 脂酰甘油 3、蛋白质的基本结构单位是下列哪个: ( ) A、多肽 B、二肽 C、L-α氨基酸 D、L-β-氨基酸 E、以上都不是 4、酶与一般催化剂相比所具有的特点是 ( ) A、能加速化学反应速度 B、能缩短反应达到平衡所需的时间 C、具有高度的专一性 D、反应前后质和量无改 E、对正、逆反应都有催化作用 5、通过翻译过程生成的产物是: ( ) A、tRNA B、mRNA C、rRNA D、多肽链E、DNA

生化重点大题

一、试述酮体的生成过程。 1. 两个乙酰辅酶A被硫解酶催化生成乙酰乙酰辅酶A。β-氧化的最后一轮也生成乙酰乙酰辅酶A。 2. 乙酰乙酰辅酶A与一分子乙酰辅酶A生成β-羟基-β-甲基戊二酰辅酶A,由HMG辅酶A合成酶催化。 3. HMG辅酶A裂解酶将其裂解为乙酰乙酸和乙酰辅酶A。 4. D-β-羟丁酸脱氢酶催化,用NADH还原生成β羟丁酸,反应可逆,不催化L-型底物。 5. 乙酰乙酸自发或由乙酰乙酸脱羧酶催化脱羧,生成丙酮。 二、酮体生成和利用的生理意义。 酮体是脂酸在肝内正常的中间代谢产物,肝内生成,肝外利用,酮体是肝为肝外组织提供的一种能源物质,脑组织的重要能源。 三、解释重症糖尿病病人为什么会产生酮血症和酸中毒。 糖尿病患者由于机体不能很好地利用葡萄糖,必须依赖脂肪酸氧化供能。脂肪动员加强,肝脏酮体生成增多,超过肝外组织利用酮体的能力,从而引起血中酮体增多,由于酮体中的乙酰乙酸、β-羟丁酸是一些有机酸,血中过多的酮体会导致酮血症和酸中毒。 四、简述Km与Vm的意义。 ⑴Km等于当V=Vm/2时的[S]。⑵Km的意义:①Km值是酶的特征性常数——代表酶对底物的催化效率。当[S]相同时,Km小——V大;②Km值可近似表示酶与底物的亲和力:1/Km大,亲和力大;1/Km小,亲和力小; ③可用以判断酶的天然底物:Km最小者为该酶的天然底物。⑶Vm的意义:Vm是酶完全被底物饱和时的反应速率,与酶浓度成正比。 五、说明酶原与酶原激活的意义。 (1)酶的无活性前体称为酶原。酶原向酶转化的过程为酶原激活。(2)酶原激活的意义:①消化道内蛋白酶以酶原形式分泌,保护消化器官自身不受酶的水解(如胰蛋白酶),保证酶在特定部位或环境发挥催化作用; ②酶原可以视为酶的贮存形式(如凝血酶和纤维蛋白溶解酶),一旦需要转化为有活性的酶,发挥其对机体的保护作用。 六、什么叫同工酶?有何临床意义? (1)同工酶是指催化的化学反应相同,而酶蛋白的分子结构、理化性质及免疫学性质不同的一组酶下称为同工酶。 (2)其临床意义:①属同工酶的几种酶由于催化活性有差异及体内分布不同,有利于体内代谢的协调。②同工酶的检测有助于对某些疾病的诊断及鉴别诊断.当某组织病变时,可能有特殊的同工酶释放出来,使该同工酶活性升高。 七、简述糖酵解的生理意义 (1)机体在相对缺氧时快速补充能量的一种方式 (2)某些细胞在氧供正常下重要的能源途径,如红细胞 八、糖酵解过程需要那些维生素或维生素衍生物参与? 糖酵解过程需要的维生素或维生素衍生物有:维生素B1:TPP。维生素B2:FAD。维生素PP:NAD+、NADH。生物素:生物素。硫辛酸:硫辛酸。半酸:CoA 九、为什么糖酵解途径中产生的NADH必须被氧化成NAD+才能被循环利用? 唯一的脱氢反应要被NAD+接受,才能生成NADPH和氢离子。 十、简述糖异生的生理意义 (1)在饥饿情况下维持血糖浓度的相对恒定。 (2)补充和恢复肝糖原。 (3)促进肾排酸排氨 (4)回收乳酸分子中的能量(乳酸循环)。 十一、简述三羧酸循环的要点及生理意义 (1)TAC中有4次脱氢,2次脱羧,1次底物水平磷酸化(2)TAC中有3个不可逆反应,3个关键酶;(3)不消耗中间产物(4)三羧酸循环一周共产生12ATP。 生理意义:(1)TAC是三大营养素彻底氧化的最终代谢通路;(2)是三大营养素代谢联系的枢纽;(3)可为其

最新《生物化学》练习题及答案

《生物化学》练习题及答案 纵观近几年来生化自考的题型一般有四种:(一)最佳选择题,即平常所说的A型多选题,其基本结构是由一组题干和A、B、C、D、E 五个备选答案组成,其中只有一个是最佳答案,其余均为干扰答案。 (二)填充题,即填写某个问题的关键性词语。(三)名词解释,答题要做到准确全面,举个例来说,名解“糖异生”,单纯回答“非糖物质转变为糖的过程”这一句话显然是不够的,必需交待异生的场所、非糖物质有哪些等,诸如此类问题,往往容易疏忽。(四)问答题,要充分理解题意要求,分析综合,拟定答题方案。现就上述四种题型,编写了生物化学习题选,供大家参考。 一、最佳选择题:下列各题有A、B、C、D、E五个备选答案,请选择一个最佳答案。 1、蛋白质一级结构的主要化学键是( ) A、氢键 B、疏水键 C、盐键 D、二硫键 E、肽键 2、蛋白质变性后可出现下列哪种变化( ) A、一级结构发生改变 B、构型发生改变 C、分子量变小 D、构象发生改变 E、溶解度变大 3、下列没有高能键的化合物是( )

A、磷酸肌酸 B、谷氨酰胺 C、ADP D、1,3一二磷酸甘油酸 E、磷酸烯醇式丙酮酸 4、嘌呤核苷酸从头合成中,首先合成的是( ) A、IMP B、AMP C、GMP D、XMP E、ATP 5、脂肪酸氧化过程中,将脂酰~SCOA载入线粒体的是( ) A、ACP B、肉碱 C、柠檬酸 D、乙酰肉碱 E、乙酰辅酶A 6、体内氨基酸脱氨基最主要的方式是( ) A、氧化脱氨基作用 B、联合脱氨基作用 C、转氨基作用 D、非氧化脱氨基作用 E、脱水脱氨基作用 7、关于三羧酸循环,下列的叙述哪条不正确( ) A、产生NADH和FADH2 B、有GTP生成 C、氧化乙酰COA D、提供草酰乙酸净合成 E、在无氧条件下不能运转 8、胆固醇生物合成的限速酶是( ) A、HMG COA合成酶 B、HMG COA裂解酶 C、HMG COA还原酶 D、乙酰乙酰COA脱氢酶 E、硫激酶 9、下列何种酶是酵解过程中的限速酶( )

生物化学试题及答案期末用

生物化学试题及答案 维生素 一、名词解释 1、维生素 二、填空题 1、维生素的重要性在于它可作为酶的组成成分,参与体内代谢过程。 2、维生素按溶解性可分为和。 3、水溶性维生素主要包括和VC。 4、脂脂性维生素包括为、、和。 三、简答题 1、简述B族维生素与辅助因子的关系。 【参考答案】 一、名词解释 1、维生素:维持生物正常生命过程所必需,但机体不能合成,或合成量很少,必须食物供给一类小分子 有机物。 二、填空题 1、辅因子; 2、水溶性维生素、脂性维生素; 3、B族维生素; 4、VA、VD、VE、VK; 三、简答题 1、

生物氧化 一、名词解释 1.生物氧化 2.呼吸链 3.氧化磷酸化 4. P/O比值 二、填空题 1.生物氧化是____ 在细胞中____,同时产生____ 的过程。 3.高能磷酸化合物通常是指水解时____的化合物,其中重要的是____,被称为能量代谢的____。 4.真核细胞生物氧化的主要场所是____ ,呼吸链和氧化磷酸化偶联因子都定位于____。 5.以NADH为辅酶的脱氢酶类主要是参与____ 作用,即参与从____到____的电子传递作用;以NADPH 为辅酶的脱氢酶类主要是将分解代谢中间产物上的____转移到____反应中需电子的中间物上。 6.由NADH→O2的电子传递中,释放的能量足以偶联ATP合成的3个部位是____、____ 和____ 。 9.琥珀酸呼吸链的组成成分有____、____、____、____、____。

10.在NADH 氧化呼吸链中,氧化磷酸化偶联部位分别是____、____、____,此三处释放的能量均超过____KJ。 12.ATP生成的主要方式有____和____。 14.胞液中α-磷酸甘油脱氢酶的辅酶是____,线粒体中α-磷酸甘油脱氢酶的辅基是____。 16.呼吸链中未参与形成复合体的两种游离成分是____和____。 26.NADH经电子传递和氧化磷酸化可产生____个ATP,琥珀酸可产生____个ATP。 三、问答题 1.试比较生物氧化与体外物质氧化的异同。 2.描述NADH氧化呼吸链和琥珀酸氧化呼吸链的组成、排列顺序及氧化磷酸化的偶联部位。 7.简述化学渗透学说。 【参考答案】 一、名词解释 1.物质在生物体内进行的氧化反应称生物氧化。 2.代谢物脱下的氢通过多种酶与辅酶所催化的连锁反应逐步传递,最终与氧结合为水,此过程与细胞呼吸有关故称呼吸链。 3.代谢物脱下的氢经呼吸链传递给氧生成水,同时伴有ADP磷酸化为ATP,此过程称氧化磷酸化。 4.物质氧化时每消耗1摩尔氧原子所消耗的无机磷的摩尔数,即生成ATP的摩尔数,此称P/O比值。 二、填空题 1.有机分子氧化分解可利用的能量 3.释放的自由能大于20.92kJ/mol ATP 通货 4.线粒体线粒体内膜 5.生物氧化底物氧H++e- 生物合成 6.NADH-CoQ Cytb-Cytc Cyta-a3-O2 9.复合体Ⅱ泛醌复合体Ⅲ细胞色素c 复合体Ⅳ 10.NADH→泛醌泛醌→细胞色素c 细胞色素aa3→O2 30.5 12.氧化磷酸化底物水平磷酸化 14.NAD+ FAD

天津医科大学生化重点题目(附答案)培训讲学

肽键:一个氨基酸的氨基与另一个氨基酸的氨基酸的羧基脱去一分子的H2O,形成酰胺键。 融解温度:DNA的变性从开始解链到完全解链,是在一个相当窄的温度范围内完成的,在这一范围内,紫外光吸收值达到最大值的50%时的温度称为解链温度。 酶的活性中心:必需基团在空间位置上组成具有特定空间结构的区域称为酶的活性中心,是酶发挥起催化活性的关键部位。 呼吸链:代谢物脱下的成对氢原子通过多种酶和辅酶所催化的连锁反应逐步传递,最终与氧结合生成水,由于此过程与细胞呼吸有关,因此此传递链称为呼吸链。 酮体:乙酰乙酸,β-羟丁酸和丙酮酸统称为酮体。其在肝内生成,在肝外组织利用,酮体是肝向肝外组织传输脂肪酸能量的有效形式。血液中酮体升高可形成酮血症、酮尿症和酮症酸中毒。 营养必须脂肪酸:人体虽能合成脂肪酸,但不能合成全部人体所需的脂肪酸。那些人体所需要但又不能自身合成只能用过膳食摄入的脂肪酸称人体营养必须脂肪酸,它包括亚油酸,亚麻酸,花生四烯酸。 营养必需氨基酸:体内需要而又不能自身合成,或合成数量不能满足机体需要必须由食物供给的氨基酸称为营养必需氨基酸,人类必需氨基酸共有八种:亮氨酸,异亮氨酸,甲硫氨酸,苯丙氨酸,色氨酸,苏氨酸,赖氨酸,缬氨酸。 一碳单位:某些氨基酸代谢产生的,主要由四氢叶酸携带的,仅含有一个碳原子的有机化学基团,称为一碳单位。它包括甲基,甲烯基,甲炔基以及亚氨甲基。 核苷酸从头合成:利用磷酸核糖,氨基酸,CO2,一碳单位这类简单物质合成核苷酸的过程。 半保留复制:DNA复制时,亲代DNA双链分别作为模板按碱基互补原则指导合成其互补链,两个子代DNA与亲代DNA序列一致。子代双链DNA,一股来自亲代,一股新合成,这种复制方式称半保留复制。 胆汁酸的肝肠循环:排入肠道的胆汁酸中95%以上被重吸收,经门静脉入肝,被肝细胞摄取,在肝细胞内,游离胆汁酸被重新合成结合胆汁酸,再排入小肠。 质粒:细菌染色体外的能够自主复制的较小的双链环状DNA分子,在细胞分裂时恒定传给子代。质粒带有某些遗传信息,所以能够赋予宿主细胞一些遗传性状。常作重组DNA操作的载体。 基因表达:就是基因转录及翻译过程。在一定调节机制下,大多数基因经历基因激活,转录和翻译,产生具有特异生物学功能的蛋白质分子,赋予细胞或个体一定的功能和形态表型。但并非所有基因表达过程都产生蛋白质,rRNA,tRNA及编码基因转录产生的mRNA的过程也属于基因表达。

生化大题汇总

生化大题汇总 ※参与DNA复制的主要酶和蛋白因子有哪些?各有什么功能? 拓扑异构酶:松解DNA的超螺旋。 解链酶:打开DNA的双链。 引物酶:在DNA复制起始处以DNA为模板,催化合成互补的RNA短片断。 DNA聚合酶:以DNA为模板、dNTP为原料,合成互补的DNA新链。 连接酶:连接DNA片断。 DNA结合蛋白:结合在打开的DNA单链上,稳定单链。 ※DNA复制有何主要特点? 半保留复制,半不连续合成、需RNA引物,以dNTP(A,T,C,G)为原料,新链合成方向总是5’->3’,依赖DNA的DNA聚合酶(DDDP) ※DNA复制的高保真性主要取决于哪些因素? DNA复制的高保真性取决于三个方面:1、DNA双链碱基的严格配对与DNA聚合酶对配对碱基的严格选择性;2、5’->3’外切核酸酶的即时校读作用;3、对DNA分子中的错误或损伤的修复机制。 ※真核生物DNA复制在何处进行?如何进行? 在细胞核内。 复制分为以下几个阶段:1、起始阶段(DNA解旋解链及引物合成):DNa拓扑异构酶、解链酶分别使DNA 解旋、解链,形成复制叉,在起始点由引物酶催化合成RNA引物;2、DNA合成阶段:以DNA的两条链分别作为模板,dNTP为原料按碱基互补原则(A-T,C-G)在RNa引物引导下,由DNA聚合酶催化合成DNA新链(分前导链和随从链);3、终止阶段:水解RNa引物(polI),填补空缺(polI),连接DNA片断(连接酶)。 ※何谓反转录?在哪些情况下发生反转录?写出主要酶促反应过程。 以RNA为模板在反转录酶的作用下合成DNA的过程叫做反转录。 反转录可发生于:1、在RNA病毒感染宿主细胞甚至致癌过程中;2、在基因工程中,以mRNA为模板合成cDNA。 病毒RNA(反转录酶dNTP)->RNA-DNA杂化链(RNA酶活性)->cDNA单链(DNA聚合酶活性)->cDNA 双链 ※概述DNA的生物合成。 DNA的生物合成包括DNA半保留复制,DNA损伤后的修复合成和反转录 DNA复制是以DNa的两条链分别作为模板,以dNTP为原料,在DNA聚合酶作用下按照碱基配对原则合成互补新链,这样形成的两个子代DNA分子与原来DNa分子完全相同,一条链来自亲代,另一条链是新合成的,故称为半保留复制。 在某些梨花、生物学因素作用下DNa链发生碱基突变、缺失、交联或链的断裂等损伤后,可进行修复。修复方式有光修复、切除修复、重组修复与SOS修复等。切除修复:1、核酸内切酶从损伤处的5’端切开,出现正常的3’端;2、核酸外切酶水解已打开的损伤DNA段;3DNA聚合酶以互补的DNA链为模板,dNTP为原料,5’->3’方向合成新的DNa片段;4、连接酶连接形成完整的DNA链。 以RNA为模板在反转录酶的作用下合成DNA的过程叫做反转录。反转录在病毒致癌过程中起重要作用;在基因工程中可用于以mRNA为模板合成cDNA的实验。 ※催化磷酸二酯键形成的酶有哪些?比较各自不同特点。 有DNA聚合酶、RNA聚合酶、引物酶、反转录酶、连接酶和拓扑异构酶。

生物化学必考大题-简答题28道

根据老师所画的重点,我把生化大题全打成了电子档,希望能帮助大家的复习!! DNA双螺旋模型要点 (1)主链(backbone):由脱氧核糖和磷酸基通过酯键交替连接而成。主链有二条,它们似"麻花状绕一共同轴心以右 手方向盘旋,相互平行而走向相反形成双螺旋构型。主链处于螺旋的外则,这正好解释了由糖和磷酸构成的主链的亲水性。所谓双螺旋就是针对二条主链的形状而言的。 (2)碱基对(basepair):碱基位于螺旋的内则,它们以垂直于螺旋轴的取向通过糖苷键与主链糖基相连。同一平面的 碱基在二条主链间形成碱基对。配对碱基总是A与T和G与C。碱基对以氢键维系,A与T间形成两个氢键。 (3)大沟和小沟:大沟和小沟分别指双螺旋表面凹下去的较大沟槽和较小沟槽。小沟位于双螺旋的互补链之间,而大 沟位于相毗邻的双股之间。这是由于连接于两条主链糖基上的配对碱基并非直接相对,从而使得在主链间沿螺旋形成空隙不等的大沟和小沟。在大沟和小沟内的碱基对中的N 和O 原子朝向分子表面。 (4)结构参数:螺旋直径2nm;螺旋周期包含10对碱基;螺距3.4nm;相邻碱基对平面的间距0.34nm。 生物学意义:揭示了DNA复制时两条链可以分别作为模板生成新的子代互补链,从而保持遗传信息的稳定传递。2、酶与一般催化剂相比具有哪些特点? (1)催化效率高:对于同一反应,酶催化反应的速率比非催化反应速率高10^2—10^20倍,比一般催化剂催化反应的反应高10^7—10^13倍 (2)高度专一性或特异性:与一般催化剂不同,酶对具有催化的底物具有较严格的选择性,即一种酶只能作用于一种或一类底物或一定的化学键,催化一定的化学反应并生成一定的产物,按照其严格程度可以区分为绝对专一性和相对专一性,另外还有立体异构专一性和光学异构专一性。 (3)酶活性的不稳定性:酶是蛋白质,对热不稳定,对反应的条件要求严格 (4)酶催化活性的可调节性:酶促反应或酶的活性受到多种体外因素的调节,酶的调节包括酶活性和酶含量的调节。 3、何谓酶的不可逆抑制作用?试举例说明 某些抑制剂通常以共价键与酶蛋白中的必需基团结合,而使酶失活,抑制剂不能用透析、超滤等物理方法除去,有这种作用的不可逆抑制剂引起的抑制作用称不可逆抑制作用 举例:①有机磷抑制胆碱酯酶:与酶活性中心的丝氨酸残基结合,可用解磷定解毒②重金属离子和路易士气抑制巯基酶:与酶分子的巯基结合,可用二巯丙醇解毒。 4、试述竞争性抑制作用的特点,并举例其临床应用 ①抑制剂与底物化学结构相似②抑制剂以非抑制剂可逆地结合酶的活性中心,但不被催化为产物③由于抑制剂与酶的结合是可逆的,抑制作用大小取决于抑制剂浓度与底物浓度的相对比例④当抑制剂浓度不变时,逐渐增加底物浓度,抑制作用减弱,甚至解除,因而酶的V不变⑤抑制剂的存在使酶的km的值明显增加。说明底物和酶的亲和力明显下降。举例:①磺胺类药物与对氨基苯甲酸竞争抑制二氢叶酸合成酶②丙二酸与琥珀酸竞争抑制琥珀酸脱氢酶③核苷酸的抗代谢物与抗肿瘤药物 5、何谓酶原及酶原激活?简述其生理意义 有些酶在细胞内合成时,或初分泌时,没有催化活性,这种无活性状态的酶的前身物称为酶原,酶原向活性的酶转化的过程称为酶原的激活。酶原激活实际上是酶的活性中心形成或暴露的过程。 生理意义:可视为有机体对酶活性的一种特殊调节方式,保证酶在需要时在适当部位,适当的时间发挥作用,避免在不需要时发挥活性而对组织细胞造成损伤,酶原还可以视为酶的一种储存形式 6、什么叫同工酶?简述其存在的部位,来源及临床意义? 同工酶是指催化的化学反应相同,而酶蛋白的氨基酸组成分子结构,理化性质乃至免疫学性质等不同的组酶。同工酶存在于同一种属或同一个体的不同组织器官或同一细胞的不同亚细胞的结构中,它在调节代谢上起着重要作用。 同工酶是长期进化过程中基团分化的产物,同工酶是由不同基团或等位基因编码的多肽链,或同一基团转录生成的不同mRNA翻译的不同多肽链组成的蛋白质,所以同工酶具有不同的的一级结构,生物化学性质和酶动学性质,不同的同工酶在不同的组织器官中含量喝分布比例不同,这主要是不同组织器官中编码不同亚基的基因开放程度不同,编码各亚基的基因表达程度不同,合成的亚基种类和数量不同,形成不同的同工酶谱,不同的同工酶对底物的亲和力不同,使不同组织与细胞具有不同的代谢特点,当某组织器官发生病变时,可能在某些特殊的同工酶释放同工酶谱的改变有助于病的诊断,通过观察人血清中同工酶的电泳图谱辅助诊断哪些器官发生病变。

生化课后题目及答案

2 蛋白质化学 2.测得一种血红蛋白含铁0.426%,计算其最低相对分子质量。一种纯酶按质量计算含亮氨酸1.65%和异亮氨酸2.48%,问其最低相对分子质量是多少? 解答: (1)血红蛋白: 55.8100100131000.426??=铁的相对原子质量最低相对分子质量==铁的百分含量 (2)酶: 因为亮氨酸和异亮氨酸的相对分子质量相等,所以亮氨酸和异亮氨酸的残基数之比为: 1.65%: 2.48%=2:3,因此,该酶分子中至少含有2个亮氨酸,3个异亮氨酸。 ()r 2131.11100159001.65M ??=≈最低 ()r 3131.11100159002.48M ??=≈最低 3.指出下面pH 条件下,各蛋白质在电场中向哪个方向移动,即正极,负极,还是保持原点? (1)胃蛋白酶(pI 1.0),在pH 5.0; (2)血清清蛋白(pI 4.9),在pH 6.0; (3)α-脂蛋白(pI 5.8),在pH 5.0和pH 9.0; 解答:(1)胃蛋白酶pI 1.0<环境pH 5.0,带负电荷,向正极移动; (2)血清清蛋白pI 4.9<环境pH 6.0,带负电荷,向正极移动; (3)α-脂蛋白pI 5.8>环境pH 5.0,带正电荷,向负极移动; α-脂蛋白pI 5.8<环境pH 9.0,带负电荷,向正极移动。 6.由下列信息求八肽的序列。 (1)酸水解得 Ala ,Arg ,Leu ,Met ,Phe ,Thr ,2Val 。 (2)Sanger 试剂处理得DNP -Ala 。 (3)胰蛋白酶处理得Ala ,Arg ,Thr 和 Leu ,Met ,Phe ,2Val 。当以Sanger 试剂处理时分别得到DNP -Ala 和DNP -Val 。 (4)溴化氰处理得 Ala ,Arg ,高丝氨酸内酯,Thr ,2Val ,和 Leu ,Phe ,当用Sanger 试剂处理时,分别得DNP -Ala 和DNP -Leu 。 解答:由(2)推出N 末端为Ala ;由(3)推出Val 位于N 端第四,Arg 为第三,而Thr 为第二;溴化氰裂解,得出N 端第六位是Met ,由于第七位是Leu ,所以Phe 为第八;由(4),第五为Val 。所以八肽为:Ala-Thr-Arg-Val-Val-Met-Leu-Phe 。 7.一个α螺旋片段含有180个氨基酸残基,该片段中有多少圈螺旋?计算该α-螺旋片段的轴长。 解答:180/3.6=50圈,50×0.54=27nm ,该片段中含有50圈螺旋,其轴长为27nm 。 8.当一种四肽与FDNB 反应后,用5.7mol/LHCl 水解得到DNP-Val 及其他3种氨基酸;

生物化学期末复习题------答案

生物化学(一)复习思考题 一、名词解释 核酶;全酶;维生素;氨基酸;中心法则;结构域;锌指蛋白;第二信使;α-磷酸甘油穿梭;底物水平磷酸化;呼吸链; G蛋白;波尔效应(Bohr effect);葡萄糖异生;可立氏循环(Cori cycle) 1.全酶:脱辅酶与辅因子结合后所形成的复合物称为全酶,即全酶=脱辅酶+辅因子。 2.维生素:是维持机体正常生理功能所必需的,但在体内不能合成或合成量不足,必须 由食物提供的一类低分子有机化合物。 3.氨基酸:蛋白质的基本结构单元。 4.中心法则:是指遗传信息从DNA传递给RNA,再从RNA传递给蛋白质,即完成了遗传 信息的转录和翻译的过程。 5.结构域:又称motif(模块),在二级结构及超二级结构的基础上,多肽链进一步卷 曲折叠,组装成几个相对独立,近似球形的三维实体。 6.锌指蛋白:DNA结合蛋白中2个His,2个Cys结合一个Zn. 7.第二信使:指在第一信使同其膜受体结合最早在新报内侧或胞浆中出现,仅在细胞内 部起作用的信号分子,能启动或调节细胞内稍晚出现的反应信号应答。 8.α-磷酸甘油穿梭:该穿梭机制主要在脑及骨骼肌中,它是借助于α-磷酸甘油与磷酸 二羟丙酮之间的氧化还原转移还原当量,使线粒体外来自NADH的还原当量进入线粒体的呼吸链氧化。 9.底物水平磷酸化:底物转换为产物的同时,伴随着ADP的磷酸化形成ATP. 10.呼吸链:电子从NADH到O2的传递所经历的途径形象地被称为电子链,也称呼吸链。 11.G蛋白:是一个界面蛋白,处于细胞膜内侧,α,β,γ3个亚基组成. 12.波尔效应:增加CO2的浓度,降低PH能显著提高血红蛋白亚基间的协同效应,降低

相关主题
文本预览
相关文档 最新文档