当前位置:文档之家› 基于贝塞尔函数的莱斯因子矩估计算法改进

基于贝塞尔函数的莱斯因子矩估计算法改进

基于贝塞尔函数的莱斯因子矩估计算法改进
基于贝塞尔函数的莱斯因子矩估计算法改进

贝塞尔函数的有关公式

贝塞尔函数的有关公式 C.贝塞尔函数的有关公式 贝塞尔方程 的持解B(z)为(柱)贝塞尔函数。有 p 第一类柱贝塞尔函数J(z) p np为整数n时,J=(,1)J; ,n n p不为整数时,J与J线性无关。 p,p 第二类柱贝塞尔函数N(z)(柱诺依曼函数) p nn为整数时N=(,1)N。 ,n n 第三类柱贝塞尔函数H(z) (柱汉开尔函数): p(1) 第一类柱汉开尔函数 H(z)= J(z)+j N(z) pp p(2)第二类柱汉开尔函数 H(z)= J(z),j N(z) pp p 大宗量z

小宗量z 0 ,为欧拉常数 见微波与光电子学中的电磁理论 p668 J(z)的母函数和有关公式 nz(t/2-1/2t)函数e称为第一类贝塞尔函数的母函数,或称生成函数,若将此函数在t=0附近 展开成罗朗级数,可得到 j j 在上式中作代换,令t=e,t= je等,可得 又可得 如z=x为实数

贝塞尔函数的加法公式 J(z)的零点,nni J’(z)的零点,nni 半整数阶贝塞尔函数 J(z)的零点,n+1/2np

J'(z)的零点,'n+1/2np D(朗斯基行列式及其它关系式 E(修正贝塞尔函数有关公式 贝塞尔方程中用(jz)代换z,得到修正的贝塞尔方程 方程的两个线性无关的解为 ,p I(z)=jJ(jz)(称为第一类修正的柱贝塞尔函数。 ppp+1(1)K(z)=(,/2)jH(jz)(称为第二类修正的柱贝塞尔函数。 pp

大宗量z 小宗量z 0 (0210)《古代散文》复习思考题 一、填空题 1(甲骨卜辞、和《易经》中的卦、爻辞是我国古代散文的萌芽。2(深于比兴、,是先秦散文的突出特点。 3(《》长于描写外交辞令。 4(《国语》的突出特点是长于。 5(“兼爱”、“非攻”是思想的核心。

数列递推公式

递推数列的通项公式 数列是高中数学的重要内容之一,是高考的重点和难点,数列中蕴含着丰富的数学思想,而递推数列的通项公式具有很强的逻辑性,考查逻辑推理和转化能力,因此成为历年高考热点。 递推数列的题型多样,求递推数列的通项公式的方法也非常灵活,往往可以通过适当的策略将问题化归为等差数列或等比数列问题加以解决,仔细辨析递推关系式的特征,准确选择恰当的方法,是迅速求出通项公式的关键. 【课前练习】 1. 数列{a n }满足a 1=1,a n+1=a n +2n ,求数列的通项a n =_________. 2. 数列{a n }满足a 1=1,a n+1=1 +n n a n ,求数列{a n }的通项a n = __________. 3.数列{a n }满足a 1=0,1 331+-= +n n n a a a (n ∈N *),则a 20=( ) A.0 B.3 C.-3 D.2 3 【典例分析】 一、型如 )(1n f a a n n +=+ 例1、 已知数列{}n a 满足2 1 1=a ,)1(11++=+n n a a n n ,求数列{} n a 的通项公式.

二、型如)(1n f a a n n ?=+ 例2、设{}n a 是首项为1的正项数列,且n n n a a a n 12 1)1(++++ 02=-n na (*∈N n ),求数列{}n a 的通项公式. 三、 形如q pa a n n +=+1(其中p ,q 为常数,0)1(≠-p pq ) 例3、 已知数列{}n a 中,11=a ,321+=+n n a a ,求数列{}n a 的通项公式.

(完整版)数列的递推公式教案

数列的递推公式教案 普兰店市第六中学陈娜 一、教学目标 1、知识与技能:了解数列递推公式定义,能根据数列递推公式求项,通过数列递推公式求数列的通项公式。 2、过程与方法:通过实例“观察、分析、类比、试验、归纳”得出递推公式概念,体会数列递推公式与通项公式的不同,探索研究过程中培养学生的观察归纳、猜想等能力。 3、情感态度与价值观:培养学生积极参与,大胆探索精神,体验探究乐趣,感受成功快乐,增强学习数学的兴趣,培养学生一切从实际出发,认识并感受数学的应用价值。 二、教学重点、难点和关键点 重点:数列的递推定义以及应用数列的递推公式求出通项公式。 难点:数列的递推公式求通项公式。 关键:同本节难点。 三、教学方法 通过创设问题的情境,在熟悉与未知的认知冲突中激发学生的探索欲望;引导学生通过自主探究和合作交流相结合的方式进行研究;引导学生积极思考,运用观察、试验、联想、类比、归纳、猜想等方法不断地提出问题、解决问题,再提出问题,解决问题……经历知识的发生和发展过程,并注意总结规律和知识的巩固与深化。 四、教学过程 环节1:新课引入 一老汉为感激梁山好汉除暴安良,带了些千里马要送给梁山好汉,见过宋江以后,宋江吧老汉带来的马匹的一半和另外一匹马作为回礼送给了他,老汉又去见卢俊义,把

现有的马匹全送给了他,卢俊义也把老汉送来的马匹的一半和另外一匹马作为回礼送给了老汉……… 一直送到108名好汉的最后一名段景住都是这样的,老汉下山回家时还剩下两匹马,问老汉上山时一共带了多少匹千里马? 通过这个小故事让学生感受到数学来源于生活同时又为生活所服务。同时也能引起学生的兴趣和好奇心。 环节2:引例探究 (1)1 2 4 8 16……… (2) 1 ()1cos ()1cos cos ()]1cos cos[cos ……. (3)0 1 4 7 10 13 ……. 通过设置问题的情境,让学生分析找出这些数列从第二项(或后几项)后一项与前一项的关系,从而引出数列的递推公式的定义,便于学生对于数列递推公式的理解、记忆和应用。 递推公式定义: 如果已知数列的第1项(或前几项),且从第二项(或某一项)开始的任意一项a n 与它的前一项a n-1(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式。递推公式是数列一种的表示法,它包含两个部分,一是递推关系,一是初始条件,二者缺一不可. 环节3:应用举例及练习 例1:已知数列{a n }的第1项是1,以后的各项由公式 (n ≥2)给出,写出这个给出,写出这个数列的前5项. 解:据题意可知:a 1=1, 1 11n n a a -=+2111112,1a a =+=+=3211311,22a a =+=+=4312511,33a a =+=+=5413811.55a a =+ =+=

贝塞尔函数

贝塞尔函数 当我们采用极坐标系后,经过分离变量就会出现变系数的线性常微分方程。在那里,由于只考虑圆盘在稳恒状态下的温度分布,所以得到了欧拉方程。如果不是考虑稳恒状态而是考虑瞬时状态,就会得到一种特殊类型的常微分方程。本章将通过在柱坐标系中对定解问题进行分离变量,引出在§2.6中曾经指出过的贝塞尔方程,并讨论这个方程解的一些性质。下面将看到,在一般情况下,贝塞尔方程的解不能用初等函数表出,从而就导入一类特殊函数,称为贝塞尔函数。贝塞尔函数具有一系列性质,在求解数学物理问题时主要是引用正交完备性。 §5.1 贝塞尔方程的引出 下面以圆盘的瞬时温度分布为例推导出贝塞尔方程。设有半径为R 的薄圆盘,其侧面绝缘,若圆盘边界上的温度恒保持为零摄氏度,且初始温度为已知,求圆盘内瞬时温度分布规律。 这个问题可以归结为求解下述定解问题: 22222 2222 22222 0(),,0, (5.1)(,),, (5.2)0, t x y R u u u a x y R t t x y u x y x y R u ?=+=???=++<>???=+≤= (5.3)?????? ??? 用分离变量法解这个问题,先令 (,,)(,)() u x y t V x y T t =

代入方程(5.1)得 2 2 2 2 2 ( )V V VT a T x y ??'=+ ?? 或 2 2 2 2 2 (0)V V T x y a T V λλ??+'??= =-> 由此得到下面关于函数()T t 和(,)V x y 的方程 2 0T a T λ'+= (5.4) 2 2 2 2 0V V V x y λ??+ +=?? (5.5) 从(5.4)得 2 ()a t T t Ae λ-= 方程(5.5)称为亥姆霍兹(Helmholtz )方程。为了求出这个方程满足条件 2 2 2 0x y R V +== (5.6) 的非零解,引用平面上的极坐标系,将方程(5.5)与条件(5.6)写成极坐标形式得 22 222 110,,02, (5.7)0,02, (5.8)R V v V V R V ρλρθπρρρρθθπ=????+++=<≤≤??????=≤≤? 再令 (,)()()V P ρθρθ=Θ, 代入(5.7)并分离变量可得 ()()0θμθ''Θ+Θ= (5.9) 2 2 ()()()()0P P P ρρρρλρμρ'''++-= (5.10)

九类常见递推数列求通项公式方法

递推数列通项求解方法 类型一:1n n a pa q += +(1p ≠) 思路1(递推法):()123()n n n n a pa q p pa q q p p pa q q q ---??=+=++=+++=?? ......121(1n p a q p p -=++++ (2) 1 1)11n n q q p a p p p --??+=+?+ ? --?? 。 思路2(构造法):设()1n n a p a μμ++=+,即()1p q μ-=得1 q p μ= -,数列 {}n a μ+是以1a μ+为首项、p 为公比的等比数列,则1 111n n q q a a p p p -??+ =+ ?--??,即1111n n q q a a p p p -??=++ ? --?? 。 例1 已知数列{}n a 满足123n n a a -=+且11a =,求数列{}n a 的通项公式。 解:方法1(递推法): ()123232(23)3222333n n n n a a a a ---??=+=++=+++=?? (1) 22 3(122n -=++++ (2) 11 332 )12232112n n n --+??+=+?+=- ? --? ?。 方法2(构造法):设()12n n a a μμ++=+,即3μ=,∴数列{}3n a +是以134 a +=为首项、2为公比的等比数列,则113422n n n a -++=?=,即1 23n n a +=-。

1n n +思路1(递推法): 123(1)(2)(1)(3)(2)(1)n n n n a a f n a f n f n a f n f n f n ---=+-=+-+-=+-+-+-= …1 11 ()n i a f n -==+∑。 思路2(叠加法):1(1)n n a a f n --=-,依次类推有:12(2)n n a a f n ---=-、 23(3)n n a a f n ---=-、…、21(1)a a f -=,将各式叠加并整理得1 11 ()n n i a a f n -=-= ∑ ,即 1 11 ()n n i a a f n -==+ ∑ 。 例2 已知11a =,1n n a a n -=+,求n a 。 解:方法1(递推法):123(1)(2)(1)n n n n a a n a n n a n n n ---=+=+-+=+-+-+= ......1[23a =+++ (1) (1)(2)(1)]2 n i n n n n n n =++-+-+= = ∑ 。 方法2(叠加法):1n n a a n --=,依次类推有:121n n a a n ---=-、232n n a a n ---=-、…、 212a a -=,将各式叠加并整理得12 n n i a a n =-= ∑ ,12 1 (1)2 n n n i i n n a a n n ==+=+ = = ∑ ∑ 。

LOGIT模型参数估计方法研究_金安

第4卷第1期2004年2月 交通运输系统工程与信息 Jo ur nal of T r anspo rt atio n Sy stems Eng ineer ing and Infor matio n T echno lo gy Vo l.4No.1Febr uar y 2004 文章编号:1009-6744(2004)01-0071-05 LOGIT 模型参数估计方法研究 金 安 (广州市规划局交通研究所,广州510030) 摘要: 离散选择模型,特别是L OG IT 模型在交通需求模型建立过程中,应用非常广泛,许多实际的交通政策问题都涉及到方式选择,然而L OG IT 模型的建立非常困难,尤其是效用函数及参数估计.本文重点就L O GIT 模型参数估计的有关问题进行讨论,特别是运用统计方法如何对效用函数的变量进行选取及比较不同形式效用函数. 关键词: L O GI T 模型;参数估计;t 检验;似然率检验中图分类号: N 945.12 On Methodology of Parameter Estimation in L OGIT Model JIN An (Instit ute o f T r aspo r tatio n,G uang zho u P la nning Bur eau,Guang zho u 510030,China ) Abstract : Disagg reg ate choice mo del ,especially L O GIT m odel ,hav e been used w idely in dev elo pment of tr avel demand mo del ,many pr actical tr anspor tation policy issues ar e concerned w ith mode choice.But pro cedure o f development of L OG IT mo del is difficult,especially mo del calibr atio n and for m of utility functio n.T his paper discuss r elat ional pr oblems o n development of L OG IT model,P articular emphasis is placed o n pr actical pr ocedur es for selection the co rr ect ex planato ry var iables and on compar ing differ ent ver sions of utility functio n using st atistical metho ds.Keywords : L OG IT mo del;par ameter est imation;t -test;likeliho od test CLC number : N 945.12 收稿日期:2003-11-24 金安:广州市规划局交通研究所工程师,工学硕士.研究方向为交通规划及交通需求模型. 1 引 言 实践过程中,LOGIT 模型效用函数不可能预先知道,模型师在建立LOGIT 模型最初阶段几乎没有效用函数任何信息,最多认为在效用函数中会有哪些可能的变量,但也不能确定所有的变量是否都需要,更不可能知道哪些变量需要进行函数变换或效用函数参数的具体数值是多少.这些问题只有通过拟合合适的观测数据,并检验这些模型来确定哪一个最能够描述观测数据.本文主要介绍拟合和测试LOGIT 模型方法. 2 数据的要求 估计和检验过程的第一步是选择合适的观测数据,用于建立LOGIT 方式选择模型所需的数据有: (1)对个体实际方式选择行为的观测.例如, 要建立工作出行方式选择模型,需要对上班出行者方式选择进行观测的数据. (2)所有被选择和没有被选择方式的相关属性值.这些属性可能作为模型中的变量.例如,假设总出行时间被认为是模型中的一个变量,则对于样本中每一个个体而言,所需数据包括每一种可能方式的总出行时间.如果属性数据仅包含被选择方式,LOGIT 模型就不能建立. (3)任何可能作为变量的个体属性值.例如,汽车拥有水平,则需要样本中每个个体家庭汽车拥有水平数. 3 模型的设定 所需数据收集后,下一步工作是设定一种或多种效用函数形式.设定步骤包括确定效用函数中变量、属性的函数变换以及效用函数的形式.这个步

几类递推数列通项公式的常见类型及解法

几类递推数列通项公式的常见类型及解法 递推数列问题成为高考命题的热点题型,对于由递推式所确定的数列通项公式问题,通常可对递推式的变形转化为等差数列或等比数列.下面将以常见的几种递推数列入手,谈谈此类数列的通项公式的求法. 一、a a d n n +=+1型 (d 为常数) 形如)(1n f a a n n +=+的递推数列求通项公式,将此类数列变形得a a d n n +-=1,再由 等差数列的通项公式()a a n d n =+-11可求得a n . 例1 已知数列{}a n 中()a a a n N n n 1123==+∈+,,求n a 的通项公式. 解:∵a a n n +=+13 ∴a a n n +-=13 ∴ {}a n 是以a 12=为首项,3为公差的等差数列. ∴()a n n n =+-=-21331为所求的通项公式. 二、)(1n f a a n n +=+型 形如)(1n f a a n n +=+的递推数列求通项公式,可用差分法. 例2 已知数列{}a n 中满足a 1=1,n a a n n -=+1,求n a 的通项公式. 解:作差n a a n n -=-+1,则 2a -1a = -1,3a -2a = -2,4a -3a = -3,……,)1(1--=--n a a n n , 将上面n -1个等式相加得 +-+-+-=-)3()2()1(1a a n ……+[)1(--n ] ∴ n a =2 2 2++-n n 为所求的通项公式. 三、n n a q a ?=+1型 形如n n a q a ?=+1的递推数列求通项公式,将此类数列变形得 q a a n n =+1 ,再由等比数列的通项公式11-?=n n q a a 可求得a n . 例3 已知数列{}a n 中满足a 1=1,n n a a 21=+,求n a 的通项公式. 解:∵n n a a 21=+ ∴ 21 =+n n a a

第八章 参数估计

第八章参数估计 一、思考题 1.什么是参数估计?参数估计有何特点? 2.评价估计量优劣的准则是什么? 3.什么是点估计、区间估计?二者有何联系和区别? 4.确定必要的抽样数目有何意义?必要抽样数目受哪些因素影响? 二、练习题 (一)填空题 1.参数估计的方法有_________和_________。 2.若样本方差(s n21-)的期望值等于总体方差(σ2),则称s n21-为σ2的____________估计量 3.总体参数的估计区间是由_________和_________组成。 4.允许误差是指与的最大绝对误差范围。 5.如果总体平均数落在区间960~1040内的概率是95%,则抽样平均数是 ______,允许误差是______。 6.在同样的精度要求下,不重复抽样比重复抽样需要的样本容量。 x=5,7.设总体X的方差为1,从总体中随机取容量为100的样本,得样本均值 =2.58) 则总体均值的置信水平为99%的置信区间_____________。(Z 0.005 (二)判断题 1( )参数估计就是用样本统计量去估计总体的参数。 2( )随机抽样是参数估计的前提。 3( )参数估计的抽样误差可以计算和控制。 4( )估计量的数学期望等于相应的总体参数值,则该估计量就被称为相应总体参数的无偏估计量。 5( )区间估计就是根据样本估计量以一定的置信度推断总体参数所在的区间范围。

6( )样本统计量n x x s ∑-=22)(是总体参数2σ的无偏估计量。 7( )估计量的有效性是指估计量的方差比其它估计的方差小。 8( )点估计是以样本估计量的实际值直接作为相应总体参数的估计值。 9( )抽样估计的置信水平就是指在抽样指标与总体参数构造的置信区间中, 包含总体参数真值的区间所占的比重。 10( )样本容量一定时,置信区间的宽度随置信水平的增大而减小。 (三)单选题 1.极限误差是指样本统计量和总体参数之间( )。 A.抽样误差的平均数 B.抽样误差的标准差 C.抽样误差的可靠程度 D.抽样误差的最大可能范围 2.参数估计的主要目的是( )。 A.计算和控制抽样误差 B. 为了深入开展调查研究 C.根据样本统计量的数值来推断总体参数的数值 D. 为了应用概率论 3.参数是指基于( )计算的指标值。 A.样本 B.某一个样本 C.多个样本 D.总体 4.总体参数很多,就某一参数(如均值)而言,它的取值( )。 A.是唯一的 B.不是唯一的 C.随样本的变化而变化 D.随抽样组织形式的变化而变化 5.样本统计量很多,就某一统计量(如均值)而言,它的取值( )。 A.是唯一的 B.随样本的变化而变化 C.由总体确定 D.由抽样的组织形式唯一确定 6.以样本均值x 估计正态总体的均值μ时,如果总体方差2σ已知,这时将会需要查阅( )。 A.正态分布表 B.标准正态分布表 C.t 分布表 D.2χ分布表 7.以样本均值x 估计正态总体的均值μ时,如果总体方差2σ未知,这时将会需要查阅( )。

贝塞尔函数及其应用

题目:贝塞尔函数及其应用

摘要 贝塞尔方程是在柱坐标或球坐标下使用分离变量法求解拉普拉斯方程时得到的,因此它在波动问题以及各种涉及有势场的问题的研究中占有非常重要的地位。贝塞尔函数是贝塞尔方程的解。它在物理和工程中,有着十分广泛的应用。 本文首先通过一个物理问题引入贝塞尔方程,并求出贝塞尔方程的解,即贝塞尔函数。其次列出了贝塞尔函数的几个重要的结论,如递推公式,零点性质等,并对他们进行了深入的分析。第二部分主要介绍了傅里叶-贝塞尔级数,通过matlab编程对函数按傅里叶-贝塞尔级数展开之后的图像进行分析,得到了它们的逼近情况。最后一部分介绍了贝塞尔函数的几个重要应用,一个是在物理光学中的应用,着重分析了贝塞尔函数近似公式的误差;一个是在信号处理中调频制的应用,得到了特殊情况下的公式算法。 关键词:贝塞尔函数,傅里叶-贝塞尔级数,渐近公式

目录 一、起源.......................................................................................................... 错误!未定义书签。 (一)贝塞尔函数的提出...................................................................... 错误!未定义书签。 (二) 贝塞尔方程的引出?错误!未定义书签。 二、贝塞尔函数的基本概念.......................................................................... 错误!未定义书签。 (一)贝塞尔函数的定义........................................................................ 错误!未定义书签。 1. 第一类贝塞尔函数....................................................................... 错误!未定义书签。 2. 第二类贝塞尔函数 (6) 3. 第三类贝塞尔函数?错误!未定义书签。 4. 虚宗量的贝塞尔函数................................................................... 错误!未定义书签。 (二)贝塞尔函数的递推公式?错误!未定义书签。 (三)半奇数阶贝塞尔函数?错误!未定义书签。 (四) 贝塞尔函数的零点?错误!未定义书签。 (五) 贝塞尔函数的振荡特性................................................................ 错误!未定义书签。 三、 Fourier-Bessel级数?错误!未定义书签。 (一) 傅里叶-贝塞尔级数的定义?错误!未定义书签。 (二) 将函数按傅里叶-贝塞尔级数展开?错误!未定义书签。 四、贝塞尔函数的应用?错误!未定义书签。 (一)贝塞尔函数在光学中的应用...................................................... 错误!未定义书签。 (二)贝塞尔函数在调频制中的应用.................................................... 错误!未定义书签。附录 ................................................................................................................... 错误!未定义书签。

(整理)参数估计方法.

第七章 参数估计 第一节 基本概念 1、概念网络图 {}???? ??? ?? ???????????????????→??????单正态总体的区间估计区间估计一致性有效性无偏性估计量的评选标准极大似然估计矩估计点估计从样本推断总体

2、重要公式和结论

例7.1:设总体),(~b a U X ,求对a, b 的矩估计量。 例7.2:设n x x x ,,,,21 是总体的一个样本,试证 (1);21 10351321x x x ++= ∧ μ (2);12541313212x x x ++=∧μ (3).12 143313213x x x -+=∧μ 都是总体均值u 的无偏估计,并比较有效性。 例7.3:设n x x x ,,,,21 是取自总体),(~2 σμN X 的样本,试证 ∑=--=n i i x x n S 1 22 )(11 是2 σ的相合估计量。

第二节 重点考核点 矩估计和极大似然估计;估计量的优劣;区间估计 第三节 常见题型 1、矩估计和极大似然估计 例7.4:设0),,0(~>θθU X ,求θ的最大似然估计量及矩估计量。 例7.5:设总体X 的密度函数为 ?????≥=--. , 0,1)(/)(其他μθ θμx e x f x 其中θ>0, θ,μ为未知参数,n X X X ,,,21 为取自X 的样本。试求θ,μ的极大似然估计量。 2、估计量的优劣 例7.6:设n 个随机变量n x x x ,,,21 独立同分布, ,)(11,1,)(1 22 12 1∑∑==--===n i i n i i x x n S x n x x D σ 则 (A )S 是σ的无偏估计量; (B )S 是σ的最大似然估计量; (C )S 是σ的相合估计量; (D )x S 与2 相互独立。 例7.7:设总体X 的密度函数为 ?????<<-=, , 0,0),(6)(3 其他θθθx x x x f n X X X ,,,21 是取自X 的简单随机样本。 (1) 求θ的矩估计量∧ θ;

数列递推公式的九种方法

求递推数列的通项公式的九种方法 利用递推数列求通项公式,在理论上和实践中均有较高的价值.自从二十世纪八十年代以来,这一直是全国高考和高中数学联赛的热点之一. 一、作差求和法 例1 在数列{}中,31 =a , ) 1(11++ =+n n a a n n ,求通项公式. 解:原递推式可化为:1 111 +- + =+n n a a n n 则, 2 11112 -+=a a 3 12123-+ =a a 4 13134-+ =a a ,……,n n a a n n 1111--+ =-逐项相加得:n a a n 111- +=. 故n a n 14- =. 二、作商求和法 例 2 设数列{}是首项为1的正项数列,且 0)1(12 2 1 =+-+++n n n n a a na a n (n=1,2,3…) ,则它的通项公式是=▁▁▁(2000年高考15题) 解:原递推式可化为: ) ]()1[(11n n n n a a na a n +-+++=0 ∵ n n a a ++1>0, 1 1+=+n n a a n n 则 ,4 3,32,21342312===a a a a a a ……,n n a a n n 11 -= - 逐项相乘得: n a a n 1 1=,即=n 1. 三、换元法 例3 已知数列{},其中9 13,3421 == a a ,且当n ≥3时, ) (3 1 211----=-n n n n a a a a ,求通项公式(1986年高考文科第八

题改编). 解:设1 1 ---=n n n a a b ,原递推式可化为: } {,3 1 21n n n b b b --=是一个等比数列,9 1 3491312 1 =-= -=a a b ,公比为3 1.故n n n n b b )3 1 ()31(91)31(2211 ==?=---.故n n n a a )3 1 (1=--.由逐差法可得: n n a )3 1(2123-= . 例4已知数列{},其中2,12 1 ==a a ,且当n ≥3时,122 1 =+---n n n a a a ,求通项公式。解 由122 1 =+---n n n a a a 得:1)()(2 1 1 =------n n n n a a a a ,令1 1 ---=n n n a a b ,则上式为12 1 =---n n b b ,因此是一个等差数列,1121=-=a a b ,公差为1.故n b n =.。 由于112312121-=-++-+-=+++--n n n n a a a a a a a b b b ΛΛ 又2 )1(12 1 -= +++-n n b b b n Λ 所以)1(2 1 1-= -n n a n ,即)2(2 12 +-= n n a n 四、积差相消法 例5设正数列,,…,,…满足2 -n n a a 2 1---n n a a = ) 2(≥n 且11 ==a a ,求的通项公式. 解 将递推式两边同除以2 1--n n a a 整理得:122 1 1=----n n n n a a a a 设= 1 -n n a a ,则0 11 a a b = =1,1 21=--n n b b ,故有 1 212=-b b ⑴122 3 =-b b ⑵ … … … …

第五章_贝塞尔函数

n阶第一类贝塞尔函数() J x n 第二类贝塞尔函数,或称Neumann函数() Y x n 第三类贝塞尔函数汉克尔(Hankel)函数,(1)() H x n 第一类变形的贝塞尔函数() I x n 开尔文函数(或称汤姆孙函数)n阶第一类开尔文(Kelvin)第五章贝塞尔函数 在第二章中,用分离变量法求解了一些定解问题。从§2.3可以看出,当我们采用极坐标系后,经过分离变量就会出现变系数的线性常微分方程。在那里,由于只考虑圆盘在稳恒状态下的温度分布,所

以得到了欧拉方程。如果不是考虑稳恒状态而是考虑瞬时状态,就会得到一种特殊类型的常微分方程。本章将通过在柱坐标系中对定解问题进行分离变量,引出在§2.6中曾经指出过的贝塞尔方程,并讨论这个方程解的一些性质。下面将看到,在一般情况下,贝塞尔方程的解不能用初等函数表出,从而就导入一类特殊函数,称为贝塞尔函数。贝塞尔函数具有一系列性质,在求解数学物理问题时主要是引用正交完备性。 §5.1 贝塞尔方程的引出 下面以圆盘的瞬时温度分布为例推导出贝塞尔方程。设有半径为R 的薄圆盘,其侧面绝缘,若圆盘边界上的温度恒保持为零摄氏度,且初始温度为已知,求圆盘内瞬时温度分布规律。 这个问题可以归结为求解下述定解问题: 2222 22222 22222 0(),,0, (5.1)(,),, (5.2)0, t x y R u u u a x y R t t x y u x y x y R u ?=+=???=++<>???=+≤= (5.3)?????? ??? 用分离变量法解这个问题,先令 (,,)(,)()u x y t V x y T t = 代入方程(5.1)得 222 22()V V VT a T x y ??'=+?? 或

数列的递推公式练习

课时作业5 数列的递推公式(选学) 时间:45分钟 满分:100分 课堂训练 1.在数列{a n }中,a 1=1 3,a n =(-1)n ·2a n -1(n ≥2),则a 5=( ) A .-16 3 C .-83 【答案】 B 【解析】 由a n =(-1)n ·2a n -1知a 2=23,a 3=-2a 2=-4 3,a 4=2a 3 =-83,a 5=-2a 4=163. 2.某数列第一项为1,并且对所有n ≥2,n ∈N ,数列的前n 项之积为n 2,则这个数列的通项公式是( ) A .a n =2n -1 B .a n =n 2 C .a n =n 2 n -12 D .a n =n +12 n 2 【答案】 C 【解析】 ∵a 1·a 2·a 3·…·a n =n 2,a 1·a 2·a 3·…·a n -1=(n -1)2,∴两式相除,得a n =n 2 n -12 . 3.已知数列{a n }满足:a 4n -3=1,a 4n -1=0,a 2n =a n ,n ∈N +,则a 2 009=________,a 2 014=________. 【答案】 1 0 【解析】 考查数列的通项公式.

∵2 009=4×503-3,∴a 2 009=1, ∵2 014=2×1 007,∴a 2 014=a 1 007, 又1 007=4×252-1,∴a 1 007=a 4×252-1=0. 4.已知数列{a n },a 1=0,a n +1=1+a n 3-a n ,写出数列的前4项,并归 纳出该数列的通项公式. 【解析】 a 1=0,a 2=1+a 13-a 1=13,a 3=1+a 23-a 2=1+13 3-13=1 2,a 4=1+a 33-a 3 =1+12 3-12 =3 5. 直接观察可以发现,把a 3=12写成a 3=2 4, 这样可知a n =n -1 n +1(n ≥2,n ∈N +). 当n =1时,1-1 1+1=0=a 1, 所以a n =n -1 n +1 (n ∈N +). 课后作业 一、选择题(每小题5分,共40分) 1.已知数列{a n }满足:a 1=-14,a n =1-1 a n -1(n ≥2),则a 4=( ) C .-14 【答案】 C

Bessel函数应用例

《复变函数与数理方程》Project 名称:Bessel函数应用例 组别:第十三组 小组成员:唐文岐、高成振、 林慧平、邹三泳、 郭凯

目录 封面 (1) 目录 (2) 文章说明 (3) 摘要 (3) 关键词 (3) 正文 (4) Section 1Bessel函数在衍射中的应用 (4) 一,菲涅尔-基尔霍夫衍射积分公式 (4) 二,衍射的分类 (5) 三,夫琅禾费圆孔衍射数学模型的建立 (6) 四,夫琅禾费圆孔衍射光强公式的推导 (6) 五,夫琅禾费圆孔衍射常见结论的推导 (8) 六,夫琅禾费圆孔衍射光强公式的另一种推导 (11) Section 2 Bessel函数在通信电路中的应用 (14) 一,单音信号的调频 (15) 二,贝塞尔函数的渐进公式 (16) 三,贝塞尔函数图像与调制频率的关系 (17) 四,卡森公式的推导 (20) 五,贝塞尔函数级数展开的理论说明 (21) 总结 (22) 参考文献 (23)

文章说明: 本学期我们在数理方程的课堂上学习了贝塞尔函数的相关内容,贝塞尔函数性质很特殊,它在物理和工程中的广泛应用更是引起我们强烈的兴趣。而学以致用,这是我们学习应用数学的目的之一。联想到在之前的课程中曾经遇到过Bessel函数,但是老师只是直接给出结论,并没有说明原因。因此,我们小组主要从《大学物理》课程中遇到的夫琅禾费圆孔衍射和《电子电路与系统基础》课程中遇到的单音信号调频两个例子对Bessel函数的应用进行讨论,希望能对Bessel 函数的魅力有更深一些的理解。 摘要: 物理学中我们熟知的夫琅禾费圆孔衍射的振幅和电路系统中单音信号调频的幅度都可以用Bessel函数来表示。因此,利用Bessel 函数对夫琅禾费圆孔衍射的振幅和单音信号调频的幅度的表达式进行推导很有必要,同时也可以根据推导得到的公式进行理论的分析和现有结果的解释。另外,根据得到的函数表达式,还可以利用数学软件进行模拟,以期得到更直观的结果,也可以加深对于Bessel函数以及夫琅禾费圆孔衍射、单音信号调频的理解。 关键词: Bessel函数,夫琅禾费圆孔衍射,振幅,光强,调频,频率,幅度,调制指数

非线性模型参数估计方法步骤

EViews非线性模型参数估计方法步骤 1.新建EViews工作区,并将时间序列X、P1和P0导入到工作区; 2.设定参数的初始值全部为1,其方法是在工作区中其输入下列命令 并按回车键 param c(1) 1 c(2) 1 c(3) 1 c(4) 1 3.估计非线性模型参数,其方法是在工作区中其输入下列命令并按 回车键 nls q=exp(c(1))*x^c(2)*p1^c(3)*p0^c(4) 4.得到结果见table01(91页表3. 5.4结果)(案例一结束) Dependent Variable: Q Method: Least Squares Date: 03/29/15 Time: 21:44 Sample: 1985 2006 Included observations: 22 Convergence achieved after 9 iterations Q=EXP(C(1))*X^C(2)*P1^C(3)*P0^C(4) Coefficient Std. Error t-Statistic Prob. C(1) 5.567708 0.083537 66.64931 0.0000 C(2) 0.555715 0.029067 19.11874 0.0000 C(3) -0.190154 0.143823 -1.322146 0.2027 C(4) -0.394861 0.159291 -2.478866 0.0233 R-squared 0.983631 Mean dependent var 1830.000 Adjusted R-squared 0.980903 S.D. dependent var 365.1392 S.E. of regression 50.45954 Akaike info criterion 10.84319 Sum squared resid 45830.98 Schwarz criterion 11.04156 Log likelihood -115.2751 Hannan-Quinn criter. 10.88992 Durbin-Watson stat 0.672163 (92页表3.5.5结果)(案例二过程) 5.新建EViews工作区,并将时间序列X、P1和P0导入到工作区;

备战2020数学高考三大类递推数列通项公式的求法

三大类递推数列通项公式的求法 湖北省竹溪县第一高级中学徐鸿 一、一阶线性递推数列求通项问题 一阶线性递推数列主要有如下几种形式: 1. 这类递推数列可通过累加法而求得其通项公式(数列{f(n)}可求前n项和). 当为常数时,通过累加法可求得等差数列的通项公式.而当为等差数列时, 则为二阶等差数列,其通项公式应当为形式,注意与等差数列求和公式一般形式的区别,后者是,其常数项一定为0. 2. 这类递推数列可通过累乘法而求得其通项公式(数列{g(n)}可求前n项积). 当为常数时,用累乘法可求得等比数列的通项公式. 3.; 这类数列通常可转化为,或消去常数转化为二阶递推式 . 例1已知数列中,,求的通项公式. 解析:解法一:转化为型递推数列. ∵∴又,故数列{}是首项为2,公比为2的等比数列.∴,即. 解法二:转化为型递推数列. ∵=2x n-1+1(n≥2) ①∴=2x n+1 ② ②-①,得(n≥2),故{}是首项为x 2-x 1 =2, 公比为2的等比数列,即,再用累加法得.解法三:用迭代法. 当然,此题也可用归纳猜想法求之,但要用数学归纳法证明.

例2已知函数的反函数为 求数列的通项公式. 解析:由已知得,则. 令=,则.比较系数,得. 即有.∴数列{}是以为首项,为 公比的等比数列,∴,故. 评析:此题亦可采用归纳猜想得出通项公式,而后用数学归纳法证明之. (4) 若取倒数,得,令,从而转化为(1)型而求之. (5); 这类数列可变换成,令,则转化为(1)型一阶线性递推公式. 例3设数列求数列的通项公式.解析:∵,两边同除以,得.令,则有.于是,得,∴数列是以首项为,公比为的等比数列,故,即,从而.例4设求数列的通项公式. 解析:设用代入,可解出.

数列的几种递推公式

数列的几种递推公式 一、 )(1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。 例1:已知数列{}n a 满足211=a ,n n a a n n ++=+211,求n a 。 二、 n n a n f a )(1=+ 解法:把原递推公式转化为)(1 n f a a n n =+,利用累乘法(逐商相乘法)求解。 例2:已知数列{}n a 满足321=a ,n n a n n a 1 1+= +,求n a 。

例3:已知31=a ,n n a n n a 2 31 31+-=+ )1(≥n ,求n a 。 解:1231 32231232)2(31)2(32)1(31)1(3a n n n n a n +-?+?-??????+---?+---= 3437 52633134 8531n n n n n --= ????=---。 变式:已知数列{a n },满足a 1=1,1321)1(32--+???+++=n n a n a a a a (n ≥2),则 {a n }的通项1 ___n a ?=?? 12n n =≥ 解:由已知,得n n n na a n a a a a +-+???+++=-+13211)1(32, 用此式减去已知式,得 当2≥n 时,n n n na a a =-+1,即n n a n a )1(1+=+, 又112==a a , n a a a a a a a a a n n =???====∴-1 3423121,,4,3,1, 1, 将以上n 个式子相乘,得2 ! n a n =)2(≥n 三、 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。 解法(待定系数法):把原递推公式转化为:)(1t a p t a n n -=-+,其中p q t -=1,再利用换元法转化为等比数列求解。

相关主题
文本预览
相关文档 最新文档