当前位置:文档之家› ERDAS监督分类(完美)

ERDAS监督分类(完美)

ERDAS监督分类(完美)
ERDAS监督分类(完美)

ERDAS监督分类(完美)

监督分类(Supervised Classification)

监督分类比非监督分类更多地要用户来控制,常用于对研究区域比较了解的情况。

在监督分类过程中,首先选择可以识别或者借助于其他信息可以断定其类型的像元建立模板,然后基于该模板使计算机系统自动识别具有相同特性的像元。对分类结果进行评价后再对模板进行修改,多次反复后建立一个比较准确的模板,并在此基础上最终进行分类。

监督分类一般要经过以下几个步骤:建立模板(训练样本)、评价模板、确定初步分类结果、检验分类结果、分类后处理、分类特征统计、栅格矢量转换。

1.建立模板(训练样本、定义分类模板

Define Signatures)

ERDAS IMAGINE的监督分类是基于

2

分类模板(Classification Signature)来进行的,而分类模板的生成、管理、评价和编辑等功能是由分类模板编辑器(Signature Editor)来负责的。

在分类模板编辑器中生成分类模板的基础是原图像和(或)其特征空间图像。

第一步:显示需要分类的图像

aaa.img

在视窗Viewer中显示图像

①ERDAS图标面板菜单条:Main →Image Classification →Classification菜单→Signature Editor菜单项→Signature Editor对话框

3

4

②ERDAS 图标面板工具条:点击

Classifier 图标→ Classification 菜单→ Signature Editor 菜单项→ Signature Editor 对话框

从上图中可以看到分类模板编辑器由菜单条、工具条和分类模板属性表(CellArray )三大部分组成。

第三步:调整分类属性字段

Signature Editor 对话框中的分类属性表中有很多字段,

分类名称(将带入分

类图像)

分类颜色(将带入分

类图像)

分类代码(只能用正整数)

分类过程中的判断顺序

分类样区中的像元个数

分类可能性权重(用于分类判断)

不同字段对于建立分类模板的作用或意义是不同的,为了突出作用比较大的字段,需要进行必要的调整。

5

Signature Editor对话框菜单条:View→Columns→View Signature Columns 对话框→点击第一个字段的Columns列并向下拖鼠标直到最后一个字段,此时,所有字段都被选上了,并用黄色标识出来。→按住Shift键的同时分别点击Red、Green、Blue 三个字段前的数字码,目的是将这三个字段从选择集中清除掉→点击Apply按钮,分类属性表中显示的字段发生变化→点击Close 按钮,关闭View Signature Columns对话框。

第四步:获取分类模板信息

可以分别应用AOI绘图工具、AOI 扩展工具、查询光标等三种方法,在原始图像或特征空间图像中获取分类模板信息。下

6

面主要介绍应用AOI绘图工具在原始图像中获取分类模板信息。

在显示aaa.img图像的视窗的菜单条上点击AOI,在其下拉菜单上点击Tools,由此打开感兴趣区域工具条(即AOI→Tools→打开AOI工具面板)

下面的操作将在AOI

工具面板、图像视窗、

Signature Editor对话框三者之

间交替进行。

→在AOI工具面板上点击

图标,进入多边形AOI绘制状态。

→在图像视窗中选择深红色区域(林地),绘制一个多边形AOI,双击结束→在Signature Editor对话框中,点击Create New Signature 图标,将多边形AOI区域加载到Signature Editor分类模板属性表中→在图像视窗中选择另一个深红色区域,再绘制

7

一个多边形AOI→同样在Signature Editor 对话框中,点击Create New Signature 图标,将多边形AOI区域加载到Signature Editor分类模板属性表中

→重复上述两步操作过程,选择图像中你认为属性相同的多个深红色区域绘制若干多边形AOI,并将其作为模板依次加入到Signature Editor分类模板属性表中

→按下Shift键,同时在Signature Editor 分类模板属性表中依次点击选择Class#字段下面的分类编号,将上面加入的多个深红色区域AOI模板全部选定

→在Signature Editor工具条上点击Merge Signature 图标(合并所选择的一组分类模板),将多个深红色区域AOI模板合并,生成一个综合的新模板,其中包含了合并前的所有模板像元属性。

8

9

→在Signature Editor 菜单条,点击Edit →Delete ,删除合并前的多个模板。

→在Signature Editor 属性表中,改变合并生成的分类模板的属性:包括分类名称Signature Name 与颜色

Color

→重复上述所有操作过程,根据实地调查结果和已有研究成果,在图像视窗选择绘制多个黑色区域AOI (河湖水体),依次加载到Signature Editor 分类模板属性表中,并

执行合并生成综合的河湖水体分类模板,然后确定分类模板名称和颜色。

同样重复上述所有操作过程,绘制多个青色区域AOI(长江水)、多个高亮区域AOI (新城镇建设用地)、老城区建设用地、农田等……,加载、合并、命名,建立新的模板。

注意:各类别的名称确定后,可以更改其类别代码(Value),用简单的1、2、3……来标识。

10

→如果已对所有的类型都建立了分类模板,则进入第五步,保存分类模板。

第五步:保存分类模板

现在将分类模板保存起来,以便随后依据分类模板进行监督分类。

→Signature Editor对话框菜单条→File→Save→打开Save Signature File As 对话框→确定是保存所有模板(All)或只保存被选中的模板(Selected)→确定保存分类模板文件的目录和文件名(*.sig)如aaa.sig→OK

2.评价模板(评价分类模板Evaluate

Signatures)

在对遥感影像做全面分类之前,我们对所选的训练区样本是否典型以及由训练区

11

样本所建立起来的判别函数是否有效等问题并无足够的把握。因此,通常在全面分类之前,先仅用训练区中的样本数据进行试分类,即分类模板的评价。这里我们以可能性矩阵评价工具来做说明。它主要是分析AOI 训练区的像元是否完全落在相应的类别中。

可能性矩阵的输出结果是一个百分比矩阵,它说明每个AOI训练区中有多少个像元分别属于相应的类别。

在Signature Editor对话框:

→在Signature Editor分类模板属性表中选择所有类别

→Evaluation→Contingency→打开Contingency Matrix对话框

→选择非参数规则(Non-Parametric Rule):Feature Space

→选择叠加规则(Overlay Rule):Parametric Rule

→选择未分类规则(Unclassified

12

Rule):Parametric Rule

→选择参数规则(Parametric Rule):Maximum Likelihood(最大似然法)→选择像元总数或者像元百分数作为评价输出统计:Pixel Counts;Pixel Percentages

→OK(关闭Contingency Matrix对话框,计算分类误差矩阵)

→打开IMAGINE文本编辑器(Text Editor),显示分类误差矩阵

13

从分类误差总体的百分比来说,如果误差矩阵值小于85%,则分类模板的精度太低,需要重新建立。

3.确定初步分类结果(执行监督分类

Perform Supervised Classification)

监督分类实质就是依据所建立的分类模板、在一定的分类决策规则条件下,对图像像元进行聚类判断的过程。用于分类决策的规则即各种分类判别函数。选择判别函数及其相应的准则后,就可执行计算机自动分类了。

①ERDAS图标面板菜单条:Main

14

→Image Classification →Classification菜单→Supervised Classification菜单项→Supervised Classification对话框

或者②ERDAS图标面板工具条:点击Classifier图标→ Classification菜单→

在Supervised Classification对话框中,需要确定下列参数

→确定输入原始文件(Input Raster File):aaa.img

→定义输出分类文件(Classified File):suclassaaa.img

→确定分类模板文件(Input Signature File):aaa.sig

→选择输出分类距离文件:Distance File(用于分类结果进行阈值处理)

15

→定义分类距离文件(Filename):

→选择非参数规则(Non-Parametric Rule):Feature Space(特征空间)

→选择叠加规则(Overlay Rule):Parametric Rule(参数规则)

→选择未分类规则(Unclassified Rule):Parametric Rule

→选择参数规则(Parametric Rule):Maximum Likelihood(最大似然法)

→不选择Classify zeros(分类过程中是否包括0值)

→OK(关闭Supervised Classification对话框,执行监督分类)

注意分类方法的选择:在监督分类过程中,用于分类决策的规则是多类型、多层次的,如对非参数分类模板有特征空间、平行六面体(Parallelepiped)等方法,对参数分类模板有最大似然法Maximum Likelihood、马氏距离法Mahalanobis,最小距离法

16

Minimum Distance等方法。当然,非参数规则与参数规则可以同时使用,但要注意应用范围,非参数规则只能应用于非参数型模板,而对于参数型模板,要使用参数型规则。

4.检验分类结果(评价分类结果

Evaluate Classification)

17

进行分类评价是对分类结果的验证。ERDAS系统提供了多种分类评价方法,包括分类叠加、定义阈值、分类重编码、精度评估等。

分类精度评估(Accuracy Assessment)是将专题分类图像中的特定像元与已知实际类别的参考像元进行比较,实际工作中常常是将分类数据与地面真值、先前的实验地图、航空像片或其它数据进行对比。

此次实验,由于缺乏aaa.img影像成像时的实际资料或地面真值等信息,故以目视判读分类前的原始图像的方式来获取实际类别信息。

在做分类精度评估前,一定要搞清楚分类方案,类别名称及其类别代码等。可以分类模板编辑器中打开先前保存的分类模板aaa.sig。

18

第一步:打开分类前原始图像

在Viewer中打开分类前的原始图像aaa.img,以便进行精度评估。

第二步:打开精度评估对话框

在ERDAS图标面板工具条上点击Classifier图标→ Classification菜单

→选择Accuracy Assessment菜单项

→打开Accuracy Assessment对话框

如图所示,Accuracy Assessment对话框由菜单条、工具条、精度评估矩阵(Accuracy Assessment Cellarray)三部分组成。其中,精度评估矩阵中将包含分类图像若干像元

19

的几个参数和对应的参考像元的分类值,该矩阵值可以使用户对分类图像中的特定像元与作为参考的已知分类的像元进行比较,参考像元的分类值是用户自己输入的,矩阵数据保存在分类图像文件中。

第三步:打开分类专题图像

在Accuracy Assessment对话框菜单条上选择File→Open

→打开Classified Image对话框

→在Classified Image对话框中确定与视窗中对应的分类专题图像,如suclassaaa.img →OK(关闭Classified Image对话框)→返回Accuracy Assessment对话框

第四步:连接原始图像与精度评估视窗

在Accuracy Assessment对话框工具条上点击Select Viewer 图标

或在Accuracy Assessment对话框菜单条上选择View→Select Viewer

→将光标移到显示原始图像aaa.img的

20

遥感图像几种分类方法的比较

摘要 遥感图像分类一直是遥感研究领域的重要内容,如何解决多类别的图像的分类识别并满足一定的精度,是遥感图像研究中的一个关键问题,具有十分重要的意义。 遥感图像的计算机分类是通过计算机对遥感图像像素进行数值处理,达到自动分类识别地物的目的。遥感图像分类主要有两类分类方法:一种是非监督分类方法,另一种是监督分类方法。非监督分类方法是一个聚类过程,而监督分类则是一个学习和训练的过程,需要一定的先验知识。非监督分类由十不能确定类别属性,因此直接利用的价值很小,研究应用也越来越少。而且监督分类随着新技术新方法的不断发展,分类方法也是层出不穷。从传统的基十贝叶斯的最大似然分类方法到现在普遍研究使用的决策树分类和人工神经网络分类方法,虽然这些方法很大程度改善了分类效果,提高了分类精度,增加了遥感的应用能力。但是不同的方法有其不同优缺点,分类效果也受很多因素的影响。 本文在对国内外遥感图像分类方法研究的进展进行充分分析的基础上,应用最大似然分类法、决策树分类法对TM影像遥感图像进行了分类处理。在对分类实现中,首先对分类过程中必不可少的并影响分类效果的步骤也进行了详细地研究,分别是分类样本和分类特征;然后详细介绍两种方法的分类实验;最后分别分析分类结果图,采用混淆矩阵和kappa系数对两种方法的分类结果进行精度评价。 关键词:TM遥感影像,图像分类,最大似然法,决策树 题目:遥感图像几种分类方法的比较...................................... 错误!未定义书签。摘要.. (1) 第一章绪论 (3)

1.1遥感图像分类的实际应用及其意义 (4) 1.2我国遥感图像分类技术现状 (5) 1.3遥感图像应用于测量中的优势及存在的问题 (6) 1.3.1遥感影像在信息更新方面的优越性 (6) 1.3.2遥感影像在提取信息精度方面存在的问题 (6) 1.4研究内容及研究方法 (8) 1.4.1研究内容 (8) 1.4.2 研究方法 (8) 1.5 论文结构 (9) 第二章遥感图像的分类 (9) 2.1 监督分类 (9) 2.1.1 监督分类的步骤 (9) 2.1.2 最大似然法 (11) 2.1.3 平行多面体分类方法 (12) 2.1.4 最小距离分类方法 (13) 2.1.5监督分类的特点 (13) 2.2 非监督分类 (14) 2.2.1 K-means算法 (14) K-均值分类法也称为 (14) 2.2.2 ISODATA分类方法 (15) 2.2.3非监督分类的特点 (17) 2.4遥感图像分类新方法 (17) 2.4.1基于决策树的分类方法 (17) 2.4.2 人工神经网络方法 (19) 2.4.3 支撑向量机 (20) 2.4.4 专家系统知识 (21) 2.5 精度评估 (22) 第三章研究区典型地物类型样本的确定 (24) 3.1 样本确定的原则和方法 (24) 3.2 研究区地物类型的确定 (24) 3.3样本区提取方案 (25) 3.4 各个地物类型的样本的选取方法 (25) 3.4.1 建立目视解译标志 (25) 3.4.2 地面实地调查采集 (26) 3.4.3 利用ENVI遥感图像处理软件选取样本点 (26) 第四章遥感图像分类实验研究 (26) 4.1遥感影像适用性的判定 (26) 4.2分类前的预处理 (28) 4.2.1空间滤波的处理 (28) 4.2.2 频域滤波处理 (28) 4.3利用ENVI软件对影像按照不同的分类方法进行监督分类 (30) 4.3.1监督分类 (30) 4.3.2 决策树 (33) 4.4分类后的处理 (35)

Erdas非监督分类全过程

Erdas基础教程: 非监督分类 来源:师大学旅游与环境学院 1.图像分类简介(Introduction to classification) 图像分类就是基于图像像元的数据文件值,将像元归并成有限几种类型、等级或数据集的过程。常规图像分类主要有两种方法:非监督分类与监督分类,专家分类方法是近年来发展起来的新兴遥感图像分类方法,下面介绍这三种分类方法。 非监督分类运用1SODATA(Iterative Self-Organizing Data Analysis Technique )算法,完全按照像元的光谱特性进行统计分类,常常用于对分类区没有什么了解的情况。使用该方法时。原始图像的所有波段都参于分类运算,分类结果往往是各类像元数大体等比例。由于人为干预较少,非监督分类过程的自动化程度较高。非监督分类一般要经过以下几个步骤:初始分类、专题判别、分类合并、色彩确定、分类后处理、色彩重定义、栅格矢量转换、统计分析。 监督分类比非监督分类更多地要求用户来控制,常用于对研究区域比较了解的情况。在监督分类过程中,首先选择可以识别或者借助其它信息可以断定其类型的像元建立模板,然后基于该模板使计算机系统自动识别具有相同特性的像元。对分类结果进行评价后再对模板进行修改,多次反复后建立一个比较准确的模板,并在此基础上最终进行分类。监督分类一般要经过以下几个步骤:建立模板(训练样本)、评价模板、确定初步分类图、检验分类结果、分类后处理、分类特征统计、栅格矢量转换。 专家分类首先需要建立知识库,根据分类目标提出假设,井依据所拥有的数据资料定义支持假设的规则、条件和变量,然后应用知识库自动进行分类,ERDAS IMAG1NE图像处理系统率先推出专家分类器模块,包括知识工程师和知识分类器两部分,分别应用于不同的情况。 由于基本的非监督分类属于IMAGINE Essentia1s级产品功能、但在1MAGINE Professional级产品中有一定的功能扩展,而监督分类和专家分类只属于IMAGINE ProfeSsiona1级产品,所以,非监督分类命令分别出现在Data Preparation菜单和classification菜单中,而监督分类和专家分类命令仅出现在Classification菜单中。 2 非监督分类(Unsupervised Classification) ERDAS IMAGINE使用ISODATA算法(基于最小光谱距离公式)来进行非监督分类。聚类过程始于任意聚类平均值或一个己有分类模板的平均值:聚类每重复一次,聚类的平均值就更新一次,新聚类的均值再用于下次聚类循环。 ISODATA实用程序不断重复,直到最大的循环次数已达到设定阈值或者两次聚类结果相比有达到要求百分比的像元类别已经不再发生变化。 2.1分类过程(classification ProcedUre ) 第一步:调出非监督分类对话框 调出非监督分类对话框的方法有以下两种: 方法一:在ERDAS图标面板工具条中,点击Dataprep图标 → Data Preparation →unsupervised Classification →Unsupervised Classification对话框如下:

遥感图像分类

实验四遥感图像分类 一、背景知识 图像分类就是基于图像像元的数据文件值,将像元归并成有限几种类型、等级或数据集的过程。常规计算机图像分类主要有两种方法:非监督分类与监督分类,本实验将依次介绍这两种分类方法。 非监督分类运用ISODATA(Iterative Self-Organizing Data Analysis Technique)算法,完全按照像元的光谱特性进行统计分类,常常用于对分类区没有什么了解的情况。使用该方法时,原始图像的所有波段都参于分类运算,分类结果往往是各类像元数大体等比例。由于人为干预较少,非监督分类过程的自动化程度较高。非监督分类一般要经过以下几个步骤:初始分类、专题判别、分类合并、色彩确定、分类后处理、色彩重定义、栅格矢量转换、统计分析。 监督分类比非监督分类更多地要用户来控制,常用于对研究区域比较了解的情况。在监督分类过程中,首先选择可以识别或者借助其它信息可以断定其类型的像元建立模板,然后基于该模板使计算机系统自动识别具有相同特性的像元。对分类结果进行评价后再对模板进行修改,多次反复后建立一个比较准确的模板,并在此基础上最终进行分类。监督分类一般要经过以下几个步骤:建立模板(训练样本)分类特征统计、栅格矢量转换、评价模板、确定初步分类图、检验分类结果、分类后处理。由于基本的非监督分类属于IMAGINE Essentials级产品功能,但在IMAGINE Professional级产品中有一定的功能扩展,非监督分类命令分别出现在Data Preparation菜单和Classification菜单中,而监督分类命令仅出现在Classification菜单中。 二、实验目的 理解并掌握图像分类的原理,学会图像分类的常用方法:人工分类(目视解译)、计算机分类(监督分类、非监督分类)。能够针对不同情况,区别使用监督分类、非监督分类。理解计算机分类的常用算法实现过程。熟练掌握遥感图像分类精度评价方法、评价指标、评价原理,并能对分类结果进行后期处理。 三、实验内容(6课时) 1.非监督分类(Unsupervised Classification); 2.监督分类(Supervised Classification); 3.分类精度评价(evaluate classification); 4.分类后处理(Post-Classification Process); 四、实验准备 实验数据: 非监督分类文件:germtm.img 监督分类文件:tm_860516.img 监督模板文件:tm_860516.sig 五、实验步骤、方法 1、非监督分类(Unsupervised Classification)

ERDAS遥感图像处理教程 绝对给力

《遥感数字图象处理实验指导书》 实习须知 实验室资源: 1 硬件设备: 局域网系统; 高级PC 计算机(每人一台,在规定时间使用); 2 软件系统 Windows 2000 或Windows XP ERDAS IMAGINE 8.6 ArcToolbox ArcMap Microsoft Word Microsoft Excel Zip program 3 数据资源 数据源: ERDAS IMAGINE 8.6软件附带的examples; XX地区TM、ETM、Spot遥感数据 区部分矿山企业基础数据XX. 实习目的与内容 1 实习目的 本实习为已具有RS的基本概念和理论基础的学生设计,目的是帮助学生在了解RS基本组成与数据结构模型的基础上,重点学习使用ERDAS IMAGINE8.6软件进行视窗操作、数据数据预处理、图像解译、图像分类和矢量功能;了解地图投影系统的使用;学习多种数据输入的方法,不同数据格式转换,数据库模式的定义等多种前后期处理工作;掌握遥感图像前后处理和解译、分类地理的技术流程和方法,数据库建设以及地理数据的编辑和管理;配合具体实例运用GIS空间分析工具。通过系列实习过程,重点培养学习者掌握RS提取信息的基本过程和技巧,并可初步用来解决运用遥感提取信息的问题。 2 实习内容 实习1:ERDAS IMAGINE 8.6系统简介与入门;包括:软件概述,视窗操作中的菜单工具条的介绍,数据的输入输出。 实习2:数据预处理;包括:图像分幅剪裁,图像几何校正,图像拼接处理,图像投影变换;实习3:图像解译;包括功能简介,辐射增强处理(去霾处理)、常用的光谱增强处理(假彩色合成与指数计算)、空间增强处理(分辨率融合)。

试述遥感图像分类的方法,并简单分析各种分类方法的优缺点。

遥感原理与应用 1.试述遥感图像分类的方法,并简单分析各种分类方法的优缺点。答:监督分类:1、最大似然法;2、平行多面体分类法:这种方法比较简单,计算速度比较快。主要问题 是按照各个波段的均值为标准差划分的平行多面体与实际地物类别数据点分布的点群形态不一致,也就造成俩类的互相重叠,混淆不清的情况;3、最小距离分类法:原理简单,分类精度不高,但计算速度快,它可以在快速浏览分类概况中使用。通常使用马氏距离、欧氏距离、计程距离这三种判别函数。主要优点:可充分利用分类地区的先验知识,预先确定分类的类别;可控制训练样本的选择,并可通过反复检验训练样本,以提高分类精度(避免分类中的严重错误);可避免非监督分类中对光谱集群组的重新归类。主要缺点:人为主观因素较强;训练样本的选取和评估需花费较多的人力、时间;只能识别训练样本中所定义的类别,对于因训练者不知或因数量太少未被定义的类别,监督分类不能识别,从而影响分结果(对土地覆盖类型复杂的地区需特别注意)。 非监督分类:1、ISODATA; 2、K-Mean:这种方法的结果受到所选聚类中心的数目和其初始位置以及模式分布的几何性质和读入次序等因素的影响,并且在迭代的过程中又没有调整类别数的措施,因此不同的初始分类可能会得到不同的分类结果,这种分类方法的缺点。可以通过其它的简单的聚类中心试探方法来找出初始中心,提高分类结果;主要优点:无需对分类区域有广泛地了解,仅需一定的知识来解释分类出的集群组;人为误差的机会减少,需输入的初始参数较少(往往仅需给出所要分出的集群数量、计算迭代次数、分类误差的阈值等);可以形成范围很小但具有独特光谱特征的集群,所分的类别比监督分类的类别更均质;独特的、覆盖量小的类别均能够被识别。主要缺点:对其结果需进行大量分析及后处理,才能得到可靠分类结果;分类出的集群与地类间,或对应、或不对应,加上普遍存在的“同物异谱”及“异物同谱”现象,使集群组与类别的匹配难度大;因各类别光谱特征随时间、地形等变化,则不同图像间的光谱集群组无法保持其连续性,难以对比。

实验六:遥感图像监督分类与非监督分类

成都信息工程学院 遥感图像处理实验报告 实验6:遥感图像监督分类与非监督分类 专业:遥感科学与技术 班级: 092班 姓名:李翔 学号:2009043063 实验名称:遥感图像监督分类与非监督分类 实验教室: 5404教室 指导老师:刘志红 实验日期:2011年4月6日和4月13日

遥感数字图像处理实验报告 一、项目名称 遥感图像监督分类与非监督分类 二、实验目的 学会使用ERDAS IMAGINE软件对遥感图像进行非监督分类、监督分类、分类后处理、决策树分类,加深对图像分类过程和原理的理解,为图像解译打下基础。 三、实验原理 同类地物在相同的条件下应该具有相同或相似的光谱信息和空间信息特征。反之,不同类的地物之间具有这些差异。根据这些差异,将图像中的所有像素按其性质分为若干类别的过程,称为图像的分类。 根据是否需要分类人员事先提供已知类别及其训练样本,对分类器进行训练和监督,可将遥感图像分类方法划分为监督分类和非监督分类。 分类后处理包括聚类统计、过滤分析、去除分析和分类重编码等操作。 聚类统计是通过计算分类专题图像每个分类图斑面积、记录相邻区域中最大图斑面积的分类操作。 四、数据来源 1.下载网站:https://www.doczj.com/doc/4a15972643.html,/admin/dataLandsatMain.jsp 2.波段数为6个。 3.分辨率为28.50,米。 4.投影为UTM, Zone48。 五、实验过程 一、非监督分类 1.在ERDAS IMAGINE依次点击如下图标,打开对话框, 2. 设定好输出数据,设置聚类选项,确定初始聚类方法和分类数。设置预处理选项,确定循环次数和阈值。如图所示:

遥感影像的分类处理

摘要 在面向对象的影像分类方法中,首先需要将遥感影像分割成有意义的影像对象集合,进而在影像对象的基础上进行特征提取和分类。本文针对面向对象影像分类思想的关键环节展开讨论和研究,(1) 采用基于改进分水岭变换的多尺度分割算法对高分辨率遥感影像进行分割。构建了基于高斯尺度金字塔的多尺度视觉单词,并且通过实验证明其表达能力优于经典的词包表示。最后,在词包表示的基础上,利用概率潜在语义分析方法对同义词和多义词较强的鉴别能力对影像对象进行分析,找出其最可能属于的主题或类别,进而完成影像的分类。 近些年来,随着航空航天平台与传感器技术的高速发展,获取的遥感影像的分辨率越来越高。高分辨率遥感影像在各行业部门的应用也越来越广泛,除了传统的国土资源、地质调查和测绘测量等部门,还涉及到城市规划、交通旅游和环境生态等领域,极大地拓展了遥感影像的应用范围。因此,对高分辨率遥感影像的处理分析成为备受关注的领域之一。高分辨率遥感影像包括以下三种形式:高空间分辨率(获取影像的空间分辨率从以前的几十米提高到1 至5 米,甚至更高);高光谱分辨率(电磁波谱被不断细分,获取遥感数据的波段数从几十个到数百个);高时间分辨率(遥感卫星的回访周期不断缩短,在部分区域甚至可以连续观测)。本文所要研究的高分辨率遥感影像均是指“高空间分辨率”影像。 相对于中低分辨率的遥感数据,高空间分辨率遥感影像具有更加丰富的空间结构、几何纹理及拓扑关系等信息,对认知地物目标的属性特征更加方便,如光谱、形状、纹理、结构和层次等。另外,高分辨率遥感影像有效减弱了混合像元的影响,并且能够在较小的空间尺度下反映地物特征的细节变化,为实现更高精度的地物识别和分类提供了可能。 然而,传统的遥感影像分析方法主要基于“像元”进行,它处于图像工程中的“图像处理”阶段(见图1-1),已然不能满足当今遥感数据发展的需求。基于“像元”的高分辨率遥感影像分类更多地依赖光谱特征,而忽视影像的纹理、形状、上下文和结构等重要的空间特征,因此,分类结果会产生很严重的“椒盐(salt and pepper)现象”,从而影响到分类的精度。虽然国内外的很多研究人员针对以上缺陷提出了很多新的方法,如支持向量机(Support Vector Machine,SVM) 、纹理聚类、分层聚类(Hierarchical Clustering) 、神经网络(Neural Network, NN)等,但仅依靠光谱特征的基于像元的方法很难取得更好的分类结果。基于“像元”的传统分类方法还有着另一个局限:无法很好的描述和应用地物目标的尺度特征,而多尺度特征正是遥感信息的基本属性之一。由于在不同的空间尺度上,同样的地表空间格局与过程会表现出明显的差异,因此,在单一尺度下对遥感影像进行分析和识别是不全面的。为了得到更好的分类结果,需要充分考虑多尺度特征。 针对以上问题,面向对象的处理方法应运而生,并且逐渐成为高空间分辨率遥感影像分析和识别的新途径。所谓“面向对象”,即影像分析的最小单元不再是传统的单个像元,而是由特定像元组成的有意义的同质区域,也即“对象”;因此,在对影像分析和识别的过程

监督分类

实验十监督分类 实例与练习:某地区的遥感影像监督分类 背景:现有某地区TM影像,需要进行土地利用类型划分,并对分类结果进行评价。本例中使用监督分类的方法,实现土地利用类型的划分。 目的:通过练习,熟练掌握并理解监督分类的方法、评价方法的原理及实现过程,体会在具体应用中的适应性。 监督分类流程图: 监督分类过程 1 定义分类模板 (1)在viewer窗口中选择打开smtm.img,在raster options选择fit to frame

(2)单击classifer|classification|signature editor,打开分类模板编辑器(signature editor)(3)在viewer窗口中打开raster|tools,打开raster工具面板 (4)选择AOI多边形绘制按钮,进入多边形AOI绘制状态,在图像上选择深蓝色区域,绘制一个多边形AOI,在signature editor窗口,单击按钮,将多边形AOI区域加载到signature editor分类模板属性表中 (5)在图像上继续选择深蓝色区域,再绘制一个多边形AOI,在signature editor窗口,单击按钮,将多边形AOI区域加载到signature editor分类模板属性表中 (6)用同样的方法加载9个深蓝色多边形AOI (7)在分类模板属性表中,依次单击这些AOI的class#字段下的分类编号(按住shift键),并单击,将所选中的模板合并成一个新的模板,则生成一个新的模板 (8)单击其signature name属性进入编辑状态,输入water,单击color属性,选择深蓝色 (9)在signature editor菜单条,单击edit|delete,删除合并前的模板 (10)在图像上继续选择多个砖红色区域AOI(farmland),赭色区域AOI(forest),绿色区域AOI(grass),浅蓝色区域AOI(resident) (11)单击signatureedit|file|save命令,打开保存对话框,确定是保存所有模板(all),并保存分类模板文件的目录 2评价分类模板 (1)分类预警评价 ①选中water类别 ②在signature editor窗口,选择某类或者某几类模板,单击view|image alarm命令,打开 signature alarm对话框 ③选中indicate overlap复选框,设置同时属于两个及以上的像元叠加预警显示,点击色框 设置为黄色 ④点击edit parallelepiped limit|limit|set,设置计算方法(method):minimum/maximum, 并选择使用的模板:current(当前模板) ⑤设置完成后,单击ok按钮,返回limits对话框,单击close按钮,返回signature alarm 对话框,单击Ok按钮执行分类预警评价,形成预警掩膜,单击close按钮,关闭signature alarm对话框

实验三 监督分类

实验三:遥感图像计算机分类---监督分类 一、实验目的与要求 掌握监督分类的方法与过程,加深对监督分类的基本原理以及过程的理解。 二、实验内容 ERDAS遥感图像监督分类:定义分类模板、进行监督分类、评价分类结果。 三、实验原理 监督分类则需要在分类前人们对遥感图像上某些抽样区中影像地物的类别属性已有了先验知识,即先建立训练区从图像中选取各类地物样本训练分类器。常用的分类方法有最小距离分类、多级切割法和最大似然法分类等。最大似然法通过求出每个像元对于各类别归属概率,把该像元分到归属概率最大的类别中去的方法。其前提是假定训练区地物的光谱特征近似服从正态分布。 训练区的选取要求:训练区所包含的样本的种类要与待分区域的类别一致,训练样本要有代表性。 四、实验步骤 1、定义分类模板 第一步:显示要进行分类的图像 第二步:打开摸板编辑器并调整显示字段 ERDAS 图标面板工具条,点击Classifier图标→Classification菜单→Signature Editor菜单项,打开Signature Editor对话框

分类模板编辑器 第三步:获取分类模板信息 (1)删除对分类意义不大的字段 Signature Editor对话框菜单条,单击View|Columns命令,打开View signature columns对话框,点击最上一个字段的Co1unmn字段下拖拉直到最后一个段,此时,所有字段都被选择上,并用黄色(缺省色)标识出来。按住shift 键的同时分别点击Red、Green、B1ue 三个字段,Red、Green、Blue三个字段将分别从选择集中被清除。点击Apply按钮,点击Close按钮。从View Signature Co1umns 对话框可以看到Red、Green、Blue 三个字段将不再显示。 (2)获取分类模板信息 应用AOI绘图工具在原始图像中获取分类模板信息。 在待分类图像视窗上选择Raster菜单项→选择Tools菜单,打开Raster工具面板 →点击Raster 工具面板的图标 →在视窗中选择一类地物,绘制一个多边形AOI。 →在Signature Editor窗口,单击Create New Signature图标,将多边形AOI 区域加载到Signature Editor分类模板属性表中。

ERDAS IMAGINE遥感图像处理教程.

《ERDAS IMAGINE遥感图像处理教程》根据作者多年遥感应用研究和ERDAS IMAGINE软件应用经验编著而成,系统地介绍了ERDAS IMAGINE 9.3的软件功能及遥感图像处理方法。全书分基础篇和扩展篇两部分,共25章。基础篇涵盖了视窗操作、数据转换、几何校正、图像拼接、图像增强、图像解译、图像分类、子像元分类、矢量功能、雷达图像、虚拟GIS、空间建模、命令工具、批处理工具、图像库管理、专题制图等ERDAS IMAGINE Professional级的所有功能,以及扩展模块Subpixel、Vector、OrthoRadar、VirtualGIS等;扩展篇则主要针对ERDAS IMAGINE 9.3的新增扩展模块进行介绍,包括图像大气校正(ATCOR)、图像自动配准(AutoSync)、高级图像镶嵌(MosaicPro)、数字摄影测量(LPS)、三维立体分析(Stereo Analyst)、自动地形提取(Automatic Terrain Extraction)、面向对象信息提取(Objective)、智能变化检测(DeltaCue)、智能矢量化(Easytrace)、二次开发(EML)等十个扩展模块的功能。 《ERDAS IMAGINE遥感图像处理教程》将遥感图像处理的理论和方法与ERDAS IMAGINE软件功能融为一体,可以作为ERDAS IMAGINE软件用户的使用教程,对其他从事遥感技术应用研究的科技人员和高校师生也有参考价值。 目录 基础篇 第1章概述2 1.1 遥感技术基础2

1.1.1 遥感的基本概念2 1.1.2 遥感的主要特点2 1.1.3 遥感的常用分类3 1.1.4 遥感的物理基础3 1.2 ERDAS IMAGINE软件系统6 1. 2.1 ERDAS IMAGINE概述6 1.2.2 ERDAS IMAGINE安装7 1.3 ERDAS IMAGINE图标面板11 1. 3.1 菜单命令及其功能11 1.3.2 工具图标及其功能14 1.4 ERDAS IMAGINE功能体系14 第2章视窗操作16 2.1 视窗功能概述16 2.1.1 视窗菜单功能17 2.1.2 视窗工具功能17 2.1.3 快捷菜单功能18 2.1.4 常用热键功能18 2.2 文件菜单操作19 2.2.1 图像显示操作20 2.2.2 图形显示操作22 2.3 实用菜单操作23

遥感图像分类后处理

遥感图像分类后处理 一、实验目的与要求 监督分类和决策树分类等分类方法得到的一般是初步结果,难于达到最终的应用目的。 因此,需要对初步的分类结果进行一些处理,才能得到满足需求的分类结果,这些处理过程就通常称为分类后处理。常用分类后处理通常包括:更改分类颜色、分类统计分析、小斑点处理(类后处理)、栅矢转换等操作。 本课程将以几种常见的分类后处理操作为例,学习分类后处理工具。 二、实验内容与方法 1.实验内容 1.小斑块去除 ●Majority和Minority分析 ●聚类处理(Clump) ●过滤处理(Sieve) 2.分类统计 3.分类叠加 4.分类结果转矢量 5.ENVI Classic分类后处理 ●浏览结果 ●局部修改 ●更改类别颜色 6.精度评价 1.实验方法 在ENVI 5.x中,分类后处理的工具主要位于Toolbox/Classification/Post Classification/;

三、实验设备与材料 1.实验设备 装有ENVI 5.1的计算机 2.实验材料 以ENVI自带数据"can_tmr.img"的分类结果"can_tmr_class.dat"为例。数据位于"...\13数据\"。其他数据描述: ?can_tmr.img ——原始数据 ?can_tmr_验证.roi ——精度评价时用到的验证ROI 四、实验步骤 1.小斑块去除 应用监督分类或者非监督分类以及决策树分类,分类结果中不可避免地会产生一些面 积很小的图斑。无论从专题制图的角度,还是从实际应用的角度,都有必要对这些小图斑进行剔除或重新分类,目前常用的方法有Majority/Minority分析、聚类处理(clump)和过滤处理(Sieve)。 1)Majority和Minority分析 Majority/Minority分析采用类似于卷积滤波的方法将较大类别中的虚假像元归到该 类中,定义一个变换核尺寸,主要分析(Majority Analysis)用变换核中占主要地位(像元数最多)的像元类别代替中心像元的类别。如果使用次要分析(Minority Analysis),将用变换核中占次要地位的像元的类别代替中心像元的类别。 下面介绍详细操作流程: (1)打开分类结果——"\12.分类后处理\数据\can_tmr_class.dat"; (2)打开Majority/Minority分析工具,路径为Toolbox /Classification/Post Classification/Majority/Minority Analysis,在弹出对话框中选择"can_tmr_class.dat",点击OK; (3)在Majority/Minority Parameters面板中,点击Select All Items选中所有的类别,其他参数按照默认即可,如下图所示。然后点击Choose按钮设置输出路径,点击OK执行操作。

监督分类中常用的具体分类方法

监督分类中常用的具体分类方法包括: 最小距离分类法(minimum distance classifier):最小距离分类法是用特征空间中的距离作为像元分类依据的。最小距离分类包括最小距离判别法和最近邻域分类法。最小距离判别法要求对遥感图像中每一个类别选一个具有代表意义的统计特征量(均值),首先计算待分象元与已知类别之间的距离,然后将其归属于距离最小的一类。最近邻域分类法是上述方法在多波段遥感图像分类的推广。在多波段遥感图像分类中,每一类别具有多个统计特征量。最近邻域分类法首先计算待分象元到每一类中每一个统计特征量间的距离,这样,该象元到每一类都有几个距离值,取其中最小的一个距离作为该象元到该类别的距离,最后比较该待分象元到所有类别间的距离,将其归属于距离最小的一类。最小距离分类法原理简单,分类精度不高,但计算速度快,它可以在快速浏览分类概况中使用。 多级切割分类法(multi-level slice classifier):是根据设定在各轴上值域分割多维特征空间的分类方法。通过分割得到的多维长方体对应各分类类别。经过反复对定义的这些长方体的值域进行内外判断而完成各象元的分类。这种方法要求通过选取训练区详细了解分类类别(总体)的特征,并以较高的精度设定每个分类类别的光谱特征上限值和下限值,以便构成特征子空间。多级切割分类法要求训练区样本选择必须覆盖所有

的类型,在分类过程中,需要利用待分类像元光谱特征值与各个类别特征子空间在每一维上的值域进行内外判断,检查其落入哪个类别特征子空间中,直到完成各像元的分类。 多级分割法分类便于直观理解如何分割特征空间,以及待分类像元如何与分类类别相对应。由于分类中不需要复杂的计算,与其它监督分类方法比较,具有速度快的特点。但多级分割法要求分割面总是与各特征轴正交,如果各类别在特征空间中呈现倾斜分布,就会产生分类误差。因此运用多级分割法分类前,需要先进行主成分分析,或采用其它方法对各轴进行相互独立的正交变换,然后进行多级分割。 最大似然分类法(maximum likelihood classifier):最大似然分类法是经常使用的监督分类方法之一,它是通过求出每个像元对于各类别归属概率(似然度)(likelihood),把该像元分到归属概率(似然度)最大的类别中去的方法。最大似然法假定训练区地物的光谱特征和自然界大部分随机现象一样,近似服从正态分布,利用训练区可求出均值、方差以及协方差等特征参数,从而可求出总体的先验概率密度函数。当总体分布不符合正态分布时,其分类可靠性将下降,这种情况下不宜采用最大似然分类法。 最大似然分类法在多类别分类时,常采用统计学方法建立起一个判别函数集,然后根据这个判别函数集计算各待分象元的归

遥感图像分类方法的国内外研究现状与发展趋势

遥感图像分类方法的国内外研究现状与发展趋势

遥感图像分类方法的研究现状与发展趋势 摘要:遥感在中国已经取得了世界级的成果和发展,被广泛应用于国民经济发展的各个方面,如土地资源调查和管理、农作物估产、地质勘查、海洋环境监测、灾害监测、全球变化研究等,形成了适合中国国情的技术发展和应用推广模式。随着遥感数据获取手段的加强,需要处理的遥感信息量急剧增加。在这种情况下,如何满足应用人员对于大区域遥感资料进行快速处理与分析的要求,正成为遥感信息处理面临的一大难题。这里涉及二个方面,一是遥感图像处理本身技术的开发,二是遥感与地理信息系统的结合,归结起来,最迫切需要解决的问题是如何提高遥感图像分类精度,这是解决大区域资源环境遥感快速调查与制图的关键。 关键词:遥感图像、发展、分类、计算机 一、遥感技术的发展现状 遥感技术正在进入一个能够快速准确地提供多种对地观测海量数据及应用研究的新阶段,它在近一二十年内得到了飞速发展,目前又将达到一个新的高潮。这种发展主要表现在以下4个方面: 1. 多分辨率多遥感平台并存。空间分辨率、时间分辨率及光谱分辨率普遍提高目前,国际上已拥有十几种不同用途的地球观测卫星系统,并拥有全色0.8~5m、多光谱3.3~30m的多种空间分辨率。遥感平台和传感器已从过去的单一型向多样化发展,并能在不同平台

上获得不同空间分辨率、时间分辨率和光谱分辨率的遥感影像。民用遥感影像的空间分辨率达到米级,光谱分辨率达到纳米级,波段数已增加到数十甚至数百个,重复周期达到几天甚至十几个小时。例如,美国的商业卫星ORBVIEW可获取lm空间分辨率的图像,通过任意方向旋转可获得同轨和异轨的高分辨率立体图像;美国EOS卫星上的MOiDIS-N传感器具有35个波段;美国NOAA的一颗卫星每天可对地面同一地区进行两次观测。随着遥感应用领域对高分辨率遥感数据需求的增加及高新技术自身不断的发展,各类遥感分辨率的提高成为普遍发展趋势。 2. 微波遥感、高光谱遥感迅速发展微波遥感技术是近十几年发展起来的具有良好应用前景的主动式探测方法。微波具有穿透性强、不受天气影响的特性,可全天时、全天候工作。微波遥感采用多极化、多波段及多工作模式,形成多级分辨率影像序列,以提供从粗到细的对地观测数据源。成像雷达、激光雷达等的发展,越来越引起人们的关注。例如,美国实施的航天飞机雷达地形测绘计划即采用雷达干涉测量技术,在一架航天飞机上安装了两个雷达天线,对同一地区一次获取两幅图像,然后通过影像精匹配、相位差解算、高程计算等步骤得到被观测地区的高程数据。高光谱遥感的出现和发展是遥感技术的一场革命。它使本来在宽波段遥感中不可探测的物质,在高光谱遥感中能被探测。高光谱遥感的发展,从研制第一代航空成像光谱仪算起已有二十多年的历史,并受到世界各国遥感科学家的普遍关注。但长期以来,高光谱遥感一直处在以航空为基础的研究发展阶段,且主要

Erdas监督分类和非监督分类

华北水利水电大学资环学院遥感数字图像处理 专业:地理信息科学 班级:2013012班 学号:201301218 姓名:杨力华 指导老师:黄会平老师

实验五丹江库水库湿地解译 一实验目的 1 熟练掌握Erdas的基本操作,包括图像裁剪、图像拼接、彩色合成、假彩色 合成、创建AOI区域、创建训练区等。 2理解监督分类和非监督分类的原理,能够运用Erdas软件操作进行监督分类 和非监督分类。 3 完成丹江口水库湿地的分类和分类后评价。 4生成丹江口湿地专题地图。 二实验内容 1 丹江口水库湿地图边界配准以及矢量化; 2丹江口水库湿地在遥感图像上的裁剪; 3.对遥感图像进行监督分类并对分类结果作出评价,并生成专题地图; 4.对遥感图像进行非监督分类并对分类结果作出评价,并生成专题地图。 三实验原理 监督分类又称训练场地法,是一种以统计识别函数为理论基础,依据典型 样本训练方法进行分类的技术,即:根据已知训练区提供的样本,通过选择特 征参数,建立判别函数对各待分类像元进行的分类。在监督分类过程中,首先 选择可以识别或者借助其它信息可以断定其类型的像元建立模板,然后基于该 模板使计算机系统自动识别具有相同特性的像元。对模板进行评价后再对其进 行修改,多次反复后建立一个比较准确的模板,并在此基础上最终进行分类。 监督分类一般要经过以下几个步骤:定义分类模板(Define Signatures)、评价分类模板(Evaluate Signatures)、进行监督分类(Perform Supervised Classification)、评价分类结果(Evaluate Classification)。 非监督分类运用 ISODATA(Iterative Self-Organizing Data Analysis Technique )算法,完全按照像元的光谱特性进行统计分类,常常用于对分类区没有什么了解的情况。由于人为干预较少,非监督分类过程的自动化程度较高。非监督分类一般要经过以下几个步骤:初始分类、专题判别、分类合并、色彩确定、分类后处理、色彩重定义、栅格矢量转换和统计分析等。

遥感图像分类方法综述

遥感图像分类方法综述 刘佳馨 摘要:伴随着科学技术在我们的生活中不断发展,遥感技术便应运而生,而遥感图像因成为遥感技术分析中的不可缺少的依据,变得备受关注。在本文中,以遥感图像分类方法为研究中心,从传统分类方法、近代分类方法两个方面对分类方法进行了介绍,并以此为基础对分类思想及后续处理进行说明,进而展望了遥感图像分类的研究趋势和发展前景。 关键词:遥感图像;图像分类;分类方法 1 引言 遥感,作为采集地球数据及其变化信息的重要技术手段,在世界范围内的各个国家以及我国的许多部门、科研单位和公司等,例如地质、水体、植被、土壤等多个方面,得到广泛的应用,尤其在监视观测天气状况、探测自然灾害、环境污染甚至军事目标等方面有着广泛的应用前景。伴随研究的深入,获取遥感数据的方式逐渐具有可利用方法多、探测范围广、获取速度快、周期短、使用时受限条件少、获取信息量大等特点。遥感图像的分类就是对遥感图像上关于地球表面及其环境的信息进行识别后分类,来识别图像信息中所对应的实际地物,从而进一步达到提取所需地物信息的目的。 2 遥感图像分类基本原理 遥感是一种应用探测仪器,在不与探测目标接触的情况下,从远处把目标的电磁波特性记录下来,并且通过各种方法的分析,揭示出物体的特征性质及其变化的综合性探测技术。图像分类的目的在于将图像中每个像元根据其不同波段的光谱亮度、空间结构特征或其他信息,按照某种规则或算法划分为不同的类别。而遥感图像分类则是利用计算机技术来模拟人类的识别功能,对地球表面及其环境在遥感图像上的信息进行属性的自动判别和分类,以达到提取所需地物信息的目的。 3 遥感图像传统分类方法 遥感图像传统分类方法是目前应用较多,并且发展较为成熟的分类方法。从分类前是否需要获得训练样区类别这一角度进行划分,可将遥感图像传统分类方法分为两大类,即监督分类(supervised classification)和非监督分类(Unsupervised

ERDAS图像分类

背景知识 图像分类就是基于图像像元的数据文件值,将像元归并成有限几种类型、等级或数据集的过程。常规计算机图像分类主要有两种方法:非监督分类与监督分类,本实验将依次介绍这两种分类方法。 非监督分类运用ISODATA(Iterative Self-Organizing Data Analysis Technique)算法,完全按照像元的光谱特性进行统计分类,常常用于对分类区没有什么了解的情况。使用该方法时,原始图像的所有波段都参于分类运算,分类结果往往是各类像元数大体等比例。由于人为干预较少,非监督分类过程的自动化程度较高。非监督分类一般要经过以下几个步骤:初始分类、专题判别、分类合并、色彩确定、分类后处理、色彩重定义、栅格矢量转换、统计分析。监督分类比非监督分类更多地要用户来控制,常用于对研究区域比较了解的情况。在监督分类过程中,首先选择可以识别或者借助其它信息可以断定其类型的像元建立模板,然后基于该模板使计算机系统自动识别具有相同特性的像元。对分类结果进行评价后再对模板进行修改,多次反复后建立一个比较准确的模板,并在此基础上最终进行分类。 监督分类一般要经过以下几个步骤:建立模板(训练样本)分类特征统计、栅格矢量转换、评价模板、确定初步分类图、检验分类结果、分类后处理。由于基本的非监督分类属于IMAGINE Essentials级产品功能,但在IMAGINE Professional级产品中有一定的功能扩展,非监督分类命令分别出现在Data Preparation菜单和Classification菜单中,而监督分类命令仅出现在Classification菜单中。 非监督分类(Unsupervised Classification) 打开非监督分类对话框 DataPrep图标/Data Preparation/Unsupervised Classification菜单项; 如下图输入相应参数后,OK完成非监督分类;

Erdas监督分类步骤

遥感图像分类的原理 基本原理 监督分类中常用的具体分类方法包括: 最小距离分类法(minimum distance classifier): 最小距离分类法是用特征空间中的距离作为像元分类依据的。最小距离分类包括最小距离判别法和最近邻域分类法。最小距离判别法要求对遥感图像中每一个类别选一个具有代表意义的统计特征量(均值),首先计算待分象元与已知类别之间的距离,然后将其归属于距离最小的一类。最近邻域分类法是上述方法在多波段遥感图像分类的推广。在多波段遥感图像分类中,每一类别具有多个统计特征量。最近邻域分类法首先计算待分象元到每一类中每一个统计特征量间的距离,这样,该象元到每一类都有几个距离值,取其中最小的一个距离作为该象元到该类别的距离,最后比较该待分象元到所有类别间的距离,将其归属于距离最小的一类。最小距离分类法原理简单,分类精度不高,但计算速度快,它可以在快速浏览分类概况中使用。 多级切割分类法(multi-level slice classifier): 是根据设定在各轴上值域分割多维特征空间的分类方法。通过分割得到的多维长方体对应各分类类别。经过反复对定义的这些长方体的值域进行内外判断而完成各象元的分类。这种方法要求通过选取训练区详细了解分类类别(总体)的特征,并以较高的精度设定每个分类类别的光谱特征上限值和下限值,以便构成特征子空间。多级切割分类法要求训练区样本选择必须覆盖所有的类型,在分类过程中,需要利用待分类像元光谱特征值与各个类别特征子空间在每一维上的值域进行内外判断,检查其落入哪个类别特征子空间中,直到完成各像元的分类。 多级分割法分类便于直观理解如何分割特征空间,以及待分类像元如何与分类类别相对应。由于分类中不需要复杂的计算,与其它监督分类方法比较,具有速度快的特点。但多级分割法要求分割面总是与各特征轴正交,如果各类别在特征空间中呈现倾斜分布,就会产生分类误差。因此运用多级分割法分类前,需要先进行主成分分析,或采用其它方法对各轴进行相互独立的正交变换,然后进行多级分割。 最大似然分类法(maximum likelihood classifier): 最大似然分类法是经常使用的监督分类方法之一,它是通过求出每个像元对于各类别归属概率(似然度)(likelihood),把该像元分到归属概率(似然度)最大的类别中去的方法。最大似然法假定训练区地物的光谱特征和自然界大部分随机现象一样,近似服从正态分布,利用训练区可求出均值、方差以及协方差等特征参数,从而可求出总体的先验概率密度函数。当总体分布不符合正态分布时,其分类可靠性将下降,这种情况下不宜采用最大似然分类法。

相关主题
文本预览
相关文档 最新文档