当前位置:文档之家› 无速度传感器永磁同步电机的SVM-DTC控制

无速度传感器永磁同步电机的SVM-DTC控制

无速度传感器永磁同步电机的SVM-DTC控制
无速度传感器永磁同步电机的SVM-DTC控制

永磁同步电机无传感器控制技术

哈尔滨工业大学,电气工程系 Department of Electrical Engineering Harbin Institute of Technology 电力电子与电力传动专题课 报告 报告题目:永磁同步电机无传感器控制技术 哈尔滨工业大学 电气工程系 姓名:沈召源 学号:14S006040 2016年1月

目录 1.1 研究背景 (1) 1.2 国内外研究现状 (1) 1.3 系统模型 (2) 1.4 控制方法设计 (4) 1.5 系统仿真 (7) 1.6 结论 (8) 参考文献 (8)

1.1 研究背景 永磁同步电机具有体积小、惯量小、重量轻等优点,在各领域的应用越来越广泛。目前在永磁同步电机的各种控制算法中,使用最多的是矢量控制和直接转矩控制,而这两种控制方式都需要转子位置,但转子位置传感器的采用限制了系统使用范围。永磁同步电机控制系统大多采用测速发电机或光电码盘等传感器检测速度和位置的反馈量,这不但提高了驱动装置的造价,而且增加了电机与控制系统之间的连接线路和接口电路,使系统易于受环境干扰、可靠性降低。由于永磁同步电机无传感器控制系统具有控制精度高、安装、维护方便、可靠性强等一系列优点,成为近年来研究的一个热点。 1.2 国内外研究现状 无传感器永磁同步电机是在电机转子和机座不安装电磁或光电传感器的情况下,利用电机绕组中的有关电信号,通过直接计算、参数辨识、状态估计、间接测量等手段,从定子边较易测量的量如定子电压、定子电流中提取出与速度、位置有关的量,利用这些检测到的量和电机的数学模型推测出电机转子的位置和转速,取代机械传感器,实现电机闭环控制。 最早出现的无机械传感器控制方法可统称为波形检测法。由于同步电机是一个多变量、强耦合的非线性系统,所要解决的问题是采用何种方法获取转速和转角。目前适合永磁同步电机的最主要的无速度传感器的控制策略主要有以下几种 (1)利用定子端电压和电流直接计算出θ和ω。该方法的基本思想是基于场旋转理论,即在电机稳态运行时,定子磁链和转子磁链同步旋转,且两磁链之间的夹角相差一个功角δ,该方法适用于凸极式和表面式永磁同步电机。该方法计算方法简单,动态响应快,但对电机参数的准确性要求比较高,应用这种方法时需要结合电机参数的在线辨识。 (2)模型参考自适应(MRAS)方法。该方法的主要思想是先假设转子所在位置,利用电机模型计算出该假设位置电机的电压和电流值,并通过与实测的电压、电流比较得出两者的差值,该差值正比于假设位置与实际位置之间的角度差。当该值减小为零时,则可认为此时假设位置为真实位置。采用这种方法,位置精度与模型的选取有关。该方法应用于PMSM时有一些新的需要解决的问题。 (3)观测器基础上的估计方法。观测器的实质是状态重构,其原理是重新构造一个系统,利用原系统中可直接测量的变量,如输出矢量和输入矢量作为它的输入信号,并使输出信号在一定条件下等价于原系统的状态。目前主要存在的观测器:全阶状态观测器、降阶状态观测器、推广卡尔曼滤波和滑模观测器。其中滑模观测器有很好的鲁棒性,但其在本质上是不连续的开关控制,因此会引起系统发生抖动,这对于矢量控制在低速下运行是有害的,将会引起较大的转矩脉动。扩展卡尔曼滤波器提供了一种迭代形式的非线性估计方法,避免了对测量的微分

异步电动机无速度传感器矢量控制系统设计

肖金凤 1971年1月 生,1994年毕业于湖南大学电气与信息工程学院电机专业,学士学位,2004年毕业于湖南大学电气与信息工程学院控制工程专业,硕士学位,讲师。主要研究方向为电机智能控制、工业过程控制及综合自动化。 异步电动机无速度传感 器矢量控制系统设计 * 肖金凤1 , 黄守道2 , 李劲松 1 (1.南华大学,湖南 衡阳 421001;2.湖南大学,湖南 长沙 410082) 摘要 文章提出一种基于模糊神经网络的模型参考自适应电机转速辨识方法,将其与SVP WM 调制技术控制的变频器系统结合起来,组成了一种基于DSP 的异步电机无速度传感器矢量控制系统。具体介绍了其结构及软硬件的设计。仿真结果表明此系统动态性能好,能准确跟踪电机转速的变化。 关键词 异步电动机 无速度传感器 SVP WM 矢量控制 数字信号处理器 Fiel d Oriented Control Syste m of Speed Sensorless Based on DSP X iao Jinfeng ,Huang Shoudao ,L i Jingsong (1.N anhua Un iversity ;2.H unan Un i v ersity ) Abstract :This paper presents a ne w m et h od of i n ducti o n m otor speed identifica -ti o n .It is the co m binati o n o f f u zzy neural net w ork (FNN )w ith m odel reference adap -ti v e syste m (MRAS).W e co m bi n e this m ethod w it h the i n verter contro lled by space vector pulse w idth m odu lati o n (SVP WM )to for m a field oriented con tro l syste m o f speed senso rless based on DSP . Its struct u re and soft w are and hardw are are ana -l y zed .The S i m u lation results sho w that the contro l syste m has better dyna m ic per -f o r m ance and can accurately track the variati o n of the m otor speed . K ey w ords :I nducti o n m oto r Speed sensorless SVP WM F ield oriented con -tro l (FOC) DSP *湖南省自然科学基金资助项目(编号:02JJ Y 2089) 1 引言 异步电动机的数学模型由电压方程、磁链方 程、转矩方程和运动方程组成,是一个高阶、非线性、强耦合的多变量系统。采用传统的控制策略对其进行控制时,动态控制效果较差。目前异步电动机控制研究工作正围绕几个方面展开:采用新型电力电子器件和脉宽调制控制技术;应用矢量控制技术及现代控制理论、智能控制技术;广泛应用数字控制系统及计算机技术;无速度传感器控制技术。本文以电机控制专用芯片 T M S320F240为核心,采用磁通、转速闭环的矢量控制策略,利用SVP WM 脉宽调制技术、无速度传感器及智能控制技术,设计了一电机控制系统。仿真结果表明该控制系统抗干扰能力强,动态性能好。 2 速度估计策略 模型参考自适应方法(MRAS)是应用较广的速度估计方法。本文设计的模型参考自适应速度估计系统为减少定子电阻的影响选择瞬时无功功率模型,同时为有效解决瞬时无功功率模型参考 40 异步电动机无速度传感器矢量控制系统设计《中小型电机》2005,32(2)

无速度传感器永磁同步电机发展与控制策略评述

无速度传感器永磁同步电机发展与控制策略评述潘萍付子义 中图分类号:TM351TM344.4文献标识码:A文章编号:1001-6848(2007)06-0091-02无速度传感器永磁同步电机发展与控制策略评述 潘萍,付子义 (河南理工大学,焦作454003) 摘要:介绍了永磁同步电机无速度传感器控制策略,分析了无速度传感器技术研究现状,指出状态观测器法及谐波注入法是目前无速度传感器技术的研究热点。 关键词:永磁同步电机;无速度传感器;评述;控制策略;状态观测器;谐波注入法 DevelopmentRenewandStrategyofPermanentM_agnetSynchronousMoOrSpeedSensorless PANPing,FUZi—yi (HenanPolytechnicUniversity,Jiaozuo454003,China) ABSTRACT:Thispapersummarizesthestrategyofpermanentmagnetsynchronousmotor.Itanalyzesthepresentofspeedsensorlesstechonologyofpermanentmagnetsynchronousmotor,indicatesthatthestateobserverandharmonicinjectionprocessarecurrentresearchfocus. KEYWORDS:Permanentmagnetsynchronousmotor;Speedsensorless;Review;Controlstrategy;Stateobserver;Harmonicinjectionmethod O引言 永磁同步电机控制系统离不开高精度的位置和速度传感器,但在实际的系统中,传感器的存在不仅增加了系统成本,还易受工作环境影响,同时也降低了系统的可靠性,因此,无速度传感器交流调速系统成为近年研究热点¨j。 1无速度传感器永磁同步电机研究及发展 无速度传感器永磁同步电机是在电机转子和机座不安装电磁或光电传感器的情况下,利用直接计算、参数辨识、状态估计、间接测量等手段,从定子边较易测量的量,如定子电压、定子电流中提取出与速度有关的量,从而得出转子速度,并应用到速度反馈控制系统中。 国际上对永磁同步电机无速度传感器的研究始于20世纪70年代旧J。1975年,A.Abbondanti等人推导出了基于稳态方程的转差频率估计方法, 收稿日期:2006—09-26 基金项目:河南省杰出青年科学基金(0211060500);河南省重要攻关项目(9911020429)在无速度传感器控制领域作出首次尝试,调速比可达10:l。但由于其出发点是稳态方程,动态性能和调速精度难以保证。1979年,M.Ishida等学者利用转子齿谐波来检测转速,限于当时的检测技术和控制芯片的实时控制能力,仅在大于300r/rain的转速范围取得较好的结果。1983年R.Joetten首次将无速度传感器技术应用于永磁同步电机矢量控制。近年来,德国亚探工大(RWTHAachen)电机研究所的学者又先后开展了采用推广卡尔曼滤波器的永磁同步电机和感应电机无机械传感器调速系统的研究。美国麻省理工学院(MIT)电机工程系的学者在1992年发表了采用全阶状态观测器的无传感器永磁同步电机调速系统的论文。由于状态观测器受电机参数变化的影响较大,还需要另外一个状态观测器来估计电机的参数,这样使无传感器永磁同步调速系统的估计算法变得比较复杂,同时系统还存在对负载变化比较敏感等问题。国内自90年代中开始,也开始对永磁电机无速度传感器控制技术进行研究,但主要局限于各高等院校,研究主要还是着重于理论和仿真方面。 一91—   万方数据

永磁同步电机的无传感器控制策略

2009,36(8)控制与应用技术 EMC A 永磁同步电机的无传感器控制策略 吴 奇, 程小华 (华南理工大学电力学院,广东广州 510640) 摘 要:机械传感器应用存在的诸多缺陷,使无传感器控制技术成为研究热点。介绍了多种常见的估算 永磁同步电机转子位置和转速的方法,并指出了各种方法的优缺点。分析了无传感器技术研究现状和今后的 研究发展趋势。 关键词:永磁同步电机;无传感器控制;位置检测 中图分类号:TM301.2 TM351 文献标识码:A 文章编号:1673-6540(2009)08-0029-04 Sensorless Control of Per m anent M agnet SynchronousM otor W U Q i, C HENG X i a o-hua (Co llege of E lectric Pow er,South China Un i v ersity of Techno l o gy,Guang zhou510640,Ch i n a) Abstrac t:In orde r to reso l ve the va rious defects for usi ng m echanica l sensors,sensorless contro l techno l ogy be-come a research ho tspo t.T he v arious m ethods o f t he esti m a ti on about the positi on and speed of P M S M roto r are pres-ented,and po i nted out the advantages and disadvantages of them.The sta t us and the deve l op m ent trend of the re-search about the sensor l ess are g i ven. K ey word s:perman en t magne t s ynch ron ous m otor(P M S M);sensorless contro;l positi on detection 0 引 言 永磁同步电动机(P M S M)因其高转矩惯性比、高能量密度和高效率等优点被广泛应用于国防、工业控制和日常生活等领域。传统的P M S M 控制系统通常采用电磁或光电传感器来获取所需的转子位置和转速信号。传感器的安装、电缆连接和环境限制等问题,带来了系统成本增加、体积增大、可靠性降低、易受环境影响等缺陷[1-2]。为了解决机械传感器带来的各种问题,许多学者开展了无传感器控制技术研究,其主要思想是利用电机绕组中的有关电信号,通过适当的方法估算出转子的位置和转速,实现转子位置的自检测。无传感器控制技术可以有效地解决机械传感器带来的诸多问题,使系统结构简化,成本降低,对提高系统可靠性有重要意义,已成为电机驱动领域的研究热点。 1 基波激励法 在各种转子位置和速度的检测方法中,大多通过检测基波反电势来获得转子的位置信息,但采用的具体方法有所不同,大致可分为以下几种。 (1)基于数学模型的开环估计[2]。该方法基于电机的电磁关系从电机的动态方程直接推导出转速或者位置角的关系表达式,并利用检测到的定子三相端电压和电流计算出转子位置角和转子角速度。 文献[3]中提出一种方法:在定子二相静止坐标系中,通过定子电压、电流得到实轴、虚轴的定子磁链值,根据二相磁链反正切值可得当前时刻的定子磁链位置,由定子磁链的变化率可得到电机的转速。该方式用到的电机参数不多,所以受参数影响较小,但电机必须工作在功率因数cos =1的方式下才能实现转子位置估计。 开环估计法一方面简单直观,动态响应快,几乎没有延时问题。另一方面,数学模型虽然可以有多种选择,但无论采用什么数学模型,都涉及电机参数,而电机参数在电机运行时是动态变化的。虽然对定子电阻和电感等参数可以进行在线辩识,但辩识的实现也需要复杂的技术。因此,开环 29

无速度传感器的高性能异步电动机调速系统

无速度传感器的高性能异步电动机调速系统 范钦德杜耀武 范钦德先生,上海电器科学研究所(集团)有限公司研究员级高级工程师; 杜耀武先生,上海格立特电力电子有限公司工学博士。 关键词:无速度传感器 矢量控制磁链观测 目前广泛使用的通用变频器多为VVVF控制的开环系统,明显地存在转矩小、低速性能差、稳态精确度低、动态性能(加减速性能和负载抗干扰性能)不理想等缺点。特别是低速时由于定子压降和死区电压误差的存在,使系统性能受到严重影响,甚至发生不稳定现象。而在高性能的交流电机矢量控制系统中,转速的闭环控制环节一般是必不可少的。通常,采用光电码盘等速度传感器来进行转速检测,并反馈转速信号。这样,由于速度传感器的安装会给系统带来一些问题:如安装的精确度将影响测速的精确度,并给电机的维护带来一定困难,同时破坏了异步电机的简单坚固的特点,在恶劣环境下,速度传感器工作的精确度易受环境的影响。另外,因必须安装速度传感器,对推广应用也将造成一定的影响。 作为高性能通用变频器发展方向的无速度传感器矢量控制通用变频器就是解决上述缺点而提出的现实问题。其根本目的是在保持通用变频器方便、可靠等优点的前提下,不增加硬件成本,无需速度传感器,其性能却接近带速度反馈的矢量控制系统。 无速度传感器矢量控制的核心问题是对电机磁链的观测和转子的速度进行估计,控制系统性能好坏将取决于合理的控制方案与速度辨识环节的恰当结合。上世纪70年代末国外就已经开展了此项的研究。目前较典型的估计算法有:利用电机方程式直接计算法;模型参考自适应法;扩展卡尔曼滤波法;定子侧电量FFT分析法;非线性方法。但这些方法大多从理想条件下的电机数学模型出发,在不同程度上依赖于电机的参数和运行状态。当电机参数变化时,系统控制性能变差而且有些方法过于复杂,给具体方案的实现带来了很大的困难。基于电机磁链观测的转子速度估计方法计算简便,工程上易于实现,许多高性能无速度传感器矢量控制均采用该方法。 本调速系统基于一种电机磁链混合观测模型,设计了一种无速度传感器的控制方案,实现速度闭环控制。该方法简单实用,在整个速度范围内达到了良好的性能。 一控制原理 矢量控制技术得以有效实现的基础在于异步电机磁链信息的准确获取。为进行磁场定向和磁场反

永磁同步电机控制系统仿真模型的建立与实现资料

永磁同步电机控制系统仿真模型的建立与 实现

电机的控制 本文设计的电机效率特性如图 转矩(Nm) 转速(rpm) 异步电机效率特性 PMSM 电机效率特性 本文设计的电动汽车电机采用SVPWM 控制技术是一种先进的控制技术,它是以“磁链跟踪控制”为目标,能明显减少逆变器输出电流的谐波成份及电机的谐波损耗,能有效降低脉动转矩,适用于各种交流电动机调速,有替代传统SPWM 的趋势[2]。 基于上述原因,本文结合0=d i 和SVPWM 控制技术设计PMSM 双闭环PI 调速控制。其中,内环为电流环[3],外环为速度环,根据经典的PID 控制设计理论,将内环按典型Ⅰ系统,外环按典型Ⅱ系统设计PI 控制器参数[4]。 1. PMSM 控制系统总模型 首先给出PMSM 的交流伺服系统矢量控制框图。忽略粘性阻尼系数的影响, PMSM 的状态方程可表示为 ??????????-+????????????????????----=??????????J T L u L u i i P J P L R P P L R i i L q d m q d f n f n m n m n m q d ///002/30//ωψψωωω& && (1) 将0=d i 带入上式,有 ???? ??????-+??????????? ??? ??--=????? ?????J T L u L u i J P P L R P i i L q d m q f n f n m n m q d ///02/3/0ωψψωω& && (2) 转 矩 (N m )转速 (n /(m i n )) 效率 转速 (rpm) 转矩 (N m )

(完整word版)开题报告:永磁同步电机控制系统仿真

1.课题背景及意义 1.1课题研究背景、目的及意义 近年来,随着电力电子技术、微电子技术、微型计算机技术、传感器技术、稀土永磁材料与电动机控制理论的发展,交流伺服控制技术有了长足的进步,交流伺服系统将逐步取代直流伺服系统,借助于计算机技术、现代控制理论的发展,人们可以构成高精度、快速响应的交流伺服驱动系统。因此,近年来,世界各国在高精度速度和位置控制场合,己经由交流电力传动取代液压和直流传动[1][2]。 二十世纪八十年代以来,随着价格低廉的钕铁硼(REFEB)永磁材料的出现,使永磁同步电机得到了很大的发展,世界各国(以德国和日本为首)掀起了一股研制和生产永磁同步电机及其伺服控制器的热潮,在数控机床、工业机器人等小功率应用场合,永磁同步电机伺服系统是主要的发展趋势。永磁同步电机的控制技术将逐渐走向成熟并日趋完善[3]。以往同步电机的概念和应用范围己被当今的永磁同步电机大大扩展。可以毫不夸张地说,永磁同步电机已在从小到大,从一般控制驱动到高精度的伺服驱动,从人们日常生活到各种高精尖的科技领域作为最主要的驱动电机出现,而且前景会越来越明显。 由于永磁同步电机具有结构简单、体积小、效率高、转矩电流比高、转动惯量低,易于散热及维护等优点,特别是随着永磁材料价格的下降、材料的磁性能的提高、以及新型的永磁材料的出现,在中小功率、高精度、高可靠性、宽调速范围的伺服控制系统中,永磁同步电动机引起了众多研究与开发人员的青睐,其应用领域逐步推广,尤其在航空航天、数控机床、加工中心、机器人等场合获得广泛的应用[4][5]。 尽管永磁同步电动机的控制技术得到了很大的发展,各种控制技术的应用 - 1 -

感应电机高性能无速度传感器控制系统--回顾、现状与展望

电气传动2004年第l期 感应电机高性能无速度传感器控制系统 ——回顾、现状与展望 李篡嚣才m3月 摘要文章对感应电机岛|生能无速度传感;}{}控制的策略进行分析和分类,将当前该研究领域的土要控制策略分为基1:电机理想模型的方案和基于电机非理想特性的方案加以介绍.并且列…了无速度传感器控制的研究热点。 关键词:感应电机无速度传感器柠制磁通观测 speedsensorlesscontroJofInduction MotorwithHighPerformance LiYo“gdo“gl』iMingc“ Abstract:ThI。”畔7(Il…sesthe8pced scns。rle…nductJ。…ac¨㈣untrolmeth。dswIthhlghper【ormⅢ1ce.a11d【1.1sslflPsthemintotwocatezorIesmet】10dsb…d…dea】mot…odcIandbased01111。n】de“chtlractcrlstIcs l'he…renⅢse…hfu“I…dprobkmslnthlsareaa…Jsolnlrod…d Keywords:¨1(1ucIlotl¨Iott……orle引ontrolfl…bs…atIoll 1引言 随着感应电机无速度传感器控制理论和电机控制专用cPU的发展,感应电机高性能无速度传感器控制的实现有了很好的硬件和软件条件,可以实现更完整的电机建模及更先进复杂的观测和控制算法。 在电机的动态方程中,转速是电机模型的一个参数,无速度传感器控制省去了复杂昂贵的转速榆测器件.因此带来一系列问题。 1)转速闭环只能采用辩识的转速进行反馈,转速控制的精度依赖于速度辨识的精度。 2)一些磁通观测方法不能独立使用。例如:包含转速的电机电流模型和全阶观测器无法独立应用。在无速度传感器控制时,这些模型可作为模型参考自适应系统的参考模型或可调模型用于转速和磁通同时计算。因此无速度传感器系统不仅是少r转速闭环所需的反馈信号,更重要的是少了一个稳定磁通计算的电机参数——转速。 3)低频范围磁链观测难度大。感应电机的无速度传感器控制的关键在于磁链的准确观测,而磁链的观测在本质上都是对电机反电势的积4分o]。直接对反电势积分会存在积分初值和飘移问题,因此在无速度传感器控制中如何避免纯积分的问题是关键所在。异步电机在定子供电频率为零时,定子电压电流中不包含转子转速和参数的信息;在定子供电频率很低时电压和反电势很低,电压电流检测误差、PwM脉冲宽度的误差、开关器件的压降等对于电机线电压的重构和反电势计算的影响较大,定子电阻的误差对反电势计算误差影响也变大。所以零频率附近无速度传感器控制具有理论上和实际中的双重限制。 4)多参数辨识受到限制:shinnaka等人从理论上证明了在无速度传感器控制中,在转子磁通幅值恒定的条件下,转子电阻和转速不可能同时辨识出来o。,这给无速度传感器控制中转子电阻辨识增加了难度。转子电阻误差影响滑差计算的精度,在无速度传感器控制中,速度精度主要受滑差精度的影响[3]。 本文对感应电机高性能无速度传感器控制的策略进行分析和分类,将当前该研究领域的主要控制策略分为基于电机理想模型的方案和基于电机非理想特性的方案加以介绍,并且列出了无速度传感器控制的一些结论和研究热点。文中讨论  万方数据

基于MTPA的永磁同步电动机矢量控制系统分解

基于MTPA的永磁同步电动机矢量控制系统 1 引言 永磁同步电动机由于自身结构的优点,再加上近年来永磁材料的发展,以及电力电子技术和控制技术的发展,永磁同步电动机的应用越来越广泛。而对于凸极式永磁同步电动机,由于具有更高的功率密度和更好的动态性能,在实际应用中越来越受到人们的重视[1]。 高性能的永磁同步电动机控制系统主要采用的矢量控制。交流电机的矢量控制由德国学者blaschke在1971年提出,从而在理论上解决了交流电动机转矩的高性能控制问题。该控制方法首先应用在感应电机上,但很快被移植到同步电机。事实上,在永磁同步电动机上更容易实现矢量控制。因为该类电机在矢量控制过程中不存在感应电机中的转差频率电流而且控制受参数(主要是转子参数)的影响也小。 永磁同步电动机的矢量控制从本质上讲,就是对定子电流在转子旋转坐标系(dq0坐标系)中的两个分量的控制。因为电机电磁转矩的大小取决于上述的两个定子电流分量。对于给定的输出转矩,可以有多个不同的d、q轴电流的控制组合。不同的组合将影响系统的效率、功率因数、电机端电压以及转矩输出能力,由此形成了各种永磁同步电动机的电流控制方法。[2]针对凸极式永磁同步

电动机的特点,本文采用最优转矩控制(mtpa),并用一种更符合实际应用的方法进行实现,并进行了仿真验证。

图1 电流id、iq和转矩te关系曲线 2 永磁同步电动机的数学模型 首先,需要建立永磁同步电动机在转子旋转dq0坐标系下的数学模型,这种模型不仅可用于分析电机的稳态运行性能,还可以用于分析电机的暂态性能。 为建立永磁同步电机的dq0轴系数学模型,首先假设: (1)忽略电动机铁芯的饱和; (2)不计电动机中的涡流和磁滞损耗; (3)转子上没有阻尼绕组; (4)电动机的反电动势是正弦的。 这样,就得到永磁同步电动机dq0轴系下数学模型的电压、磁链和电磁转矩方程,分别如下所示:

永磁同步电机无位置传感器

Performance Comparison of Permanent Magnet Synchronous Motors and Controlled Induction Motors in Washing Machine Applications using Sensorless Field Oriented Control Aengus Murray, Marco Palma and Ali Husain Energy Saving Products Division International Rectifier El Segundo, CA 90245 Abstract—This paper describes two alternative variable speed motor drive systems for washing machine applications. Three phase induction motors with tachometer feedback and direct drive permanent magnet synchronous motors with hall sensor feedback are two drive systems commonly used in North American washers today. Appliance manufacturers are now evaluating sensorless drive systems because of the low reliability and high cost of the speed and position feedback sensors. A Field Oriented Control Algorithm with an embedded rotor flux and position estimation algorithm enables sensorless control of both permanent magnet synchronous motors and induction motors. The estimator derives rotor shaft position and speed from rotor flux estimates obtained from measured stator currents and the applied voltages. Sampling of currents in the dc link shunt simplifies stator current measurement and minimizes cost. Field oriented control algorithm allows good dynamic control of torque and enables an extended speed range through field weakening. The digital control algorithm runs on a unique hardware engine that allows algorithms to be designed using graphical tools. A common hardware platform can run either the PMSM or IM using sensorless field oriented control in a front loading washer application. Test results are presented for both drives in standard wash cycles. Keywords-component; Advanced Control; Field Oriented Control Algorithm;, Appliance control architecture; I.I NTRODUCTION Accurate control of drum speed is required in both horizontal and vertical axis washer machines [1]. In front loading horizontal axis washers, the drum speed determines the washing action. There is a critical drum RPM, depending on the drum radius, above which the clothes stick to the inside edge of the drum. At this speed, the centrifugal force due to rotation balances the weight of the wet clothes. At speeds below this, the clothes will stick to the side of the drum until the component of the weight acting along the radius is greater than the centrifugal force. Once this angle is reached, the clothes fall back down into the base of the drum. The speed of the drum determines how vigorously the clothes are washed and allows a gentle wash cycle to be selected for delicate items. In the spin mode, the water is drained and the drum speed is increased well beyond the critical speed and the water forced out of the cloths by the centrifugal force. In traditional top loading vertical axis machines, the agitation action is produced mechanically using a gearbox and clutch. However, the introduction of speed control systems not only simplifies the mechanical system but also allows for wash cycle control. The control of the speed and angle of stroke allows the system designer to better manage the washing action and so develop wash cycles that use less water. European front-loading washers have used variable speed control for many years and typically use a universal ‘brush type’ motor. However, the American washer uses a larger drum size, which requires a motor with a power range beyond that of the universal motor solution. The front-loading drive solutions on the market today include direct drive permanent magnet synchronous motor drives or a belt drive using an induction motor. Appliance manufacturers are now evaluating these two drive types in top-loading machine to reduce cost and improve performance. However, both these drive systems use shaft feedbacks sensors. The direct drive PMSM typically uses a Hall Effect sensor for position feedback while the induction motor drive typically uses an analog or digital tachometer for speed feedback. The ideal universal drive can run either a PMSM or an induction motor without shaft feedback sensors. However, a single hardware platform can efficiently run either a PMSM or an induction motor using sensorless field oriented control algorithm. In both cases, speed and position estimates derive from motor terminal voltages and currents. Induction motors were initially preferred for washing machine drives because of the ease of running in high speed field weakening mode even with simple scalar control methods. However, the PMSM is now becoming a viable solution because field oriented control approach enables high speed field weakening. In an induction motor, the torque producing current flows in both the rotor and stator windings while the air gap field generation needs additional field current. Therefore, in washing mode, the total copper losses are more than double

交流感应电动机无速度传感器的高动态性能控制方法综述

交流感应电动机无速度传感器的 高动态性能控制方法综述 清华大学 杨耕 上海大学 陈伯时 摘要:文章分析了交流感应电机无速度传感器的高动态性能控制方案的控制要点。在介绍国内外产业界已实用化的、以及正在研发中的几种代表性的控制策略的同时,讨论了各种方法理论要点和实际应用中的特点。最后,介绍了当前的几个研究热点问题并就发展方向提出了一点设想。 关键词:异步电动机控制 无速度传感器 转矩控制 磁链观测 速度辨识 Rev iew the M ethods for the Speed Sen sor-less Con trol of I nduction M otor Yang Geng Chen Bo sh i Abstract:T h is paper analyzes theo retical po ints of the i m p lem entati on fo r h igh perfo r m ance contro l of in2 ducti on mo to r w ithout speed senso r.A fter that,typ ical app roaches of the contro l strategy,w h ich are used in p ractical p roducts o r are being developed recently,are p resented and the characteristic of each app roach is dis2 cussed.F inally,som e unso lved p roblem s being researched as w ell as the develop ing po tentials are introduced. Keywords:contro l of inducti on mo to r speed senso r2less to rque contro l flux observer speed identifica2 ti on 1 前言 交流感应电机的无速度传感器高动态性能控制,是为了实现与有速度传感器的矢量控制(或直接转矩控制)相当的转矩和速度性能的方案,被用于无法设置速度传感器的设备或新一代高性能通用变频器之中[1,2]。相关的理论与技术也成为近10年来交流传动领域的热门研发内容之一。 本文主要综述在无速度传感器的前提下,具有速度反馈控制环的矢量控制方案(V C)和直接转矩控制方案(D TC),而不讨论诸如“V F控制+为补偿负载变动的滑差补偿”等只考虑静态的方法。本文在介绍各种方法的同时,综述其理论要点和实际应用中的特点、介绍所应用的厂家,从中总结出实现高动态性能控制的要点及主要成果。最后,介绍当前几个研究热点问题。 2 控制方法 211 方法分类的出发点 一般地,由转矩控制环及速度控制环构成的无速度传感器矢量控制(或直接转矩控制)系统由图1所示的3个环节构成。即:①速度调节器;②磁链和转矩控制器;③速度推算或辨识器(含磁链计算或观测) 。 图1 无速度传感器控制系统构成 对于环节②,需要控制转矩和磁链。由此可以分为:a以转子磁链定向控制为基础的矢量控制策略。目前常用的有计算滑差频率的被称为间接法(I V C)和把状态观测器观测到的转子磁链进行反馈控制的直接法(DV C)。b以控制定子磁链为特点的,被称之为直接转矩控制策略(D TC)。 环节③的结构依存于环节②的结构。实际上在计算或推定速度值时,常常也要获得(计算或观测)磁链(转子的或是定子的)值。因此,按其理论上的特点,可以把获得转速和磁链的方法大致分 3 电气传动 2001年 第3期

基于SVPWM的永磁同步电机控制系统的仿真

基于SVPWM的永磁同步电机控制系统的仿真 随着电动机在社会生产中的广泛应用,由于永磁同步电机具有结构简单、体积小、效率高、转矩电流比高、转动惯量低,易于散热及维护等优点,特别是随着永磁材料价格的下降、材料的磁性能的提高、以及新型的永磁材料的出现,在中小功率、高精度、高可靠性、宽调速范围的伺服控制系统中,永磁同步电动机引起了众多研究与开发人员的青睐,其应用领域逐步推广,尤其在航空航天、数控机床、加工中心、机器人等场合已获得广泛的应用。我国制作永磁电机永磁材料的稀土资源丰富,稀土资占全世界的80%以上,发展永磁电机具有广阔的前景。 第一章永磁同步电机的矢量控制原理 1.1 永磁同步电机控制中应用的坐标系 交流电机的数学模型具有高阶次,多变量耦合,非线性等特征,难以直接应用于系统的设计和控制,与直流电机单变量,自然解耦和线性的数学模型相比较,交流电机显得异常复杂。因此需要通过适当的转换,将交流电机的控制变换为类似直流电机的控制将大大简化交流电机控制的复杂程度。 永磁同步电机矢量控制的基本思想是把交流电机当成直流电机来控制,即模拟直流电机的控制特点进行永磁同步电机的控制。为简化感应电机模型,可将电机三相绕组电流产生的磁动势按平面矢量的叠加原理进行合成和分解,使得能够用两相正交绕组来等效实际电动机的三相绕组。由于两相绕组的正交性,变量之间的耦合大大减小。 1.1.1系统中的坐标系 1)三相定子坐标系(U-V-W坐标系) 其中三相交流电机绕组轴线分别为U、V、W,彼此之间互差120度空间电角度,构成了一个U-V-W三相坐标系。空间任意一矢量在三个坐标上的投影代表了该矢量在三个绕组上的分量。 2)两相定子坐标系(α-β坐标系) 两相对称绕组通以两相对称电流也能产生旋转磁场。对于空间的任意一矢量,数学描述时习惯采用两相直角坐标系来描述,所以定义一个两相静止坐标系,即α-β坐标系。它的轴α和三相定子坐标系的A轴重合,β轴逆时针超

相关主题
文本预览
相关文档 最新文档