当前位置:文档之家› 聚丙烯酰胺合成方法

聚丙烯酰胺合成方法

聚丙烯酰胺合成方法
聚丙烯酰胺合成方法

聚丙烯酰胺合成工艺

( 1) A 原理:丙烯酰胺在自由基引发剂作用下经自由基聚合反应合成聚丙烯酰胺:

O引发剂H

H2C C C NH2CH 2C n

H C O

NH 2

丙烯酰胺在醇或吡啶溶液中,经强碱催化剂如烷氧钠的作用下,经阴离子聚合反应则生成聚β-丙酰胺。

O碱

H2C C C NH2CH2 CH2 CONH

H阴离子聚合反应n

工业生产中采用自由基聚合反应以生产聚丙烯酰胺,所用的自由基引发剂或引发剂来源种类甚多,包括过氧化物、过硫酸盐、氧化-还原体系、偶氮化合物、超

声波、紫外线、离子气体、等离子体、高能辐射等。

工业生产中采用的聚合方法,主要是溶液聚合法和反相乳液聚合法,以前者应用最为广泛。此外也有采用γ-射线辐照引发固相聚合的报道。

B.丙烯酰胺水溶液聚合存在的问题:①聚合热为82.8 kJ/mol,相对来说放出的热

量甚大,因此水溶液聚合法中如何及时导出聚合热成为生产中的重要技术问题之

一。②是如何降低残余单体含量。因为丙烯酰胺单体毒性甚大,为了减少其危害性,特别是用于水质处理时对残余单体的含量要求低于0.1%。③是如何将聚合反应得到的高粘度流体或凝胶转变为固体物,即干燥脱水问题。④是如何自由控制产品分子量。

丙烯酰胺于 25 o C, pH=1 时链增长速率常数k p与链终止速率常数k t分别为( 1.72± 0.3)× 104和( 16.3±0.7)× 106-1 -1,与动力学链长成正比的k p t1/2

Lmol s/k=4.2± 0.2,此数值甚高,所以不存在链转移时,聚丙烯酰胺可获得平均分子量超过2

× 107的产品。

丙烯酰胺在水溶液中进行自由基聚合时,可能产生交联生成不溶解的聚合物,当聚合反应温度过高时,此现象更为严重。理论解释认为歧化终止生成的聚合物端

基具有双键,参与聚合反应或发生向聚合物进行链转移所致。此外引发剂过硫酸

盐与聚丙烯酰胺加热时也会导致生成凝胶。

有人研究了工业产品聚丙烯酰胺的含氮量,发现含氮量低于理论值,认为这是由于分子内脱 NH 3生成酰亚胺基团所致。

COCO C C NH3

NH2 NH2O N O

H

高纯度丙烯酰胺易聚合为超高分子量的聚丙烯酰胺,为了生产要求的分子量范

围,须加有链转移剂,链转移常数如表所示。

链转移剂温度,o C链转移常数× 104

单体250.0786 ±0.0107

单体400.120 ±0.0328

聚丙烯酰胺<50可忽略

H2O25近于零

H2O2255

K S O

825 4.12 ±2.38

22

K2S2O84026.3 ±7.08 HSO751700 3

CH3OH300.13

(CH3)2CHOH5019

由上面的表可知低于50 o C 条件下,向聚合物和水的链转移常数非常小,而向引

发剂链转移则比较明显,也易于向醇链转移,特别是向异丙醇链转移,因此工业上多采用异丙醇为链转移剂以控制产品分子量。

水溶液中微量金属离子如Fe3+、Cu2+可加速氧化-还原引发体系的反应速度,但过多则产生不良影响。由于聚丙烯酰胺增长链自由基向金属离子如铁盐转移一个

电子而发生链终止反应。

( 2)工业生产方法有以下几种。

① 水溶液聚合方法。丙烯酰胺水溶液聚合法是工业生产中采用的主要方法。配

方中单体溶液须经离子交换提纯。反应介质水应为去离子水,引发剂:多采用过硫酸盐与亚硫酸盐组成的氧化-还原引发体系,以降低反应引发温度。此外需加有链转移剂,常用的为异丙醇。为了消除可能存在的金属离子的影响,必要时加入螯合剂乙二胺四乙酸(EDTA )。为了易于控制反应温度,单体浓度通常低于25%。

由于丙烯酰胺聚合反应热高达82.8 kJ/mol,聚合热必须及时导出,如果单体浓度

为25%~30%即使在 10o C 引发聚合,如果聚合热不导出,则溶液温度会自动上升到 100 o C,将生成大量不溶物。因此导热问题成为生产中的关键问题之一。

生产低分子量产品时刻在釜式反应器中间歇操作或数釜串联连续生产,夹套冷却保持反应温度 20~25 o C。转化率达 95%~ 99%为止。生产高分子量产品时,由于产品为冻胶状,不能进行搅拌,为了及时导出反应热,工业上采用在反应釜中将配方中的物料混合均匀后,立即送入聚乙烯小袋中。将装有反应物料的聚乙烯装置

水槽中冷却反应。须注意的是由于空气中的氧有明显的阻聚作用,配制与加料必

须在 N2气氛中进行。使用过硫酸盐-亚硫酸盐引发剂体系时,通常引发开

始温度为 40 o C,如果要求生产超高分子量产品时引发温度应低于20 o C。

由于单体不挥发,反应后不能除去,所以未反应单体将残存于聚丙烯酰胺。延长反应时间,提高反应温度虽可降低残余单体量,但生产能力降低而且不溶物含量

会增加。为了降低残余单体量有的工厂采用复合引发体系,由氧化-还原引发剂

与水溶性偶氮引发剂组成。低温条件下由氧化-还原引发剂发挥作用,后期当反

应物料温度升高后,使偶氮引发剂分解进一步发挥作用,此法生产的聚丙烯酰胺

残余单体含量可低至0.02%(气相色谱法测定)。水溶性偶氮引发剂为4,4′-偶氮双 -4-氰基戊酸, 2,2′-偶氮双 -4-甲基丁氰硫酸钠以及2,2′ -偶氮双 -2-脒

基戊烷二盐酸盐等。

测定残余丙烯酰胺的方法工业上主要用溴化法;但其灵敏度差,对于极微量单体

可用火焰离子谱或高效液相色谱进行测定。

为了生产含有少量羧基的聚丙烯酰胺,刻在聚合配方中加入适量碳酸钠,使少量的酰胺基团水解为羧基并可减少生成不溶物。

按上述方法合成的聚丙烯酰胺为高粘度流体或凝胶状不流动物。可以直接作为商

品,供应距生产工厂较近的使用单位。长途运输时,则应进行干燥,生产粉状固

体。胶体物进行干燥的方法可用捏和干燥法,但此法能耗大,并且产品降解严重。

生产规模较小时可采用挤出机造粒后,烘房内烘干的方法,再经粉碎的粉状产品。

产量大而且较先进的方法是经挤出机造粒后,送入转鼓式干燥器,干燥后粉碎得

粉状商品。

②反相乳液聚合法。丙烯酰胺单体配制成浓度为30%~ 60%的水溶液作为分

散相,其中加有少量的二乙胺四乙酸和Na2 SO4以及氧化-还原引发剂和适量水

溶性表面活性剂,其HLB 值应较低。用芳烃或饱和脂肪烃作为连续相,其中加

有油溶性表面活性剂,其HLB 值应较高,如脱水山梨醇油酸酯。Na2SO4具有防止胶乳粒子粘结的作用。分散相与连续相的比例通常为3:7。聚合所得分散相胶

乳粒子直径为 0.1~10μm,与表面活性剂用量有关。反应温度一般为40o ,

C 6 h

转化率可达98%。此法的优点是反应热易导出,物料体系粘度低,便于操作,

产品可不经干燥直接应用。缺点是使用有机溶剂,易燃、有效生产能力低于溶液

聚合法。

(3)应用

聚丙烯酰胺是工业最为重要的合成的水溶性聚合物,用途甚为广泛。主要用于造纸工业、水质处理、采矿工业、石油回收与开采、纺织工业、涂料工业、食品工

业等。

聚丙烯酰胺使用方法及注意事项

———巩义市东方净化材料厂——— 聚丙烯酰胺使用方法及注意事项 溶解的方法 在容器如实验室的容器中加入一定量的清水,按清水量计算所需的聚丙烯酰胺量,称出聚丙烯酰胺;开启电动搅拌器,将清水搅出漩涡,搅拌器叶片末端的线速度最好在200-400转(以免造成聚丙烯酰胺聚合物降解;但又不能太慢,以免聚合物颗粒浮在水面上,或在水中下沉、结团)。将聚丙烯酰胺缓缓撒入水的漩涡中,直到撒完,便之均匀的在水中分散,溶解(注意不能将聚丙烯酰胺快速进入水里,否则会造成聚合物互相粘连、结团,失去药效)。然后再搅拌一段时间,使聚合物颗粒充分溶解,最后成为均匀、透明、粘稠的溶液,无肉眼可见的团块。 溶解比例 阴离子和非离子、阳离子聚丙烯酰胺通常溶解浓度为0.1%~0.3%。 搅拌速度 搅拌速度的理想转速为每分钟200至400转。 溶解时间 溶解聚丙烯酰胺所需的时间因为聚丙烯酰胺种类、溶解所用的水质、水温、搅拌效率不同而会有所不同。常规阴离子或者阳离子聚丙烯酰胺通常需要约40-60分钟的搅拌时间才能使粉末充分溶解。非离子聚丙烯酰胺通常需要80-120分钟。 注意事项 1.聚合氯化铝和聚丙烯酰胺不能放在一起使用,否则会影响效果。一定要分开使用,先投加聚合氯化铝间隔一小段时间后再投加聚丙烯酰胺。 2.粉状聚丙烯酰胺絮凝剂不能直接投加到污水中。使用前必须先将它溶解于水,用其水溶液去处理污水。 3.溶解粉状聚合物的水应是干净水(如自来水),不能是污水,常温的水即可,一般不需要加温。水温低于5度时溶解很慢。水温提高溶解速度加快,但40度以上会使聚合物加快降解,影响使用效果。一般自来水都适合于配制聚合物溶液,但强酸、强碱、高含盐的水不适于用来配制。 4.配好的聚丙烯酰胺投入污水污泥中的量需适量,过少没有效果,过多物料变粘适的其反。 5.固体的聚丙烯酰胺在干燥、阴凉的地方可存放二年以上,但配成溶液后,其存放时间就很有限。一般说,溶液浓度为0.1%时,非、阴离子型聚合物溶液不超过一周;阳离子型聚合物溶液不超过一天。溶液稳定性与浓度有关,配得越浓(如3%到5%)的溶液存放时间越长。但3%到5%的溶液不能直接去处理污水,使用前还要稀释。阳离子型聚丙烯酰胺溶液在pH<5.5时较稳定,pH>6时会因水解而迅速失效。它对铁离子和钙、镁离子比阴离子聚合物敏感。 ———巩义市东方净化材料厂———

聚丙烯酰胺合成方法

聚丙烯酰胺合成工艺 (1)A原理:丙烯酰胺在自由基引发剂作用下经自由基聚合反应合成聚丙烯酰胺: C H O NH2 H2C 引发剂 CH2 H C C O NH2 n 丙烯酰胺在醇或吡啶溶液中,经强碱催化剂如烷氧钠的作用下,经阴离子聚合反应则生成聚β-丙酰胺。 C H O NH2 H2C 碱 阴离子聚合反应 CH2 CH2CONH n 工业生产中采用自由基聚合反应以生产聚丙烯酰胺,所用的自由基引发剂或引发剂来源种类甚多,包括过氧化物、过硫酸盐、氧化-还原体系、偶氮化合物、超声波、紫外线、离子气体、等离子体、高能辐射等。 工业生产中采用的聚合方法,主要是溶液聚合法和反相乳液聚合法,以前者应用最为广泛。此外也有采用γ-射线辐照引发固相聚合的报道。 B.丙烯酰胺水溶液聚合存在的问题:①聚合热为82.8 kJ/mol,相对来说放出的热量甚大,因此水溶液聚合法中如何及时导出聚合热成为生产中的重要技术问题之一。②是如何降低残余单体含量。因为丙烯酰胺单体毒性甚大,为了减少其危害性,特别是用于水质处理时对残余单体的含量要求低于0.1%。③是如何将聚合反应得到的高粘度流体或凝胶转变为固体物,即干燥脱水问题。④是如何自由控制产品分子量。 丙烯酰胺于25 o C, pH=1时链增长速率常数k p与链终止速率常数k t分别为(1.72±0.3)×104和(16.3±0.7)×106Lmol-1s-1,与动力学链长成正比的k p/k t1/2=4.2±0.2,此数值甚高,所以不存在链转移时,聚丙烯酰胺可获得平均分子量超过2

×107的产品。 丙烯酰胺在水溶液中进行自由基聚合时,可能产生交联生成不溶解的聚合物,当聚合反应温度过高时,此现象更为严重。理论解释认为歧化终止生成的聚合物端基具有双键,参与聚合反应或发生向聚合物进行链转移所致。此外引发剂过硫酸盐与聚丙烯酰胺加热时也会导致生成凝胶。 有人研究了工业产品聚丙烯酰胺的含氮量,发现含氮量低于理论值,认为这是由于分子内脱NH 3生成酰亚胺基团所致。 C C 22O O C C O O H NH 3 高纯度丙烯酰胺易聚合为超高分子量的聚丙烯酰胺,为了生产要求的分子量范围,须加有链转移剂,链转移常数如表所示。

聚丙烯酰胺开题报告

开题报告 一、课题名称 聚丙烯酰胺的制备。 (一)主要原料极其规格 丙烯酰胺聚合级工业品 M E TA MS 工业级 (甲基氧代乙基二甲基氨甲基硫酸酯) (二)制法 丙烯酰胺与适宜的阳离子单体(如ME T AM S)在水-特丁基醇(TB A)中自由基催化下发生沉积共聚合反应而制得聚丙烯酰胺。 (三)流程说明 配制好的50%液态丙烯酰胺单体溶液,通过离子交换塔,除去聚合抑制剂铜离子后,间断的加入沉积共聚合反应器然后加入精致水、蜜白胺和循环的TB A溶剂,再加入液态缓冲剂氯化铵,用氮气吹扫,除去残余的氧后,再加入催化剂-活化剂溶液。在聚合反应器中进行绝热反应,温度为50~60度、反应时间5~6h 聚合物的收率是定量的。 产物为悬浮于水和TB A中的微粒。通过离心机分出水和TB A,再将粒料在干器中进行干燥包装出厂母液经精制循环使用。二、课题研究的目的和意义 设计一种聚丙烯酰胺的生产工艺流程,能用于中试生产,工业及民用水处理的需求。 聚丙烯酰胺再合成水溶性聚合物中是用途最广、用量最大的,自五十年代用于造纸工业作为添加剂,已有四十多年的历史。采用不同的聚合工艺,引入不同的官能团,可得到一系列具有不同分子量和不同电荷密度的产品,使其应用范围更加广泛,现已被称为标准的造纸助剂。据报道,美国1985年用于造纸作为助流助滤剂的PA M为8700吨,1985—1990年间增长6—10%。因此

研究和开发高质量的PA M具有一定的理论价值和实际意义。 本课题的目的是研制出一种固含量高、分子量高、溶解迅速、稳定好、单体残存量少的聚合物乳胶产品,要求其生产工艺简单,生产成本低的生产工艺流程。 三、课题研究的对象 聚丙烯酰胺产品规格:有聚丙烯酰胺粉剂、非离子型和阴离子型干粉、胶体等。 聚丙烯酰胺产品用途:用作油田泥浆处理剂、污水处理剂、纺织上浆、纸张补强剂、絮凝剂等,广泛应用于石油、冶金、纺织、食品等工业。 1、石油工业 聚丙烯酰胺虽然对水的表面张力降低很小,但分子中有活性基团,吸附于界面之后,能改变界面状态,多年来作为增稠剂、降失水剂、絮凝剂、分散剂、降阻剂、阻垢剂、流度控制剂用于石油工业,提高钻井流体流动性和石油采收率,并减少流体阻力。 作为泥浆性能调整剂,经常使用的是部分水解聚丙烯酰胺。其作用是调节钻井液的流变性,携带岩屑,润滑钻头,减少流体流失等。用PA M调节的钻井泥浆相对密度低,固体含量少,能减轻对油气层的压力和堵塞,容易发现油气层,并有利钻井。 此外,还可大大减少卡钻事故,减轻设备磨损,并能防止井漏和坍塌,使井径规则。在提高石油采收率的三次采油方法中,聚合物驱油技术占有重要地位 在油田生产过程中,由于地层的非均质性,常产生水浸问题,需要进行堵水。PAM类堵水剂的发展甚快,用量大,具有对油和水渗透能力的选择性。选择性堵水这一点是其他堵水剂所没有的。采用P AM还可调整地层内吸水剖面及封堵大管道,实践中已见到良好效果。 从70年代以来,国际上发展起来一种新型发醇产品—黄原胶,它是由甘蓝黑腐单细胞菌以碳水化合物为主要原料(如玉米、淀粉等),经生物工程的手段得到的一种高分子微生物聚合物。

不同离子型聚丙烯酰胺的使用方法和用量用量计算(详细参考)

不同离子型聚丙烯酰胺的使用方法和用量 一、阴离子聚丙烯酰胺: 1、用于污水沉降中,建议配比浓度0.1%。 2、先将粉剂均匀地投撒在自来水中,加以40-60转/分的中速搅拌使高分子充分溶解于水,方可投加使用。 3、实验时,取100ml废水,加入10%聚合氯化铝溶液,并缓慢搅拌,用注射器缓慢滴加PAM 溶液,每次 0.5ml,根据生成的矾花大小及絮体紧密程度、上清液清澈度、沉降速度、投加量等来确定最合适的药剂。 4、适用于钢铁、化纤、印染、电镀、湿法冶金,也可用建筑胶水厂、涂料厂做增稠剂、造纸厂做分散剂等。吨废水添加干粉量为5-10g。 二、非离子聚丙烯酰胺 用于气浮工艺时,建议配比浓度0.1%,用法同阴离子,搅拌时间90分钟。 三、阳离子聚丙烯酰胺 1、用于污泥脱水时,建议配比浓度0.2%,搅拌时间50分钟投加使用。 2、实验时,取100ml废水,用注射器缓慢滴加PAM溶液,每次约0.5ml,根据生成的矾花大小及絮体紧密程度、上清液清澈度、沉降速度、投加量等来确定最合适的药剂。 3、适用于制药厂、皮革厂、印染污泥、化工污泥、造纸厂、污水处理厂等,吨废水添加干粉量为10-20g. 四、药剂用量计算 1.阴离子:配比浓度1/1000即:1吨水量加1kgPAM做小实验:如污水100ml里加1ml 药剂;1吨污水里加10g(L)药剂;1吨污水里加10gPAM. 2.阳离子:配比浓度2/1000即:1吨水里加2kgPAM;做小实验:如污泥100ml里 0.5mlL药剂;1吨污泥里加5kg药剂;1吨污泥里加10gpAM 五、影响气浮效果的因素 1、溶解情况如何?PAM 溶解时搅拌强度不宜过大,可以考虑延长搅拌时间来改善溶解情况 2、配制浓度问题。PAM配制浓度偏高时与待处理废水的混合可能会不够理想,可以考虑降低配制浓度,最低可调至0.05%,一般为0.05%-0.1%。由于低浓度时PAM 溶解较困难,可以先配制成一个较高浓度的溶液,然后由后稀释系统稀释至所需浓度。 3、PAC与PAM投加点间距,条件允许情况下间距尽可能远 4、PAM投加与混合。反应情况不理想时可以考虑两点投加,且两投加点之间要有一定的距离,第二个投加点离出水口不宜过远,以防止产生的絮团再次破碎。出水口前管道内应设置静态混合器,条件不足的话,弄个弯头也将就了 六、聚丙烯酰胺经验用量 中断废水回收、废浆污泥脱水阴离子、阳离子千分之三配每吨用3-5克;城市污水处理厂污泥脱水阳离子千分之五配每吨干污泥用4千克;钢厂循环水处理、污泥脱水阴离子1200万千分之五配每吨用5-7克;洗煤煤泥沉降、层渣沉降阴离子800-1200万千分之三配每吨用4克;盐水澄清去除钙、镁阴离子1800万千分之一配每吨用1-2克;电镀重金属、氢氧化物处理阴离子600-800万千分之一配每吨用1-2克;浮选助剂浮选前改进颗粒大小阴离子1000万千分之三配每吨用3-4克;肉

陶瓷纤维毯的主要生产方法和工艺流程(特选参考)

陶瓷纤维毯的主要生产方法和工艺流程 陶瓷纤维毯的主要生产方法和工艺流程散状纤维坯送入针刺机针刺时,"针刺制毯"借鉴无纺针刺工艺技术开发而成。由于刺针上钩状针脚,使纤维层互相紧密交织,以提高纤维毯的抗拉强度及抗风蚀性能。主要生产方法主要有电阻炉和电弧炉两种。纤维的成形方法分为喷吹法、甩丝法和甩丝-喷吹法等。硅酸铝纤维原料的熔融一般采用电炉作为熔化设备。工艺流程电弧法喷吹成纤、湿法制毡工艺:形成流股,合格配合原料加入电弧炉中熔融。流股经压缩空气或蒸汽喷吹后成为纤维,经过除渣器除渣后,集棉形成废品纤维。废品纤维被送入搅拌槽旋涡除渣后,被送至贮料槽,施加粘接剂后形成浆料。浆料经压机模压或真空吸滤,干燥形成陶瓷纤维毯。 电阻法喷吹(或甩丝)成纤、 干法针刺制毯工艺:根据其成纤方法不同,陶瓷纤维毯有两种生产工艺; 电阻法喷吹(包括平吹和立吹)成纤、 干法针刺制毯工艺;"针刺制毯"是借鉴无纺针刺工艺技术开发而成,散状纤维坯 送入针刺机针刺时,由于刺针上钩状针脚,使纤维层互相紧密交织,以提高纤维毯的 抗拉强度及抗风蚀性能。 针刺机利用具有三角形或其他形状的截面,且在棱边上带有刺钩的刺针对纤维网反

复进行穿刺。由交叉成网或气流成网机下机的纤网,在喂入针刺机时十分蓬松,只是由纤维与纤维之间的抱合力而产生一定的强力,但强力很差,当多枚刺针刺入纤网时,刺针上的刺钩就会带动纤网表面及次表面的纤维,由纤网的平面方向向纤网的垂直方向运动,使纤维产生上下移位,而产生上下移位的纤维对纤网就产生一定挤压,使纤网中纤维靠拢而被压缩。当刺针达到一定的深度后,刺针开始回升,由于刺钩顺向的缘故,产生 移位的纤维脱离刺钩而以几乎垂状态留在纤网中,犹如许多的纤维束“销钉”钉入了纤网,从而使纤网产生的压缩不能恢复,如果在每平方厘米的纤网上经数十或上百次的反复穿刺,就把相当数量纤维束刺入了纤网,纤网内纤维与纤维之间的摩擦力加大,纤网强度升高,密度加大,纤网形成了具有一定强力、密度、弹性等性能的非织造品。 针刺非织造材料的主要应用有地毯、装饰用毡、运动垫、褥垫、家具垫、鞋帽用呢、肩垫、合成革基布、涂层底布、熨烫用垫、伤口敷料、人造血管、热导管套、过滤材料、土工织物、造纸毛毯、油毡基布、隔音隔热材料以及车用装饰材料等。目前,针刺机在高温过滤产品的运用比较多。高温过滤产品的高性能纤维主要有玻璃纤维、Nomex纤维、P84纤维、PPS纤维、PETT纤维。由于前几种纤维自身的特性,使用范围受到了一定影响。玻璃纤维比较脆,Nomex纤维耐氧化性差,P84纤维易水解老化,PPS纤维使用温度较低。而PETT纤维耐化学腐蚀、耐高温,能在各种恶劣环境下使用并取得较好的效果,也比其他纤维制成的滤料有更长的使用寿命。 虽然PETT具有良好的耐温和耐化学腐蚀性能,但价格昂贵且过滤效率相对其它纤维制成滤料没有优势。为此,有些企业在其中加入适量的超细玻璃纤维,既不影响耐温性能,又能提高滤料的过滤效率和降低率料价格,也扩大了适用范围和延长使用寿命。 针刺机种类: 条纹针刺机、通用花纹针刺机、异式针刺机、环形针刺机、圆管型特殊针刺机、四板正位对刺针刺机、倒刺针刺机、双滚筒针刺机、双主轴针刺机、起绒针刺机、提花针刺机、高速针刺机、电脑自动跳跃针刺机、针刺水刺复合机等。 针刺机的主要组成部分: 1.针刺机主要由机架,送网机构、针刺机构、牵拉机构、花纹机构、传动机构 等组成,其中花纹机构仅花纹针刺机具有。(其中最重要的是针刺机构) 2.针刺非织造工艺形式有预刺、主刺、花纹针刺、环式针刺和管式针刺等。 (其中预刺和主刺是最普遍的。) 针刺法非织造工艺的特点: 1.适合各种纤维,机械缠结后不影响纤维原有特征。

离心玻璃棉絮状纤维的生产方法与制作流程

本技术公开了一种离心玻璃棉絮状的生产方法,本技术采用石英砂、正长石、石灰石、碎玻璃、纯碱、硼砂等材料,以合理配比混合后,经炉窑高温熔融进行物理化学反应制得玻璃液,再经高速离心喷吹甩出得短玻纤维棉絮聚集物。本技术所生产的材料具有密度小,热导率低,吸声系数高,抗燃,抗冻,不蛀的特点,是保温绝热的理想材料,主要用于建筑物围栏结构,工业设备,管网的绝热处理,建筑物的防火等方面,还可用作吸声消声的消声器,吸声屏障,吸声墙面等方面。 权利要求书 1.一种离心玻璃棉絮状纤维的生产方法,其特征在于至少包括如下工艺步骤:选料,配料,送炉熔融,玻璃棉絮成形,具体分述如下: 一、选料:选择主料和辅料 选择主料:选择的主料为石英砂、白云石、石灰石、正长石和纯碱,各主料具体的成分要求如下, 所述的石英砂的成分要求为: SiO2≥98.5%±0.1% Al2O3≤0.5%±0.05% Fe2O3≤0.01% Cr2O3<0.001% 以上颗粒要求0.6-0.4mm; 所述的白云石成分要求为:

Cao>30.5%±0.3% Fe2O3<0.1%±0.09 Mgo>20%±0.3 Al2O3<0.3%±0.1% 以上颗粒要求0.6-0.4mm; 所述的石灰石成分要求为: Cao>54%±0.3% Mgo>0.5%±0.3% Al2O3<0.3%±0.1% Fe2O3<0.1%±0.05% 以上颗粒要求0.6-0.4mm; 所述的正长石成分要求为: Al2O3>16%±0.3% Fe2O3<0.1%±0.01% 以上颗粒要求0.6-0.4mm 所述的纯碱成分要求为: Na2CO3 99%±0.1%; 上述各成分要求中的百分含量为重量百分比; 选择辅料,选择的辅料包括碎玻璃、硼酸、芒硝和碳粉,这四种辅料的具体要求如下,

聚丙烯酰胺合成技术与应用

聚丙烯酰胺合成技术与应用介绍 聚丙烯酰胺(PAM)是丙烯酰胺(AM)均聚或1其他单体共聚而成的质量分数为50%以上的线型水溶性高分子化学品的总称。由十其结构单儿中含有酰胺基,易形成氢键,所以具有良好的水溶性,广泛应用于石油、金属及化学矿山开采、水处理、纺织、造纸等行业。PAM 系列产品可分为非离子型(NPAM)、阳离子型(CPAM)、阴离子型(APAM)和两性4大类。相对分子质量大小是PAM主要性能指标之一。 1 PAM的合成方法 PAM一般由自由基引发聚合合成,主要有本体法、水溶液法、乳液法和悬浮法等合成方法。根据聚合是否加入其他单体,又可分为均聚和共聚2种,PAM产品形态有水溶液、乳剂和粉剂等。 1. 1水溶液聚合法 水溶液聚合法是将单体AM和引发剂溶解在水中的聚合反应,是目前应用较广泛和成熟的技术。所得PAM产品有胶状和粉状2种,其胶体采用质量分数为8%-10%或20%-30% AM的水溶液在引发剂作用下直接聚合而得,产物经脱水干燥后可得粉状产品。产物相对分子质量为7万-700万。该法优点为安全、工艺设备简单、环境污染小,缺点是产物固含量低,仅为8%-15%,且易发生酰亚胺化反应,生成凝胶。 在PAM的水溶液聚合中,引发剂在很大程度上决定了聚合反应后得到产物的相对分子质量、产率,因而新型引发体系的开发是AM 水溶液聚合研究的关键。蔡开勇等人研究了过硫酸钾一胺体系、过硫

酸钾连二硫酸钠体系、有机过氧化物、浪酸盐或氯酸盐、金属离子等五类氧化还原引发体系对合成PAM相对分子质量的影响,发现过硫酸钾一连二硫酸钠体系是合成高相对分子质量PAM的有效引发体系。吴挡兰等人采用复合氧化还原引发体系,得到相对分子质量为3. 05 X 106的PAM。穆志坚采用过硫酸钾一氮三丙酰胺引发体系,在最佳土艺条件下,得到相对分子质量为6.2X105的PAM,转化率为98. 94%。张宝军等人开发出一种新型氧化还原引发体系,以AM和丙烯酸钠为单体,进行水溶液自由基共聚合反应,合成了相对分子质量高达1.8X107,过滤比为1. 24的超高相对分子质量PAM。 双官能度引发聚合是自由基聚合中一个很活跃的研究领域,它直接影响聚合速率和聚合物性能,包括端基性能、相对分子质量大小、结构等。Shah和8me、首次提出自由基“逐步聚合”概念,指出双官能度引发齐」能够用十自由基均聚制备超高相对分子质量聚合物。日木江畸厚等人使用双官能度过氧化物Luperox-2, 5-2, 5与NaHS03及Fev组成的氧化还原引发体系引发AM溶液聚合,制备了高相对分子质量的PAM}I-7。黄利铭等人以双官能度氧化还原引发体系为主,配合偶氮化合物引发剂组成新型复合引发体系,在低温下采用均相水溶液聚合法引发AM均聚,制备相对分子质量高达2 000万的PAM。 西南石油学院的胡星琪研究小组开发了一种新型的基十后过渡金属和业硫酸氢钠的AM水溶液聚合用引发体系,该体系的特点是不需要氮气保护,在常温不搅拌的情况下即可引发AM的水溶液聚合反应,日反应过程平稳可控,不易发生爆聚,可得到相对分子质量在

聚丙烯酰胺使用方法

聚丙烯酰胺的使用方法 1.溶解方法使用前先将固体颗粒溶解成1‰---5‰浓度 的水溶液,以便迅速发挥效力.在加药时,应采取渐次性 家药方式,慢慢的投如水中,便之均匀的在水中分散,溶 解. 2.溶解液的添加通常是添加约0.5‰---1‰的水溶液,但在悬浊液的高浓度和高 粘度的场合,建议将水溶液进一步,稀释成为0.1‰,则将容易混合而发挥充分的效 果. 3.阳离子较阴离子分子量偏低因而粘度也较阴离子弱,故阳离子,非离子配比浓度标准要比 阴离子略高.(视情况而定,同样可以依据水浓度适当调整浓度浊度高,浓度低.浊度低可以以 适当增加浓度).建议浓度为5‰--1%. 注意事项: 1.配制聚丙烯酰胺水溶液时,应在搪瓷,镀锌,铝制或塑料桶内 进行,不可在铁容器内配制和贮存. 2.溶解时,应注意将产品均匀的慢慢地加入带搅拌和加 热措施的溶解器中,应避免结固,溶液在适宜温度下配 制,并应避免长时间过剧的机械剪切.建议搅拌器 60—200转/min,否则会导致聚合物降解,影响使用效果. 3.聚丙烯酰胺水溶液应做到现用现配,当溶解液长时间放置,其 性能将会视水质的情况而逐渐降低. 4.在对悬浊液添家絮凝剂水溶液之后,如果长时间激烈地进行搅拌的话,将会破 坏已经形成的絮凝物. 聚丙烯酰胺的应用领域配比浓度及用量资料来源:会议论文 应用领域用途聚合物类型.规格用量及配比浓度 熔炉炼铝.硫酸铝循环水,生产过程中去杂质阴离子1000万千分之五每吨用3-5克盐水澄清去除钙与镁阴离子800-1200万千分之一每吨用1-2克膨润土生产增加膨润的粘度阴离子1500-1800万千分之三每吨用2-3克混凝土减水剂阴离子500-800万 1.2%配每吨用1.2kg

聚丙烯酰胺化学品使用说明书

聚丙烯酰胺化学品使用说明书 产品名称:聚丙烯酰胺 产品用途:废水处理用絮凝剂 一、化学品 化学品商品名:聚丙烯酰胺或PAM 英文名:Polyacrylamide (PAM) 二、成分、组成信息 化学品名称:聚丙烯酰胺 相对分子量: 900万 离子性:阳离子 化学类别: 螯合剂型聚合物 粘度:(1.0%SOL)950mPa·S 外观与性状: 白色粒状固体,稀释后呈无色液体,无臭,水分(0.1%SOL):10%以下。pH值:6.0--7.0 三、危险性概述 危险性类别:无 侵入途径:无 健康危害:无资料 急性中毒:无 慢性影响:未发现。 环境危害:无 燃爆危险:本品易燃。 四、急救措施 皮肤接触:脱去污染的衣着,用肥皂水和清水彻底冲洗皮肤。 眼睛接触:提起眼睑,用流动清水或生理盐水冲洗。就医。 食入:通过动物实验证明此产品食入后不会中毒 五、消防措施 危部分险特性:用水灭火时,颗粒遇水后变滑,避免人员滑倒摔伤

有害燃烧产物:无。 灭火方法:无火灾危险。 六、泄漏应急处理 应急处理:颗粒遇水后变滑,避免人员滑倒摔伤 七、操作处置与储存 操作注意事项:无特别要求 储存注意事项:储存于阴凉、通风的库房。 八、接触控制/个体防护 个人注意事项:无特别要求 工程控制:提供安全淋浴和洗眼设备。 眼睛防护:戴化学安全防护眼镜。 身体防护:无特别要求。 手防护:用大量水冲洗洗 其它防护: 九、理化特性 颜色:白色粒状 气味:无味 十、稳定性和反应活性 稳定性:稳定 禁配物:产生放热反应的氧化物。 避免接触的条件: 聚合危害:不聚合 分解产物:热的腐烂物可能产生,氢化合物气体,氮氧化物,碳氧化合物等。十一、毒理学资料 急性毒性:无毒性 刺激性: 十二、生态学资料 生态毒性:无 生物降解性: 非生物降解性:

玻璃纤维的生产工艺及应用

摘要 在广义范围来说,我们对于玻璃纤维的认识一直停留在它是一种无机非金属材料,可是随着研究的深入,我们知道实际上的玻璃纤维的种类有很多,而且性能优异,有很多突出的优点。比如说它的机械强度就特别高还有抗热、抗腐蚀效果也特别好。诚然,任何材料都不是完美的,玻璃纤维也有它自己无法令人忽视的缺点,就是它不耐磨而且容易发生脆裂。所以实际应用时我们要扬长避短。 玻璃纤维的原料获取简单,主要是废弃的旧玻璃或者玻璃制品,玻璃纤维特别细,20多根玻璃单丝组在一起才相当于一根头发的粗细。玻璃纤维通常可以在复合材料中作为增强材料来使用,由于近些年来人们对玻璃纤维研究逐渐加深,使得它在我们生产生活中扮演了越来越重要的角色。本文主要研究玻璃纤维的生产工艺及应用,介绍了玻璃纤维纤维的性质、主要成分、主要特点、材料分类、生产工艺、安全防护、主要用途、安全防护、产业现状、发展前景。 关键字:特点;生产工艺;应用;发展前景 abstract In broad scope, our understanding of the glass fiber has been stuck in it is a kind of inorganic nonmetal material, but with the deepening of the research, we know that in fact there are a lot of the kinds of glass fiber, and excellent performance, there are many outstanding advantages. Like it is really better than high mechanical strength and heat-resistant, corrosion effect is also very good. True, any material is not perfect, the glass fiber has not ignore its own shortcomings, is it not embrittlement resistant and easy to occur. So we should foster strengths and circumvent weaknesses in actual applications. Glass fiber raw material for simple, mainly abandoned old glass or glass products, glass fiber is particularly fine, more than 20 with glass monofilament group to the thickness of equivalent of a human hair. Glass fiber can usually be used as reinforced material in the composite material, because in recent years, people gradually deepening research on glass fiber, make it in our production has played an increasingly important role in the life. This paper mainly studies the production technology and application of glass fiber, this paper introduces the properties of fiber glass fiber, main component, main characteristics, material USES, safety protection, industry present situation, development prospect. Key words: characteristic; The production process; Application; Prospects for development 绪论 1.1玻璃纤维性质 熔点:680℃ 分子结构:

PAM与PAC用量与说明书

PAM与PAC使用说明书 一、混凝剂的作用及常用药剂 1.混凝剂的作用 废水中常常含有自然沉降法不能去除的细微悬浮物和胶体污染物,对于这类废水必须首先投加化学药剂来破坏胶体和细微悬浮物在水中形成的稳定分散系,使其聚集为具有明显沉淀性能的絮凝体,然后用重力法予以分离,这一过程包括凝聚和絮凝两步骤,二者总称为混凝。其中,凝聚是指使胶体、超胶体脱稳,凝聚为微絮体的过程,它包括胶体的脱稳,又包括颗粒的迁移和聚集;而絮凝则是微絮颗粒通过吸附、卷带和桥连而更大的絮凝体的过程,它只包括颗粒的迁移和聚集。 2.混凝剂的混凝机理 投加的药剂有无机多价金属盐类和有机高分子聚合物两大类。前者主要由铝盐和鉄盐,后者主要有聚丙烯酰胺及其变形物。我们常用的无机盐有聚合氯化铝和硫酸亚铁,有机类的是聚丙烯酰胺(PAM)。 铝、铁盐混凝剂的混凝机理十分复杂,简单地说,是它们一系列离解和水解产物对水中胶体及细微悬浮物所具有的压缩双电层、电性中和以及吸附桥连和卷带网捕作用的综合结果。 铝、铁盐混凝剂在水解过程中发挥以下三种作用:Al3+或Fe3+和低聚合度高电荷的多核络离子的脱稳凝聚作用;高聚合度络离子的桥连絮凝作用以及以氢氧化物沉淀形态存在时的网捕絮凝作用,以上三种作用有时可能同时存在,但在不同条件下可能以某一种为主。通常在PH偏低、胶体及细微悬浮物浓度高、投加量尚不足的反应初期,脱稳凝聚是主要形式;在PH

较高、污染物浓度低、投加量充分时,网捕作用是主要形式;而在pH和投加量适中时,桥连和絮凝成为主要形式。 聚合氯化铝(简称PAC),又称为碱式氯化铝或羟基氯化铝。通过它或它的水解产物使污水或污泥中的胶体快速形成沉淀,便于分离的大颗粒沉淀物。PAC的分子式为[AL2(OH)nCl6-n]m,其中,n为1-5的任何整数,m为聚合度,即链节的的数目,m的值不大于10。PAC的混凝效果与其中的OH 和AL的比值(n值大小)有密切关系,通常用碱化度表示,碱化度 B=[OH]/(3[AL])X100% 。B要求在40-60%,适宜的PH范围5-9 。 鉄盐混凝剂的水解过程及机理与铝盐类似。 聚丙烯酰胺(简称 PAM),俗称絮凝剂或凝聚剂,属于混凝剂。PAM的平均分子量从数千到数千万以上,沿键状分子有若干官能基团,在水中可大部分电离,属于高分子电解质。根据它可离解基团的特性分为阴离子型聚丙烯酰胺、阳离子型聚丙烯酰胺、和非离子型聚丙烯酰胺。PAM外观为白色粉末,易溶于水,几乎不溶于苯,乙醚、酯类、丙酮等一般有机溶剂,聚丙烯酰胺水溶液几近是透明的粘稠液体,属非危险品,无毒、无腐蚀性,固体PAM有吸湿性,吸湿性随离子度的增加而增加,PAM热稳定性好;加热到100℃稳定性良好,但在150℃以上时易分解产中氮气,在分子间发生亚胺化作用而不溶于水,密度:1.302mg/l(23℃)。玻璃化温度153℃,PAM 在应力作用下表现出非牛顿流动性。 阳离子、阴离子的PAM分别适用于带阴、阳电荷的污水或污泥。生化法产生的活性污泥带有阴电荷,应该使用阳离子型的。阴离子PAM用于带有阳电荷污水或污泥,如处理钢铁厂、电镀厂、冶金、洗煤及除尘等污水

岩棉生产工艺

岩棉、矿渣棉生产线 2007-05-22 14:59:51 (已经被浏览2628次) 规格: 包装: 价格: 矿渣棉是以工业矿渣如高炉矿渣、磷矿渣、粉煤灰等为主要原料,经过重熔、纤维化而制成的一种无机质纤维。岩棉是以天然岩石如玄武岩、辉绿岩、安山岩等为基本原料,经熔化、纤维化而制成的一种无机质纤维。上述纤维经过加工,可制成板、管、毡、带、纸等优质耐高温绝热吸声材料,可用于建筑和工业装备、管道、容器及各种窑炉的绝热、防火、吸声、抗震。 矿渣棉和岩棉制品的特点是原料易得,可就地取材化害为利,再加上生产能耗少,成本低,可称为耐高温、廉价、长效优秀保温、隔热、吸声材料,故在保温材料的产销过程中,它们的产量最大,市场占有率最广,具有综合优势。不过,它们虽属于同一类型产品,但在性能上则略有差异。矿渣棉的最高使用温度为600~650℃,纤维较短、较脆;岩棉的最高使用温度可达820~870℃,纤维长,化学耐久性和耐水性能也较矿渣棉为好。 熔制方法: ⑴火焰池窑熔制: 火焰池窑熔制岩原料来生产岩棉多以重油或天然气为燃料,其生产过程为:原料经粉碎混合,用喂料机送入池窑的熔化部,经由喷嘴喷入的雾化石油或天然气燃烧后所产生的高温(1500℃左右),将原料熔化并获得熔体。这种熔制方法的优点是熔体质量高,化学组成和温度均匀并且易于控制,可以制得高质量的岩棉。但采用火焰池窑熔制矿渣和岩石时,对燃料和窑炉耐火材料要求严格,设备投资大,窑炉寿命短,燃料费贵,折旧费高,因而熔制成本比冲天炉高得多,目前大多改用冲天炉。 ⑵冲天炉熔制 冲天炉设备投资小,使用寿命长,而且冲天炉的热效率比火焰法池窑熔化高得多。 岩棉、矿渣棉保温板生产工艺流程图: 冲天炉熔制法生产工艺流程图

聚丙烯酰胺生产工艺设计

聚丙烯酰胺(PAM)生产工艺设计 石油工业是国民经济的支柱产业,石油是经济发展的重要保证之一。我国石油资源相对较少,三次采油是我国保障石油供应的重要措施。进行聚丙烯酰生产工艺设计的研究,目的是使我国聚丙烯酰胺生产工艺技术、产品质量、及生产规模均提升到一个较高水平,以满足三次采油对聚丙烯酰胺质和量的要求,避免引进产品带来的风险,保证三次采油技术的顺利实施最终以满足国民经济发展对石油供应的要求,并获得最大经济效益。与此同时,进行聚丙烯酰生产工艺设计的研究,可满足随着三次采油工艺技术的不断提高而对聚丙烯酰胺各项性能不断改进的要求。 PAM最有价值的性能是分子量很高,水溶性强,可以制作出亲水而水不溶性的凝胶,可以引进各种离子基团并调节分子量以得到特定的性能,对许多固体表面和溶解物质有良好的粘附力。由于这些性能,使得PAM被广泛应用于增稠、絮凝、稳定胶体、减阻、粘结,成膜、阻垢、凝胶及生物医学材料等许多方面。PAM的最大用途是在水处理、造纸、采油、冶矿等领域。 此外,聚丙烯酰胺在水处理行业具有广阔的应用前景和巨大的潜在市场。随着环境意识的不断加强,聚丙烯酰胺在城市污水处理方面的应用将会越来越受到重视。聚丙烯酰胺生产工艺技术的研究,也将对城市污水处理工艺技术的提高起到推动作用。 目前PAM生产的工艺路线一般从丙烯腈(AN)为原料开始,经AM装置生产出AM 水溶液,再以AM为原料在PAM装置生产出PAM产品。AM生产工艺主要有以骨架铜为主体的重金属类为催化剂的化学法和以生物酶为催化剂的生物法,其技术的关键在于催化剂,依催化剂的不同生产工艺有较大差异。PAM的生产工艺方法较多,依PAM产品性能要求不同及生产过程采用的引发剂不同,生产工艺方法有较大的差异,其中引发剂是技术关键,属各公司的技术秘密。对PAM生产工艺技术的研究主要体现在引发体系和与PAM生产相关的专用设备上。

聚丙烯酰胺合成工艺

聚丙烯酰胺聚合工艺 (1)理论基础丙烯酰胺在自由基引发剂作用下经自由基聚合反应合成聚丙烯酰胺: C H O NH2 H2C 引发剂 CH2 H C C O NH2 n 丙烯酰胺在醇或吡啶溶液中,经强碱催化剂如烷氧钠的作用下,经阴离子聚合反应则生成聚β-丙酰胺。 C H O NH2 H2C 碱 阴离子聚合反应 CH2 CH2CONH n 工业生产中采用自由基聚合反应以生产聚丙烯酰胺,所用的自由基引发剂或引发剂来源种类甚多,包括过氧化物、过硫酸盐、氧化-还原体系、偶氮化合物、超声波、紫外线、离子气体、等离子体、高能辐射等。 工业生产中采用的聚合方法,主要是溶液聚合法和反相乳液聚合法,以前者应用最为广泛。此外也有采用γ-射线辐照引发固相聚合的报道。 丙烯酰胺水溶液聚合为聚丙烯酰胺水溶液时,聚合热为82.8 kJ/mol。相对来说放出的热量甚大,因此水溶液聚合法中如何及时导出聚合热成为生产中的重要技术问题之一。其次一个问题是如何降低残余单体含量。因为丙烯酰胺单体毒性甚大,为了减少其危害性,特别是用于水质处理时对残余单体的含量要求低于0.1%。第三个问题是如何将聚合反应得到的高粘度流体或凝胶转变为固体物,即干燥脱水问题。第四个问题是如何自由控制产品分子量。 丙烯酰胺于25 o C, pH=1时链增长速率常数k p与链终止速率常数k t分别为(1.72±0.3)×104和(16.3±0.7)×106Lmol-1s-1,与动力学链长成正比的k p/k t1/2=4.2±0.2,此数值甚高,所以不存在链转移时,聚丙烯酰胺可获得平均分子量超过2

×107的产品。 丙烯酰胺在水溶液中进行自由基聚合时,可能产生交联生成不溶解的聚合物,当聚合反应温度过高时,此现象更为严重。理论解释认为歧化终止生成的聚合物端基具有双键,参与聚合反应或发生向聚合物进行链转移所致。此外引发剂过硫酸盐与聚丙烯酰胺加热时也会导致生成凝胶。 有人研究了工业产品聚丙烯酰胺的含氮量,发现含氮量低于理论值,认为这是由于分子内脱NH 3生成酰亚胺基团所致。 C C 22O O C C O O H NH 3 高纯度丙烯酰胺易聚合为超高分子量的聚丙烯酰胺,为了生产要求的分子量范围,须加有链转移剂,链转移常数如表所示。

聚丙烯酰胺凝胶电泳原理及方法

聚丙烯酰胺凝胶电泳原理及方法 发布时间:11-06-01 来源:点击量:10032 字段选择:大中小聚丙烯酰胺凝胶电泳原理及方法 聚丙烯酰胺凝胶电泳是以聚丙烯酰胺凝胶作为支持介质的电泳方法。在这种支持介质上可根据被分离物质分子大小和分子电荷多少来分离。 聚丙烯酰胺凝胶有以下优点: ①聚丙烯酰胺凝胶是由丙烯酰胺和N,N'甲叉双丙烯酰胺聚合而成的大分子。凝胶有格子是带有酰胺侧链的碳-碳聚合物,没有或很少带有离子的侧基,因而电渗作用比较小,不易和样品相互作用。 ②由于聚丙烯酰胺凝胶是一种人工合成的物质,在聚合前可调节单体的浓度比,形成不同程度交链结构,其空隙度可在一个较广的范围内变化,可以根据要分离物质分子的大小,选择合适的凝胶成分,使之既有适宜的空隙度,又有比较好的机械性质。一般说来,含丙烯酰胺7-7.5%的凝胶,机械性能适用于分离分子量范围不1万至100 万物质,1万以下的蛋白质则采用含丙烯酰胺15-30%的凝胶,而分子量特别大的可采用含丙烯酰胺4%的凝胶,大孔胶易碎,小孔胶则难从管中取出,因此当丙烯酰胺的浓度增加时可以减少双含丙烯酰胺,以改进凝胶的机械性能。 ③在一定浓度范围聚丙烯酰胺对热稳定。凝胶无色透明,易观察,可用检测仪直接测定。 ④丙烯酰胺是比较纯的化合物,可以精制,减少污染。合成聚丙

的总克数称凝胶浓度,常用T%表达;凝胶溶液中交联剂占单体和交联体总量的百分数称为交联度,常用C%表示,可用下式计算: 公式 a:丙烯酰胺克数;b:甲撑双丙烯酰胺克数;m:缓冲液体积(毫升)凝胶浓度过高时,凝胶硬而脆,容易破碎;凝胶浓度太低时,凝胶稀软,不易操作。 交联度过高,胶不透明并缺乏弹性;交联度过低,凝胶呈糊状。聚丙烯酰胺凝胶具有较高的粘度,它不防止对流减低扩散的能力,而且因为它具有三度空间网状结构,某分子通过这种网孔的能力将取决于凝胶孔隙和分离物质颗粒的大小和形状,这是凝胶的分子筛作用。由于这种分子筛作用,这里的凝胶并不仅是单纯的支持物,因此,在电泳过程中除了注意电泳的基本原理以外,还必须注意与凝胶本身有关的各种性质(网孔的大小和形状等)。可通过下式计算来选择适当的凝胶网孔。 公式 式中:P为网孔平均直径,C为多聚体浓度,d为该多聚体分子直径(若不是卷曲的分子应为5A),K为常数,K值取决于涨胶的几何构型,假如多聚体的链是以近似于直角交联的,则约为1.5根据此式,我们可以通过多聚体浓度C近似地计算出网孔直径,例如已知多聚体浓度为5%,其网孔平均直径应为: 公式

生产工艺流程及简述

生产工艺流程及简述 表面毡、短切毡无碱玻璃纤维浸胶 胶液配置→制衬→浸胶→螺旋、环向缠绕及夹砂→固化→修整→脱模→检验→成品 玻璃钢管道缠绕操作程序 1. 准备工作:将模具表面处理干净,做到光洁无毛刺、无伤害,装到制衬机上。配树脂:将促进剂(锌酸钴)按工艺配置1—2%与不饱和聚酯树脂混合搅拌1 小时左右,然后静置消除气泡,冬季可适当增加促进剂的用量。 2. 制衬:内衬层是制品直接与介质接触的内表层,它的主要作用是防腐、防渗漏、耐温,要求内衬材料有优良的气密性、耐腐蚀性和耐一定温度等。 3. 缠聚酯薄膜:开动制衬机,将薄膜滚架上的聚酯薄膜缠到模具上,缠时薄膜的第一圈与第二圈之间一定要搭界1—2cm,以保证内衬不泄露。 4. 缠表面毡:开动树脂泵,将以配置好的引发剂(过氧化甲乙酮)1—2%(冬季可加至4%左右),加到喷枪泵中混合后,通过树脂管道淋到已缠好的聚酯薄膜上,在淋树脂的同时将表面毡(如无纺布的形状,是细纤维连接成的,宽度为220mm)带状缠绕1 层,此层主要是防渗漏,需要注意的是,缠表面毡时,气泡一定要处理彻底,同时表面毡在缠绕的过程中,同缠绕聚酯布一样,必须搭界1—2cm 的叠合接口。 5. 缠短切毡:缠表面毡的作用是增加强度、增加防渗漏性,短切毡是根据管子的设计可缠1—2 层。短切毡是用粗纤维纺织成的强筋毡,边缠边淋树脂,再缠绕的同时必须用条状的压滚将气泡赶出。 6. 缠网格布:主要作用是赶走气泡,进一步增加强度。种类有玻璃纤维网格布、涤纶纤维网格布。网格布的方法与网格毡的方法一样,网格布缠好后,必须将气泡处理干净。

7. 固化:内衬层制好后,将缠在模具轴上的内衬层吊到固化机上进行固化,固化的时间以加入引发剂剂量及固化温度而定,(在制衬时加入引发剂的树脂一定要充分混合好才能使用与制衬,否则将形成带状固化。) 8. 缠结构层:结构层又称增强层,它的作用是保证制品在受力的作用下,具有足够的强度、刚度和稳定性,而增强材料玻璃纤维是主要的承载体,树脂是对纤维起均衡载荷的作用,采用夹层结构(加石英砂)纤维缠绕可有效的提高玻璃钢管的刚度。夹层管材的强度、刚度大、重量轻、造价低,使用寿命长、耐腐蚀、无毒无味等特点,石英加砂管也越来越体现出来。

聚丙烯酰胺合成方法

(1)A原理:丙烯酰胺在自由基引发剂作用下经自由基聚合反应合成聚丙烯酰胺: C H O NH2 H2C 引发剂 CH2 H C C O NH2 n 丙烯酰胺在醇或吡啶溶液中,经强碱催化剂如烷氧钠的作用下,经阴离子聚合反应则生成聚β-丙酰胺。 C H O NH2 H2C 碱 阴离子聚合反应 CH2 CH2CONH n 工业生产中采用自由基聚合反应以生产聚丙烯酰胺,所用的自由基引发剂或引发剂来源种类甚多,包括过氧化物、过硫酸盐、氧化-还原体系、偶氮化合物、超声波、紫外线、离子气体、等离子体、高能辐射等。 工业生产中采用的聚合方法,主要是溶液聚合法和反相乳液聚合法,以前者应用最为广泛。此外也有采用γ-射线辐照引发固相聚合的报道。 B.丙烯酰胺水溶液聚合存在的问题:①聚合热为 kJ/mol,相对来说放出的热量甚大,因此水溶液聚合法中如何及时导出聚合热成为生产中的重要技术问题之一。②是如何降低残余单体含量。因为丙烯酰胺单体毒性甚大,为了减少其危害性,特别是用于水质处理时对残余单体的含量要求低于%。③是如何将聚合反应得到的高粘度流体或凝胶转变为固体物,即干燥脱水问题。④是如何自由控制产品分子量。 丙烯酰胺于25 o C, pH=1时链增长速率常数k p与链终止速率常数k t分别为(±)×104和(±)×106Lmol-1s-1,与动力学链长成正比的k p/k t1/2=±,此数值甚高,所以不存在链转移时,聚丙烯酰胺可获得平均分子量超过2×107的产品。 丙烯酰胺在水溶液中进行自由基聚合时,可能产生交联生成不溶解的聚合物,当

聚合反应温度过高时,此现象更为严重。理论解释认为歧化终止生成的聚合物端基具有双键,参与聚合反应或发生向聚合物进行链转移所致。此外引发剂过硫酸盐与聚丙烯酰胺加热时也会导致生成凝胶。 有人研究了工业产品聚丙烯酰胺的含氮量,发现含氮量低于理论值,认为这是由于分子内脱NH 3生成酰亚胺基团所致。 C C NH 2NH 2 O O C C O O H NH 3 高纯度丙烯酰胺易聚合为超高分子量的聚丙烯酰胺,为了生产要求的分子量范围,须加有链转移剂,链转移常数如表所示。 由上面的表可知低于50 o C 条件下,向聚合物和水的链转移常数非常小,而向引发剂链转移则比较明显,也易于向醇链转移,特别是向异丙醇链转移,因此工业

相关主题
文本预览
相关文档 最新文档