当前位置:文档之家› 无线电技术导论_之七_软件无线电概论_2011

无线电技术导论_之七_软件无线电概论_2011

无线电技术导论
? 洪 晟:82316447 ? Email: shenghong@https://www.doczj.com/doc/4a12112211.html,

课堂练习
可靠性工程研究所元器件工程部

调幅原理
调幅就是使载波 的振幅随调制信 号的变化规律而 变化。 调幅波是载波振 幅按照调制信号 的大小呈线性变 化的高频振荡。
可靠性工程研究所元器件工程部

调幅波的频谱
正弦调制的调幅波频谱 非正弦调幅波的频谱
可靠性工程研究所元器件工程部

课堂练习
有一超外差式收音机,接收中波电台的 频率是535~1605kHz,问本振的振荡频 率是多大?
可靠性工程研究所元器件工程部

超外差接收机框图
——中频信号放大倍数高且稳定——较高的灵敏度 优点: ——中频电路高质量调谐回路——良好的选择性
可靠性工程研究所元器件工程部

变频器
我国调幅广 播接收机的 中频采用 465KHz 我国调频广 播接收机的 中频采用 10.7MHz
fB ? fS = fM
可靠性工程研究所元器件工程部

第七讲
软件无线电概论
可靠性工程研究所元器件工程部

本次课的内容
一、软件无线电定义/特点 二、部分关键器件介绍 三、软件无线电硬/软件体系结构 四、软件无线电的发展
可靠性工程研究所元器件工程部

一、软件无线电定义/特点
可靠性工程研究所元器件工程部

软件无线电技术设想
通信世界的个人计算机
可靠性工程研究所元器件工程部

驱动SDR发展使用的重要因素: 太多的标准…
可靠性工程研究所元器件工程部

软件无线电的定义
According to the latest definition recently coordinated between the IEEE and the SDR Forum, an SDR is:
? Radio in which some or all of the Physical
Layer Functions are software-defined
--- 软件无线电论坛 (https://www.doczj.com/doc/4a12112211.html,)
软件无线电是一种新型的无线体系结构,它通过硬件和软件的结合使无线网 络和用户终端具有可重新配置能力。软件无线电提供了一种建立多模式、多 频段、多功能无线设备的有效而且相当经济的解决放案,可以通过软件升级 实现功能提高。软件无线电可以使整个系统(包括用户终端和网络)采用动 态的软件编程对设备特性进行重配置,换句话说,相同的硬件可以通过软件 定义来完成不同的功能。
可靠性工程研究所元器件工程部

软件无线电的起源
SDR的概念最早起源于20世纪70年代末,美军对VHF频段多模式无线电系统的开发。 军用无线电—特定用途—发送/接受单元有许多共同功能,但有很大差异: 不同的射频载波频率、调制方式、波形结构。 导致结果:军事无线装备品种杂、系列多、互通差、协同难。 1992年,SPEAKeasy计划是美军的军用软件无线电通信电台开发计划,主要思想是采用 通用可编程模块实现多波形能力,模块和软件可以配置于很多平台上作为三军通用 的多频段、多模式无线电系统(MBMMR),可以完成15种现有电台的功能。这个计 划首次试图将美军已有的无线系统整合为一个系统。 1997年,SPEAKeasy-Ⅱ Model 1已经可用于野外演示。(用于在美国加利福尼亚进行 的“21世纪先遣部队高级作战试验”。在试验中,美国空军战术空中控制小组采用 Model 1终端实现了空军电台和陆军电台的桥接;同时还实现了空军电台与单兵使 用的陆上移动无线电系统(LMR)的互联,其中LMR的波形是通过电话从实验室下载 到试验场中的SPEAKeasy系统中。)(频带范围2MHz~2GHz) 1998年,美军启动了可编程模块化通信系统(PMCS)项目,开始研制实际的装备以获 得SPEAKeasy所演示的功能。后来美国国防部将PMCS改称为联合战术无线电系统( JTRS,Joint Tactical Radio System),并且开发了软件通信结构SCA,使其成为 软件无线电的国际标准,要求所有在1999年10月后开发的系统都与JTRS兼容。 SPEAKeasy计划所产生的硬件和软件文件都被JTRS联合计划办公室接收并用于软件 无线电论坛的发展。 https://www.doczj.com/doc/4a12112211.html, 可靠性工程研究所元器件工程部

SPEAKeasy计划的构想
可靠性工程研究所元器件工程部

SPEAKeasy-Ⅱ
可靠性工程研究所元器件工程部

可靠性工程研究所元器件工程部

可靠性工程研究所元器件工程部

软件无线电的特点(一)
1,可多频带/多模式/多功能工作。 多模式是指软件无线电能使用多种类型的空中接口 ,其调制方式、编码、帧结构、压缩算法、协议等 可以选择。 2,具有可重配置、可重编程能力。 (软件无线电采用多个软件模块在相同的系统上可实 现不同的标准,只需要选择不同的模块运行就可以 实现系统的动态配置。所需要的软件模块可以通过 空中或人工下载获得并升级。)
可靠性工程研究所元器件工程部

软件无线电的特点(二) 实现软件无线电的核心思想: 采用开放的、标准化的通用硬件平台构造 无线电系统,使宽带ADC/DAC尽可能地靠近 天线,用软件实现尽可能多的无线电功能,并 且通过软件实现功能的设定和升级,使通信系 统具有多频带、多模式的通信能力。
可靠性工程研究所元器件工程部

软件无线电原理与应用思考题

《软件无线电原理与应用》思考题 第1章 概述 1. 软件无线电的关键思想 答:A/D 、D/A 尽量靠近天线 a) 用软件来完成尽可能多的功能 2. 软件无线电与软件控制的数字无线电的区别 答:软件无线电摆脱了硬件的束缚,在结构通用和稳定的情况下具有多功能,便于改进升级、互联和兼容。而软件控制的数字无线电对硬件是一种依赖关系。 3. 软件无线电的基本结构 答:书上第5页 第2章 软件无线电理论基础 1. 采样频率(fs)、信号中心频率(fo)、处理带宽(B)及信号的最低频率(f L )、最高频率(f H )之间的关系,最 低采样频率满足的条件 答:带通采样解决信号为(f L ~f H )上带限信号时,当f H 远远大于信号带宽B 时,若按奈奎斯特采样定理,其采样频率会很高,而采用带通信号则可以解决这一问题,其采样频率12n 4f 12n )f f (2f 0H L s +=++= ,n 取能满足2B f S ≥的最大正整数,B 2 12n f 0+=。 2. 频谱反折在什么情况下发生,盲采样频率的表达式 答:带通采样的结果是把位于(nB ,(n+1)B )不同频带上的信号都用位于(0,B )上相同的基带信号频谱来表示,在n 为奇数时,其频率对应关系是相对中心频率反折的,即奇数带上的高频分量对应基带上的低频分量,且低频高频对应高频分量。 盲区采样频率的表达式为: S Sm f 12n 22m f ++= m 取0,1,2,3……的盲区,当取n=m+1时,S Sm f )3 2m 11(f +-= 3. 画出抽取与内插的完整框图,所用滤波器带宽的选取,说明信号处理中为什么要采用抽取与内插, 抽取与内插有什么好处 答:抽取内插的框图见24页。其中抽取滤波器带宽D /π,内插滤波器带宽I /π。 图像

软件无线电技术

第四代移动通信技术之软件无线电技术 【摘要】软件无线电是目前无线通信领域在固定至移动、模拟至数字之后的最新革命,其正朝着产业化、全球化的方向发展,将在4G系统中得到广泛应用。本文主要研究软件无线电技术对通信传输的改善以及4G系统中软件无线技术的应用特点等。 一、引言 软件无线电提供了一条满足未来个人通信需要的思路。软件无线电突破了传统的无线电台以功能单一、可扩展性差的硬件为核心的设计局限性,强调以开放性的最简硬件为通用平台,尽可能地用可升级、可重配置不同的应用软件来实现各种无线电功能的设计新思路。其中心思想是:构造一个具有开放性、标准化、模块化的通用硬件平台,将各种功能,如工作频段、调制解调类型、数据格式、加密模式、通信协议等用软件来完成,并使宽带A/D和D/A转换器尽可能靠近天线,以研制出具有高度灵活性、开放性的新一代无线通信系统。 图一、软件无线电原理框图 1 二、简介 软件无线电(SWR)技术是近年来提出的一种实现无线通信的新的体系结构,它的基本概念是把硬件作为无线通信的基本平台,而把尽可能多的无线通信及个人通信功能用软件实现。 1、WLAN与蓝牙融入广域网 近年来各国都在积极进行4G的技术研究,从欧盟的WINNER项目到我国的“FuTURE计划”都是直接面向4G的研究。 日本对4G技术的研究在全球范围内一直处于领先地位,早在2004年,运营商NTTdocomo就进行了1Gbit/s传输速率的试验。目前还没有4G的确切定义,但比较认同的解释是:4G采用全数字技术,支持分组交换,将WLAN、蓝牙技术等局域网技术融入广域网中,具有非对称的和超过100Mbit/s的数据传输能力,同时,因为采用高度分散的IP网络结构,使得终端具有智能和可扩展性。

信道化技术在软件无线电接收机中的应用

信道化技术在软件无线电接收机中的应用 姚 澄!朱灿焰!杨会保 " 苏州大学电子信息学院江苏苏州 #$%&#$’ 摘 要(软件无线电是目前通信领域研究的热点!其关键技术之一的数字中频技术则是多速率信号处理理论的典型应用) 介绍了一种基于多相滤波的数字信道化技术在软件无线电接收机中的应用!利用离散傅里叶变换"*+,’的成熟理论和多相滤波的灵活处理!在接收机的数字中频段提出了一种高效的处理结构!对其原理-性能和特点进行了深入地探讨和研究!较好地解决了当前无线通信中硬件速度和高速数据流不匹配的问题)计算机模拟结果证明了处理结构的可行性和有效性) 关键词(软件无线电.信道化.多相滤波器组.离散傅里叶变换中图分类号(,/0 $$文献标识码(1 文章编号($&&23435" #&&%’&4&$4&367789:;<9=>=?@A ;>>B 89C B DE B :A >=8=F G 9>B DL ;D 9= M N O P Q R S T !U V W P X S Y X S !M N /Z V [\]X ^ "_‘Q ^^a ^b c a R ‘d e ^S \‘f S b ^e g X d \^S !_^^‘Q ^h W S \i R e j \d Y !_[k Q ^[!#$%&#$!P Q \S X ’l m n o p q r o (,Q R_^b d h X e R*R b \S R s t X s \^"_*t ’Q X j]R ‘X g Rd Q Rb ^‘[j^be R j R X e ‘Q \S ‘^g g [S \‘X d \^S j u *\T \d X af S d R e g R s \X d R +e R v [R S ‘Y "f +’X j ^S R^b \d j w R Yd R ‘Q S ^a ^T \R j !\j Xd Y x \‘X a X x x a \‘X d \^S^b g [a d \e X d Rj \T S X a x e ^‘R j j \S Td Q R ^e Y u ,Q RX x x a \‘X d \^S^b X s \T \d X a ‘Q X S S R a \k R sd R ‘Q S \v [Rb ^e_*t e R ‘R \i R e j\j\S d e ^s [‘R s\Sd Q \jx X x R e u 1X j R s^Sd Q Rg X d [e Rd Q R ^e Y^bd Q R*\j ‘e R d R+^[e \R e ,e X S j b ^e g "*+,’X S s d Q R b a R y \]\a \d Y ^b d Q R x ^a Y x Q X j R b \a d R e ]X S ws R ‘^g x ^j \d \^S !X SR b b \‘\R S d x e ^‘R j j \S T X e ‘Q \d R ‘d [e R \j x e R j R S d R s \Sd Q R s \T \d X a f +x X e d !\d j x e \S ‘\x a R !x R e b ^e g X S ‘R X S s‘Q X e X ‘d R e \j d \‘X e R s R R x a Ys \j ‘[j j R sX S sj d [s \R s u ,Q R g R d Q ^sT \i R j X]R d d R e j ^a [d \^S^b d Q Rg \j g X d ‘Q]R d h R R Sd Q Ra ^h R e Q X e s h X e Rj x R R sX S sQ \T Qs X d Xe X d R^b d ^s X Y z jh X e R a R j j‘^g g [S \‘X d \^S j u +\S X a a Yj \g [a X d \^Se R j [a d j j Q ^h d Q R R b b \‘\R S ‘Y^b d Q \j x e ^x ^j R sX e ‘Q \d R ‘d [e R u {|}~!p "n (_^b d h X e R *R b \S R st X s \^"_*t ’.‘Q X S S R a \k \S T .x a ^Y x Q X j R b \a d R e ]X S w .*\j ‘e R d R +^[e \R e ,e X S j b ^e g "*+,’ 收稿日期(#&&2$#$2#引 言 软件无线电是近些年来崭露头角的新技术!他代表包括无线通信在内的几乎所有的无线电电子信息系统的发展趋势)为适应其发展!有必要对基于滤波器组的信道化方法进行研究) 理想的软件无线电结构$ $% 在射频直接采样数字化!其核心思想就是将N &*!*&N 变换器尽量靠近天线!在对信号充分数字化的基础上依靠软件来实现无线电的各项功能)但是现阶段!由于受微电子技术水平的限制!直接对射频"t + ’进行采样还很难实现!成本上亦不合算)所以!在目前的软件无线电研究中!大部分都是首先将射频信号转换到中频!然后在中频对模拟信号进行数字化)数字中频软件无线电加上少量的高频模拟前端正逐渐成为理想 软件无线电的一种经济实用的选择$#%)中频软件无线电接 收机的结构如图$所示) 对于单一信道而言!使用宽带N &*!*_’和通用P ’W 的软件无线电方法比传统的使用硬件集成的技术要昂贵的多!而目前多通道接收机"数字下变频器’已有上市!如 f S d R e j \a 公司"原V X e e \j 公司的半导体部分’的V _’ %&#$(!Z e X Y P Q \x 公司的Z P 2&$(!N S X a ^T *R i \‘R j 公司的N *((#2和_^b d P R a a 等)但这些接收机的主要问题是!必须事先确知在哪个信道上有信号!或者用一个全景接收机对整个频 段进行搜索和监视以确定信号的位置$3%)然而!如果搜索 速度不够快! 就会产生漏警现象以至于无法进行全概率的信号截获)本文所讨论的基于滤波器组的信道化接收机就是能够完成全概率信号截获的接收机) 图$中频宽带接收机实现框图 )信道化接收机 信道化接收机瞬时频带宽-动态范围大!能实现超宽带侦察)传统的技术是采用模拟电路来实现信道化!即(用模拟滤波器组把侦察频率范围分割为许多邻接的信道!如图#所示) 显然!当瞬时频带很宽时!需要非常多的滤波器!接收机将变得非常庞大)而在软件无线电信道化技术中!则充分利用数字信号系统精确-灵活-造价低-速度快的优 4 $*现代电子技术+#&&%年第4期总第$0,期-通信与信息技术 . 万方数据

软件无线电技术的发展应用探究

软件无线电技术的发展应用探究 软件无线技术相对于传统的“纯硬件电路”具有非常大的优越性,以硬件为基础,软件在可以在此之上扩展更多的通信功能,使得设备的通信功能不再硬件锁限制,并且可以大大简化设备的硬件复杂程度,提升其可靠性、维护性,耐用性,并且由于软件的可升级性以及更加优良的兼容性,因此可以大大降低开发、生产、升级换代和维护成本。软件无线电技术是通信领域的第三次革命,前两次模拟通信和数字通信。目前新技术的发展重点基本都已开始转移软件之上。文章就软件无线电技术的发展和应用进行一些详细的探讨。 标签:软件无线电;软件无线电发展;软件无线电应用 1 软件无线电各个系统的作用 1.1 软件无线电技术与传统无线电技术的区别 软件无线电与软件控制无线电的区别在于软件无线电是开放并且标准化的,因此研究更加容易也更加灵活,设备具有的功能不再主要依赖系统的构架和硬件,转而开始依赖软件环境,通过改变软件来改变功能,使得系统、功能的升级或是不同系统间的兼容变得更加简单,升级换代所需要的时间大大缩短。而数字无线电主要依赖于硬件和系统结构的发展,使得环境更加封闭,不利于推广交流,一旦出现问题,需要花费相当多的人力、物力以及时间。 1.2 软件无线电技术硬件平台解析 软件无线电是一个标准化、开放式的平台,以硬件作为基础,将编写好的指令预先录入,用以操纵硬件进而实现尽可能多的无线通信功能,可以通过改变软件的方式改变软件无线电所具有的功能,并可因此减少硬件模块的数量和复杂程度,所具备的灵活性、集中性、维护性无可比拟。一个典型的软件无线电需要以下的硬件系统:射频、中频、基带、信源、信令,软件部分则为数字信号处理器(DSP),DSP通过录入程序,可以对带宽、频率、调制模式、信源解码等进行控制,因此DSP处理性能的强弱直接影响通信功能的数量和质量。通过录入程序,DSP控制各个系统,实现无线电软件具体化。 1.2.1 天线 天线是保证信号的基础,理论上天线最好应该能覆盖全部的通信频段,但在实际应用中,并不能做到覆盖如此多的频段,更多的时候需要能保证完美适配软件所需的、线性性能较好的频段,使用组合式多频段天线,通过测试自动寻找干扰较小,流量宽松的频段,因此就有多频段天线和宽带天线,其二者都可以为软件无线电技术提供信号的保障,而区别主要在于多频段可在分离的不同频段上工作,而宽带则意味着是连续的宽频。而调频、信号接收、算法优化仍然是天线在无线电技术中的关键。

软件无线电发展现状

<<移动通信>.>>2002年第 4期 软件无线电发展现状 罗序梅信息产业部电子七所 1 前言 — 软件无线电是实现无线通信新体系结构的一种技术,在经过近几年的发展之后,其重要性和可 行性正逐步被越来越多的人所认识和接受。软件无线电技术的重要价值体现在:硬件只是作为 无线通信的基本平台,而许多的通信功能则是通过软件来实现的,这就打破了长期以来设备的 通信功能实现仅仅依赖于硬件的发展格局。所以有人称,软件无线电技术的出现是通信领域继 固定到移动,模拟到数字之后的第三次革命。本文主要介绍全球软件无线电技术研究动态、对 实现软件无线电台至关重要的器件技术的发展以及软件无线电台商用前景。 2 全球软件无线电技术研究动态 软件无线电技术具有结构的开放性、软件的可编程性、硬件的可重构性以及功能和频段的… 多样性等特点,无论在军事还是在商用通信中都有着巨大的应用潜力。也正是因为这些独特的 优势,引发了全球对软件无线电技术的关注和研发热潮。除美国在 90年代初开始实施易通话计 划并成功地研制出多功能多频段电台外,欧洲、日本、中国等全球其它地区也纷纷开展了各自 的软件无线电技术项目。 欧洲委员会已将软件无线电技术列为重要的研发项目,大量与软件无线电技术相关的研究项目正在其 ACTS计划中进行。受潜在的商业利益所驱动,其研究重点集中在第三代标准上, 这包括 FIRST(灵活的综合无线电系统和技术)、FRAMES(未来无线电宽频段多址系统)和 · SORT等项目。前两个项目利用软件无线电台样机研究开发下一代无线接口。其中

FIRST项目 主要是评估实现软件重构空中接口的问题。目前最公开的工作集中在 RF结构最佳划分方法及 数字处理的实现上。 SORT主要是开展有关第三代系统( UMTS)在地面和卫星接入方面的硬件 重构问题的研究,演示灵活而有效的软件可编程电台,实施该项目的目标是:

最新无线通信技术基础知识(1)

无线通信技术 1.传输介质 传输介质是连接通信设备,为通信设备之间提供信息传输的物理通道;是信息传输的实际载体。有线通信与无线通信中的信号传输,都是电磁波在不同介质中的传播过程,在这一过程中对电磁波频谱的使用从根本上决定了通信过程的信息传输能力。 传输介质可以分为三大类:①有线通信,②无线通信,③光纤通信。 对于不同的传输介质,适宜使用不同的频率。具体情况可见下表。 不同传输媒介可提供不同的通信的带宽。带宽即是可供使用的频谱宽度,高带宽传输介质可以承载较高的比特率。 2无线信道简介 信道又指“通路”,两点之间用于收发的单向或双向通路。可分为有线、无线两大类。

无线信道相对于有线信道通信质量差很多。有限信道典型的信噪比约为46dB,(信号电平比噪声电平高4万倍)。无限信道信噪比波动通常不超过2dB,同时有多重因素会导致信号衰落(骤然降低)。引起衰落的因素有环境有关。 2.1无线信道的传播机制 无线信道基本传播机制如下: ①直射:即无线信号在自由空间中的传播; ②反射:当电磁波遇到比波长大得多的物体时,发生反射,反射一般在地球表面,建筑物、墙壁表面发生; ③绕射:当接收机和发射机之间的无线路径被尖锐的物体边缘阻挡时发生绕射; ④散射:当无线路径中存在小于波长的物体并且单位体积内这种障碍物体的数量较多的时候发生散射。散射发生在粗糙表面、小物体或其它不规则物体上,一般树叶、灯柱等会引起散射。 2.2无线信道的指标 (1)传播损耗:包括以下三类。 ①路径损耗:电波弥散特性造成,反映在公里量级空间距离内,接收信号电平的衰减(也称为大尺度衰落); ②阴影衰落:即慢衰落,是接收信号的场强在长时间内的缓慢变化,一般由于电波在传播路径上遇到由于障碍物的电磁场阴影区所引起的; ③多径衰落:即快衰落,是接收信号场强在整个波长内迅速的随机变化,一般主要由于多径效应引起的。 (2)传播时延:包括传播时延的平均值、传播时延的最大值和传播时延的统计特性等; (3)时延扩展:信号通过不同的路径沿不同的方向到达接收端会引起时延扩展,时延扩展是对信道色散效应的描述; (4)多普勒扩展:是一种由于多普勒频移现象引起的衰落过程的频率扩散,又称时间选择性衰落,是对信道时变效应的描述; (5)干扰:包括干扰的性质以及干扰的强度。 2.3无线信道模型 无线信道模型一般可分为室内传播模型和室外传播模型,后者又可以分为宏蜂窝模型和微蜂窝模型。 (1)室内传播模型:室内传播模型的主要特点是覆盖范围小、环境变动较大、不受气候影响,但受建筑材料影响大。典型模型包括:对数距离路径损耗模型、Ericsson多重断点模型等; (2)室外宏蜂窝模型:当基站天线架设较高、覆盖范围较大时所使用的一类模型。实际使用中一般是几种宏蜂窝模型结合使用来完成网络规划; (3)室外微蜂窝模型:当基站天线的架设高度在3~6m时,多使用室外微蜂窝模型;其描述的损耗可分为视距损耗与非视距损耗。

FPGA在软件无线电中的应用

Altera中文资料 FPGA在软件无线电中的应用 介绍 软件无线电(SDR)是具有可重配置硬件平台的无线设备,可以跨多种通信标准。它们因为更低的成本、更大的灵活性和更高的性能,迅速称为军事、公共安全和商用无线领域的事实标准。SDR成为商用流行的主要原因之一是它能够对多种波形进行基带处理和数字中频(IF)处理。IF处理将数字信号处理的领域从基带扩展到RF。支持基带和中频处理的能力增加了系统灵活性,同时减小了制造成本。 基带处理 无线标准不断地发展,通过先进的基带处理技术如自适应调制编码、空时编码(STC)、波束赋形和多入多出(MIMO)天线技术,支持更高的数据速率。基带信号处理器件需要巨大的处理带宽,以支持这些技术计算量的算法。例如,美国军事联合战术无线系统(JTRS)定义了军事无线中20多种不同的无线波形。一些更复杂的波形所需的计算能力在标准处理器上是每秒数百万条指令(MIPS),或者如果在FPGA实现是数千个逻辑单元。 协处理器特性 SDR基带处理通常需要处理器和FPGA。在这类应用中,处理器处理系统控制和配置功能,而FPGA实现大计算量的信号处理数据通道和控制,让系统延迟最小。当需要从一种标准切换至另一种标准时,处理器能够动态地在软件的主要部分间切换,而FPGA 能够根据需要完全重新配置,实现特定标准的数据通道。 FPGA可以作为协处理器同DSP和通用处理相连,这样具有更高的系统性能和更低的系统成本。自由地选择在哪实现基带处理算法为实现SDR算法提供了另一种方式的灵活性。 基带部件也需要足够灵活让所需的SDR功能支持在同一种标准增强版本之间的移植,

并能够支持完全不同的标准。可编程逻辑结合软核处理器和IP,具有了提供在现场远程升级的能力。图1 是一个框图,其中FPGA能够通过IP功能如Turbo编码器、Reed-Solomon编码器、符号交织器、符号映射器和IFFT,很容易地重配置支持WCDMA/HSPDA或802.16a标准的基带发送功能。 图1. 两种无线信号的SDR基带数据通道重配置例子 数字IF处理 数字频率变化具有比传统模拟无线处理方式更高的性能。FPGA提供了一种高度灵活和集成的平台,在这之上以合理的功率实现大计算量的数字IF功能,这在便携系统中是一个关键的因素。能够在FPGA实现的IF功能包括数字上变频器(DUC)和下变频器(DDC),以及数字预畸变(DPD)和波峰系数削减(CFR),帮助降低功放的成本和功率(见图2)

软件无线电技术论文

软件无线电技术 摘要:现行的面向具体用途来设计不同频段、不同制式的无线电通信电台及组网的思想已经远远不能满足现代无线电通信的实际需要,因此软件无线电系统及其技术,这种革新的通信理念与体制应运而生。文章对软件无线电技术的概念、功能和关键技术等进行了介绍,并阐述了软件无线电的应用和发展前景。 一.引言 软件无线电是近些年来随着微电子、信号处理、计算机等技术的高速发展应运而生的一种新的无线电技术。它最初起源于军事通信,是为了解决多军联合作战时通信互通互联问题而提出来的。经过这几年的迅速发展,软件无线电早已从军事领域的阶段逐步发展成为移动通信发展的基石,特别是第3、4代移动通信系统。个人移动通信系统已从第一代模拟蜂窝系统发展到第二代数字蜂窝系统(GMS、CDMA),目前正在向第三代移动通信系统发展,而且第四代移动通信技术也已经悄然问世。随着越来越大的通信需求,一方面使通信产品的生存周期缩短,开发费用上升;另一方面,新老体制共存,各种通信系统之间的互联变得更加复杂和困难、由于通信技术的迅猛发展,新的通信体制与标准不断提出,通信产品的生存周期减少,开发费用上升,导致以硬件为基础的传统通信体制无法适应新的局面;同时,不同体制互通的要求日趋强烈,并且随着通信业务的不断增长,无线频段资源变得越来越拥挤,对现有通信系统的频带利用率及抗干扰能力提出了更高的要求。但是沿着现有通信体制的发展,很难对频带重新规划。所以寻求一种既能满新一代通信系统需求,由能兼容老体制,而且更具有扩展能力的新的个人移动通信系统体系结构成为人们努力的方向。而软件无线电正好提供了解决这一问题的技术途径成为第三代移动通信系统研究的热点。 二.软件无线电的概念及特性 软件无线电技术将硬件、软件、无线技术有机地结合在一起,组成灵活多样的多功能系统。它的基本思想是以一个通用、标准、模块化的硬件平台为依托,从通过软件编程来实现无线电台的各种功能,从基于硬件、面向用途的电台设计方法中解放出来。功能的软件化实现势必要求减少功能单一的、灵活性差的硬件电路,尤其是减少模拟环节,把数字化处理(A/D和D/A转换)尽量靠近天线。软件无线电强调体系结构的开放性和全面可编程性,通过软件更新改变硬件配置结构,实现新的功能。软件无线电采用标准的、高性能的开放式

《软件无线电》作业总结

第一章 1、影响天线效率的因素有哪些(答出至少三条)? 答:工作频率,天线长度,天线形状,天线架设的高度等 2、语音频率范围是300~3400Hz,当取f=3000Hz时,天线长度为多少时,天线效率最高? 3、如何解决最简结构中天线效率低和无法多路传输的问题? 答:在其他参数相同的条件下,输入激励电流的频率越高,基本振子天线的电磁波越强,即天线的效率越高。 实际的天线电系统都采用了调制/解调技术,即在发射端用一个可选择的高频率的正弦波信号去调制需要传输的频率较低的调制信号,这个高频正弦波信号成为载波;在接收端采用解调技术再将调制的信号从载波上解出来,从而完成了信号的无线传输过程。这也是解决不能多路传输的方法。 4、请画出无线电系统的实用结构。 5、常见的收/发双工技术 答:时分双工、频分双工和环形器双工 6、画出无线数字通信系统框图 发射端:

接收端: 7、画出无线电系统的实用结构图,并指出基带信号、中频信号和射频信号的位置 答:同第4题 8、简述外差技术和超外差技术的概念,并画出超外差技术的框图: 答:外差技术:中频频率fIF固定不变,通过混频器本振频率fL和选频滤波器中心频率f0 = fRF同步改变来实现;超外差技术:当取中频频率fIF低于射频频率fRF且高于信号带宽B时 9、软件无线电的特点 答:功能的灵活性,结构的开放性,成本的集中性。多功能、多频带、多模式。具有可重编程、可重配置能力。 10、画出理想的软件无线电体系结构,并简述结构核心和构造思想 结构核心:使模拟信号转换为数字信号的部分尽可能接近天线 构造思想:不可能采用数字器件实现的部分放在模拟子系统中其他部分放在数字子系统中,例如载以获得最大程度的软件可编程性。 11、软件无线电的研究热点和难点 答:宽带/多频段天线、智能天线;灵活的射频前端设计;高速数模和模数变换器;高

无线电测向基本技巧

无线电测向基本技巧 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

无线电测向基本技术短距离无线电测向的基本方法和基本技术,可归纳为下列几个方面: 一、收测电台信号 1、收听电台信号 当不了解被收听电台信号的强度时,如在起点收听首台或找到 某台后收测下号台(应迅速离开该台十余米),可将音量旋到最大,边转动测向机,边调整频率旋钮,听到信号后,首先辩认台号是不是你现在需要寻找的电台呼号,然后缓慢地左右细调,使声音最大,音调悦耳。最后,将音量旋钮旋至适当位置,进行测向。 2、测出电台方向线的基本方法: (1)80米波段测向的基本方法: 单向—双向法:按下单向开关,使本机大音面作环向扫动, 同时旋转频率钮,当耳机内出现需要测收的电台信号且声音最大时,测向机大音面所指方向即为电台方向。这一过程称测单向。由于大音面是一个较大的扇面,难以准确地确定电台方向线,因此在单向测完后要松开单向开关,用磁性天线的小音点(即磁棒)对着电台并左右摆动,声音最小时磁棒所指方向,即为电台的准确方向。后面的这个过程称为测双向。 双向—单向法:先不按单向开关,用磁性天线收到电台信号后,水平旋转测向机,找出小音点(或称哑点线)获得电台所在直线,然后按下单向开关并转动测向机90°,在此位置上,反复迅速的旋转测向机180°,比较声音大小,声音大时,本机单向大音面所指的方向,即为电台的方向。最后再用双向小音点瞄准。

(2)2米波段测向的基本方法: 单向法(也叫主瓣一次测向法): 当2米波段测向机收到电台信号后,转动天线360,依靠尖锐的主瓣方向图(此时引向器的前引伸方向声音最大),即可明确地测出电台方向线。若发现主瓣与后瓣难以分清(在前后两个方向上声音大小差不多),可将测向机音量关小,举过头顶,在主、后瓣两个方向上翻转天线(见图,应注意保持天线所在面与地面的平行),反复对比两边的音量大小,防止测反方向。此法多用于三元八木天线。 二、方向跟踪 沿测向机批示的电台方向,边跑边测,直接接近并找到电台的 方法叫方向跟踪。由于80米波段测向机双向小音点方向线清晰准确,因此跟踪时多使用此方向线。 因为短距离测向竞赛的信号源处于连续发信状态,因此该技术是最常用,最重要的基本技术。 在地形简单、障碍较少的情况下,方向跟踪时可快速奔跑,并在跑动中左右摆动测向机,不停的校正方向(注意随时调小音量)。 方向跟踪时,容易出现从电台附近越过而并未觉察的情况,这时运动员虽已跑过电台,但测向机磁性天线指示的方向线,由于变化不大而未能及时发现,造成反方向跟踪,越跑越远,直至耳机中音量明显减弱时才会发觉。避免的方法是在跟踪中打几次单向,判断大音面是否已转到后面。 宁跑勿走,宁过勿欠,这是迅速到位的最基本要求,切忌尚未到位便进行搜索,耽误时间。

软件无线电技术简介及特点应用

软件无线电技术简介及特点应用 发表时间:2019-09-10T10:31:29.547Z 来源:《科学与技术》2019年第08期作者:刘建新[导读] 软件无线电技术的出现是通信领域继摸拟通信到数字通信,固定通信到移动通信之后第三次革命。 海南三亚92823部队 软件无线电技术,顾名思义是用现代化软件来操纵、控制传统的"纯硬件电路"的无线通信。软件无线电技术的重要价值在于:传统的硬件无线电通信设备只是作为无线通信的基本平台,而许多的通信功能则是由软件来实现,打破了有史以来设备的通信功能的实现仅仅依赖于硬件发展的格局。软件无线电技术的出现是通信领域继摸拟通信到数字通信,固定通信到移动通信之后第三次革命。 1.起源 软件无线电最初起源于军事通信。军用电台一般是根据某种特定用途设计的,功能单一。虽然有些电台基本结构相似,但其信号特点差异很大,例如工作频段、调制方式、波形结构、通信协议、编码方式或加密方式不同。这些差异极大地限制了不同电台之间的互通性,给协同作战带来困难。同样,民用通信也存在互通性问题,如现有移动通信系统的制式、频率各不相同,不能互通和兼容,给人们从事跨国经商、旅游等活动带来极大不便。为解决无线通信的互通性问题,各国军方进行了积极探索。完整的软件无线电 (Software Definition Radio)概念和结构体系是由美国的Joe.Mitola首次于1992年5月明确提出的。其基本思想是 :将宽带A/D 变换尽可能地靠近射频天线 ,即尽可能早地将接收到的模拟信号数字化 ,最大程度地通过软件来实现电台的各种功能。通过运行不同的算法 ,软件无线电可以实时地配置信号波形 ,使其能够提供各种语音编码、信道调制、载波频率、加密算法等无线电通信业务。软件无线电台不仅可与现有的其它电台进行通信 ,还能在两种不同的电台系统间充当“无线电网关”的作用 ,使两者能够互通互连。 软件无线电充分利用嵌入通信设备里的单片微机和专用芯片的可编程能力 ,提供一种通用的无线电台硬件平台 ,这样既能保持无线电台硬件结构的简单化 ,又能解决由于拥有电台类型、性能不同带来的无线电联系的困难。 2.软件无线电台的功能结构 图1给出了典型的软件无线电系统的结构简图 ,包括天线、多频段射频变换器、含有A/D 和D/A变换器的芯片以及片上通用处理器和存储器等部件 ,可以有效地实现无线电台功能及其所需的接口功能。 其关键思想以及与传统结构的主要区别在于 : (1)将A/D 和D/A向RF端靠近 ,由基带到中频对整个系统频带进行采样。 (2)用高速DSP/CPU代替传统的专用数字电路与低速DSP/CPU做A/D 后的一系列处理。A/D 和D/A移向RF端只为软件无线电的实现提供了必不可少的条件 ,而真正关键的步骤是采用通用的可编程能力强的器件 (DSP和CPU等 )代替专用的数字电路 ,由此带来的一系列好处才是软件无线电的真正目的所在。 典型的软件无线电台的工作模块主要包括实时信道处理、环境管理以及在线和离线的软件工具三部分。 1)实时信道处理 实时信道处理包括天线、射频变换、A/D 和D/A变换器、中频处理、基带与比特流处理及信源编码。其中射频变换包括输出功率的产生、前置放大、射频信号变换为标准中频或由标准中频变换为射频信号 ,以适应宽带A/D和D/A变换。中频处理部分变换调制基带和中频之间的发射和接收信号。比特流部分数字复用由多个用户产生的信源编码比特流 ,而且相反的使它们成帧或多路分解。还提供信令、控制和操作、管理和维护功能。实时信道处理部分最合适的结构是多指令多数据 (MIMD)多处理器的结构 ,即将多处理器组成一个流水线 ,来实现模块分配给内部连接在一起的各个处理器的不同的功能序列。 2)环境管理 在准实时环境管理模块中持续地使用频率、时间和空间特征来表征无线电环境 ,这些特征包括信道识别和估计其它参数。环境管理模块使用操作的块结构很容易用一台MIMD并行处理器来实现。这种高度的并行环境管理模块和流水线工作方式的实时信道处理模块之间的接口必须使环境管理的参数和信道处理模块同步。 3)在线和离线的软件工具

软件无线电(software radio)

概要 软件无线电的基本思想是以一个通用、标准、模块化的硬件平台为依托,通过软件编程来实现无线电台的各种功能,从基于硬件、面向用途的电台设计方法中解放出来。功能的软件化实现势必要求减少功能单一、灵活性差的硬件电路,尤其是减少模拟环节,把数字化处理(A/D和D/A变换)尽量靠近天线。软件无线电强调体系结构的开放性和全面可编程性,通过软件更新改变硬件配置结构,实现新的功能。软件无线电采用标准的、高性能的开放式总线结构,以利于硬件模块的不断升级和扩展。 软件无线电(software radio)在一个开放的公共硬件平台上利用不同可编程的软件方法实现所需要的无线电系统。简称SWR。理想的软件无线电应当是一种全部可软件编程的无线电,并以无线电平台具有最大的灵活性为特征。全部可编程包括可编程射频(RF)波段、信道接入方式和信道调制。 一般说来,SWR就是宽带模数及数模变换器(A/D及D/A)、大量专用/通用处理器、数字信号处理器(Digital Signal Proicesser,DSP)构成尽可能靠近射频天线的一个硬件平台。在硬件平台上尽量利用软件技术来实现无线电的各种功能模块并将功能模块按需要组合成无线电系统。例如:利用宽带模数变换器(Analog Digital Converter,ADC),通过可编程数字滤波器对信道进行分离;利用数字信号处理技术在数字信号处理器(DSP)上通过软件编程实现频段(如短波、超短波等)的选择,完成信息的抽样、量化、编码/解码、运算处理和变换,实现不同的信道调制方式及选择(如调幅、调频、单边带、跳频和扩频等),实现不同的保密结构、网络协议和控制终端功能等。 在目前的条件下可实现的软件无线电,称做软件定义的无线电(Software Defin ed Radio,SDR)。SDR被认为仅具有中频可编程数字接入能力。 发展历史无线电的技术演化过程是:由模拟电路发展到数字电路;由分立器件发展到集成器件;由小规模集成到超大规模集成器件;由固定集成器件到可编程器件;由单模式、单波段、单功能发展到多模式、多波段、多功能;由各自独立的专用硬件的实现发展到利用通用的硬件平台和个性的编程软件的实现。 20世纪70~80年代,无线电由模拟向数字全面发展,从无编程向可编程发展,由少可编程向中等可编程发展,出现了可编程数字无线电(PDR)。由于无线电系统,特别是移动通信系统的领域的扩大和技术复杂度的不断提高,投入的成本越来越大,硬件系统也越来越庞大。为了克服技术复杂度带来的问题和满足应用多样性的需求,特别是军事通信对宽带技术的需求,提出在通用硬件基础上利用不同软件编程的方法。20世纪80年代初开始的软件无线电的革命,将把无线电的功能和业务从硬件的束缚中解放出来。 1992年5月在美国通信系统会议上,Jeseph Mitola(约瑟夫·米托拉)首次提出了“软件无线电”(Software Radio,SWR)的概念。1995年IEEE通信杂志(Comm unication Magazine)出版了软件无线电专集。当时,涉及软件无线电的计划有军用的SPEAKEASY(易通话),以及为第三代移动通信(3G)开发基于软件的空中接口计划,即灵活可互操作无线电系统与技术(FIRST)。

无线电测向基本技术

无线电测向基本技术 无线电测向运动作为一项科技体育竞技项目,同其它竞技体育项目一样,具有鲜明的竞技特征。具体来说,一是参加者必须共同遵守统一的竞赛规则,二是竞赛活动表现出强烈的竞争特点,三是每一个参加者在赛前和竞赛过程中要采取一系列措施,力求使自己的体力、智力、技术在比赛中得到最好的表现和发挥,以创造优异成绩,压倒对手,夺取胜利。竞技体育的这些特点表明它不同于娱乐和游戏,也不同于健身体育和康复体育。它要求参加者从事系统的科学的训练,全面掌握各种技术,锻炼并提高自己的体力和智力去适应运动竞赛的需要。无疑,技术训练是任何一项科技体育运动员训练的重要内容之一。 一、无线电测向技术的内容 无线电测向运动对参加者的运动素质的要求无疑是很高的。以往曾有人以为,只要运动素质发展全面,体力充沛,跑得快,便可以成为优秀测向运动员。近几年,随着竞赛规则的修改,测向技术及相关理论的发展,特别是通过历年优秀运动员的观察和统计结果的分析,使越来越多的测向运动爱好者转而赞同这样一种观点:运动素质是运动和发挥技术、提高运动成绩的基础,测向技术水平才是创造优异成绩的关键。在本课里,将按起点技术、途中技术、近台区技术、地形学知识的顺序,向大家介绍无线电测向的各种技术。第四讲再介绍技术训练的方法。 在学习有关技术,投入训练之前,先粗略地了解一下无线电测向技术构成是有好处的。知道了总的轮廓,在学习一个单项技术时,可以了解它在整体技术中所处的地位;在学习一项综合技术(例如近台区测向)时,可以知道它是由哪些基本技术或单项技术所构成。这样,既可以提高运动员参加枯燥的基本技术训练的自觉性,也有助于教练员把训练安排得更合理、更系统。 无线电测向技术如果以竞赛过程的先后分,可以划为以下三项: (1)起点测向包括起点前技术、起点测向、离开起点三部分。 (2)途中测向包括首找台及找台顺序的确定、到位技术、途中跑及道路选择三部分。 (3)近台区测向近台区测向包含内容较多,许多基本技术和单项技术都可能在近台区得到综合运用。主要的有沿方向线跟踪、交叉定点、比音量、无信号找台、搜索等。 还有一些技术内容,例如指北针和地图使用、体力分配、复杂条件下对干扰、反射等特殊情况的处理等,难于划入上述三阶段中的某一阶段,但也必须掌握。 无线电测向技术如果以从易到难、先单项后综合的顺序划分,可视为包含以下内容: (1)使用和掌握测向机包括持机方法、收测电台信号技术的训练及掌握测向机性能。收测电台信号技术包括:信号的辨认、调谐和抗干扰接收、测出电台方向线的步骤等。掌握测向机性能包括:学会使用增益旋钮和衰减开关,了解测向机一般检查和简单故障的应急处理方法。 (2)基本技术包括测向技术、地图和指北针的使用和越野技术。测向技术的内容有:原地和移动中测记电台方向线;参照实地方位物按方向线前进;利用测向机的音量、指向、强度变化等判断关键距离(如近台区、一轮信号奔跑距离)和电台设置位置(如高低、向背);近台区技术(方向跟踪、交叉定点、比音量、无信号找台、搜索);测向点的选择:识别和排除环境等因素对方向的影响。地图与制北针的使用包括:地图的识读,分析、记背以及现地对照;指北针的安装、使用及利用指北针按方向线行进。 标绘电台方向线和地图上的远距离交叉。越野技术包括:越野奔跑技术和体力分配;选择道路的基本原则。 (3)专项技术包括确定首找台和找台顺序、到位技术、近台区测向和识图越野。 (4)综合技术包括综合运用各种技术的能力、体力和竞技状态的调整和心理控制及心理训练。 二、无线电测向原理 1、无线电波的发射 随着科学技术的不断发展,人们与“无线电”的关系越来越密切了。播送广播节目和电视节目的广播电台和电视台,是通过发射到空间的无线电波把声音和图像神奇地传诵到千家万户的,这个道理已成为人们的常识。让我们再来简单地回顾一下发射和接收过程:广播电台(电视台)首先把需要向外发射声音和图像变为随声音和图像变化的电信号,然后用一中频率很高、功率很强的交流电作为“运载工具”,将这种电信号带到发射天线上去。再通过天线的辐射作用,把载有电信号的高频交流电转变为同频率的无线电波(或称电磁波),推向空间,并像水波一样,不断向四周扩散传播,其传播的速度在大气中为每秒30万公里。在电波所能到达的范围内,只要我们将收音机、电视机打开,通过接收天线将这种无线电波接收下来,再经过接收机大放大、解调等各种处理,把原来的电信号从“运载工具”中分离出来,逼真地还原成发射时的声音和图像,我们就能在远隔千里的地方收听(收看)到广播电台(电视台)播出的节目。 无线电测向也是利用类似的途径和方式实现的,只是它所发射的仅仅是一组固定重复的莫尔斯电报信号。电

移动通信系统中的软件无线电技术

移动通信系统中的软件无线电技术

本文由lijiangtao2323贡献 pdf文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 汪汉新等: 移动通信系统中的软件无线电技术 移动通信系统中的软件无线电技术 汪汉新, 陈亚光 ( 中南民族大学电信学院湖北武汉430074) 摘要: 软件无线电是在通用的、开放的硬件平台上采用软件技术来实现无线通信系统的各种功能的通信技术。本文介绍了软件无线电的基本概念、主要特点, 分析了实现软件无线电的关键技术及其在第三代移动通信系统中的应用前景。关键词: 移动通信; 软件无线电; 可编程数字器件; 无线通信中图分类号: TN 92915 文献标识码: B 文章编号: 1004 373X ( 2003) 17 000 03 Sof tware Rad io Technology for M ob ile Comm un ica tion System W AN G H anx in, CH EN Yaguang (Co llege of E lectron ics and Info rm

ation, Sou th cen tral U n iversity fo r N ationalities, W uhan, 430074, Ch ina) M A 、北美的 CDM A 2000 和中国的 TD p ap er in troduced softw a re radio concep tion and cha racteristic, ana lyzed the key techn iques fo r softw a re radio and described the p er2 1 引言 成电路技术的进步和芯片处理速度的不断提高, 特别是数字信号处理器 (D SP ) 、现场可编程门阵列 (FPGA ) 等可编程数字器件的快速发展而产生的一种 新的无线通信技术。传统的基于专用集成电路 (A S IC ) 的无线通信系统的全部功能由硬件实现, 只能工作于单一频段、单一调制方式, 不同体系结构的通开放的硬件平台上采用软件技术通过可编程的 D SP , 信系统难以相互沟通。软件无线电则是在一个通用的、

软件无线电.期末考试

1.什么是软件无线电?软件无线电的特点是什么? 定义: 软件无线电是多频带无线电,它具有宽带的天线、射频转换、模/数转和数/模变换,能支持多个空中接口和协议,在理想状态下,所有方面(包括物理空中接口)都可以通过软件定义。 软件无线提供了一种建立多模式、多频段、多功能无线设备的有效并且相当经济的解决方案,可以通过软件升级实现功能提高 特点: 多频带/多模式/多功能(M3)工作:多频带是指软件无线电可以工作在很宽的频带范围内; 多模式是指软件无线电能够使用多种类型的空中接口,其调制方式、编码、帧结构、压缩算法、协议等可以选择;多功能是指采用相同的无线电设备用于不同的应用中。 具有可重配、重编程能力:可重配置是指系统的操作软件(包括程序、参数以及处理环境的软件方面)或硬件(处理环境的硬件方面)的改变。软件无线电采用多个软件模块在相同的系统上可实现不同的标准,只需要选择不同的模块运行就可实现系统的动态配置。所需要的模块可以通过空中接口或人工下载获得并升级。 功能的灵活性:软件无线电的功能由软件决定的,软件模块可以通过空中接口或人工下载的方式获得,以增加或改变其无线电功能,因此其功能的使用和配置非常方便、灵活。 结构的开放性:软件无线电的结构分为硬件和软件两大部分。这两大部分都具有模块化和标准化的特点,是一种开放式的体系结构,使得研制、生产和使用各环节可以共享已有成果,共同推进软件无线电技术的发展。 2.无线电技术经历了或正在经历哪几个阶段?各有什么特征? 第0级:数字硬件无线电。系统不能做任何修改,系统操作由开关、拨号盘和按钮等来完成。 第1级:软件控制无线电。系统通过软件实现控制功能,但是在不改变硬件的条件下,软件控制无线电设备是不能改变像频带或调制方式这样的特征参量的。 第2级:软件定义无线电。系统使用软件对调制、宽/窄带、安全、波形产生和检测等方面的具体应用技术和参数进行控制,不需要对硬件做任何修改,但通常收到频带的约束,依然存在模拟部分,比如还有射频或中频电路。尽管前端的带宽是个限制因素,但由于SDR 能够提供宽带和窄带两种操作中的多种调制技术,因为利用软件可以控制相当宽的频带范围。SDR能够存储大量的波形或空间接口,并可以通过软件下载来添加新的内容。 第3级:(理想的)软件无线电。系统完全可以编程,在接收端或发射端无需任何下变频或上变频转换,将天线前段的输入/输出直接接入ADC/DAC,消除了大部分模拟部件,从而降低了失真和噪声,但仍然受到一定的频率约束。 第4级:终极软件无线电。这种软件无线电没有外置天线、运行频率或带宽的限制,完全可编程,同时支持广泛的频率和功能,能够快速实现空中接口的检测和转换。 3.为什么软件无线电一定要采用“硬件通用化”的设计准则?在软件无线电中是如何 体现“硬件通用化”这一设计思路的? 体系结构:为了让软件和硬件下的用户独立,是系统功能软件化的前提。 设备生产商:满足设计指标,使生产专业化、批量化,提高生茶效率,降低生产成本。 运营商:降低维护成本,维护难度,建设成本。 硬件开发商:继承性,重用性更好。从而减少重复劳动提高研发效率 消费者:减少重复投资 4.你是如何理解软件无线电“功能软件化”这一本质特征的?为什么软件无线电的功 能可以采用软件来实现?

相关主题
文本预览
相关文档 最新文档