当前位置:文档之家› 噪声测量和频谱分析仪器

噪声测量和频谱分析仪器

噪声测量和频谱分析仪器
噪声测量和频谱分析仪器

噪声测量和频谱分析仪器

概述:噪声测量和频谱分析仪器,本底噪声低,动态范围大;模块化设计,配置不同硬件和软件模块,使仪器分别具有噪声频譜分析、积分采集、统计分析、24h测量、脉冲噪声测量、混响时间测量等不同的功能。仪器采用数字检波和开关电容滤波技术,具有精度高、稳定性好、可靠性高等特点。测量和分析结果可以保存、打印、送入计算机。适用于各种工业噪声测量和频谱分析、环境噪声监测,以及建筑物内混响时间测量。

特点:◎超大容量储存;◎大屏幕LCD显示,有背光;

◎F型和G型内置倍频程滤波器;◎D型可测脉冲噪声。

系列产品模块选择和组合及用途,如下表:

模块配置

频谱分析

统计分析

主要技术性能:

模块型号

用途

积分采集和脉冲噪声测量

统计分析和24h测量

统计分析、频谱分析和混响时间测量

符合标准

GB/T3785 1型,JJG188-2002 1级,IEC 61672-1:2002 1级

2级

传声器

AW A14423型预极化测试电容传声器(1/2”),标称灵敏度50mV/Pa

AW A14421

本机噪声

小于18dB(A),23dB(C),28dB(F)

小于23dB(A)

测量上限

130dB

频率范围

10 Hz~20 kHz

20Hz~12.5kHz

频率计权

A,C,Flat (平直响应)

时间平均

F,S,I及线性平均

指数平均(有效值) F,S及线性平均

量程

10~80,20~90,30~100,40~110,50~120,60~130

线性工作范围

70dB

内置滤波器

——

1/1倍频程滤波器,

中心频率:

31.5 Hz~16 kHz

1/1倍频程滤波器,

中心频率:

31.5 Hz~8 kHz

测量方式

Lp,Leq,Lmax,Lmin,LAE,E

Lp,Leq,Lmax,Lmin,LAE,E,L5,L10,L50,L90,L95和24h测量采样时间间隔

31ms(脉冲测量7.8ms)

31ms

31ms(Tr测量16ms)

积分时间

手动、10s、1min、5min、10min、15min、20min、30min、1h、4h、8h、24h 24 h 测量

——

每小时测量一次

混响时间测量

——

Tr测量范围:0.3s~10s

显示器

大屏幕字符式LCD,有背景光

显示方式

数字显示,有动态条图显示瞬时声级变化

储存

——

2000组数据或80天24h测量值

科学回删功能

——

科学回删异常测量值

输出

DC、AC及RS232C接口至微型打印机或微机

电池

6×LR,亦可外接7 ~10V电源

外形尺寸/质量

290×90×38(H×W×D,mm)/ 0.5 kg

工作温度范围

-10 ℃~+50 ℃

相位噪声基础及测试原理和方法

相位噪声基础及测试原理和方法 相位噪声指标对于当前的射频微波系统、移动通信系统、雷达系统等电子系统影响非常明显,将直接影响系统指标的优劣。该项指标对于系统的研发、设计均具有指导意义。相位噪声指标的测试手段很多,如何能够精准的测量该指标是射频微波领域的一项重要任务。随着当前接收机相位噪声指标越来越高,相应的测试技术和测试手段也有了很大的进步。同时,与相位噪声测试相关的其他测试需求也越来越多,如何准确的进行这些指标的测试也愈发重要。 1、引言 随着电子技术的发展,器件的噪声系数越来越低,放大器的动态范围也越来越大,增益也大有提高,使得电路系统的灵敏度和选择性以及线性度等主要技术指标都得到较好的解决。同时,随着技术的不断提高,对电路系统又提出了更高的要求,这就要求电路系统必须具有较低的相位噪声,在现代技术中,相位噪声已成为限制电路系统的主要因素。低相位噪声对于提高电路系统性能起到重要作用。 相位噪声好坏对通讯系统有很大影响,尤其现代通讯系统中状态很多,频道又很密集,并且不断的变换,所以对相位噪声的要求也愈来愈高。如果本振信号的相位噪声较差,会增加通信中的误码率,影响载频跟踪精度。相位噪声不好,不仅增加误码率、影响载频跟踪精度,还影响通信接收机信道内、外性能测量,相位噪声对邻近频道选择性有影响。如果要求接收机选择性越高,则相位噪声就必须更好,要求接收机灵敏度越高,相位噪声也必须更好。 总之,对于现代通信的各种接收机,相位噪声指标尤为重要,对于该指标的精准测试要求也越来越高,相应的技术手段要求也越来越高。 2、相位噪声基础 2.1、什么是相位噪声 相位噪声是振荡器在短时间内频率稳定度的度量参数。它来源于振荡器输出信号由噪声引起的相位、频率的变化。频率稳定度分为两个方面:长期稳定度和短期稳定度,其中,短期稳定度在时域内用艾伦方差来表示,在频域内用相位噪声来表示。 2.2、相位噪声的定义

X-120 HS6298B噪声频谱分析仪操作规程

HS6298B型噪声频谱分析操作规程 1.目的 规范FDC-1500防爆大气采样器操作程序,正确使用和维护仪器,保证采样工作能按规范方法正确进行。 2 范围 适用于FDC-1500防爆大气采样器使用操作。 3.职责 操作人员:按照本规程操作仪器,对仪器进行日常维护,作使用登记。 复核人员:负责对采样操作是否规范以及采样结果是否准确进行复核。 保管人员:负责监督仪器操作是否符合规程,对仪器进行定期维护、保养。 部门负责人:负责仪器综合管理。 4.主要技术指标 4.1 传声器:1/2英寸驻极体测试电容传声器(HS14423) 4.2 测量范围:35dB~130dB(A、C); 40dB~130dB(Lin) 4.3 频率计权:20Hz~10kHz 4.4 时间计权:F( 快 )、S( 慢 ) 4.5 滤波器:1/1倍频程 4.6自动测量功能:Leq、LAE、SD、LN(L95、L90、L50、L10、L5)、Lmax、Lmin、Ldn、Ld、Ln。 4.7测量时间设定:Man、10s、1m、5m、10m、15m、20m、1h、8h、24h、24h整时测量。 4.8 时钟:年、月、日、时、分、秒设置运行。 4.9测量数据自动存储:共500组单组数据,4组整时数据和50组滤波器自动测量数据。 4.10接口:分析仪通过RS-232C将数据传输给HS4784打印或传输给计算机处理。 4.11校准:使用HS6020校准至93.8dB。 4.12 显示器:使用专门为噪声测量仪器设计的LCD显示器。 4.13 电源:使用+9V外接电源(外+内-),或者用5节5号高能碱性电池。 4.14 外形尺寸:l×b×h 307mm×80mm×30mm 4.15 重量:386g(不带电池) 4.16工作环境:温度-10℃~50℃、相对湿度 20%~90% 5.结构特征

相位噪声基础及测试原理和方法

摘要: 相位噪声指标对于当前的射频微波系统、移动通信系统、雷达系统等电子系统影响非常明显,将直接影响系统指标的优劣。该项指标对于系统的研发、设计均具有指导意义。相位噪声指标的测试手段很多,如何能够精准的测量该指标是射频微波领域的一项重要任务。随着当前接收机相位噪声指标越来越高,相应的测试技术和测试手段也有了很大的进步。同时,与相位噪声测试相关的其他测试需求也越来越多,如何准确的进行这些指标的测试也愈发重要。 1、引言 随着电子技术的发展,器件的噪声系数越来越低,放大器的动态范围也越来越大,增益也大有提高,使得电路系统的灵敏度和选择性以及线性度等主要技术指标都得到较好的解决。同时,随着技术的不断提高,对电路系统又提出了更高的要求,这就要求电路系统必须具有较低的相位噪声,在现代技术中,相位噪声已成为限制电路系统的主要因素。低相位噪声对于提高电路系统性能起到重要作用。 相位噪声好坏对通讯系统有很大影响,尤其现代通讯系统中状态很多,频道又很密集,并且不断的变换,所以对相位噪声的要求也愈来愈高。如果本振信号的相位噪声较差,会增加通信中的误码率,影响载频跟踪精度。相位噪声不好,不仅增加误码率、影响载频跟踪精度,还影响通信接收机信道内、外性能测量,相位噪声对邻近频道选择性有影响。如果要求接收机选择性越高,则相位噪声就必须更好,要求接收机灵敏度越高,相位噪声也必须更好。 总之,对于现代通信的各种接收机,相位噪声指标尤为重要,对于该指标的精准测试要求也越来越高,相应的技术手段要求也越来越高。 2、相位噪声基础 2.1、什么是相位噪声 相位噪声是振荡器在短时间内频率稳定度的度量参数。它来源于振荡器输出信号由噪声引起的相位、频率的变化。频率稳定度分为两个方面:长期稳定度和短期稳定度,其中,短期稳定度在时域内用艾伦方差来表示,在频域内用相位噪声来表示。 2.2、相位噪声的定义 以载波的幅度为参考,在偏移一定的频率下的单边带相对噪声功率。这个数值是指在1Hz的带宽下的相对噪声电平,其单位为dBc/Hz。该定义最早是基于频谱仪法测试相位噪声,不区分调幅噪声和调相噪声。 单边带相位噪声L(f)定义为随机相位波动单边带功率谱密度Sφ(f)的一半,其单位为dBc/Hz。其中Sφ(f)为随机相位波动φ(t)的单边带功率谱密度,其物理量纲是rad2/Hz。

噪声测量三种方法

噪声系数测量的三种方法 本文介绍了测量噪声系数的三种方法:增益法、Y系数法和噪声系数测试仪法。这三种方法的比较以表格的形式给出。 前言 在无线通信系统中,噪声系数(NF)或者相对应的噪声因数(F)定义了噪声性能和对接收机灵敏度的贡献。本篇应用笔记详细阐述这个重要的参数及其不同的测量方法。 噪声指数和噪声系数 噪声系数有时也指噪声因数(F)。两者简单的关系为: NF = 10 * log10 (F) 定义 噪声系数(噪声因数)包含了射频系统噪声性能的重要信息,标准的定义为: 从这个定义可以推导出很多常用的噪声系数(噪声因数)公式。 下表为典型的射频系统噪声系数: *HG=高增益模式,LG=低增益模式

噪声系数的测量方法随应用的不同而不同。从上表可看出,一些应用具有高增益和低噪声系数(低噪声放大器(LNA)在高增益模式下),一些则具有低增益和高噪声系数(混频器和LNA在低增益模式下),一些则具有非常高的增益和宽范围的噪声系数(接收机系统)。因此测量方法必须仔细选择。本文中将讨论噪声系数测试仪法和其他两个方法:增益法和Y系数法。 使用噪声系数测试仪 噪声系数测试/分析仪在图1种给出。 图1. 噪声系数测试仪,如Agilent公司的N8973A噪声系数分析仪,产生28VDC脉冲信号驱动噪声源 (HP346A/B),该噪声源产生噪声驱动待测器件(DUT)。使用噪声系数分析仪测量待测器件的输出。由于分析仪已知噪声源的输入噪声和信噪比,DUT的噪声系数可以在内部计算和在屏幕上显示。对于某些应用(混频器和接收机),可能需要本振(LO)信号,如图1所示。当然,测量之前必须在噪声系数测试仪中设置某些参数,如频率范围、应用(放大器/混频器)等。 使用噪声系数测试仪是测量噪声系数的最直接方法。在大多数情况下也是最准确地。工程师可在特定的频率范围内测量噪声系数,分析仪能够同时显示增益和噪声系数帮助测量。分析仪具有频率限制。例如,Agilent N8973A可工作频率为10MHz至3GHz。当测量很高的噪声系数时,例如噪声系数超过10dB,测量结果非常不准确。这种方法需要非常昂贵的设备。 增益法 前面提到,除了直接使用噪声系数测试仪外还可以采用其他方法测量噪声系数。这些方法需要更多测量和计算,但是在某种条件下,这些方法更加方便和准确。其中一个常用的方法叫做“增益法”,它是基于前面给出的噪声因数的定义:

HS5660C型精密噪声频谱分析仪操作指导书

HS5660C型噪声频谱分析仪操作指导书 1目的 规范使用HS5660C型噪声频谱分析仪。 2 适用范围 适用于HS5660C型噪声频谱分析仪的使用及维护。 3 职责 3.1起草人负责编写和修改操作规程。 3.2现场检测人员必须按照仪器操作规程进行检测,记录检测结果。 3.3科室主任审查批准,发布实施。 4操作规程 4.1通电检查:开启声级计右侧面上电源开关,显示器应显示A声级,F快特性,显示模拟表针刻度,(如果在左上角出现“Batt”,表示电池不足。)此时加声压,显示数据应跟随变化表示正常。 4.2声校准:将声级校准器(94dB、1kHz)配合在传声器上,不振不晃,开启校准器电源,声级计计权设置A、C或Lin,声压级读数应93.8dB,否则调节分析仪右侧面灵敏调节电位器,校准完成取下校准器。如果用活塞发生器(124dB、250Hz),声级计计权必须设置在C或Lin,校准读数应指示在124dB。 4.3.1瞬时声级测量:开启电源开关或按“复位”键,工作方式即为瞬时A声级、F快特性、中量程测量。 4.3.2滤波器选频测量:在工作状态下按“计权”键,显示为Lin,然后按“频率”键,选择滤波器测量,其中心频率为(31.5Hz、63Hz、125Hz、250Hz、500Hz、1kHz、2kHz、4kHz、8kHz)此时显示的数据为对应频率点的声级值。 4.3.3滤波器自动测量:在工作状态下按两次“方式”键之后按“定时”键可以选择每个频率点的测量时间(10s、1m、5m、10m、15m、20m、1h),此时按“运行”键开始测量。 4.3.4整时24小时自动测量:工作状态下按“方式”键,显示“Regular”,此时按“定时”键可以选择每个小时的测量时间(10s、1m、5m、10m、15m、20m、1h),按“运行键”后开始测量。数据采集完毕后计算结果并存储所有数据。4.3.5 Leq、L AE、SD、Lmax、Lmin、LN(L95、L90、L50、L10、L5)等数据的测量:自动测量操作为工作状态下按“定时”键设置测量时间(10s、1m、5m、10m、15m、20m、1h、8h、24h),按选择键选择自动测量的内容(Leq、L AE、SD、Lmax、Lmin、LN),测量结束后也可以按“选择”键查看数据,此时按“运行”键进行新的一次定时自动测量。手动测量为工作状态下按“定时”键设置测量时间,按“运行”后开始测量,到一定时间后再按“运行”键,分析仪即暂停

相噪与抖动的一种计算方法

时钟抖动(CLK)和相位噪声之间的转换 摘要:这是一篇关于时钟(CLK)信号质量的应用笔记,介绍如何测量抖动和相位噪声,包括周期抖动、逐周期抖动和累加抖动。本文还描述了周期抖动和相位噪声谱之间的关系,并介绍如何将相位噪声谱转换成周期抖动。 几乎所有集成电路和电气系统都需要时钟(CLK)。在当今世界中,人们以更快的速度处理和传送数字信息,而模拟信号和数字信号之间的转换速率也越来越快,分辨率越来越高。这些都要求工程师更多地关注时钟信号的质量。 时钟信号的质量通常用抖动和相位噪声来描述。抖动包括周期抖动,逐周期抖动和累计抖动,最常用的是周期抖动。时钟的相位噪声用来说明时钟信号的频谱特性。 本文首先简单介绍用来测量时钟抖动和相位噪声的装置。然后介绍周期抖动和相位噪声之间的关系,最后介绍将相位噪声谱转换成周期抖动的简单公式。 周期抖动和相位噪声:定义和测量 周期抖动 周期抖动(J PER)是实测周期和理想周期之间的时间差。由于具有随机分布的特点,可以用峰-峰值或均方根值(RMS)描述。我们首先定义门限为V TH的时钟上升沿位于时域的T PER(n),其中n是一个时域系数,如图1所示。我们将J PER表示为手册: 其中T0是理想时钟周期。由于时钟频率固定,随机抖动J PER的均值应该为零,J PER的RMS 可以表示为: 式中的是所要求的运算符。从图1时钟波形可以看出J PER和T PER之间的关系。

图1. 周期抖动测量 相位噪声测量 为了理解相位噪声谱L(f)的定义,我们首先定义时钟信号的功率谱密度S C(f)。将时钟信号接频谱分析仪,即可测得S C(f)。相位噪声谱L(f)定义为频率f处的S C(f)值与时钟频率f C处的S C(f)值之差,以dB表示。图2说明了L(f)的定义。 图2. 相位噪声谱的定义 相位噪声谱L(f)的数学定义为: 注意L(f)代表的是f C和f处谱值的比,L(f)将在下文介绍。 周期抖动(J PER)测量 有许多设备可以测量周期抖动。通常人们会用高精度数字示波器测量抖动。当时钟抖动大于示波器触发抖动的5倍时,时钟抖动可用时钟上升沿触发,然后测量另一个上升沿。图3 给出了示波器从被测时钟产生触发信号的方法。该方法可消除数字示波器内部时钟源抖动。

噪声频谱分析仪操作规程

噪声频谱分析仪操作规程 一、测量前准备 1. 装电池:5节5号干电池,如果连续测定8小时以上,使用高能碱性电池。 如使用外接电源,请注意正负极性。 2. 装传感器:将传感器对准前置级头子螺纹口顺时针旋紧。 3. 通电检查:开启电源开关,显示器应显示A声级,F快特性,显示模拟表针刻度,如果在左上角出现“Batt”,表示电池不足,应及时更换电池,此时显示的数据随声压而变化表示正常。 4. 声校准:将声级校准器(94dB、1kHz)配合在传声器上,开启校准器电源,声级计计权设置A或Lin,声压读数应是93.8dB,否则调节声级计右侧面灵敏度调节电位器,校准完成后取下校准器。 二、瞬时声级测量 1. 打开开关,选择快慢档,所显示的数值即为瞬时声压(A声级) 2. 按保持键则读数为最大声压(A声级) 三、测量时间设置 1. 按[定时]进入设定方式,再按[定时],测量时间依次为10s→1m→5m →10m→15m→20m→1h→8h→24h→Man→10s变化,若设定在1m时停止按键,表示自动测量时间为1分钟,其余类似。 2. 测量运行:设定好测量时间,按[运行]进入自动测量状态。显示“RUN”标记,到预定时间结束,“RUN”标记消失,显示“PAUSE”暂停标记。 3. 读取数据:按[选择],数据依次调出显示Leq→SD→Lmax→L95→L90→L50→L10→L5→Leq 四、频谱测量方法 1. 手动方式 [复位]→[计权]→显示“Lin”→[频率]→显示“.”表示1/1中心频率→[定时]设定测量时间→[运行]→显示“PUASE”读数为声压级 2. 自动测量 [复位]→[计权]→显示“Lin”→[定时]设定测量时间→连续按[频率]→直到1/1中心频率点全部选通,显示“.”→[运行]→自动测量自动记

HS5671B噪声频谱分析仪说明书

一概述 HS5671B型噪声频谱分析仪既是一种测量指数时间计权声级的通用声级计,又是能测量时间平均声级的积分平均声级计和测量声暴露的积分声级计,它还能测量累计百分声级(统计声级),其性能符合GB/T17181-1997和IEC61672-2002标准对1级声级计的要求,同时也符合IEC1260和GB/T3241对1/1,1/3倍频程滤波器和的要求,对射频场敏感度属X类。 本仪器采用了先进的数字检波技术,具有可靠性高、稳定性好、动态范围宽等优点。本仪器采用128×64点阵式液晶显示器带背景光显示,全中文界面,显示内容丰富,操作界面采用菜单方式,有汉字提示功能,用户操作简便,电池供电,测量结果可长期保存在仪器内,通过内置RS-232接口在现场或事后用微型打印机打印出来或送到计算机中去处理。 二主要技术性能 1 传声器:Φ12.7mm(1/2″)予极化测试电容传声器,灵敏度约30mV/Pa 频率范围:10Hz~20kHz, 2 测量范围:25dB~130dB(A) 30dB~130dB(C) 35dB~130dB(L) 3 频率范围:10Hz~20 kHz 4 频率计权:A、C、Lin计权 5 参考方向为电容传声器的轴向 6 参考声压级:94dB 7 时间计权:快(F)、慢(S) 8 检波器特性:数字检波,真有效值 9 仪器类型:1级 10 级量程分高、中、低三档: 高量程H 60dB~130 dB 中量程M 40dB~110 dB 低量程L 25dB~90 dB 每档线性范围≥60dB。以中量程为参考量程。 11 测量时间设定:Man (人工)、10s、1min、5min、10min、15min、20min、30min、1h、8h、24h、24h整时。 12 自动测量功能:Lp、Leq、LAE、LN(L5、L10、L50、L90、L95)、SD、Lmax、Lmin、E、Ld、Ln、Ldn、1/1、1/3滤波器自动测量、混响Tr、噪声数据采集等。*

基于频谱仪的相位噪声测试及不确定度分析

基于频谱仪的相位噪声测试及不确定度分析 潘光斌1,2 1 (电子科技大学自动化学院 成都 610054) 2(中国工程物理研究院计测中心 绵阳 621900) 摘要 对基于频谱分析仪的相位噪声测试原理和方法进行了介绍,并对引起测试系统不确定度的因素及其评定方法进行了讨论。 关键词 频谱分析仪 相位噪声 不确定度 The M ea surem en t of Pha se No ise Ba sed on Spectru m Ana lyzer and the Ana lysis of Uncerta i n ty Pan Guangb in 1 (S chool of A u to m a tion E ng ineering und er U n iversity of E lectron ic S cience and T echnology ,Cheng d u 610054,Ch ina ) 2 (M etrology and T esting Cen ter und er Ch ina A cad e m y of E ng ineering P hy sics ,M iany ang 621900,Ch ina ) Abstract T h is article introduces the p rinci p le and m ethod how to m easure phase no ise w ith spectrum analyzer ,and discusses the uncertainty facto r and its evaluating m ethod .Key words Spectrum analyzer Phase no ise U ncertainty 1 引 言 仪器中各种噪声对其振荡信号的相位和频率调制的结果,在时间域内观测,表现为相对平均频率偏差的随机起伏,其二次取样方差的平方根值又可称为频率稳定度在时域内的表征。噪声调制结果在频谱域内观测,表现为信号的频谱不纯,在偏离载频处信号的功率谱密度不为零,出现了两个对称的边带。为定量地描述这种调制程度,引入了一个边带内偏离载频f m 处的功率密度与载频功率之比表示。这就是相位噪声L (f m ),其实用计算公式为: L (f m )= 5peak 2 2 = 25r m s 2 2 =12 S 5(f m )式中:5peak 为相位起伏的峰值,5rm s 为相位起伏的有效值。 相位噪声是时间频率领域的一项重要参数,它从频域描述了频率的稳定度,对于多普勒雷达系统、无线电通信、空间信号传输等应用有着重要的影响。例如:相位噪声过大会降低卫星定位的精度,影响数据传输的质量。因此,对相位噪声进行精确测量是一个很值得深入研究的问题。 2 基于频谱分析仪的相位噪声测试原理 常用的相位噪声测量方法有:频率外差法,直接测量法,鉴频器测量法和鉴相器测量法。除频率外差法为时域测量外,其余皆为频域测量。在此从频域进行测试,考虑到直接测量法将受频谱分析仪动态工作范围、分辨率及仪器内本振的相位噪声的制约,而鉴频器测量法又因其背景噪声电平将在频率接近载频时迅速增大而限制了对小频偏相位噪声的测量,所以鉴相器测量法是一种相对较好的选择。 鉴相器测量相位噪声的原理是:利用一个鉴相器,把 相位起伏转换成电压起伏信号,然后用频谱仪测量此起伏电压信号的功率谱密度即可。要使鉴相器输出的电压信号与两个鉴相信号的相位差成比例,两输入信号应满足:(1)频率相等;(2)相位正交,即相差为90°。满足此条件后,被测仪器和参考信号源的输出信号分别为: u x (t )=A sin [Zt +I (t )]u y (t )=Bco s (Zt ) 忽略参考信号源的相位起伏,则经鉴相器(混频器)后,信号变为: 第23卷第5期增刊 仪 器 仪 表 学 报 2002年10月

噪声测试及频谱分析

噪声测试及频谱分析 一. 实验步骤及内容 1)启动服务器,运行DRVI主程序,然后点击DRVI快捷工具条上的“联机注册”图 标,选择其中的“DRVI采集仪主卡检测(USB)”进行服务器和数据采集仪之间 的注册。联机注册成功后,从DRVI工具栏和快捷工具条中启动“内置的Web服 务器”,开始监听8500端口。 2)打开客户端计算机,启动计算机上的DRVI客户端程序,然后点击DRVI快捷工具 条上的“联机注册”图标,选择其中的“DRVI局域网服务器检测”,在弹出的对 话框中输入服务器IP地址(例如:192.168.0.1),点击“发送”按钮,进行客户端 和服务器之间的认证。 3)因为该实验的目的是了解噪声信号的测量方法,并且要实现服务器端的数据共享 功能,需要分别设计服务器端和客户端的实验脚本。对于服务器端,首先需要将 数据采集进来,DRVI中提供了一个8通道的USB数据采集芯片,用于完成对外 部信号的数据采集,实际使用中,可以插入一片“USB 数据采集卡”芯片来完 成;数据采集仪的启动采用一片“0/1按钮”芯片来控制;要完成噪声值的计 算,首先必须计算出信号的功率谱,所以需选择一片“频谱计算”芯片,然后 再插入一片“倍频程”芯片,采用FFT算法来计算并显示声音信号的倍频程 谱,并将计算出的声音信号的分贝值存储于输出数组的第1位,再使用一片 “VBScript 脚本”芯片,在其中添加脚本文件将“倍频程”芯片输出数组中的 第1位数据(即噪声值)取出,并通过“数码LED ”芯片显示出来;另外选 择一片“波形/频谱显示”芯片,用于显示声音信号的时域波形;再加上一些 文字显示芯片和装饰芯片,就可以搭建出一个“噪声测量”服务器端的实 验,所需的软件芯片数量、种类、与软件总线之间的信号流动和连接关系如图1.2 所示,根据实验原理设计图在DRVI软面包板上插入上述软件芯片,然后修改其属 图1.2 噪声测量实验参考设计原理图

HS5671B型噪声频谱分析仪

HS5671B型噪声频谱分析仪 使用说明书

嘉兴恒升电子有限公司 注意事项:仪器所用的传声器是一种精密传感器,请勿碰撞,以免膜片破损,不用时应放置妥当。如人为损坏不属保修范围。安装电池或外接电源应注意极性,切勿反接,仪器长期不使用时应取下电池,以

免漏液损坏仪器。仪器应避免放置于高温、潮湿、有污水、灰尘及含盐酸、碱成分高的空气或化学气体的地方,避免阳光直射。请勿擅自拆卸仪器,如果仪器工作不正常,可送修理单位或厂方检修。如私自拆卸不属保修范围。 装箱清单: 1)HS5671B型分析仪一台 2)使用说明书一本 3)产品合格证一张 4)产品检定证书一份 5)程序软盘一张 6)计算机接口连接线一根 7)风罩一只 8)钟表起子一把 9)携带箱一只 以下根据订货要求另外提供 10)5m、10m、15m、20m延伸电缆一根 11)UP40TS微型打印机及连线一台 12)三脚架一只 13)声级校准器一只 14) 主机外接电源(6V)一只 18 一概述 HS5671B型噪声频谱分析仪既是一种测量指数时间计权声级的通用声级计,又是能测量时间平均声级的积分平均声级计和测量声暴露的积分声级计,它还能测量累计百分声级(统计声级),其性能符合GB/T17181-1997和IEC61672-2002标准对1级声级计的要求,同时也符合IEC1260和GB/T3241对倍频程滤波器和1/3倍频程滤波器的要求,对射频场敏感度属X类。

本仪器采用了先进的数字检波技术,具有可靠性高、稳定性好、动态范围宽等优点。本仪器采用128×64点阵式液晶显示器带背景光显示,全中文界面,显示内容丰富,操作界面采用菜单方式,有汉字提示功能,用户操作简便,电池供电,测量结果可长期保存在仪器内,通过内置RS-232接口在现场或事后用微型打印机打印出来或送到计算机中去处理。 本仪器结构紧凑、造型美观、功能多、自动化程度高,可用于环境噪声的测量,也可用于劳动保护、工业卫生及各种机器、车辆、船舶、电器等工业噪声测量,还可以用于实验室进行噪声分析。 二主要技术性能 1 传声器:Φ12.7mm(1/2″)予极化测试电容传声器,灵敏度约 30mV/Pa 频率范围:20Hz~20kHz 2 测量范围:35dB~130dB(A) 40dB~130dB(C) 35dB~130dB(L) 3 频率范围:10Hz~20 kHz 4 频率计权:A、C计权 5 参考方向为电容传声器的轴向 6 参考声压级:94dB 7 时间计权:快(F)、慢(S) 8 检波器特性:数字检波,真有效值 1

频谱分析报告仪地使用方法

频谱分析仪的使用方法 13MHz信号。一般情况下,可以用示波器判断13MHz电路信号的存在与否,以及信号的幅度是否正常,然而,却无法利用示波器确定13MHz电路信号的频率是否正常,用频率计可以确定13MHz电路信号的有无,以及信号的频率是否准确,但却无法用频率计判断信号的幅度是否正常。然而,使用频谱分析仪可迎刃而解,因为频谱分析仪既可检查信号的有无,又可判断信号的频率是否准确,还可以判断信号的幅度是否正常。同时它还可以判断信号,特别是VCO信号是否纯净。可见频谱分析仪在手机维修过程中是十分重要的。 另外,数字手机的接收机、发射机电路在待机状态下是间隙工作的,所以在待机状态下,频率计很难测到射频电路中的信号,对于这一点,应用频谱分析仪不难做到。 一、使用前须知 在使用频谱分析仪之前,有必要了解一下分贝(dB)和分贝毫瓦(dBm)的基本概念,下面作一简要介绍。 1.分贝(dB) 分贝是增益的一种电量单位,常用来表示放大器的放大能力、衰减量等,表示的是一个相对量,分贝对功率、电压、电流的定义如下: 分贝数:101g(dB) 分贝数=201g(dB) 分贝数=201g(dB) 例如:A功率比B功率大一倍,那么,101gA/B=10182’3dB,也就是说,A功率比B功率大3dB, 2.分贝毫瓦(dBm) 分贝毫瓦(dBm)是一个表示功率绝对值的单位,计算公式为: 分贝毫瓦=101g(dBm) 例如,如果发射功率为lmw,则按dBm进行折算后应为:101glmw/1mw=0dBm。如果发射功率为40mw,则10g40w/1mw--46dBm。 二、频谱分析仪介绍 生产频谱分析仪的厂家不多。我们通常所知的频谱分析仪有惠普(现在惠普的测试设备分离出来,为安捷伦)、马可尼、惠美以及国产的安泰信。相比之下,惠普的频谱分析仪性能最好,但其价格也相当可观,早期惠美的5010频谱分析仪比较便宜,国产的安泰5010频谱分析仪的功能与惠美的5010差不多,其价格却便宜得多。 下面以国产安泰5010频谱分析仪为例进行介绍。 1.性能特点 AT5010最低能测到2.24uv,即是-100dBm。一般示波器在lmv,频率计要在20mv以上,跟频谱仪比相差10000倍。如用频率计测频率时,有的频率点测量很难,有的频率点测最不准,频率数字显示不稳定,甚至测不出来。这主要足频率计灵敏度问题,即信号低于20mv频率计就无能为力了,如用示波器测量时,信号5%失真示波器看不出来,在频谱仪上万分之一的失真都能看出来。

噪声系数测量方法

噪声系数测量的三种方法 摘要:本文介绍了测量噪声系数的三种方法:增益法、Y系数法和噪声系数测试仪法。这三种方法的比较以表格的形式给出。 前言 在无线通信系统中,噪声系数(NF)或者相对应的噪声因数(F)定义了噪声性能和对接收机灵敏度的贡献。本篇应用笔记详细阐述这个重要的参数及其不同的测量方法。 噪声指数和噪声系数 噪声系数(NF)有时也指噪声因数(F)。两者简单的关系为: NF = 10 * log10 (F) 定义 噪声系数(噪声因数)包含了射频系统噪声性能的重要信息,标准的定义为: 式1 从这个定义可以推导出很多常用的噪声系数(噪声因数)公式。 下表为典型的射频系统噪声系数:

* HG = 高增益模式,LG = 低增益模式 噪声系数的测量方法随应用的不同而不同。从上表可看出,一些应用具有高增益和低噪声系数(低噪声放大器(LNA)在高增益模式下),一些则具有低增益和高噪声系数(混频器和LNA 在低增益模式下),一些则具有非常高的增益和宽围的噪声系数(接收机系统)。因此测量方法必须仔细选择。本文中将讨论噪声系数测试仪法和其他两个方法:增益法和Y系数法。 使用噪声系数测试仪 噪声系数测试/分析仪在图1种给出。

图1. 噪声系数测试仪,如Agilent的N8973A噪声系数分析仪,产生28VDC脉冲信号驱动噪声源(HP346A/B),该噪声源产生噪声驱动待测器件(DUT)。使用噪声系数分析仪测量待测器件的输出。由于分析仪已知噪声源的输入噪声和信噪比,DUT的噪声系数可以在部计算和在屏幕上显示。对于某些应用(混频器和接收机),可能需要本振(LO)信号,如图1所示。当然,测量之前必须在噪声系数测试仪中设置某些参数,如频率围、应用(放大器/混频器)等。 使用噪声系数测试仪是测量噪声系数的最直接方法。在大多数情况下也是最准确地。工程师可在特定的频率围测量噪声系数,分析仪能够同时显示增益和噪声系数帮助测量。分析仪具有频率限制。例如,Agilent N8973A可工作频率为10MHz至3GHz。当测量很高的噪声系数时,例如噪声系数超过10dB,测量结果非常不准确。这种方法需要非常昂贵的设备。

频谱分析仪基础知识性能指标和实用技巧

频谱分析仪基础知识性能指标及实用技巧 频谱分析仪是用来显示频域幅度的仪器,在射频领域有“射频万用表”的美称。在射频领域,传统的万用表已经不能有效测量信号的幅度,示波器测量频率很高的信号也比较困难,而这正是频谱分析仪的强项。本讲从频谱分析仪的种类与应用入手,介绍频谱分析仪的基本性能指标、操作要点和使用方法,供初级工程师入门学习;同时深入总结频谱分析仪的实用技巧,对频谱分析仪的常见问题以Q/A的形式进行归纳,帮助高级射频的工程师和爱好者进一步提高。 频谱分析仪的种类与应用 频谱分析仪主要用于显示频域输入信号的频谱特性,依据信号方式的差异分为即时频谱分析仪和扫描调谐频谱分析仪两种。完成频谱分析有扫频式和FFT两种方式:FFT适合于窄分析带宽,快速测量场合;扫频方式适合于宽频带分析场合。 即时频谱分析仪可在同一时间显示频域的信号振幅,其工作原理是针对不同的频率信号设置相对应的滤波器与检知器,并经由同步多工扫瞄器将信号输出至萤幕,优点在于能够显示周期性杂散波的瞬时反应,但缺点是价格昂贵,且频宽范围、滤波器的数目与最大多工交换时间都将对其性能表现造成限制。 扫瞄调谐频谱分析仪是最常用的频谱分析仪类型,它的基本结构与超外差式器类似,主要工作原理是输入信号透过衰减器直接加入混波器中,可调变的本地振荡器经由与CRT萤幕同步的扫瞄产生器产生随时间作线性变化的振荡频率,再将混波器与输入信号混波降频后的中频信号放大后、滤波与检波传送至CRT萤幕,因此CRT萤幕的纵轴将显示信号振幅与频率的相对关系。 基于快速傅立叶转换(FFT)的频谱分析仪透过傅立叶运算将被测信号分解成分立的频率分量,进而达到与传统频谱分析仪同样的结果。新型的频谱分析仪采用数位,直接由类比/数位转换器(ADC)对输入信号取样,再经傅立叶运算处理后而得到频谱分布图。 频谱分析仪透过频域对信号进行分析,广泛应用于监测电磁环境、无线电频谱监测、电子产品电磁兼容测量、无线电发射机发射特性、信号源输出信号品质、反无线窃听器等领域,是从事电子产品研发、生产、检验的常用工具,特别针对无线通讯信号的测量更是必要工具。另外,由于频谱仪具有图示化射频信号的能力,频谱图可以帮助我们了解信号的特性和类型,有助于最终了解信号的调制方式和机的类型。在军事领域,频谱仪在电子对抗和频谱监测中

安捷伦glenB 频谱分析仪使用说明简介

Agilent E4402B ESA-E Series Spectrum Analyzer 使用方法简介 宁波之猫 2009-6-17

目录 1简介............................................................... 2.面板............................................................... 2.1 操作区....................................................... 2.2 屏幕显示..................................................... 3.各功能区的使用..................................................... 3.1 Control(控制)功能区........................................ 3.1.1 Frequency Channel:.................................... 3.1.2 Span X Scale........................................... 3.1.3 Amplitude Y Scale...................................... 3.1.4 Input/Output........................................... 3.1.5 View/Trace............................................. 3.1.6 Display................................................ 3.1.7 Mode................................................... 3.1.8 Det/Demod.............................................. 3.1.9 Auto Cuple............................................. ............................................................. ............................................................. ............................................................. ............................................................. ............................................................. 3.2 Measure(测量)功能区........................................ 3.2.1 Measure................................................ 3.2.2 Meas Setup............................................. 3.2.3 Meas Control........................................... 3.3 System(系统)功能区......................................... 3.3.1 System................................................. 3.3.2 Preset................................................. 3.3.3 File................................................... 3.3.4 Print Setup&Print...................................... 3.4 Marker(标记)功能区......................................... 3.4.1 Marker................................................. 3.4.2 Peak Search............................................ 3.4.3 Freq Count............................................. 3.4.4 Marker →.............................................. 4.测试步骤举例.......................................................

相位噪声的测试方法

胡为东系列文章之七 相位噪声的时域测量方法 美国力科公司胡为东摘要:相位噪声主要是衡量因信号的相位变化而带来的噪声,在频域中表现为噪声的频谱,在时域中又表现为信号边沿位置的抖动,因此在实际应用中,相位噪声和信号的抖动其实本质是相同的。本文就将对相位噪声以及TIE抖动(Time Interval Error,时间间隔误差,也叫相位抖动)的概念及相互关系做一简要介绍并详细介绍了使用力科示波器如何测量TIE 抖动并将其转换为相位噪声的。 关键词:力科相位噪声TIE 抖动 一、相位噪声的基本概念 一个时钟信号或者一个时钟信号的一次谐波可以用一个如下的正弦波形来表示: (),其中为时钟频率,为初始相位,如果为常数,那么的傅里叶变换频谱图应该为一条谱线,如图1中的左图所示,但是如果发生变化,则原本规则的周期正弦信号在变化的过程中将会出现拐点,且频谱也将变得不仅仅是一条谱线,而是可能由分布在时钟频率周围的很多条谱线构成的更为复杂的频谱图,如图1中的右图所示,其中频谱波形在fc附近多出的谱线即为相位噪声谱(或者叫做相位抖动谱)。因为初始相位的变化而引起的噪声称为相位噪声,因此对于一个正弦时钟信号或者时钟信号的一次谐波来说,在理论上应该是为零的,此时上述公式中的则完全为相位噪声成分。 fc A fc A 图1 正弦信号的频谱(无相位变化以及有相位变化的可能情形)为了更为精确的描述相位噪声,通常定义其为在某一给定偏移频率处的dBc/Hz值,其中,dBc是以dB为单位的该频率处功率与总功率的比值。如一个振荡器在某一偏移频率处的相位噪声定义为在该频率处1Hz带宽内的信号功率与信号的总功率比值,即在fm频率处1Hz范围内的面积与整个噪声频下的所有面积之比,如下图2所示。

噪声测量和频谱分析仪器

噪声测量和频谱分析仪器 概述:噪声测量和频谱分析仪器,本底噪声低,动态范围大;模块化设计,配置不同硬件和软件模块,使仪器分别具有噪声频譜分析、积分采集、统计分析、24h测量、脉冲噪声测量、混响时间测量等不同的功能。仪器采用数字检波和开关电容滤波技术,具有精度高、稳定性好、可靠性高等特点。测量和分析结果可以保存、打印、送入计算机。适用于各种工业噪声测量和频谱分析、环境噪声监测,以及建筑物内混响时间测量。 特点:◎超大容量储存;◎大屏幕LCD显示,有背光; ◎F型和G型内置倍频程滤波器;◎D型可测脉冲噪声。 系列产品模块选择和组合及用途,如下表: 模块配置 频谱分析 统计分析 主要技术性能: 模块型号 用途 积分采集和脉冲噪声测量 统计分析和24h测量 统计分析、频谱分析和混响时间测量 符合标准 GB/T3785 1型,JJG188-2002 1级,IEC 61672-1:2002 1级 2级 传声器 AW A14423型预极化测试电容传声器(1/2”),标称灵敏度50mV/Pa AW A14421 本机噪声 小于18dB(A),23dB(C),28dB(F) 小于23dB(A) 测量上限 130dB

频率范围 10 Hz~20 kHz 20Hz~12.5kHz 频率计权 A,C,Flat (平直响应) 时间平均 F,S,I及线性平均 指数平均(有效值) F,S及线性平均 量程 10~80,20~90,30~100,40~110,50~120,60~130 线性工作范围 70dB 内置滤波器 —— 1/1倍频程滤波器, 中心频率: 31.5 Hz~16 kHz 1/1倍频程滤波器, 中心频率: 31.5 Hz~8 kHz 测量方式 Lp,Leq,Lmax,Lmin,LAE,E Lp,Leq,Lmax,Lmin,LAE,E,L5,L10,L50,L90,L95和24h测量采样时间间隔 31ms(脉冲测量7.8ms) 31ms 31ms(Tr测量16ms) 积分时间

频谱分析仪的使用方法

电磁干扰测量与诊断 当你的产品由于电磁干扰发射强度超过电磁兼容标准规定而不能出厂时,或当由于电路模块之间的电磁干扰,系统不能正常工作时,我们就要解决电磁干扰的问题。要解决电磁干扰问题,首先要能够“看”到电磁干扰,了解电磁干扰的幅度和发生源。本文要介绍有关电磁干扰测量和判断干扰发生源的方法。 1.测量仪器 谈到测量电信号,电气工程师首先想到的可能就是示波器。示波器是一种将电压幅度随时间变化的规律显示出来的仪器,它相当于电气工程师的眼睛,使你能够看到线路中电流和电压的变化规律,从而掌握电路的工作状态。但是示波器并不是电磁干扰测量与诊断的理想工具。这是因为: A. 所有电磁兼容标准中的电磁干扰极限值都是在频域中定义的,而示波器显示出的时域波形。因此测试得到的结果无法直接与标准比较。为了将测试结果与标准相比较,必须将时域波形变换为频域频谱。 B. 电磁干扰相对于电路的工作信号往往都是较小的,并且电磁干扰的频率往往比信号高,而当一些幅度较低的高频信号叠加在一个幅度较大的低频信号时,用示波器是无法进行测量。 C. 示波器的灵敏度在mV级,而由天线接收到的电磁干扰的幅度通常为V级,因此示波器不能满足灵敏度的要求。 测量电磁干扰更合适的仪器是频谱分析仪。频谱分析仪是一种将电压幅度随频率变化的规律显示出来的仪器,它显示的波形称为频谱。频谱分析仪克服了示波器在测量电磁干扰中的缺点,它能够精确测量各个频率上的干扰强度。 对于电磁干扰问题的分析而言,频谱分析仪是比示波器更有用的仪器。而用频谱分析仪可以直接显示出信号的各个频谱分量。 1.1 频谱分析仪的原理 频谱分析仪是一台在一定频率范围内扫描接收的接收机,它的原理图如图1所示。 图1 频谱分析仪的原理框图

相关主题
文本预览
相关文档 最新文档