当前位置:文档之家› 双电源均流

双电源均流

双电源均流
双电源均流

对于一些需要长时间不间断操作、高可靠的系统,如基站通信设备、监控设备、服务器等,往往需要高可靠的电源供应。冗余电源设计是其中的关键部分,在高可用系统中起着重要作用。冗余电源一般配置2个以上电源。当1个电源出现故障时,其他电源可以立刻投入,不中断设备的正常运行。这类似于UPS电源的工作原理:当市电断电时由电池顶替供电。冗余电源的区别主要是由不同的电源供电。

电源冗余有交流220 V及各种直流电压的应用,本文主要介绍低压直流(如DC 5 V、DC 12 V等)的冗余电源方案设计。

1 冗余电源介绍

电源冗余一般可以采取的方案有容量冗余、冗余冷备份、并联均流的N+1备份、冗余热备份等方式。容量冗余是指电源的最大负载能力大于实际负载,这对提高可靠性意义不大。

冗余冷备份是指电源由多个功能相同的模块组成,正常时由其中一个供电,当其故障时,备份模块立刻启动投入工作。这种方式的缺点是电源切换存在时间间隔,容易造成电压豁口。

并联均流的N+1备份方式是指电源由多个相同单元组成,各单元通过或门二极管并联在一起,由各单元同时向设备供电。这种方案在1个电源故障时不会影响负载供电,但负载端短路时容易波及所有单元。冗余热备份是指电源由多个单元组成,并且同时工作,但只由其中一个向设备供电,其他空载。主电源故障时备份电源可以立即投入,输出电压波动很小。本文主要介绍后两种方案的设计。

2 传统冗余电源方案

传统的冗余电源设计方案是由2个或多个电源通过分别连接二极管阳极,以“或门”的方式并联输出至电源总线上。如图1所示。可以让1个电源单独工作,也可以让多个电源同时工作。当其中1个电源出现故障时,由于二极管的单向导通特性,不会影响电源总线的输出。

在实际的冗余电源系统中,一般电流都比较大,可达几十A。考虑到二极管本身的功耗,一般选用压降较低、电流较大的肖特基二极管,比如SR1620~SR1660(额定电流16 A)。通常这些二极管上还需要安装散热片,以利于散热。

3 传统方案与替代方案的比较

使用二极管的传统方案电路简单,但有其固有的缺点:功耗大、发热严重、需加装散热片、占用体积大。由于电路中通常为大电流,二极管大部分时间处于前向导通模式,它的压降所引起的功耗不容忽视。最小压降的肖特基二极管也有0.45 V,在大电流时,例如12 A,就有5 W的功耗,因此要特别处理散热问题。

现在新的冗余电源方案是采用大功率的MOSFET管来代替传统电路中的二极管。MOSFET的导通内阻可以到几mΩ,大大降低了压降损耗。在大功率应用中,不仅实现了效率更高的解决方案,而且由于无需散热器,所以节省了大量的电路板面积,也减少了设备的散热源。应用电路中MOSFET需要有专业芯片的控制。目前,TI、Linear等各大公司都推出了一些成熟的该类芯片。

4 新方案中MOSFET的特殊应用

MOSFET在新的冗余电源方案中是关键器件。由于与常规电路中的应用不同,很多人对MOSFET的认识都存在一定误区。为了方便后续电路的介绍,下面对其特殊之处作以说明。

首先,MOSFET符号中的箭头并不代表实际电流流动方向。在三极管应用中,电流方向与元件符号的箭头方向相同,因此很多人以为MOSFET也是如此。其实MOSFET与三极管不同,它的箭头方向只是表示从P 极板指向N极板,与电流方向无关,如图2所示。

其次,应注意MOSFET中二极管的存在。如图2所示,N沟道MOSFET中源极S接二极管的阳极,P沟道MOS-FET中漏极D接二极管的阳极。因此,在大多数把MOSFET当作开关使用的电路中,对于N沟道MOSFET,电流是从漏极流向源极,栅极G接高电压导通;对于P沟道MOSFET,电流是从源极流向漏极,栅极G接低电压导通,否则由于二极管的存在,栅极的控制就不能关断电流通路。

最后,应注意MOSFET的电流流动方向是双向的,不同于三极管的单向导通。对于MOSFET的导电特性,大多数资料、文献及器件的数据手册中只给出了单向导电特性曲线,大多数应用也只是利用了它的单向导电特性;而对于其双向导电特性,则鲜有文献介绍。实际上,MOS-FET为电压控制器件,通过栅极电压的大小改变感应电场生成的导电沟道的厚度,从而控制漏极电流的大小。以N沟道MOSFET为例,当栅极电压

小于开启电压时,无论源、漏极的极性如何,内部背靠背的2个PN结中,总有1个是反向偏置的,形成耗尽层,MOSFET不导通。当栅极电压大于开启电压时,漏极和源极之间形成N型沟道,而N型沟道只是相当于1个无极性的等效电阻,且其电阻很小,此时如果在漏、源极之间加正向电压,电流就会从漏极流向源极,这是通常采用的一种方式;而如果在漏、源极之间加反向电压,电流则会从源极流向漏极,这种方式很少用到。

在冗余电源的应用电路中,MOSFET的连接方向与常规不同。以N沟道管为例,连接电路应如图3所示。如果电源输入电压高于负载电源电压,即Vi>Vout,电流由Vi流向Vout。由于是冗余电源应用,负载电源电压Vout可能会高于电源输入电压Vi,这时由外部电路控制MOSFET栅极关断源、漏通路,同时由于内部二极管的反向阻断作用,使负载电源不能倒流回输入电源。

如果需要通过控制信号直接控制关断MOSFET通路,上述的单管就无法实现,因为关断MOSFET沟道之后,内部的二极管还存在单向通路。这时需要如图4所示的2个背靠背反向连接的MOSFET电路,只有这样才能主动地关断电流通路。

5 几种实用冗余电源方案设计

本文主要讨论的是DC 5 V、DC 12 V之类的低压冗余电源设计。针对不同的功能、成本需求,下面给出几个设计方案实例。

5.1 简单的冗余电源方案

使用Linear公司的LTC4416可以设计1个简单的2路电源冗余方案,如图5所示。图中用1个LTC4416芯片连接2个外置P沟道MOSFET控制2路电源输入,是非常简单的方案。它使用2个MOSFET代替2个二极管实现了“或”的作用,MOSFET的压降一般为20~30 mV,因此功率损耗非常小,不会产生太多热量。

该电路的工作原理是,LTC4416在2路输入电源的电压相同(差值小于100 mV)时,通过G1、G2控制2个MOSFET同时导通,使2路输入同时给负载提供电流。当输入电源电压不同时,输出电源电压可能高于某路输入电源电压,这时LTC4416可以防止输出向输入倒灌电流。这是因为芯片一直监测输入与输出之间的电压差,当输出侧电压比输入侧电压高25 mV时,芯片控制G1或G2立即关断MOSFET,防止电流倒流。在防止倒流方面,其他控制芯片也是类似的原理。

LTC4416还有2个控制端E1、E2,可以用外部信号主动控制2路电源的通断,也可以通过电阻分压来监测输入电压的高低,来控制某路电源的导通。具体方法可参阅芯片数据手册。该芯片也适合于1路输入电源电压高、1路输入电源电压低的应用,如“电源+电池”的应用。需要注意的是,要让芯片主动去关断1路电源,外部MOSFET必须使用“背靠背”的方案,如图4所示。

另外,使用TI公司的TPS2412可以构成多路输入电源方案,这种方案需要为每路输入电源配置1片TPS2412。如图6所示,每个芯片通过外部控制1个MOSFET来模拟1个二极管的“或输入”。芯片的A、C 引脚分别为输入、输出电源电压检测引脚,VDD为芯片供电电源,RSET通过配置不同的外接电阻来调节MOS-FET导通的速度,也可以悬空。由该芯片可以构成多于2路的电源冗余方案。

5.2 带过、欠压检测的冗余电源方案

图7是由2个P12121芯片构成的带过压、欠压检测的双路冗余电源方案。P12121为Vicor(怀格)公司的一款电源冗余专用芯片,由于其内部集成有24 A、1.5 mΩ的MOSFET,因此外部电路非常简单。芯片OV为过压检测引脚,高于0.5 V时MOSFET自动切断;UV为欠压检测引脚,低于0.5 V时MOSFET切断,FT为状态输出引脚,VC为芯片工作电源引脚。使用P12121也可以灵活地构成多路输入电源方案。

5.3 热插拔及过、欠压保护的冗余电源方案

LTC4352是一种除了过压、欠压保护外,还具备防护电源热插拔浪涌电流的单路冗余电源芯片。图8所示为LTC4352构成的单路冗余电源电路,多个这样的电路并联可以构成多路冗余电源方案。图中OV、UV 分别为过压、欠压检测,该电路通过CPO悬空使芯片不能快速通断MOSFET,依靠欠压检测使GATE引脚在电源上电后延迟开通MOSFET,由R1、C组成的阻容网络使电源输出的电压上升速度减慢,R2则有效防止了Q的开关振荡,从而实现了一定的热插拔浪涌电流保护功能。

5.4 均流控制的冗余电源方案

若要使不同的输入电源同时承担负载电流(即均流控制),需要外加一个前提,即各输入电源的电压能够通过控制信号被外部调节,以达到各电源电压基本相同的目的。通过LTC4350控制这种电源,可以实现均流的功能。图9是1个应用例图,图中“SHARE BUS”是各芯片共用的分配总线,该电路主要通过检测电源通路上的电流来调节输入电源的电压,达到各模块均衡提供电流的目的。

RSENSE为电流检测电阻,LTC4350检测该电阻两端的电压,内部放大后与GAIN引脚的电压比较,根据比较结果再通过IOUT引脚的模拟输出控制输入电源的电压变化,以达到调整该路电源输出电流的目的。另外,UV、OV引脚分别为欠压、过压检测引脚,LTC4350通过检测这两个引脚的电压可以控制MOSFET的关断,实现欠压保护和过压保护的功能。

通信直流变换电源模块

通信直流变换电源模块 RT4820S 用 户 手 册

目录 通信直流变换模块介绍 (2) 1.1 结构及接口 (2) 1.1.1模块外观 (2) 1.1.2前面板 (2) 1.1.3后面板 (4) 1.2模块工作原理 (5) 1.3模块主要功能 (5) 1.3.1保护功能 (5) 1.3.2 其它功能 (6) 1.4模块性能参数 (7) 1.4.1环境要求 (7) 1.4.2输入特性 (8) 1.4.3输出特性 (8) 1.4.4其他特性 (8) 1.5模块安装尺寸 (9) 1.6包装维护 (10) 1.6.1运输包装 (10) 1.6.2维护 (10) 1.7使用注意事项及处理 (10) 1.7.1模块均流 (10) 1.7.2输出电压设定 (11) 1.7.3分组号设定 (11) 1.7.4地址设定 (11) 1.7.5模块告警现象及处理 (11) 注意事项 (12)

通信直流变换模块介绍 RT4820S 型模块额定输入AC220V/DC220V 或DC110V 电源,输出为DC48/20A ;可用于一体化电源系统用作通信电源使用,下面将做系统的介绍: 1.1 结构及接口 1.1.1 模块外观 模块的外观如下图: 图2-1 充电模块外观 1.1.2 前面板 模块前面板如下图所求: 图2-2 充电模块前面板 指示灯 LED 上键(长按5秒取消设置) 下键(长按5秒取消设置) 紧固螺钉

1)LED显示面板 可显示模块电压、电流、告警、地址、分组号、运行方式等信息。若按键无操作超过一分钟,将自动显示模块电压和电流,此时如果存在告警,则显示告警信息。电压显示精度为±0.5V,电流显示精度为±0.2A。 2)指示灯 模块面板上有3个指示灯,分别为电源指示灯(绿色)、保护指示灯(黄色)和故障指示灯(红色),见下表。 表2-1 面板指示灯说明 3)手动操作按键 模块面板上有两个按键,上键和下键。 通过按键,可查看模块信息。例如模块输出电压48V、输出电流10.0A、地址2、运行在自动方式、分组号1,按上键或下键将依次显示如图2-3。 输出电压48V 输出电流10A 地址2 分组号1 运行在自动模式 图2-3 模块信息显示顺序

直流双电源切换装置均流利弊分析

直流双电源切换装置 均流利弊分析 目前,直流双电源切换装置市场鱼龙混杂,充斥着诸多假冒伪劣产品,切换时间达不到要求,产品质量性能让人担忧。使用上类似产品发电厂的DCS,DHE,MEH,AST,BPS等重要系统都将要面临停机风险。今天就将阐述风险由来,并带来风险的化解之方,无需均流能做到两机三机运行的上海知进ZJ-ATSDC220v/110v智能直流双电源切换装置。 几种常见的均流电路工作原理及优缺点分析: 先说说为什么需要均流电路: 我们知道,当一个模块无法提供负荷需要的电流的时候,可以采用多个模块并联的方式来提供总的负荷,但由于每个模块的输出电压无法完全一致,输出阻抗特性也会有所区别,简单的将模块并联在一起,并不能保证各模块输出电流完全一致,很可能会出现有的模块全负荷工作,有的模块却空载运行的情况,我们知道,模块空载及满负荷运行,都不是最佳运行状态,对于系统的整体寿命也就可想而知了。所以,就需要额外的电路来实现均流的功能,让所有模块均分负载。

再说说如何实现均流,其实,模块为什么不均流原因也很简单,就是输出电压不一致,有人可能要问,我都将电压调整一致直接并联可以不?如果你能保证所有模块输出电压完全一致且模块的阻抗特性也完全一致,那么直接并联应该是没有问题的,但是我们能将所有模块电压调整的完全一致而且随着负载的变化,模块输出电压的变化趋势也一致吗?如果你有方法,欢迎指点,但大多数情况下,这种情况是无法实现的。那么我们如何实现均流呢?简单的说,就是通过外加的均流电路,让模块输出电压一致,电流大的,将电压调低,电压小的,将电压调高,就可以实现均流了。缺点是几个电源并联成一个电源,由于每个电源的性能不可能完全相同,不采取措施会造成每个电源输出的电流不同.在一定的负载电流时,有的模块可能工作在过载状态,而另一些模块则工作在空载状态。均流即是恒流,恒流输出即是是恒功率输出,这在电路中是非常不现实的。

直流电源的均流

直流电源的均流 摘要 直流稳压电源的原理和设计:市电经功率变换后,分成既可相互独立又可并联组合的两路直流稳压电源。输出电压可在1.8V—5.8V之间连续调节。当两路并联时能够自动均衡电流,并用STC12C5A60S2作为控制核心,系统可以输出最大电流、实际电压和输出电压实时显示出来。 一、作品简介 设计并制作直流稳压电源,两路电源可独立使用,也可以组合使用。两路并联输出,可自动实现输出电流均衡。 指标完成情况: 1)作品没能实现采用红外遥控对输出参数进行调整。 2)单路输出电压可在1.8V~6.0V之间以任意调节,由于DA部分出了一点状况,所以只能通过调节电位器来改变输出电压的值。 3)典型输入电压为5V,负载在10%~100%变化时,负载效应小于±0.5‰; 由于没有功率电阻,所以没有测试,最大输出电流也没能测试。 4)满负载时纹波在5m以内; 未进行纹波测试,在实验过程中所得到的方波波形毛刺很大。通过增加滤波电容,效果也并不明显。 图 1.1 作品实物图 二、硬件电路 (一)硬件电路的焊接 根据所给实训题的报告,在仔细阅读了报告之后,我们首先将需要购买的元器件罗列出来,待一些基本的元器件买回后,就开始了焊接。同时开始了原理图的绘制,和程序的设计。 由于这次的硬件电路主要是两路可均流的DC/DC变换器,所以整个电路是相当对称的,在设计硬件电路时,我们很注意电路的对称布局的。可是因为芯片和电感是在网上购买的,我们只需要根据芯片的封装焊接上芯片座或者预留出足够大的位置就可以了。整个电路焊接好之后也算是美观。只等芯片回来进行调试了。可是在网上购买的芯片有很多是贴片的,我

直流稳压电源并联均流及实现

直流稳压电源并联均流及实现 我们学习的是采用运算放大器的串联型稳压电路,但是还是有不少的外接元件,还要注意共模电压的允许值和输入端的保护,使用复杂。随着国民经济的发展和用电设备的不断增加,各种电子装置对电源功率的要求越来越高,对电流的要求也越来越大,但受构成电源模块的半导体功率器件,磁性材料等自身性能的影响,单个开关电源模块的输出参数(如电压、电流、功率)往往不能满足要求。若采用多个电源模块并联供电,就不但可以提供所需电流,而且还可以形成N+m冗余结构,提高了系统的稳定性,可谓一举两得。 并联电源的使用可以使这种情况得到改善,电源并联运行是电源产品模块化,大容量化的一个有效方法,是电源技术的发展方向之一,是实现组合大功率电源系统的关键。目前由于半导体功率器件、磁性材料等原因,单个开关电源模块的最大输出功率只有几千瓦,但实际应用中往往需用几百千瓦以上的开关电源为系统供电,在大容量的程控交换机系统中这种情况是时常遇到的。这可通过电源模块的并联运行实现。 我们通过直流稳压电源的并联运行可达到以下目的: 1. 扩展容量,实现大功率电源供电系统。 2. 通过N+1,N+2冗余实现容错功能,带电热插拔,便于在不影响系统正常工作的情况下,对电源系统进行维护,实现供电系统的不间断供电。 这就是我们课本上所认识的图 输出电压可调的电路

这样我们就可以拥有较大的供电系统,而且这样的系统也是比较稳定和易于维护的,对于大型的生产企业来说,可以产生巨大的经济效益,因而我觉得我们应该推广这种并联式的稳压电源。技术上的要求如下: 1.N+m(m表示电源系统冗余度)个电源模块并联扩容后,总电源系统的源电压效应,负载效应,瞬态响应等技术指标都应保持在系统所要求的技术指标范围内。 2.每个直流稳压电源模块单元具有输出自动均流功能。 3.采用冗余技术,当某个电源模块单元发生故障时,不影响整个电源系统的正常工作,电源系统应有足够的负载能力。 4 .不改变电源模块单元的内部电路结构,确保电源系统的高可靠性。 5 .公共均流总线带宽要小,以降低电源系统噪声。 6 .保每个供电单元分担负载电流。即通过并联均流应使整个电源系统像一个整体一样工作,同时通过并联均流技术使整个供电系统的性能得到优化。 在我们学习的范围内,以上知识我们式完全明白的,但是在实际的设计和操作中可能就没有那么简单了。而且设计出来的电路图也是比较复杂的。如下图: 在日常的生产中,也有需要用到一个电压输出为很多的机器供电的情况,所以我们就要用到均流,使电流平均的输送给这些机器。工程上常用的几个几个均流的方法:

直流电源均流电路设计[开题报告]

开题报告 电子信息工程 直流电源均流电路设计

二、课题研究的主要内容和预期目标 主要内容: 设计一个直流电源均流电路,通过两片负载共享控制芯片UCC29002 对输出电流进行均流,两路输出误差最佳可控制在1%以内。 预期目标: 本系统控制器采用超低功耗单片机MPS430,采用独立键盘控制电压输出,电源芯片采用开关电源芯片TPS5430和均流芯片UCC29002。最后完成相应模块的软硬件的设计与仿真调试。 三、课题研究的方法及措施 加入UCC29002后的电路 加入UCC29002后的电路连接如图所示。在几路电源的UCC29002的均流母线连接后,系统会自动选出电流最大(即输出电压最大)的一路。此路UCC29002内部的三极管截止,即没有电流流入其ADJ脚,故该路中只是反馈线上比无UCC29002时多了一个小电阻(R4,在此取66Ω)。而在电流较小的另一路电源中,UCC29002内部三极管导通,该三极管发射极有一个500Ω电阻到地,此时通过该三极管的电流即为VEAO /500。有此附加电流流过R4后,A 点电压下降,从而B点基准电压也下降,而不再是1.22V。此时为了使VSENCE恢复到1.22V,TPS5430将增加PWM脉冲宽度,增加VOUT 从而提高该路电流输出,达到均流目的。在电流取样中,我们使用了5KΩ的取样电阻。为了将该路电流值读入单片机,实现更精确的过流保护,我们曾将UCC29002内部差动放大器提供一个很大的放大倍数,但导致了差动放大器的工作不稳定,同时均流误差也很大。综合考虑均流误差和过流保护,我们将放大倍数减小为100倍。在R4的选择上,我们试验了20—100Ω。当R4取20Ω时,只有当两路电流相差较小时,系统才具有较好的调节能力。当R4取100Ω时,系统对电流有较强的调节能力,但对输出电压有较大影响。为了兼顾均流能力及输出电压的稳定,我们做出了折中的选择,将R4选定为66Ω。

论文浅谈通信电源

浅谈通信电源 摘要:在科技飞跃发展的今天,电成为我们生活的必需品,而无处不在的通信网络为我们的工作提供了方便,使我们的生活变得越来越多姿多彩,之所以如此,得归功于通信电源,它是整个通信网的能量保证。 关键词:通信电源;维护;现状;发展趋势 一、通信电源的现状 通信电源是通信系统重要的组成部分,在整个通信行业中虽然占的比例比较小,但它是整个通信网络的关键基础设施,是通信网络上一个完整而又不可替代的独立专业。近年来,随着科学技术的日新月异,特别是新型电磁材料的更新换代,功率变换技术的不断进步,控制方法的改进,以及其他相关技术的不断融合,通信电源在系统的可靠性、稳定性方面有所提高,特别是提高电能利用率、降低损耗、提高通信系统的动态性能方面取得了更大的成绩。 二、通信电源的日常维护和检修 通信电源是通信系统重要的组成部分,人们常把它形象的比喻成通信系统的心脏,况且再好的设备也有寿命期,也会出现故障,所以电源系统的日常维护与检修就显得尤为重要,不要因为高智能、免维护就忽略了本应进行的预防与维护工作。下面从主机和电池两个方面的维护给以简要叙述: (1)主机 在正常使用情况下,对主机的维护主要是防潮、防尘与定期除尘,在除尘时要注意检查各连接件和插接件有无松动工接触不好的情况;对主机出现击穿、断保险或烧毁器件的故障,一定要查明原因并排除故障后,重新启动。 (2)蓄电池 由于蓄电池能供给通信设备纯直流,又不受市电突然中断的影响,工作可靠,所以在我们电力通信部门得到广泛的应用。但蓄电池是一种化学反应装置,内部的化学反应既看不到又摸不着,并且日常维护中的缺陷不会立即反映出来,看起来维护工作很简单,但真正要维护好却是比较困难的。因此我们维护人员都要认真负责,加强管理,使电池经常处于良好的状态。 我们维护的蓄电池大体上分三种: 一种是固定型防酸铅酸蓄电池(普通型)。这种电池存在着许多缺点,所以这种电池将逐步淘汰。另一种是阀控式密封铅酸电池。它在维护中不需要添加蒸馏水和测量电解液的比重、温度,维护方便,能量密度高,基本无酸雾逸出,可任意放置等优点,所以被广泛的采用。第三种是富液式胶体电池。由于这种电池性能指标较好,所以日常维护以测电池的电压为主,来发现各电池间电压是否均匀和有没有落后电池。 为保证电池的安全使用,平时电池的运行方式是与充电器并列运行,处于浮充状态,要使电池在浮充状态下保持满容量,我们在维护工作中应注意: ①电池不可过放电,放电后应立即充电,同时不应经常充电不足,也不应经常充电过量,冒气剧烈。 ②对阀控密封电池检查极柱安全阀周围有无酸雾逸出,连接有无松动和腐蚀,壳体有无渗漏和变形。对普通型电池调酸时不可将水到入硫酸内,液面要高出极板1—2CM,液面低时要注意加水。柱头等零部件应经常保持一层凡士林,如有氧化物必须刮除。 ③电池事应保持清洁,事内干燥,通风良好,避免阳光直射电池。室内严禁存放食品和易燃,易爆,易腐蚀物品,更不能将任何明火带入。 ④做好日常维护运行记录,在电池上不准存放任何金属物品,以免发生短路。 三、通信电源的发展趋势

南方电网通信电源技术规范

Q/CSG 中国南方电网有限责任公司企业标准 南方电网通信电源技术规范 Communication power supply technical specification of CSG 中国南方电网有限责任公司发布

Q/CSG110021-2011 目次 前言....................................................................... I 1范围.. (1) 2规范性引用文件 (1) 3术语和定义 (1) 4缩略语 (2) 5通信电源系统配置原则及通用技术条件 (2) 5.1 基本配置原则 (2) 5.2 通用技术条件 (2) 6交流供电系统技术要求 (3) 6.1 交流配电屏 (3) 6.2 交流不间断电源系统 (3) 7通信直流供电系统技术要求 (4) 7.1 系统构成 (4) 7.2 系统配置与接线 (4) 7.3 运行方式 (5) 7.4 直流配电柜 (6) 7.5 高频开关电源 (6) 7.6 监控单元 (7) 7.7 断路器、熔断器 (7) 8蓄电池技术要求 (8) 8.1 蓄电池供电时间 (8) 8.2 蓄电池类型 (8) 8.3 蓄电池室及电池柜架 (8) 8.4 连接线 (8) 8.5 蓄电池技术性能 (8) 9安全和接地 (10)

Q/CSG110021-2011 前言 为保障南方电网安全、优质、经济运行,推进南方电网通信电源的规范化管理,提供通信电源设备选型技术规范,制定本规范。 本规范依据国家标准、行业规范,并结合通信电源技术发展及南方电网实际情况,规定了南方电网通信电源在规划、设计、设备选型、运行维护等方面需遵循的技术指标及功能特性,以规范和指导南方电网所属各单位通信电源的规划、设计、工程建设、运行维护等工作。 本规范由中国南方电网有限责任公司系统运行部提出、归口并解释。 本规范主要起草单位:中国南方电网有限责任公司系统运行部、海南电网公司系统运行部。 主要起草人:徐键、邓文成、陈新南、杨俊权、陈育平、方里宁。 本规范自颁布之日起执行。 执行中的问题和意见,请及时反馈给中国南方电网有限责任公司系统运行部。

直流电源的均流

“TI”杯四川省电子设计竞赛一等奖作品 题目:直流电源的均流指导教师:钟洪声 杨忠孝、崔红玲队员及年 级:郭继舜、姜振宇、王尚2006 级 学校及院系:电子科技大学电子工程学院 摘要 本文介绍了直流稳压电源的原理和设计:市电经功率变换后,分成既可相互独立又可并联组合的两路直流稳压电源。该系统具有电路简洁,输出电压可调,负载效应很小,电源效率高,稳定可靠的特点;当两路并联使用时能过自动均衡电流,并具有由MPS4301611 单片机实现的过流保护及自动恢复功能。在芯片选择上,我们选用了开关电源芯片TPS5430 和load sharing 芯片UCC29002。利用TPS5430 的4 脚VSENSE 对地电压值能够稳定在1.221V 的特性,将4 脚作为电压参考点,通过与串联电阻分压网络相连接,实现5V 稳压输出。使用5 毫欧采样电阻对两路并联电路进行电流采样,并选用两片load sharing 芯片UCC29002 的配合使用,通过调节上路电路中连接在UCC29002 的1 脚与8 脚之间的电位器,使上下两路对称,实现自动均流。 Abstract In this paper, the principle of direct current voltage-stable power supply is introduced,along with the design of it: after the power conversion, commercial power will be divided into two DC power supplies, which can be used not only in an independent way ,but also parallel and combined. The system has a simple circuit, an adjustable output voltage and the load effect is very small, the power efficiency is particularly high, stable and reliable; When one DC power supply parallels the other , the system is capable of achieving current-share function, with single chip MPS430F1611 to achieve the over-current protection ,as well as automatic restoration of function. As for the chips to choose, we select the switching power supply chips TPS5430 and load sharing chips UCC29002. We make use of the features of TPS5430 that the VSENSE pin is able to be adjustable down to the value of the voltage of 1.221V ,and choose the VSENSE pin as a reference point, with the series resistance divider network connected to the chip, to achieve 5V output regulator. With the use of 5 milliohm sampling resistance to the two parallel circuits for current sampling, coupled with the choice of two load sharing chips UCC29002, we achieve the two-way symmetry and automatic current sharing

吐血共享:开关电源常用的6种并联均流原理详解

开关电源并联均流原理 摘要:讨论几种常用的开关电源并联均流技术,阐述其主要工作原理及特点。 1引言 在实际应用中,往往由于一台直流稳定电源的输出参数(如电压、电流、功率)不能满足要求,而满足这种参数要求的直流稳定电源,存在重新开发、设计、生产的过程,势必加大电源的成本、延长交货时间、影响工程进度。因此在实用中往往采用模块化的构造方法,采用一定规格系列的模块式电源,按照一定的串联或并联方式,分别达到输出电压、输出电流、输出功率扩展的目的。 但是电源输出参数的扩展,仅仅通过简单的串、并联方式还不能完全保证整个扩展后的电源系统稳定可靠的工作。不论电源模块是扩压还是扩流,均存在一个“均压”、“均流”的问题,而解决方法的不同,对整个电源扩展系统的稳定性、可靠性都有很大的影响。由于目前稳定电源输出扩流应用较多,本文仅讨论开关电源并联均流技术。均流的主要任务是: (1)当负载变化时,每台电源的输出电压变化相同。 (2)使每台电源的输出电流按功率份额均摊。 2提高系统可靠性方法 (1)在电源并联扩流过程中,为了提高系统工作稳定性,可采用N+m冗余的方法。其中m表示冗余份数,m值越大,系统工作可靠性越高,但是系统成本也相应增加。 (2)采用均流技术保证系统正常工作。在电源并联扩流中,应用较为广泛的办法是自动均流技术。它通过取样、电子控制调节环路来保证整个系统的输出电流按每个单元的输出能力均摊,以达到既充分发挥每个单元的输出能力,又保证每个单元可靠工作的目的。 (3)均流技术应满足条件: ·所有电源模块单元应采用公共总线。 ·整个系统应有良好的均流瞬态响应特性。 ·整个并联输出扩流系统有一个公共控制电路。 (4)常用的几种并联均流技术: ·改变单元输出内阻法(斜率控制法) ·主/从控制法(master/slave) ·外部控制电路法 ·平均电流型自动负载均流法 ·最大电流自动均流法(自动主/从法、民主均流法)

通信电源的发展现状及趋势

通信电源的发展现状及趋势 发表时间:2018-03-21T15:09:10.877Z 来源:《电力设备》2017年第29期作者:张金生 [导读] 摘要:随着时代的进步,通信行业也是在随着生产力的发展而发展,由于通信传输都是通过弱电就行沟通以及传输的,好的配套电源才会有更稳定高效的通信系统。 (中国电信股份有限公司嘉兴分公司浙江嘉兴 314000) 摘要:随着时代的进步,通信行业也是在随着生产力的发展而发展,由于通信传输都是通过弱电就行沟通以及传输的,好的配套电源才会有更稳定高效的通信系统。所以说通信的发展也进而促使着电源行业的发展,可靠稳定的电源能够给整个通信系统带来坚实的后盾,使得系统稳定、可移植性强。对于电源的研究也是有十分重要意义的。 关键词:通信电源;现状;发展趋势 前言 信息技术的快速发展衍生了通信网络系统,并涉及到社会各界及各个领域,工业生产以及人们生活对通信网络的需求都具有极高的依赖性,与此同时也在不断要求通信网络系统的安全性、稳定性和可靠性。通信网络系统中重要的基础环节便是通信电源,是为通信设备提供直流、交流电源的能量基础,通信电源的瞬间故障可能造成不可估量的损失,因此,只有保障通信电源极小的故障发生概率,才能有效保障通信网络的正常运行。 1通信电源系统概述 通信电源是整个系统的能量来源,类似于大脑的作用,通信电源系统的供电稳定性以及质量等,会给整个系统带来影响。通信电源这个概念主要包括的有:市内交流电、各种高低压供电系统、通信设备用电系统等等。 2通信电源的发展现状 通信电源是通信系统中一个重要的构成部分,并且随着电力市场的不断发展,人们对电能的需求量逐渐增加,网络的复杂程度也越来越高,对通信电源系统的要求也越来越高。同时,一些新型的电磁材料的产生,大大提高了通信电源的性能,也推动了通信电源的进步与发展。 2.1供电系统的发展 在供电系统中,通信电源(开关电源)的发展分别经历了线性电源和相控电源阶段。高频开关电源是对市电进行功率的整流和转换从而获得高频交流电,再通过整流滤波获得直流电,即对一次电源的整流滤波。开关电源的转换效率较高,具有功率密度大、重量轻的优点,所以逐步代替了最初的线性电源和相控电源。通信开关电源未来的发展方向是逐步微型化、高效率。通信设备内部电路一般为直流电,即二次电源,同样也关系着整个系统的安全稳定性,对于开关电源来说,无论是一次电源还是二次电源,所追求的目标均为可靠、安全、稳定且不间断工作。对于电能利用率的提升、损耗的降低以及系统动态性能的提升均为未来的发展目标。21世纪是网络时代,通信电源具备了智能监控与电池自动管理等功能,这些功能均得到了完善。 2.2通信电源系统 通信电源包括了直流供电系统和交流供电系统,为了保证电源系统提供电能的稳定性等等问题,电源系统的交流电以及直流电必须都要接地才可以。通信电源是我国的重要发展部分,是我国的经济支柱之一,因此我国的通信行业以及电源行业都处于飞快的发展趋势中。这些方向中的蓄电池储能方向被广大市场认为是现在最需要发展也最具有发展前景的一个新兴方向。磷酸铁锂电池相比传统的铅酸电池具有体积小、重量轻、能量密度高、绿色环保等优点,所以在通信基站电源中应用比例逐渐提高,中国移动、中国联通、中国电信三大运营商均已采购磷酸铁锂电池作为通信基站后备电源。业内资深人士表示,通信储能方面,全国三大运营商大概有170万个基站要用电池包括末端供电的小型设备,按照基站每年10%的铅酸电池更换磷酸铁锂电池计算,每年锂电池市场提供的空间是几百亿元,通信储能为锂电行业带来一个广阔的空间。并且,通信用铅酸蓄电池使用寿命一般为4~6年,随着通信基站数量增长,带动后备电源新增及更换市场的快速稳定发展。由于锂电池在基站领域有更长的寿命、更优越的抗环境压力和更小的体积,运营商也在积极采用锂离子电池作为储能电池进行基站建设。业内预计由于三大运营商集团采购,锂电池在通信领域将出现爆发式增长。目前部分地方性采购已经开始,至少5、6个省在招投标,各个运营商也在全国各地做试点。中国联通人士认为,三大运营商的应用引发锂电行业快速增长,预计明年上半年锂电池应用会出现放量趋势。 3通信电源的发展趋势 3.1通信电源技术发展 3.1.1通用化方面的趋势 现在,伴随着通信电源技术的快速提高,诞生出的电源种类也是五花八门。这也导致了通信电源的生产企业之数量在迅速增加。而企业在进行通信电源的生产加工的过程中,由于其生产标准缺乏统一性,造成了其产品通常专用性较强,而通用性方面却不理想,在使用范围上严重受到限制。这就带来一个问题———一旦通信电源设备在运行环节发生故障,我们在进行维修或更换配件时,要么只能联系生产企业进行翻修,要么只能对电源设备进行更换。这就大大增加了通信电源的维修成本。如今,随着现代化通信技术的迅速普及,为了有效减少通信电源方面的成本,我们急需要提高通信电源的通用性。如今,不少生产通信电源的企业,越来越注重在提高产品通用性方面而下功夫。 3.1.2智能化方面的趋势 智能化程度也是衡量现代化通信电源技术的一项重要指标。它对于提高整个通信系统的技术水平来说都具有重要的意义。在实现通信电源技术的智能化方面,目前共有两大要点:(1)自动报警与自动检测功能在通信电源的运转过程中,有时不可避免地会出现故障。而自动报警与自动检测功能的实现,使故障能够及早发现并及时得到解除,减少维修方面的成本与难度。(2)对通信电源设备的自身运行状态进行有效监测这一功能使通信电源在运转过程中,能够随时对其运行状态进行调整,确保其保持在最佳的运行状态。 3.2VRLA蓄电池 最新研究的VRLA蓄电池具有一系列的优点,例如储存的能量高,寿命长,外表坚固,同等容量下体积小,环保无污染,安装使用方便等,是一种新型直流储能电源。在各个专用的通信领域中广泛的应用,能够保证通信网络安全的运行,目前逐渐替代了开放式的铅酸蓄

直流均流电源

题目题目::直流均流电源直流均流电源 指导教师:钟洪声 崔红玲 杨忠孝 队员及年级:张林2006级 管锐2006级 黄柯 2006级 学校及院系:电子科技大学 微电子与固体电子学院 摘要摘要: : 系统采用开关电源芯片TPS5430为核心制作两路稳压电源.两路电源可独立、并联使用。两路电源并联时,利用电流反馈控制技术,通过运放的动态调节实现自动均流。采用超低功耗单片机MSP430FG4618作为系统主控制电路。 系统输出电压在4.5V~5.5V 之间连续可调;两路电源并联,在满载时,电流差低于0.1%;单路、双路并联时工作效率可达90%;满载时纹波均低于15mV;具有过流保护,无线电发射、接受模块,实现报警功能,故障解除后电路自动恢复正常工作;系统具有液晶实时显示电流、环境温度、时间等功能。 关键词关键词::电流反馈,MSP430FG4618,TPS5430 Abstract Abstract::Switching power supply system is based on TPS5430, a TI switching power supply chip. This system has two independent power supply, which enables it to work independently and parallelly. When in parallel, it uses operational amplifier to reach the goal of adjusting the load current automatically. It adopts the low-costing MSP430FG4618(an MCU) to be the main control part of the system. The output voltage of this power supply can be adjusted between 4.5V and 5.5V constantly.When working in parallel, it can reach the functions as below. The difference between the current is below 0.1%(full load). The efficient can reach 90% when working either indepently or in parallel. And the output ripple is below 15mV(full load). In addition, the system has the functions of over current protection, radio emission and receiver module, which can warn people if there is an emergency. Once the problem has been settled, the system can go back to normal automatically. This system has an LCD to show the current, ambient temperature and time. Keyword: Current Negative Feedback, MSP430FG4618,TPS5430 一、 作品简介作品简介

开关电源并联均流技术

开关电开关电源源并联均流技均流技术术 Technique of Parallel Balanced Current in SMPS 北京北京电电子信息大子信息大学学路秋生路秋生张艳张艳张艳杰杰(北京北京100031100031) 摘要:讨论几种常用的开关电源并联均流技术,阐述其主要工作原理及特点。 关键词:均流主从控制电源内阻 1引言 在实际应用中,往往由于一台直流稳定电源的输出参数(如电压、电流、功率)不能满足要求,而满足这种参数要求的直流稳定电源,存在重新开发、设计、生产的过程,势必加大电源的成本、延长交货时间、影响工程进度。因此在实用中往往采用模块化的构造方法,采用一定规格系列的模块式电源,按照一定的串联或并联方式,分别达到输出电压、输出电流、输出功率扩展的目的。 但是电源输出参数的扩展,仅仅通过简单的串、并联方式还不能完全保证整个扩展后的电源系统稳定可靠的工作。不论电源模块是扩压还是扩流,均存在一个“均压”、“均流”的问题,而解决方法的不同,对整个电源扩展系统的稳定性、可靠性都有很大的影响。由于目前稳定电源输出扩流应用较多,本文仅讨论开关电源并联均流技术。均流的主要任务是: (1)当负载变化时,每台电源的输出电压变化相同。 (2)使每台电源的输出电流按功率份额均摊。 2提高系统可靠性方法 (1)在电源并联扩流过程中,为了提高系统工作稳定性,可采用N+m冗余的方法。其中m表示冗余份数,m 值越大,系统工作可靠性越高,但是系统成本也相应增加。 (2)采用均流技术保证系统正常工作。在电源并联扩流中,应用较为广泛的办法是自动均流技术。它通过取样、电子控制调节环路来保证整个系统的输出电流按每个单元的输出能力均摊,以达到既充分发挥每个单元的输出能力,又保证每个单元可靠工作的目的。 (3)均流技术应满足条件: ·所有电源模块单元应采用公共总线。 ·整个系统应有良好的均流瞬态响应特性。 ·整个并联输出扩流系统有一个公共控制电路。 (4)常用的几种并联均流技术: ·改变单元输出内阻法(斜率控制法) ·主/从控制法(master/slave) ·外部控制电路法 ·平均电流型自动负载均流法 ·最大电流自动均流法(自动主/从法、民主均流法) ·强迫均流法 3关于均流技术中常用的一些概念

直流电源均流电路设计毕业论文

本科毕业设计(论文) (2012届) 论文题目直流电源均流电路设计 (英文)DC power supply circuit design 所在学院电子信息学院 专业班级 学生姓名 指导教师 完成日期2012年

摘要 系统采用两片TPS5430 芯片,构成两路DC-DC 电路。通过两片负载共享控制芯片UCC29002 对输出电流进行均流,两路输出误差最佳可控制在1%以内。另外,本系统用MSP430F449作为数字控制芯片,利用片内ADC采集输出电流,并在输出电流超过1.2A时,通过控制TPS5430的使能端,关闭系统的输出,从而实现过流保护。由于本系统的结构简单,所用器件少,从而保证整个系统高效、稳定。 关键词:DC-DC,UCC29002,TPS5430,均流

Abstract The system uses two TPS5430 chips, consisting of two DC-DC circuit.Through two load sharing control chip UCC29002 are the output current flow, the best two-way output error can be controlled within 1%. In addition, the system chip using MSP430F449 as the digital control, the use of on-chip ADC acquisition output current and output current exceeds 1.2A, by controlling the TPS5430 to enable, turn off the system output, in order to achieve over-current protection. Since the structure of the system is simple, small device used to ensure the whole system efficient and stable. Keywords: DC-DC,UCC29002,TPS5430 ,All flow

通信电源课程基本概述

一、课程基本概述 通信电源系统是整个通信设备的重要组成部分,通常被称为通讯设备的“心脏”,稳定可靠的通信电源供电系统,是保证通信系统安全、可靠运行的关键,一旦通信电源系统故障引起对通讯设备的供电中断,通讯设备就无法运行,就会造成通信电路中断、通信系统瘫痪,从而造成极大的经济和社会效益损失。因此,通信电源系统中占据十分重要的位置。 《通信电源》分成概述、交流系统篇、直流系统篇和综合测试篇等四大篇章。在概述中介绍通信电源系统的总体概念,简要说明了各分支专业如何组成一个整体,构成一个满足通信正常运行所要求的电源系统:交流系统篇介绍高低压配电、油机发电、交流配电以及空调设备的一些基础和维护,不同场合使用不同的空调设备;直流系统篇介绍整流交换、蓄电池、UPS、直配;综合测试篇介绍接地和防雷、环境的集中控制,以及通信电源系统的日常测试维护原理和步骤。 关于高低压配电系统,我们知道发电厂、电力线路、变电站和电力用户组成了电力系统,通信局属于电力系统中的电力用户,市电从生产到引入通信局要经过生产、输送、变换和分配等四个环节。在电力系统中,各级电压的电力线路以及相联系的变电站就是我们所说的电网,根据供电范围大小电网可以分为区域电网,国家电网,地方电网等种类。由于大型发电厂的建成投产及输电距离的增加,为了减少线路能耗和压降以及节约有色金属和降低线路的工程造价,必须经发电厂中的升压变电所升压至35kv~500kv。 高低压配方式包括放射式配电、树干式配电以及环状式配电方式三种接电方式,不同的接地方式有不同的优缺点,适用于不同的场合。例如,对于环状式配电方式其优缺点是运行灵活,供电可靠性较高。(当线路的任何地方出现故障时,只要将故障邻近的两侧隔离开关断开,切断故障点,便可恢复供电。)另外为了避免环状线路上发生故障时影响整个电网,所以在正常情况下呈“开环”状态。而对于树干式配电方式的优点是:降压变电所6-10kv 的高压配电装置数量减少,投资相应可以减少,缺点是供电可靠性差——只要线路上任意一段发生故障,线路上变电所都将断电。 常用的高压电器包括高压熔断器、高压断路器、高压隔离开关、避雷器等。高压开关柜就是高压开关及相应的控制、信号、测量、保护盒调节装置的组合。 对于空调,我们再熟悉不过了,但我们对于空调知识又有多少了解呢,家里有空调,对于那些大型、小型商场也有空调,是佛偶知道是挂壁式海事落地式的?是单冷型还是热泵型等?我们只知道,为了改善环境条件以满足生活舒适和工艺设备的要求,我们选择了空调,我们可以制冷、制热、加湿以及除湿。通过学习,我们知道空调器主要由制冷系统;风路系统;电气系统;箱体与面板四部分组成,知道了关于空调设备的工作原理。 在通信局中,接地占有很重要的地位,它不仅关系到和维护人员的安全,同时还影响到通信的质量。掌握理解接地的基础知识,正确选择和维护接地设备,具有很重要的意义。所谓“接地”,就是为了工作或保护的目的,将电气设备或通信设备中的接地端子,通过接地装置与大地作良好地电气连接,并将该部位的电荷注入大地,达到降低危险电压和防止电磁干扰的目的,所以在很多建筑物上安装有避雷设施以保护我们的设备免受雷击。 当然,对于电源设备,我们除了防雷,最主要的还是日常的维护,我们要防尘和定期除尘。特别是气候干燥的地区,空的灰粒较多,灰尘将在机内沉积,当遇到空气潮湿时会引起主机控制絮乱造成主机工作失常,并发生不准确告警。另外大量灰尘也会造成器件散热不好。一般每季度应彻底清洁一次。其次就是在除尘时检查各连接件和插接件有无松动和接触不牢的情况。我们还有加强一些防水保护盒防嗮保护,为确保产品长期安全可靠的运行,防潮、防霉、防烟雾也是十分重要的。 二、学习总结 2.1 通过学习本书,我学到了不少的知识,我想着对于我以后的学习专业知识有很大的帮助,现在社会是一个电的社会,学习通信电源,对于我们学习其他的知识有很大的关系,随着通信技术的飞速发展,通信业务的不断拓展和通信市场的日益开放,通信类的专业具有很高的从业素质,以增强产业的竞争力。我是学习通信专业的,以后要从事相关专业,必须懂得怎样使用电,怎样输送电力,怎样保护和维护电力系统,这是最基本的。 2.2 通过学习,我个人不能说全会,但是对于一些基本的知识我还是有一定的了解,不管以后从事哪种行业,我认为通信电源对我们的生活影响都很大,现在生活中到处都有电,电已经成为我们生活中不可缺少的一部分。我们熟悉家电,熟悉空调,你懂得它的构造,运行基本原理吗?你不会,你不懂,我们只知道的仅是一些皮毛,我们只知道空调可以制冷、制热、加湿以及除湿,对于其他的就不了解了。我们熟悉蓄电池,但我们不懂它的原理构造,不懂它的寿命周期,怎样处理一般的故障。通过学习,我们可以知道最基本的通电源知识,了解生活中常见的一些

DC-DC电源模块并联均流控制技术研究

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊ 摘要 随着大功率负载和大电流负载的需求,电源模块并联控制技术研究的越来越重要,而如何很好的实现并联电源模块间输出电流的平均分配成为并联技术的核心。针对这个问题,本文介绍了在并联变换器模块的简化、近似线性化的小信号数学模型下的均流方法。 论文简要介绍了常用的均流方法及其优缺点,对Buck变换器的基本电路结构和工作原理作了说明,给出了主电路的主要点的电压电流波形、主要关系式,然后计算出了各元件的参数,并基于这些参数建立了小信号模型,做了一个Buck变换器仿真对结论进行了验证以及补偿的设计。对平均电流自动均流法改进型及其优缺点,最后在matlab上进行了验证性仿真。 关键词:并联DC/DC变换器均流控制;小信号分析;平均电流自动均流法

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊RESEARCH ON THE CONTROL TECHNOLOGY OF THE PARALLELED DC/DC CONVERTER MODULES Abstract With the increasing demand of large power load and large current load,the important of research on paralleled power supply modules is increasing,while how to achieve the equilibration of output currents is the key technology of marking the modules work in parallel.as for the question,a method of current-sharing control is introduced ,which is in condition that the approximate linearization small-signal models. First of all, this paper briefly introduces some common methods of current-sharing control and their advantages and disadvantages, detailed introduces the basic circuit ,structure and working principle of buck converter, and gives the waveform, main expression of the main circuit, parameter calculation, small signal model, made a buck converter to verify the conclusion and compensation design.Second,detailed introduces the improving average current sharing control methods and their advantages and disadvantages , and the last in the matlab simulation on the verification. Key words:paralleled DC/DC converters ;current-sharing control; Small-signal model ;the average current sharing controls.

相关主题
文本预览
相关文档 最新文档