当前位置:文档之家› workbench 模态分析实例

workbench 模态分析实例

workbench 模态分析实例
workbench 模态分析实例

基于ANSYS WORKBENCH轴承的模态分析

基于ANSYS WORKBENCH轴承的模态分析 1有限元模型的建立 利用proe软件进行建模,可以从原件库里面直接调用,也可以重新建模,建模无需建立装配模型,只需要在单体零件中直接建立轴承内外圈和球体,选择不合并实体,从而形 成多实体的单体零件。轴承元件之间的间隙可以消除。 ?三维模型的建立 三维模型的建立是数值模拟分析中重要、关键的环节。UG软件能够方便地建立复杂的 三维模型,企业提供的初始的轴承三维模型主体钢结构是由不同厚度的钢板焊接而成,模 型钢板之间存在较多的焊缝,导致模型存在不同大小的间隙,给后继有限元分析带来困难,而且模型结构复杂,且为三维实体,建立有限元模型的过程中,要在符合结构力学特性的 前提下建立模型,有必要对结构做合理的简化。其主要简化说明如下: (1).忽略零件中一些微小特征。螺栓孔、倒圆角等一些微小的结构对结果准确性的 影响很小,所以建模时不考虑这些微小几何图元; (2).所有焊接位置不允许出现裂缝、虚焊等工艺缺陷,认为在焊接位置材料是连续的,直接填充间隙; (3).轴承模型附件品种繁多,形状复杂,且对机架的刚度和强度影响不大,在计算 模型中只要考虑其自重即可,例如料斗、辊子、走台、链板等其它辅助设备。 ?材料属性 结构用钢均采用Q235碳素结构钢材,Q235的弹性模量E=2.1e11N/m2,密度7830 kg/m3,剪切模量为81000MPa,泊松比为0.3,模型材料为各向同性。 表1 材料Q235许用应力一览表: MPa (N/mm2) Tab.1 List of Material Q235 Allowable stress: MPa (N/mm2)

ANSYS模态分析实例

高速旋转轮盘模态分析 在进行高速旋转机械的转子系统动力设计时,需要对转动部件进行模态分析,求解出其固有频率和相应的模态振型。通过合理的设计使其工作转速尽量远离转子系统的固有频率。而对于高速部件,工作时由于受到离心力的影响,其固有频率跟静止时相比会有一定的变化。为此,在进行模态分析时需要考虑离心力的影响。通过该实验掌握如何用ANSYS进行有预应力的结构的模态分析。 一.问题描述 本实验是对某高速旋转轮盘进行考虑离心载荷引起的预应力的模态分析,求解出该轮盘的前5阶固有频率及其对应的模态振型。轮盘截面形状如图所示,该轮盘安装在某转轴上以12000转/分的速度高速旋转。相关参数为:弹性模量EX=2.1E5Mpa,泊松比PRXY=0.3, 密度DENS=7.8E-9Tn/mm 3。 1-5关键点坐标: 1(-10, 150, 0) 2(-10, 140, 0) 3(-3, 140, 0) 4(-4, 55, 0) 5(-15, 40, 0) L=10+(学号×0.1) RS=5 二.分析具体步骤 1.定义工作名、工作标题、过滤参数 ①定义工作名:Utility menu > File > Jobname ②工作标题:Utility menu > File > Change Title(个人学号) 2.选择单元类型 本实验将选用六面体结构实体单元来分析,但在建模过程中需要使用四边形平面单元,所有需要定义两种单元类型:PLANE42和SOLID45,具体操作如下: Main Menu >Preprocessor > Element Type > Add/Edit/Delete

①“ Structural Solid”→“ Quad 4node 42” →Apply(添加PLANE42为1号单元) ②“ Structural Solid”→“ Quad 8node 45” →ok(添加六面体单元SOLID45为2号单元) 在Element Types (单元类型定义)对话框的列表框中将会列出刚定义的两种单元类型:PLANE42、SOLID45,关闭Element Types (单元类型定义)对话框,完成单元类型的定义。 3.设置材料属性 由于要进行的是考虑离心力引起的预应力作用下的轮盘的模态分析,材料的弹性模量EX 和密度DENS必须定义。 ①定义材料的弹性模量EX Main Menu >Preprocessor > Material Props > Material Models> Structural > Linear > Elastic >Isotropic 弹性模量EX=2.1E5 泊松比PRXY=0.3 ②定义材料的密度DENS Main Menu >Preprocessor > Material Props > Material Models>density DENS =7.8E-9 4.实体建模 对于本实例的有限元模型,首先需要建立轮盘的截面几何模型,然后对其进行网格划分,最后通过截面的有限元网格扫描出整个轮盘的有限元模型。具体的操作过程如下。 ①创建关键点操作:Main Menu > Preprocessor > Modeling > Create > Keypoints > In Active CS 列出各点坐标值Utility menu >List > Keypoints >Coordinate only

workbench 模态分析

Workbench -Mechanical Introduction 第五章 模态分析

简介 Training Manual ?在这一章中,将介绍模态分析。进行模态分析类似线性静力分析。 –假设用户已学习了第4章线性静力结构分析部分。 ?本章内容: –模态分析步骤 –有预应力的模态分析步骤 ?本节所述的功能,一般适用于ANSYS DesignSpace Entra及以上版本的许可。

Training Manual 模态系统分析基础 ?对于模态分析,振动频率ωi 和模态φi 是根据下面的方程计算的出的: 2?假设: [][](){}0 =?i i M K φω–[K] 和[M] 不变: ?假设材料特性为线弹性的 ?利用小位移理论,并且不包括非线性的?不存在[C] ,因此无阻尼?无{F} , 因此无激振力 ? 结构可以强迫振动也可以不强迫振动 –模态{φ} 是相对值,不是绝对值

A.模态系统分析步骤 Training Manual ?模态分析与线性静态分析的过程非常相似,因此不对所有的步骤做详细介绍。用蓝色斜体字的步骤是针对模态分析的。 –附加几何模型 –设置材料属性 –定义接触区域(如果有的话) –定义网格控制(可选择) –定义分析类型 –加支撑(如果有的话) –求解频率测试结果 –设置频率测试选项 –求解 –查看结果

…几何体和质点 Training Manual ?模态分析支持各种几何体: 实体, 表面体和线体 –, ?可以使用质量点: ?质点在模态分析中只有质量(无硬度)。 质点在模态分析中只有质量(无硬度) ?质量点的存在会降低结构自由振动的频率。 ?材料属性: 杨氏模量,泊松比, 和密度是必需的。 密度是必需的

第10章 周期对称结构的模态分析

第十章周期对称结构的模态分析 ANSYS的周期对称分析支持静力(Static)分析和模态(Modal)分析。静力分析支持线性和大变形非线性;模态分析支持带有预应力的模态分析和不带有预应力的两种,关于带有预应力的模态分析本书第九章有专门讲述。本章只讲述不带有预应力的模态分析。在静力分析和模态分析这两种分析类型中,关于模型建立部分的要求是一致的,不同的是在进行模态分析时需要指定求解的节径数以及指定对于每个节径数的求解的模态阶数。对于每个节径,ANSYS均将其作为一个载荷步。ANSYS将周期对称边界条件施加于每一载荷步,并且每求解一个载荷步(即节径)后,都将构成周期对称边界条件的约束方程删除(保留任何用户自定义的约束方程)。在静力分析中ANSYS只求解零节径,而在模态分析中默认将求解全部节径。 本章中介绍的实例依然是第7章的轮盘,包括模型和边界条件。 10.1 问题描述 某型压气机盘,见7.1节的对其描述。要求查看其低阶频率结构和振动模态。 10.2 建立模型 在周期对称分析中,在建立模型后,划分网格之前,需要指定周期对称选项。 10.2.1 设定分析作业名和标题 在进行一个新的有限元分析时,通常需要修改数据库文件名(原因见第二章),并在图形输出窗口中定义一个标题用来说明当前进行的工作内容。另外,对于不同的分析范畴(结构分析、热分析、流体分析、电磁场分析等)ANSYS6.1所用的主菜单的内容不尽相同,为此我们需要在分析开始时选定分析内容的范畴,以便ANSYS6.1显示出跟其相对应的菜单选项。 (1)选取菜单路径Utility Menu >File >Change Jobname,将弹出修改文件名(Change Jobname)对话框,如图10.1所示。

ANSYS模态分析报告实例和详细过程

均匀直杆的子空间法模态分析 1.模态分析的定义及其应用 模态分析用于确定设计结构或机器部件的振动特性(固有频率和振型),即结构的固有频率和振型,它们是承受动态载荷结构设计中的重要参数。同时,也可以作为其它动力学分析问题的起点,例如瞬态动力学分析、谐响应分析和谱分析,其中模态分析也是进行谱分析或模态叠加法谐响应分析或瞬态动力学分析所必需的前期分析过程。 ANSYS的模态分析可以对有预应力的结构进行模态分析和循环对称结构模态分析。前者有旋转的涡轮叶片等的模态分析,后者则允许在建立一部分循环对称结构的模型来完成对整个结构的模态分析。 ANSYS提供的模态提取方法有:子空间法(subspace)、分块法(block lancets),缩减法(reduced/householder)、动态提取法(power dynamics)、非对称法(unsymmetric),阻尼法(damped), QR阻尼法(QR damped)等,大多数分析都可使用子空间法、分块法、缩减法。 ANSYS的模态分析是线形分析,任何非线性特性,例如塑性、接触单元等,即使被定义了也将被忽略。 2.模态分析操作过程 一个典型的模态分析过程主要包括建模、模态求解、扩展模态以及观察结果四个步骤。 (1).建模 模态分析的建模过程与其他分析类型的建模过程是类似的,主要包括定义单元类型、单元实常数、材料性质、建立几何模型以及划分有限元网格等基本步骤。 (2).施加载荷和求解 包括指定分析类型、指定分析选项、施加约束、设置载荷选项,并进行固有频率的求解等。 指定分析类型,Main Menu- Solution-Analysis Type-New Analysis,选择Modal。 指定分析选项,Main Menu-Solution-Analysis Type-Analysis Options,选择MODOPT(模态提取方法〕,设置模态提取数量MXPAND. 定义主自由度,仅缩减法使用。 施加约束,Main Menu-Solution-Define Loads-Apply-Structural-Displacement。 求解,Main Menu-Solution-Solve-Current LS。 (3).扩展模态 如果要在POSTI中观察结果,必须先扩展模态,即将振型写入结果文件。过程包括重新进入求解器、激话扩展处理及其选项、指定载荷步选项、扩展处理等。 激活扩展处理及其选项,Main Menu-Solution-Load Step Opts-Expansionpass-Single Expand-Expand modes。 指定载荷步选项。 扩展处理,Main Menu-solution-Solve-Current LS。 注意:扩展模态可以如前述办法单独进行,也可以在施加载荷和求解阶段同时进行。本例即采用了后面的方法 (4).查看结果 模态分析的结果包括结构的频率、振型、相对应力和力等

有限元模态分析实例

ANSYS模态分析实例 5.2ANSYS建模 该课题研究的弹性联轴器造型如下图5.2: 在ANSYS中建立模型,先通过建立如5.2所式二分之一的剖面图,通过绕中轴线旋转建立模拟模型如下图5.3

5.3单元选择和网格划分 由于模型是三给实体模型,故考虑选择三维单元,模型中没有圆弧结构,用六面体单元划分网格不会产生不规则或者畸变的单元,使分析不能进行下去,所以采用六面体单元。经比较分析,决定采用六面体八结点单元SOLID185,用自由划分的方式划分模型实体。课题主要研究对象是联轴器中橡胶元件,在自由划分的时候,中间件2网格选择最小的网格,smart size设置为1,两端铁圈的smart size设置为6,网格划分后模型如图5.4。 5.4边界约束 建立柱坐标系R-θ-Z,如5-5所示,R为径间,Z为轴向

选择联轴器两个铁圈的端面,对其面上的节点进行坐标变换,变换到如图5.5所示的柱坐标系,约束节点R,Z方向的自由度,即节点只能绕Z轴线转 5.5联轴器模态分析 模态分析用于确定设计中的结构或者机器部件振动特性(固有频率和振型),也是瞬态变动力学分析和谐响应分析和谱分析的起点。 在模态分析中要注意:ANSYS模态分析是线性分析,任何非线性因素都会被忽略。因此在设置中间件2的材料属性时,选用elastic材料。 5.5.1联轴器材料的设置 材料参数设置如下表5-1: 表5.1材料参数设置 表5.1材料参数设置 铁圈1中间件2铁圈3泊松比0.30.49970.3弹性模量Mpa2E5 1.274E32E5 密度kg/m790010007900 5.5.2联轴器振动特性的有限元计算结果及说明 求解方法选择Damped方法,频率计算结果如表5-2,振型结果为图5.6: 表5.2固有频率 SET TEME/FREQ LOAO STEP SUBSTEP CUMULATIVE 140.199111 173.632122 3132.42133 4197.34144

Abaqus模态分析实验报告

(一)创建部件 1:模块:部件 2:从菜单栏中选择部件→创建,弹出创建部件对话框 名称:LIAN_FuJian 模型空间:三维 类型:可变形 形状:实体 类型:拉伸 大约尺寸:2000,为部件最大尺寸的2倍 3:点击继续,进入草绘模式,为实体拉伸绘制截面草图。4:点击创建圆工具,绘制2个同心圆。大圆直径为1000,小圆直径为400。 5:点击创建构造:圆工具,绘制一个直径为700的构造圆。 6:点击创建构造工具,创建2条构造线,一并添加固定约束。 7:点击创建圆工具,以构造圆与竖直构造线的交点为圆心,绘制一个直径为100的圆。

8:点击环形阵列工具,点选刚才创建的圆为要阵列的实体,按下鼠标中键,弹出环形阵列对话框 个数:6 总角度:360 点击确定 阵列结果如下: 9:在绘图区按下鼠标中键,弹出编辑基本拉伸对话框 类型:指定深度 深度:200 点击确定,第一个部件绘制完成 10:创建第二个部件-轴:ZHOU。 (二)装配 1:模块:装配 2:点击创建实例工具,弹出创建实例对话框 创建实例:从部件 部件:按住Ctrl选取LIAN_FuJian与ZHOU这2个部件 实例类型:非独立(网格在部件上)

点击确定,装配体如下 2:点击平移实例工具,选择ZHOU为要平移的实例,点击完成。输入平移向量的起始点(0,0,0),回车;输入平移向量的终点(0,0,100),回车。再点击确定,平移后的装配体如下 3:点击合并/切割实例工具,弹出合并/切割实体对话框。部件名:ASM 运算:合并-几何 原始实体:禁用 相交边界:删除 点击继续,选择待合并的实例,框选整个模型,点击完成。4:在模型树下删除LIAN_FuJian-1和ZHOU-1 5:由于在接下来的分析中只需要用到ASM部件,故可以将LIAN_FuJian和ZHOU删除。 模块:部件 点击部件管理器工具,选中LIAN_FuJian和ZHOU,删除。

ANSYS WORKBENCH 11.0模态分析

ANSYS WORKBENCH 11.0培训教程(DS)

第五章模态分析

概述 ?在本章节主要介绍如何在Design Simulation中进行模态分析. 在Design Simulation中, 进行一个模态分析类似于一个线性分析. –假定用户已经对第四章的线性静态结构分析有了一定的学习了解. ?本节内容如下: –模态分析流程 –预应力模态分析流程 ?本节所介绍的这些性能通常能适用于ANSYS DesignSpace Entra licenses及更高的lisenses. –在本节讨论的一些选项可能需要更多的高级lisenses, 需要时会相应的标示出来. –谐响应和非线性静态结构分析在本节将不进行讨论.

模态分析基础 ?对于一个模态分析, 固有圆周频率ωi 和振型φi 都能从矩阵方程式里得到: 在某些假设条件下的结果与分析相关: –[K] 和[M] 是常量: ? 假设为线弹性材料特性 ?使用小挠度理论, 不包含非线性特性?[C] 不存在, 因此不包含阻尼 ?{F} 不存在, 因此假设结构没有激励 ? 根据物理方程, 结构可能不受约束(rigid-body modes present) ,或者部分/完全的被约束住 ?记住这些在Design Simulation 中进行模态分析的假设是非常重要的. [][](){}0 2=?i i M K φω

A. 模态分析过程 ?模态分析过程和一个线性静态结构分析过程非常相似, 因此这里不再详细的介绍每一操作步骤. 下面这些步骤里面,黄色斜体字体部分是模态分析所特有的. –建模 –设定材料属性 –定义接触对(假如存在) –划分网格(可选择) –施加载荷(假如存在的话) –需要使用Frequency Finder 结果 –设置Frequency Finder 选项 –求解 –查看结果

ANSYS实例分析-飞机机翼分解

ANSYS实例分析 ——模型飞机机翼模态分析 一,问题讲述。 如图所示为一模型飞机机翼,其长度方向横截面形状一致,机翼的一端固定在机体上,另一端为悬空自由端,试对机翼进行模态分析并显示机翼的模态自由度。是根据一下的参数求解。 机翼材料参数:弹性模量EX=7GPa;泊松比PRXY=0.26;密度DENS=1500kg/m3。 机翼几何参数:A(0,0);B(2,0);C(2.5,0.2);D(1.8,0.45);E (1.1,0.3)。 问题分析 该问题属于动力学中的模态分析问题。在分析过程分别用直线段和样条曲线描述机翼的横截面形状,选择PLANE42和SOLID45单元进行求解。 求解步骤:

第1 步:指定分析标题并设置分析范畴 1.选取菜单途径Utility Menu>File>Change Title 2.输入文字“Modal analysis of a model airplane wing”,然后单击OK。 3.选取菜单途径Main Menu>Preferences. 4.单击Structure选项使之为ON,单击OK。主要为其命名的作用。 第2 步:定义单元类型 1.选取菜单途径:Main Menu>Preprocessor>Elemen t Type>Add/Edit/Delete。 2.Element Types对话框 将出现。 3.单击Add。Library of

Element Types对话框将出现。 4.在左边的滚动框中单击“Structural Solid”。 5.在右边的滚动框中单击“Quad 4node 42”。 6.单击Apply。 7.在右边的滚动框中单击“Brick 8node 45”。 8.单击OK。 9.单击Element Types对话框中的Close按钮。 第3 步:指定材料性能

ANSYS模态分析实例和详细过程

模态分析的过程和实例 1.模态分析的定义及其应用 模态分析用于确定设计结构或机器部件的振动特性(固有频率和振型),即结构的固有频率和振型,它们是承受动态载荷结构设计中的重要参数。同时,也可以作为其它动力学分析 问题的起点,例如瞬态动力学分析、谐响应分析和谱分析,其中模态分析也是进行谱分析或 模态叠加法谐响应分析或瞬态动力学分析所必需的前期分析过程。 ANSYS的模态分析可以对有预应力的结构进行模态分析和循环对称结构模态分析。前者有旋转的涡轮叶片等的模态分析,后者则允许在建立一部分循环对称结构的模型来完成对整 个结构的模态分析。 ANSYS提供的模态提取方法有:子空间法(subspace)、分块法(block lancets),缩减法(reduced/householder)、动态提取法(power dynamics)、非对称法(unsymmetric),阻尼法(damped), QR阻尼法(QR damped)等,大多数分析都可使用子空间法、分块法、缩减法。 ANSYS的模态分析是线形分析,任何非线性特性,例如塑性、接触单元等,即使被定义 了也将被忽略。 2.模态分析操作过程 一个典型的模态分析过程主要包括建模、模态求解、扩展模态以及观察结果四个步 骤。 (1).建模 模态分析的建模过程与其他分析类型的建模过程是类似的,主要包括定义单元类型、单元实常数、材料性质、建立几何模型以及划分有限元网格等基本步骤。 (2).施加载荷和求解 包括指定分析类型、指定分析选项、施加约束、设置载荷选项,并进行固有频率的 求解等。 指定分析类型,Main Menu- Solution-Analysis Type-New Analysis,选择Modal。 指定分析选项,Main Menu-Solution-Analysis Type-Analysis Options,选择MODOPT(模态提取方法〕,设置模态提取数量MXPAND. 定义主自由度,仅缩减法使用。 施加约束,Main Menu-Solution-Define Loads-Apply-Structural-Displacement。 求解,Main Menu-Solution-Solve-Current LS。 (3).扩展模态 如果要在POSTI中观察结果,必须先扩展模态,即将振型写入结果文件。过程包括重新进入求解器、激话扩展处理及其选项、指定载荷步选项、扩展处理等。 激活扩展处理及其选项,Main Menu-Solution-Load Step Opts-Expansionpass-Single Expand-Expand modes。 指定载荷步选项。 扩展处理,Main Menu-solution-Solve-Current LS。 注意:扩展模态可以如前述办法单独进行,也可以在施加载荷和求解阶段同时进行。本 例即采用了后面的方法 (4).查看结果 模态分析的结果包括结构的频率、振型、相对应力和力等

基于ANSYS Workbench的连接轴模态分析

基于ANSYS Workbench的连接轴模态分析 在旱地插秧机动力系统中,连接轴连接主轴和后续系统的动力传动。因此,确定连接轴的固有频率和振型有利于后续动力系统的优化设计。对连接轴进行模态分析,研究其固有频率的影响。采用NX对移栽机的机架和连接轴建立三维模型,将模型导入ANSYS Workbench模块。在Workbench中对连接轴进行网格划分,并对其进行模态求解,得出前6阶固有频率和振型。通过分析其固有频率,避免工作时连接轴与发动机发生共振。 标签:模态分析;Workbench;旱地插秧机连接轴 2 动力系统的结构 旱地插秧机动力系统传动机构如图1所示。主动轮4位于连接轴上,传送带3使分苗系统从动轮带动分苗系统主轴转动,从而实现分苗系统的运行。为了保证分苗系统的稳定运行,要求连接轴具有良好的稳定性,保证传送带在工作过程中始终张紧。在传动轴齿轮与连接轴齿轮相互啮合的过程中,由于齿轮转速的不同,可能会引起连接轴共振,从而影响分苗系统的稳定运行。 3 连接轴有限元网格划分 NX具有完善的建模功能,并且可以将模型导入ANSYS Workbench。在UG 中将连接轴按尺寸建模,为简化计算,忽略键槽和轴肩倒角,并另存为stp格式。导入到ANSYS Workbench,并设置单位为mm。 設置连接轴材料为45钢,45号钢密度7890kg/m3,泊松比0.269,弹性模量209000GPa,其余采用structural steel的默认值。划分网格时,在“details of mesh”中修改网格参数。在“Relevance”栏中移动滑块到100,在“Element size”中设置为“5.e-003m”将“sizing”中“use advanced size function”设置为fine。其余采用默认值。 4 施加约束 在对模型施加载荷约束时,应按实际情况进行,这样才能保证计算结果的可靠性和准确性。根据实际情况加载的位置在传动轴两端施加固定约束。 5 模态分析 模态分析的目的在于确定结构的振动特性。在ANSYS Workbench的分析过程中,假定模型是线性的,不考虑结构阻尼影响。在对前面静态结构分析的连接轴的基础上,对其进行模态计算,在ANSYS Workbench的Model模块中得到了连接轴各阶固有频率及其相应的振型。一般情况下不必求出全部固有频率和振型,而应当着重考虑连接轴工作条件下所涉及的频率,低阶固有振型要比高阶振型对连接轴传动的振动影响大,故本文关心的是低阶模态,提取前6阶振型云图,

ANSYS模态分析实例!

姓名: 大 连 理 工 大 学 学号: 课 程 名 称: 工程计算软件系统 试卷: 无 考试形式:大作业 院系: 授课院(系):工程力学系 级 _ 班 一、综述题(共100分)用ansys 软件建立如下模型,并进行静力与模态分析。静力分析要 求贴出结构Mises 应力及合成位移的云图。模态分析要求求出结构前三阶自振模态,贴出前三 阶模态的振型图。并用文字简要叙述建模过程及思路。 材料性质:弹性模量E =2.1E11Pa ,泊松比v =0.3,密度为7800kg/m 3 边界条件:4个圆柱孔表面全部固定约束。 荷载:半圆弧表面受均布压力荷载,大小为1.5e6 Pa 。 模型:图示尺寸均为毫米,4个圆孔半径均为150毫米。倒角半径均为250毫米 X Y Z X Y Z 3500 2800 R=150 2000 1200 2500 R=1000 500

ANSYS建模实例分析 1建模过程及思路 使用前处理器:Preprocessor 1.分析制定方案 材料性质:弹性模量E=2.1e5MPa,泊松比v=0.3,密度为7.8e-9T/mm^3。 边界条件:4个圆柱孔表面全部固定约束。 单元:solid92。 荷载:半圆弧表面受均布压力荷载,大小为1.5M Pa。 模型:图示尺寸均为mm,4个圆孔半径均为150mm,倒角半径均为250mm。 2.定义单元类型与材料属性 Main Menu: Preprocessor>Element Type>Add/Edit/Delete>Select solid 92。 Main Menu: Preprocessor>Material Props>Materials Models>填入EX、PREX、DENS。3.创建基座模型:3500x2800x500 Main Menu: Preprocessor>Modeling>Create>… Create>Volumes>Block。 4.在基座上创建四方体:2500x2000x1200 Main Menu: Preprocessor>Modeling>Create>… Create>Volumes>Block。 5.在此四方体(2500x2000x1200)上创建一个圆柱体:R=1000 移动工作平面:Utility Menu>Workplane>Offset WP by Increments。 创建圆柱体:Main Menu: Preprocessor>Modeling>Create>… Create>Volumes>Cylinder。 6.布尔运算生成半圆弧孔 Main Menu:Preprocessor >Modeling Operate>Booleans Subtract。 7.在基座上创建圆柱体:R=150 移动工作平面:Utility Menu>Workplane>Offset WP by Increments。 创建圆柱体:Main Menu: Preprocessor>Modeling>Create>… Create>Volumes>Cylinder。 8.复制圆柱体 Main Menu: Preprocessor>Modeling>Copy。 9.布尔运算生成圆孔 Main Menu:Preprocessor >Modeling>Operate>Booleans>Subtract。 10.创建倒角:R=250 多种方式,可以先创建小四方体,再创建1/4圆柱体,最后进行Add操作! Main Menu:Preprocessor >Modeling>Operate>Booleans>Add。 也可以使用Area Fillet操作创建倒角! Main Menu: Preprocessor>Modeling>Create>… Create>Area>Area Fillet。 11.在倒角上创建圆柱体:R=150 Main Menu: Preprocessor >Modeling>Create>… Create>Volumes>Cylinder。 12.布尔运算生成圆孔 Main Menu:Preprocessor >Modeling Operate>Booleans>Subtract。 13.镜像形成对称圆孔并粘接到一起 Main Menu:Preprocessor >Modeling>Reflect。 14.粘接到一起形成完整实体

hyperworks模态分析实例教程

Normal Modes Analysis of a Splash Shield - RD-1020 In this tutorial, an existing finite element model of an automotive splash shield will be used to demonstrate how to set up and perform a normal modes analysis. HyperMesh post-processing tools are used to determine mode shapes of the model. The following exercises are included: ?Retrieving the RADIOSS input file ?Setting up the model in HyperMesh ?Applying Loads and Boundary Conditions to the Model ?Submitting the job ?Viewing the results Step 1: Launch HyperMesh and set the RADIOSS (Bulk Data) User Profile https://www.doczj.com/doc/49482498.html,unch HyperMesh. A User Profiles… Graphic User Interface (GUI) will appear. If it does not appear, go to Preferences? User Profiles … from the menu on the top. 2.Select RADIOSS in the User Profile dialog. 3.From the extended list, select Bulk Data. 4.Click OK. This loads the User Profile. It includes the appropriate template, macro menu, and import reader, paring down the functionality of HyperMesh to what is relevant for generating models in Bulk Data Format for RADIOSS and OptiStruct. Step 2: Import a Finite Element Model File in HyperMesh 1.From the File pull-down menu on the toolbar, select Import…. An Import… tab is added to your tab menu. 2.Click to import an FE model. 3.For the File type:, select RADIOSS (Bulk Data). 4.Select the Files icon button. A Select RADIOSS (Bulk Data) file browser will pop up. 5.Browse for sshield.fem file located in the HyperWorks installation directory under /tutorials/hwsolvers/radioss/ and select the file. 6.Click Open?Import. 7.Click Close to close the Import tab menu. Step 3: Review Rigid Elements Notice there are two rigid "spiders" in the model. They are placed at locations where the shield is bolted down. This is a simplified representation of the interaction between the bolts and the shield. It is assumed that the bolts are significantly more rigid in comparison to the shield. The dependent nodes of the rigid elements have all six degrees of freedom constrained. Therefore, each "spider" connects nodes of the shell mesh together in such a way that they do not move with respect to one another.

板ansys模态分析实例

!!!!!板模态分析实例 /prep7 !进入前处理器 et,1,solid95 !定义单元类型 mp,ex,1,2.1e5 !定义材料弹性模量 mp,prxy,1,0.3 !定义泊松比 mp,dens,1,7.85e-9 !定义材料密度 k,1,0,0,0 !创建关键点 K,2,40,0,0 k,3,40,80,0 k,4,0,80,0 k,5,0,0,1 k,6,40,0,1 k,7,40,80,1 k,8,0,80,1 v,1,2,3,4,5,6,7,8 !生成板模型 save lesisze,1,,,8,,,,,1 !指定宽边网格划分数lesisze,2,,,16,,,,,1 !指定长边网格划分数lesisze,5,,,1,,,,,1 !指定厚度边网格划分数mshape,0,3d !采用四边形3d形状mshkey,1 !采用映射网格划分vmesh,1 !划分网格 save !保存网格实体文件 /sol !进入求解器 asel,s,,,2 !选择底面 nsla,s,all !选择底面所有节点 d,all,,,,,,all,,,,, !约束底面所有节点 allsel,all antype,2 !指定反分析方法msave,0 !指定求解方法modopt,lanb,5 !指定模态提取法,提取数为5 mxpand,5,,,0 !设定模态扩展数 solve !求解计算 /post1 set,list set,first plnsol,u,z,1,1 set,next plnsol,u,z,1,1 set,next plnsol,u,z,1,1 set,next plnsol,u,z,1,1 !/exit,nosav

相关主题
文本预览
相关文档 最新文档