当前位置:文档之家› 高斯光束的特性实验

高斯光束的特性实验

高斯光束的特性实验
高斯光束的特性实验

实验二 高斯光束的测量

一 实验目的

1.熟悉基模光束特性。

2.掌握高斯光速强度分布的测量方法。

3.测量高斯光速的远场发散角。

二 实验原理

众所周知,电磁场运动的普遍规律可用Maxwell 方程组来描述。对于稳态传输光频电磁场可以归结为对光现象起主要作用的电矢量所满足的波动方程。在标量场近似条件下,可以简化为赫姆霍兹方程,高斯光束是赫姆霍兹方程在缓变振幅近似下的一个特解,它可以足够好地描述激光光束的性质。使用高斯光束的复参数表示和ABCD 定律能够统一而简洁的处理高斯光束在腔内、外的传输变换问题。

在缓变振幅近似下求解赫姆霍兹方程,可以得到高斯光束的一般表达式:

()2

2

2

()

[

]

2()

00

,()

r z kr

i R z A A r z e

e

z ωψωω---=

? (6)

式中,0A 为振幅常数;0ω定义为场振幅减小到最大值的1的r 值,称为腰斑,它是高斯光束光斑半径的最小值;()z ω、()R z 、ψ分别表示了高斯光束的光斑半径、等相面曲率半径、相位因子,是描述高斯光束的三个重要参数,其具体表达式分别为:

()z ωω= (7)

000

()Z z R z Z Z z ??

=+ ??? (8)

1

z tg

Z ψ-= (9)

其中,2

00Z πωλ

=

,称为瑞利长度或共焦参数(也有用f 表示)。

(A )、高斯光束在z const =的面内,场振幅以高斯函数2

2

()

r

z e ω-的形式从中心向外平滑的减小,

因而光斑半径()z ω随坐标z 按双曲线:

2

20

()1z z Z ωω

-

= (10)

规律而向外扩展,如图四所示

高斯光束以及相关参数的定义

图四

(B )、 在(10)式中令相位部分等于常数,并略去()z ψ项,可以得到高斯光束的等相面方程:

2

2()

r

z const R z += (11)

因而,可以认为高斯光束的等相面为球面。

(C )、瑞利长度的物理意义为:当0z Z =

时,00()Z ω=

。在实际应用中通常取0z Z =±范

围为高斯光束的准直范围,即在这段长度范围内,高斯光束近似认为是平行的。所以,瑞利长度越长,就意味着高斯光束的准直范围越大,反之亦然。

(D )、高斯光束远场发散角0θ的一般定义为当z →∞时,高斯光束振幅减小到中心最大值1e 处与z 轴的交角。即表示为:

00

()lim

z z z

ωθλπω→∞

==

(12)

三、实验仪器

He-Ne 激光器, 光电二极管, CCD , CCD 光阑,偏振片,电脑

四 实验内容:

(一)发散角测量

关键是如何保证接收器能在垂直光束的传播方向上扫描,这是测量光束横截面尺寸和发散角的必要条件。

由于远场发散角实际是以光斑尺寸为轨迹的两条双曲线的渐近线间的夹角,所以我们应尽

量延长光路以保证其精确度。可以证明当距离大于

2

7

πω

λ

时所测的全发散角与理论上的远场发散

角相比误差仅在1%以内。

(1)确定和调整激光束的出射方向。

(2)在光源前方L1处垂直入射CCD靶面,通过软件测量出相应位置光斑直径D1。

(3)在后方L2处用同样方法测出光斑直径D2。

(4)由于发散角度较小,可做近似计算,θ2=D2-D1/L2-L1,便可以算出全发散角2θ。(二)高斯光束腰斑测量。

(1)将He-Ne激光器开启,调整高低和俯仰,使其输出光束与导轨平行。可通过前后移动一个带小孔的支杆实现。

(2)启动计算机,运行BeamView激光光束参数测量软件。

(3)He-Ne激光器输出的光束测定及模式分析。

使激光束垂直入射到CCD靶面上,在软件上看到形成的光斑图案,在CCD前的CCD光阑中加入适当的衰减片。可利用激光光束参数测量软件分析激光束的模式,判定其输出的光束为基模高斯光束还是高阶横模式(作为前面模式分析实验内容的一部分)。

(4)He-Ne激光器输出的光束束腰位置的确定。前后移动CCD探测器,利用激光光束参数测量软件观测不同位置的光斑大小,光斑最小位置处即是激光束的束腰位置。

(三)外腔He-Ne激光器偏振态验证

在外腔He-Ne激光器的谐振腔内由于放置了步儒斯特窗,限制了输出光偏振态为垂直桌面的线偏振,因此,可在输出前方放置一个偏振片,通过旋转偏振片来分析外腔He-Ne激光器激光的偏振方向。本实验所用半外腔HeNe激光器在输出端设置有步儒斯特窗,因此为线偏振输出。

(1)调整半外腔HeNe激光器稳定出光。

(2)将偏振片垂直放入光路中,再放置CCD探测。

(3)旋转偏振片,观察CCD的图像,验证激光输出光的偏振态。

注意事项:射入CCD的激光不能太强,以免烧坏芯片。

思考题:

能不能利用现有的仪器设计另一种方法测量高斯光束的发散角?

激光光束质量参数测量的实验研究讲解

第24卷第6期 2000年12月激光技术LASERTECHNOLOGYVol.24,No.6December ,2000 激光光束质量参数测量的实验研究 赵长明 (北京理工大学光电工程系,北京,100081) 摘要:采用CCD系统实验测量了LD泵浦Nd∶YAG激光器的光束质量参数,研究了CCD系 统的背景噪声特性和积分区域选取对光束质量参数测量的影响,从实验数据中得到以下结论:(1)在有、无背景光两种条件下,背景记数强烈地依赖于曝光时间和像素的合并,温度影响可以忽略不计;(2)为获得M2合理的测量结果,至少要选择5%积分区域。 关键词:M2因子CCD摄像机光束质量Investigationontheexperimentalmeasurementoflaserbeamquality ZhaoChangming (Dept.ofOpticalEngineering,BeijingInstituteofTechnology,Beijing,100081) Abstract:ThebeamqualityofaLDpumpedNd∶YAGlaserismeasuredwithCCDcamerasyst em. ThebackgroundcharacteristicsoftheCCDsystemandtheinfluenceofthesizeofintegralboxup onmeasurementresultsareinvestigated.Thefollowingconclusionscanbederivedformexperi mentalresults:(1)Backgroundisstronglydependuponexposuretimeandpixelbinning,whilet emperaturehasanignorableeffectuponit,whetherwithorwithoutambientlight.(2)A5%2cuti stheminimumvalueinordertogetareasonableresult. Keywords:M2factor CCDcamera beamquality 引言 激光光束质量参数,即M2因子的测量是近几年研究的一个热点。ISO建议的测量方法包括两维面阵探测系统或二维单元扫描系统、套孔法、移动刀口法和移动狭缝法[1]。用以电荷耦合器件(CCD)为代表的面阵探测器件测量激光光束质量参数具有速度快、数据量大和易于计算机处理的优点,特别是对于脉冲激光的测量具有

关于强激光技术领域中光束聚焦特性的研究(精)

关于强激光技术领域中光束聚焦特性的研究 马学军,牟世娟 (沈阳理工大学理学院,辽宁沈阳110001) 摘要:光束聚焦特性的研究可以使人们更深地认识光束的聚焦光强分布和聚焦过程中产生的其他现象,为实际工作中光束聚焦的应用以及光学系统设计等方面提供充分的理论依据。目前已经实现了将激光光束整形成平项光束或局域空心光束,并且可以把高空间相干激光变成部分相干光。关键词:强激光技术;光束聚焦;焦移中图分类号:TN248文献标识码:A 文章编号:1009—2374(2009)04—0100—02 1960年第一台红宝石激光器的问世使高功率密度的光束成为现实。在一些实际应用中,如激光加工、惯性约束聚变等,要求功率密度更高、光斑更小的光束。对光束聚焦足提高光束功率密度、减小光束光斑的重要手段之一,在实际工作中得到广泛使用。因而强激光技术领域中对光束聚焦特性的研究成为很热门的课题。 在惠更斯一菲涅尔(衍射积分)原理(Huygens—Fresnelprinciple)或德拜积分表达式(Debyeintegralrepresentation)基础上,早期Lommel用Lommel函数计算衍射积分研究了会聚球面波焦点附近的三维光强分布情况,并作出了圆孔衍射会聚球面波子午面上焦点附近的等照线图。得出强度分布关于焦平面是对称的,光束的光强主极大处于几何焦点位置的结论。 光束聚焦特性的研究可以使人们更深地认识光束的聚 焦光强分布和聚焦过程中产生的其他现象,为实际工作中 用中,部分相干光比完全相干光更具优越性。例如,部分 相干光在大气中传输时发散程度要比完全相干光小得多; 并且部分相干光束具有光强比较均匀,对散斑低灵敏等优点而被应用于激光核聚变等领域。此外。多横模的高功率激光光束可用部分相干光束描述。因此,对部分相干光束的聚焦所产生的焦移的研究变得十分重要。 随着激光技术的发展,光束整形技术也随之成为人们研究的热门课题。迄今为止,已经实现了将激光光束整形成平顶光束或局域空心光束等。局域空心光束是一种在聚 焦区域出现的中心光强较小。四周被光强较高的区域所包围一种特殊光束。近几年,有关局域空心光束的产生和应 用的研究已经成为一个很重要的课题,这种光束在原子引导、原子囚禁,以及光学镊子等方面都有广泛的应用。例如,光学偶极子陷阱,即局域空心光束,在远失谐的辐射

激光光束分析实验报告

激光光束分析实验报告 引言 1960年,世界上第一台激光器诞生。激光作为一种相干光源,以其高亮度、高准直性、高单色性的优点,一直在各种生产和研究领域发挥着重要的作用。b5E2RGbCAP 虽然激光具有上述优点,然而严格地说,激光并不是平面光束,而是一种满足旁轴近似的旁轴波。由稳定谐振腔发出的激光束大多为高斯光束,其主要参数为光束宽度、光束发散角和光束传播因子。由于这几个参数不同,不同激光束的质量也就有了差别,因此就需要制定评价光束质量的普适方法。常用来评价光束质量的因 子有:衍射极限倍数因子、斯特列耳比、环围能量比、因子和 因子的倒数K因子<通常称为光束传播因子)。其中因子为国际ISO组织推荐的评价标准,也是我们在实验中采用的评价标准。p1EanqFDPw 因子的定义为: 其中为实际光束束腰宽度,为实际光束远场发散角。 采用因子时,作为光束质量比较标准的是理想高斯光束。基 模(模> 高斯光束有最好的光束质量,其,可以证明对于 一般的激光光束有。因子越大,实际光束偏离理想高斯光束越远,光束品质越差。当高斯光束通过无像差、衍射效应可忽略的透镜、望远镜系统聚焦或扩束镜时,虽然光腰尺寸或远场发散角

会发生变化,但光束宽度和发散角之积不变,是几何光学中的拉格朗日守恒量。DXDiTa9E3d 实验原理 如图选定坐标系。设光束的束腰位置为,束腰直径为,远 场发散角为。为了简化问题,假设光束关于束腰对称,则可求出传播轴上任一垂直面上的光束直径。光束传播方程的一级近似为:RTCrpUDGiT 光束的因子为: 其中n为传播介质折射率,为光束波长。对于束腰宽度和远场发散角,可用如下方法测得。 本实验中,我们采用的CCD能够测量在柱坐标系中传播轴上任 一垂直面上的光束能量密度函数。由于能量密度函数关于传 播轴中心对称,故在分布函数中没有自变量。对于高斯光束,可以证明:5PCzVD7HxA 其中:

大学毕业论文-高斯光束通过梯度折射率介质的传输特性

本科毕业设计论文 设计(论文) 题目高斯光束通过梯度折射率介质中的传输特性 指导教师 姓名___________ 辛晓天________ ____ 学生 姓名___________ 赵晓鹏________ ____ 学生 学号_________ 200910320129___ ___ _院系_______理学院________ _ 专业 ____ 应用物理_____ _ 班级____ 0901___ _

高斯光束通过梯度折射率介质中的传输 特性 学生姓名:赵晓鹏指导教师:辛晓天 浙江工业大学理学院 摘要 本文利用广义惠更斯-菲涅耳衍射积分(Collins公式)法,导出了高斯光束在均匀介质和梯度折射率介质中传输的解析表达式。对高斯光束在均匀介质和梯度折射率介质中传输特性进行了分析,重点分析了梯度折射率系数和传输距离对传输特性的影响。结果表明,高斯光束在梯度折射率介质中传输时,随着梯度折射率的变化,轴上光强分布呈周期性变化;在梯度折射率系数一定时,其轴上光强分布关于光强最大位置是对称的。 关键词:广义衍射积分法、高斯光束、均匀介质、梯度折射率介质、传输特性 - 1 -

Propagation properties of Gaussian beams in Gradient-Index medium Student: Zhao Xiao-Peng Advisor: Xin Xiao-Tian College of Science Zhejiang University of Technology Abstract Using the generalized Huygens Fresnel diffraction integral (Collins formula), this paper deduces the analytical expression of Gauss beam in a homogeneous medium and gradient refractive index medium.The Gauss beam propagation in homogeneous media and the gradient refractive index medium are analyzed, and analyze the influence of gradient refractive index coefficient and transmission distance of the transmission characteristics.The results show that Gauss beams in the gradient index medium transmission, along with the change of gradient refractive index, light intensity on axis changes periodically;In the gradient refractive index coefficient is fixed, the axial intensity distribution of light intensity maximum position is symmetrical. Keywords:Generalized diffraction integral; Gaussian beam; homogeneous medium;Gradient-index media; Propagation properties - 2 -

实验四 激光纵模特性实验

实验四 激光纵模特性实验 一、实验目的 1. 了解F-P 扫描干涉仪的结构和性能,掌握其使用方法。 2-加深激光器物理概念的理解,掌握纵模分析的基本方法。 二、实验装置 共焦球面扫描干涉仪,高速光电接收器及其电源锯齿波发生器,示波器, 氦氖激光器及其电源。 三、实验原理 1、激光器的振荡模式 激光器内能够存在的稳定光振荡的形式称为激光模式。激光模式分为纵模和 横模两类。纵模描述了激光器输出光類率的个数;横模描述了在垂直于激光传播方向的平面内光场的分布情况。徼光的线宽和相干长度由纵模决定,而光束发散角、光斑直径和能量的横向分布则由横模决定。我们用符号来描述 激光谐振腔内电磁场的情况。代表横向电磁场,m 、n 下标表示沿垂直于传 播方向某特定横模的阶数,q 表示纵模的阶数。一般Q 可以很大,m 、n 都很小。角、光斑直径和能量的横向分布则由横模决定。我们用符号“TEM_q ”來描述 激光谐振腔内电磁场的情况。代表横向电磁场,m 、n 下标表示沿垂直于传播方向某特定横模的阶数,q 表示纵模的阶数。一般q 可以很大,m 、n 都很小。 2.激光器模的形成 激光器的三个基本组成部分是增益介质、谐振腔和激励能源。如果用某种激 励方式,将介质的某一对能级间形成粒子数反转分布,由于自发辐射和受激辐射 的作用,将有一定频率的光波产生,在腔内传播,并被增益介质逐渐增强、放大。 被传播的光波决不是单一频率的(通常所谓某一波长的光,不过是光中心波长而 已)。因能级有一定宽度,所以粒子在谐振腔内运动受多种因素的影响,实际激 光器输出的光谱宽度是自然增宽、碰撞增宽和多普勒增宽迭加而成。不同类型的 激光器,工作条件不同,以上诸影响有主次之分。例如低气压、小功率的He-Ne 激光器632.8nm 谱线,则以多普勒增宽为主,增宽线型基本呈高斯函数分布,宽度约为1500MHz,只有频率落在展宽范围内的光在介质中传播时,光强将获得不 同程度的放大但只有单程放大,还不足以产生激光,还需要有谐振腔对它进行光学反馈,使光在多次往返传播中形成稳定持续的振荡,才有激光输出的可能。 而形成持续振荡的条件使谐振腔中往返一周的光程差应是波长的整数倍, 即:2nL=q λq 这正是光波相干极大条件,满足此条件的光将获得极大增强,其它则相互抵 消。式中,y 是折射率,对气体U^l ,L 是腔长,Q 是正整数,每一个Q 对应 纵向一种稳定的电磁场分布人q ,叫一个纵模,Q 称作纵模序数。Q 是一个很大 的数,通常我们不需要知道它的数值。而关心的是有几个不同的Q 值,即激光器 有几个不同的纵模。从式(1),我们还可以看出,这也是驻波形成的条件,腔内 的纵模是以驻波形式存在的,Q 值反映的恰是驻波波腹的数目。纵模的频率为 l c q v q μ2=?

基于matlab高斯光束经透射型体光栅后的光束传输特性分析(附源程序)

目录 1 基本原理 (1) 1.1耦合波理论 (1) 1.2高斯光波的基本理论 (9) 2 建立模型描述 (10) 3仿真结果及分析 (10) 3.1角度选择性的模拟 (10) 3.2波长选择性的模拟 (13) 3.3单色发散光束经透射型布拉格体光栅的特性 (15) 3.4多色平面波经透射型布拉格体光栅的特性 (17) 4 调试过程及结论 (18) 5 心得体会 (20) 6 思考题 (20) 7 参考文献 (20) 8 附录 (21)

高斯光束经透射型体光栅后的光束传输 特性分析 1 基本原理 1.1耦合波理论 耦合波理论分析方法基于厚全息光栅产生的布拉格衍射光。当入射波被削弱且产生强衍射效率时,耦合波理论分析方法适用耦合波理论分析方法适用于透射光栅。 1.1.1耦合波理论研究的假设条件及模型 耦合波理论研究的假设条件: (1) 单色波入射体布拉格光栅; (2) 入射波以布拉格角度或近布拉格角度入射; (3)入射波垂直偏振与入射平面; (4)在体光栅中只有两个光波:入射光波 R 和衍射光波 S; (5)仅有入射光波 R 和衍射光波 S 遵守布拉格条件,其余的衍射能级违背布拉格 条件,可被忽略; (6)其余的衍射能级仅对入射光波 R 和衍射光波 S 的能量交换有微小影响; (7)将耦合波理论限定于厚布拉格光栅中; 图1为用于耦合波理论分析的布拉格光栅模型。z 轴垂直于介质平面,x 轴在介质平面内,平行于介质边界,y 轴垂直于纸面。边界面垂直于入射面,与介质边界成Φ角。光栅矢量K垂直于边界平面,其大小为2/ =Λ,Λ为光栅周期,θ为入射角。 Kπ 图1布拉格光栅模型

高斯光束的特性实验

实验二 高斯光束的测量 一 实验目的 1.熟悉基模光束特性。 2.掌握高斯光速强度分布的测量方法。 3.测量高斯光速的远场发散角。 二 实验原理 众所周知,电磁场运动的普遍规律可用Maxwell 方程组来描述。对于稳态传输光频电磁场可以归结为对光现象起主要作用的电矢量所满足的波动方程。在标量场近似条件下,可以简化为赫姆霍兹方程,高斯光束是赫姆霍兹方程在缓变振幅近似下的一个特解,它可以足够好地描述激光光束的性质。使用高斯光束的复参数表示和ABCD 定律能够统一而简洁的处理高斯光束在腔内、外的传输变换问题。 在缓变振幅近似下求解赫姆霍兹方程,可以得到高斯光束的一般表达式: ()2 2 2 () [ ] 2() 00 ,() r z kr i R z A A r z e e z ωψωω---= ? (6) 式中,0A 为振幅常数;0ω定义为场振幅减小到最大值的1的r 值,称为腰斑,它是高斯光束光斑半径的最小值;()z ω、()R z 、ψ分别表示了高斯光束的光斑半径、等相面曲率半径、相位因子,是描述高斯光束的三个重要参数,其具体表达式分别为: ()z ωω= (7) 000 ()Z z R z Z Z z ?? =+ ??? (8) 1 z tg Z ψ-= (9) 其中,2 00Z πωλ = ,称为瑞利长度或共焦参数(也有用f 表示)。 (A )、高斯光束在z const =的面内,场振幅以高斯函数2 2 () r z e ω-的形式从中心向外平滑的减小, 因而光斑半径()z ω随坐标z 按双曲线:

2 20 ()1z z Z ωω - = (10) 规律而向外扩展,如图四所示 高斯光束以及相关参数的定义 图四 (B )、 在(10)式中令相位部分等于常数,并略去()z ψ项,可以得到高斯光束的等相面方程: 2 2() r z const R z += (11) 因而,可以认为高斯光束的等相面为球面。 (C )、瑞利长度的物理意义为:当0z Z = 时,00()Z ω= 。在实际应用中通常取0z Z =±范 围为高斯光束的准直范围,即在这段长度范围内,高斯光束近似认为是平行的。所以,瑞利长度越长,就意味着高斯光束的准直范围越大,反之亦然。 (D )、高斯光束远场发散角0θ的一般定义为当z →∞时,高斯光束振幅减小到中心最大值1e 处与z 轴的交角。即表示为: 00 ()lim z z z ωθλπω→∞ == (12) 三、实验仪器 He-Ne 激光器, 光电二极管, CCD , CCD 光阑,偏振片,电脑 四 实验内容: (一)发散角测量 关键是如何保证接收器能在垂直光束的传播方向上扫描,这是测量光束横截面尺寸和发散角的必要条件。

激光光束的空间分布研究

激光光束的空间分布研究 从理论上来讲,光在稳定的激光谐振腔中进行无限次的反射后,激光器所发出的激光将以高斯光束的形式在空间传输。而且反射(衍射)次数越多,其光束传输形状越接近高斯光束。从另一方面讲,形状越接近高斯光束的激光束,在传播、耦合及光束变换过程中,其形状越不易改变,在高斯光束时,不论怎样变换,其形状依然是高斯光束。(参阅有关书籍关于高斯光束的论述) 由《激光原理与技术》课程,我们从理论知道了激光光束的横向和纵向的空间分布情况,在这个实验中,我们将利用激光光束分析仪对激光光束进行实验研究。 【实验内容】 1.激光光束的纵向分布(发散角) 2.激光光束的横向分布(束腰半径) 3.激光光束质量分析 【实验仪器】 激光光源,激光光束分析仪器,透镜等

阅读材料 高斯光束简介 由激光器产生的激光束既不是平面光波,也不是均匀的球面光波。虽然在特定位置,看似一个球面波,但它的振幅和等相位面都在变化。从理论上来讲,光在稳定的激光谐振腔中进行无限次的反射后,激光器所发出的激光将以高斯光束的形式在空间传输。而且反射(衍射)次数越多,其光束传输形状越接近高斯光束。从另一方面讲,形状越接近高斯光束的激光束,在传播、偶合及光束变换过程中,其形状越不易改变,在高斯光束时,不论怎样变换,其形状依然是高斯光束。 在激光器产生的各种模式的激光中,最基本、应用最多的是基模高斯光束。在以光束传播方向z 轴为对称轴的柱面坐标系中,基模高斯光束的电矢量振动可以表示为 2 2 2[()arctan () 2() 000(,,)() r r z i k z i t w z R z f E E r z t e e e w z ω- + --= ?? (1) 式中,E 0为常数,其余各符号意义表示如下: 2 2 2 r x y =+ 2k π λ = 0()w z w = 2 ()f R z z z =+ 2 w f πλ = 其中,0(0)w w z ==为基模高斯光束的束腰半径,f 称为高斯光束的共焦参数或瑞利长度,R (z )为与传播轴线交于z 点的基模高斯光束的远场发散角为高斯光束等相位面的曲率半径,w (z ) 是与传播轴线相交于z 点高斯光束等相位面上的光斑半径。 图1 高斯光束的横截面

高斯光束经透射型体光栅后的光束传输特性分析

目录 1 技术指标 (1) 1.1 初始条件 (1) 1.2 技术要求 (1) 1.3 主要任务 (1) 2 基本理论 (1) 2.1 高斯光波的基本理论 (1) 2.2 耦合波理论 (2) 3 建立模型描述 (4) 4 仿真结果及分析 (5) 4.1 角度选择性的模拟 (5) 4.1.1 不同光栅厚度下的角度选择性 (6) 4.1.2 不同光栅线对下的角度选择性 (7) 4.2 波长选择性的模拟 (8) 4.2.1不同光栅厚度下的波长选择性 (8) 4.2.2不同光栅线对下的波长选择性 (9) 4.3 单色发散光束经透射型布拉格体光栅的特性 (10) 4.4 多色平面波经透射型布拉格体光栅的特性 (11) 5 调试过程及结论 (12) 6 心得体会 (13) 7 思考题 (13) 8 参考文献 (14)

高斯光束经透射型体光栅后的光束传输 特性分析 1 技术指标 1.1 初始条件 Matlab软件,计算机 1.2 技术要求 根据耦合波理论,推导出透射体光栅性能参量(角度和波长选择性)与光栅参数(光栅周期,光栅厚度等)之间的关系式;数值分析平面波、谱宽和发散角为高斯分布的光束入射条件下,衍射效率受波长和角度偏移量的影响。 1.3 主要任务 1 查阅相关资料,熟悉体光栅常用分析方法,建立耦合波分析模型; 2 利用matlab软件进行模型仿真,程序调试使其达到设计指标要求及分析仿真结果; 3 撰写设计说明书,进行答辩。 2 基本理论 2.1 高斯光波的基本理论 激光谐振腔发出的基膜场,其横截面的振幅分布遵守高斯函数,称之为高斯脉冲光波。如图1所示为高斯脉冲光波及其参数的图。

高斯光束强度分布特性研究

- 108 - 第19期2018年10月No.19October,2018 无线互联科技 Wireless Internet Technology 激光器自产生以来,已广泛应用于科学技术、通信、医学等各个领域。高斯光束在激光器中的研究是更好地利用激光器的关键。高斯光束(如厄米-高斯光束、拉盖尔-高斯光束[1],可用于描述矩形和圆形对称下的高阶激光模,其性质已被人们深入研究。高斯光束的束腰半径和位置、远场发散角、衍射放大系数和高斯光束通过透镜的变换规律是描述高斯光束基本特性的重要物理量和规律,也是激光物理教学的重要内容。1 设计思想 本文激光实验采用等距四点采光测量法[2],激光光束被定义为垂直于光轴的截面上,强度分布为最大值e 的平方分之一。在坐标轴上任意取4个点,其中一个点等于c ,其他3个点与该点差的绝对值相等,并且值相等,该值小于所测的光束半径,经过计算可得到强度分布。通过搭建实验平台并调试,能够接收到高斯光斑。这种方法的优势在于,它可以较为准确地判断这一被测量的光束是否为高斯光 束,而且还能求出此光束的束径和径向强度分布。系统方案流程如图1所示。 图1 系统方案流程 2 实验结果2.1 实验原理 等距四点采光测量法其实是一种基于等距离三点采光测量方法的新原理。根据这个原理,只需要同时测量光束截 面中任意相等间隔的4个点的光强,就可以定量地确定被测光束是否为高斯光束。在高斯光束的情况下,可以根据四点强度给出高斯光束的光束直径和径向强度分布。高斯光束的鉴别测量仪是一种基于四点法原理的新型仪器。这种发明将阵列接收元件以及计算机技术有机地结合起来,可以同时对光束截面中等距坐标点的光强进行采光测量,并且可以对测量数据以及光谱图进行打印和说明,从而达到定量判别和 测量高斯光束的目的[3] 。2.2 界面设计 实验中采用CCD 来接收光斑,利用Matlab 对激光的输出特性进行GUI 界面设计,界面中可以对像素值、波长、束腰半径、传播距离等进行选择,通过设置不同的参数值,可以 得到高斯光束传播距离不同时,振幅强度分布的示意图[4] 。 当输入的像素值为500,波长为0.568 μm ,束腰半径为1 mm ,传播距离为1 m 时,高斯光束传播强度分布仿真如图2所示。 图2 传播距离1 m时高斯强度分布 作者简介:田园(1984— ),女,陕西西安人,讲师,硕士;研究方向:测试计量技术与仪器。 高斯光束强度分布特性研究 田 园1,周 勖2 (1.西安工业大学北方信息工程学院,陕西 西安 710025;2.西安电力高等专科学校,陕西 西安 710032) 摘 要:随着高科技的发展和物理光学的研究和探索不断深入,高斯光束的研究产品已广泛应用于科技、通信和医学等各个 领域。文章在GUI 界面下完成对高斯光束强度分布的仿真,能够通过Matlab 软件比较准确地分别获得高斯光束传播1 m ,10 m ,20 m 时不同强度分布图,以及能够通过系统程序显示输出的参数值。通过高斯光束强度分布的仿真图能够比较直观地看到不同传播距离时高斯光束强度分布的不同变化。这一系统能够将抽象的高斯光束传输特性以及强度分布的理论知识,通过一步一步模拟仿真,将其形象化,因而易学易懂。关键词:高斯光束;Matlab ;强度分布

激光实验报告

激光实验报告 he-ne激光器模式分析 一.实验目的与要求 目的:使学生了解激光器模式的形成及特点,加深对其物理概念的理解;通过测 试分析,掌握模式分析的基本方法。对本实验使用的重要分光仪器——共焦球面扫描干 涉仪,了解其原理,性能,学会正确使用。 要求:用共焦球面扫描干涉仪测量he-ne激光器的相邻纵横模间隔,判别高阶 横模的阶次;观察激光器的频率漂移记跳模现象,了解其影响因素;观察激光器输出的 横向光场分布花样,体会谐振腔的调整对它的影响。 二.实验原理 1.激光模式的一般分析 由光学谐振腔理论可以知道,稳定腔的输出频率特性为: vmnq?l1/21lc[q?(m?2n?1)]cos-1[(1—)(1—)] r2?r12?l (17) 其中:l—谐振腔长度; r1、r2—两球面反射镜的曲率半径; q—纵横序数; m、n—横模序数;η—腔内介质的折射率。 横模不同(m、n不同),对应不同的横向光场分布(垂直于光轴方向),即有不同的光斑 花样。但对于复杂的横模,目测则很困难。精确的方法是借助于仪器测量,本实验就是利用 共焦扫描干涉仪来分析激光器输出的横模结构。 由(17)式看出,对于同一纵模序数,不同横模之间的频差为: ??mn:mn?ll1/2 c1(?m??n)cos-1[(1-)(1-)] (18) r1r22?l? 其中:δm=m-m′;δn=n-n′。对于相同的横模,不同纵模间的频差为 ??q:q?c?q 2?l 其中:δq=q-q′,相邻两纵模的频差为 ??q?c 2?l (19) 由(18)、(19)式看出,稳定球面腔有如图2—1的频谱。 (18)式除以(19)式得 ll?mn:mn1?(?m??n)cos-1[(1-)(1-)]1/2 r1r2??q? (20)设:????mn:mn ??q ; s=1?cos-1[(1-ll)(1?)]1/2 r1r2 δ表示不同的两横模(比如υ00与υ 比,于是(20)式可简写作: 10)之间的频差与相邻两纵模之间的频差之 (?m??n)?? s (21) 只要我们能测出δ,并通过产品说明书了解到l、r1、r2(这些数据生产厂家常给出), 那么就可以由(21)式求出(δm+δn)。如果我们选取m=n=0作为基准,那么便可以判断出 横模序数m、n。例如,我们通过测量和计算求得(δm+δn)=2,那么,激光器可能工作于 υ00、υ10、υ01、υ11、υ20、υ02。 2. 共焦球面扫描干涉仪的基本工作原理 共焦球面扫描干涉仪由两块镀有高反射率的凹面镜构成,如图2—2。反射镜的曲率半径 r1=r2=l。 图 2-2 由于反射镜的反射率相当高,注入腔内的光束将在腔内多次反射形成多光束,从多光束

激光光束偏振特性研究

激光光束偏振特性研究 【实验仪器】 激光光源,尼科耳棱镜,光具组,光学平晶,分光镜,照度计,综合测试仪等 【实验内容】 1、测量某一时刻激光器输出激光光束的偏振度及偏振方向。 2、测量激光光束的偏振方向和偏振度随时间的变化。 【数据处理要求】 1、作图法得到光束光强度分布,并确定偏振方向,计算偏振度。 2*、解析方法得到偏振椭圆方程及其随时间的变化公式。

阅读材料 光的偏振与偏振度 1.偏振现象 光属于电磁波。在许多光波与物质相互作用时,主要是其中的电振动矢量起主要作用。因此,在物理学中我们通常用电矢量(,)t E r 或电矢量的振幅()E r 来描述光的行为。 光的偏振也是用电矢量来描述的。在垂直于光的传播方向上,如果其电矢量的振动是各向同性的,电矢量大小在垂直于光传播方向的平面内的各个方向上是完全相同的,我们称这束光是没有偏振的。如果其电矢量的振动在垂直于光的传播方向的平面内不是各向同性的,我们把这种随着方向的改变,光波的电矢量大小是有差异的现象称作光是有偏振的。 通常,论述光的偏振有三种情况。 1)完全偏振光 在某一时刻,某一位置,在垂直于光传播方向的平面内,只在某一方向存在着电矢量,在和该方向垂直的方向上没有电矢量或其分量,这种光称为完全偏振光。深入研究,完全偏振光又有线偏振光(平面偏振光)、圆偏振光、椭圆偏振光之分。 线偏振光是随着光波的传播,其电矢量的振动方向始终不改变,在垂直于光传播方向的任意一个平面内,其投影是一条直线,因此,称其为线偏振光。而从三维空间来看,其电矢量的振动始终在一个平面内,因此,也称其为平面偏振光。 圆偏振光虽然在任一时刻,任一位置,在垂直于光传播方向的平面内,只在某一方向存在着电矢量,但其电矢量在垂直于光传播方向的平面内的投影,却不是一条直线,而是一个圆。它的电矢量其实是随着时间和位置的改变而改变的,而且它的改变是等幅改变。 椭圆偏振光与圆偏振光类似,它的电矢量其实是随着时间和位置的改变而改变的,只是它的改变是不等幅改变,其电矢量在垂直于光传播方向的平面内的投影,是一个椭圆。 2)部分偏振光 部分偏振光的电矢量在垂直于光传播方向的平面内的投影,也是一个椭圆,它和椭圆偏振光的区别在于,它是在任一时刻,任一位置,在垂直于光传播方向的平面内看到的电矢量外轮廓都是椭圆。部分偏振光可以看作是一个完全线偏振光和一个完全非偏振光的振幅合成。 3)完全非偏振光 在任一时刻,任一位置,在垂直于光传播方向的平面内看到的电矢量外轮廓都是圆的光,我们把它称作完全非偏振光。通常我们用“自然光”这个词汇来描述它。 2.偏振度 不论线偏振光还是部分偏振光,都可以称为偏振光,各种偏振光的偏振程度是不一样的,为了描述偏振光的偏振程度,定义一个函数——偏振度,用它来描述偏振光的偏振特性。 偏振度 min max min max I I I I P +-=

激光光束特性研究实验

目录 1实验任务 (1) 2设计原理 (1) 2.1基本原理 (1) 2.1.1激光束的发散角二 (3) 2.1.2激光光束横向光场分布 (4) 2.2测量方案 (4) 3实验过程 (5) 3.1测量前的准备 (5) 3.2光强横向分布的测量 (6) 3.3光斑半径w z及发散角二的确定 (6) 4实验结果及结论 (6) 4.1实验数据记录 (6) 4.2实验结果分析 (6) 5心得体会 (7) 6参考文献 (8) 附录1:实验原始数据记录 (8) 附录2:实验过程记录图 (9) 附录3:实验仪器清单 (10)

激光光束特性研究实验 1实验任务 利用氦氖激光器作为输出光源,通过测量其激光光束的发散角、光斑尺寸以及激光的光强来研究激光光束的特性。 2设计原理 2.1基本原理 普通光源的发光是由于物质在受到外界能量作用,物质的原子吸收能量跃迁到某高能级 (E2),原子处于此高能级的寿命约为10" :10°s,即处于高能级的原子很快自发地向低能级(EJ 跃迁,产生光电磁辐射,辐射光子能量为 h “2-巳(1) 这种辐射为自发辐射,此辐射过程是随机的,即各发光原子的发光过程各自独立,互不关联。各原子发出的光子位相、偏振态和传播方向也各不相同。另一方面由于原子能级有一定宽度,所发出的光的频率也不是单一的。根据波耳兹曼分布规律,在通常热平衡条件下,处于高能级的原子数密度远低于处于低能级的原子数密度。因此普通光源所辐射出的光的能量是不强的。 由量子理论可知,物质原子的一个能级对应其电子的一个能量状态。描写原子中电子运动状态,除能量外,还有轨道角动量L和自旋角动量S,它们都是量子化的。电子从高能级态向低能级态跃迁只能发生在L = _1的两个状态之间,这是选择原则。若选择原则不满足,则跃迁的几率很小,甚至接近零。在原子中可能存在这样一些能级,一旦电子被激发到这一能级上,由于不满足跃迁的选择规则,可使它在这种能级上的寿命很长,不易发生自发跃迁,这种能级称为亚稳态能级。但在外加光的诱发下可以迅速跃迁到低能级,并发出光子。此过程称为受激辐射,是激光的基础。 受激辐射过程大致如下:原子开始处于高能级(E2),当一个外来光子所带的能量h正好为某一对能级之差(E2 -巳),则这原子在此外来光子的诱发下由E2跃迁至E1,发生受

激光技术实验报告

实验一 氦氖激光系列实验 一、实验内容:1、氦氖激光器的调节 2、氦氖激光器的输出功率 3、氦氖激光器发散角测量 4、用共焦球面扫描干涉仪观察、分析、判断激光器的模式组成 二、实验仪器: 氦氖激光器、调节板、谐振腔反射镜、半内腔氦氖激光器、激光功率指示仪、共焦扫描仪、示波器 三、实验原理及方法 1.氦氖激光器半内腔谐振腔的调节使用激光准直法:用已有的准直氦氖激光器,首先调节氦氖半腔激光器,然后加入输出镜,利用准直氦氖激光器,调节输出镜,使全反镜和输出镜平行,满足激光产生的条件。实验图示如下: 天津市拓普仪器有限公司 -3氦氖激光器系列实验装置 天津市拓普仪器有限公司 谐振腔反射镜 调节板 氦氖激光器 半外腔氦氖激光器 2. 激光功率稳定性是指功率随时间的漂移,功率漂移大小。激光管点燃20-30分钟以后,将激光光束打到激光功率指示仪探头中心位置,连续记录激光器的功率以及时间。并绘制时间t 和功率p 之间的关系曲线。根据公式(以取十次为例) 10/10 1 0∑== i i P P 其中:0P 为十次测量的平均值。 激光器功率漂移 =η%100/0??P P 其中2/)(min max P P P -=? 固定输出镜,调至出光,旋转输出镜俯仰倾斜旋钮,结合功率计,将其输出调至最大。打开激光器电源并预热20~30分钟,将激光器光束对准激光功率指示仪探头中心位置,每隔10分钟记录一次,测量氦氖激光器的输出功率随时间变化曲线。

3. 用刀口法可以测定光斑的大小和验证光斑的光强分布是高斯分布。实验中使刀口平行于y 轴,沿垂直于x 轴方向移动当刀口缓慢推入光束时,设刀口挡住了a x ≤的所有点。未被刀口挡住而通过的光功率P 用余误差函数表示为: )2( 2 ),(0a W erf c P dxdy y x I P a = = ?? 如果先用刀口把光束全部挡住,然后把刀口缓慢拉出时,未被刀口挡住而通过的光功率可用相应的误差函数表示。 )exp(),(2 2 2 σ y x p y x I +- = )2( 2 10 σ a erfc p p = 其中2/W =σ是数理统计中的标准偏差。根据上式作出的归一化高斯分布和相对功率与刀口位置关系曲线如下图所示 可以证明,相对功率为0.25和0.75的点分别位于高斯分布曲线极大值两侧,其距离σ6745.0=p e 。所以从由实验得到的相对功率与刀口位置的关系曲线就可确定p e 的值。算出σ值后就可计算P/0P 的理论值,进行曲线拟合。如果拟合的好,就证明基横模光强是高斯分布。用p e 的值可以计算光斑大小:

影响光纤激光器呢光束性能的研究

西安邮电学院 科研训练论文毕设题目:影响光纤激光器光束性能因素的研究 院系:电子工程学院光电子技术系 专业:光信息科学与技术 班级: 0702 姓名:冯盼 指导教师:朱海燕

影响光纤激光器光束性能因素的研究 作者:冯盼(西安邮电学院,电子工程学院,光信息科学与技术,0702班) 指导教师:朱海燕(电子工程学院) 摘要:由于光纤激光器具有体积小、重量轻、结构紧凑、无需外部水冷等优点而得到人们地广泛应用,是目前发展最快、市场前景最好的一类激光器。因而光纤激光器输出功率和光束质量对于人们来说很是重要,但是光纤激光器内部器件中光纤与光纤的耦合,光纤弯曲导致的损耗,光纤中的模式传输特性等,都影响着输出光束的质量,所以研究影响光纤激光器的性能因素,在激光技术中具有重要意义。本文主要介绍了各个影响光纤激光器光束性能的因素。 关键词:光纤激光器;光束性能;光纤耦合;光纤传输损耗;光纤模式传输特性Research of the Impact on Optical Fiber Laser Beam Performance Writor:Pan Feng(0702 class,Optical Information Science and Technology,Electronic engineering, Xi’an University Posts&Telecommunications) Direct teacher(hai-yan zhu,Electronic engineering) Abstract:Because the laser has a small size, lightweight, compact structure and no external cold water , The fibre is widely used in various flieds and is the best type of laser and the fastest growing markets for the future.So the research of t he lasers’ output power and beam quality is very important to people.But an internal component of fibre and wastage of fiber coupling and fibre in the transmission properties are affecting the quality of the beam and it is significance in laser technology to study the impact of laser beam performance . This article mainly introduce impact on optical fiber laser beam performance. Key words:Fibre laser,Beam performance,fiber coupling,Fibre transport cost,Fibre properties of transport mode 0 引言 光纤激光器诞生于20世纪60年代初,它是伴随着光纤通信技术,光纤制造工艺以及与激光器生产技术的日趋成熟而孙萌发展起来的新型器件。由于其在高速率,密集波分复用通信系统,高精度传感技术和大功率激光加工等方面呈现出潜在的技术优势和广阔的应用前景,所以备受世界各国科研工作者的青睐,现已成为国际学术界的热门研究对象。 光纤激光器与其他类型激光器相比较,其优点有以下几点:⑴泵浦功率低,增益高,输出光束质量好;⑵与其他光纤器件兼容,可实现全光纤传输系统;⑶使用光纤作为基体,其结构具有比较高的比表面积,因而散热好;⑷体积小,携带方便;⑸光纤激光器可以作为光孤子源,实现光孤子通信。 因而,光纤激光器应用范围非常广泛,如光纤通信,工业加工,军事国防,医疗器械,大型基础建设等。随着对光纤激光器研究的不断深入,其应用的范围不断地扩展,实用化的步伐不断加快。所以,研究影响光纤激光器的性能因素,在激光技术中具有重要意义。在光纤激光器中,内部器件中光纤与光纤的耦合,光纤弯曲导致的损耗,光纤中的模式传输特性等,都影响着输出光束的质量。 1 影响光纤激光器光束性能的各个因素 1.1 光纤耦合对光束性能的影响 光纤激光器作为波导激光器的一种,将不可避免地产生谐振腔反馈耦合损耗[1],这将影响激光输

高斯光束定义

高斯光束介绍 通常情形,激光谐振腔发出的基模辐射场,其横截面的振幅分布遵守高斯函数,故称高斯光束。 我们常常会收到客户关于光斑大小的查询,其实问的就是光斑的束腰直径或束腰半径。束腰,是指高斯光绝对平行传输的地方。半径,是指在高斯光的横截面考察,以最大振幅处为原点,振幅下降到原点处的0.36788倍,也就是1/e倍的地方,由于高斯光关于原点对称,所以1/e的地方形成一个圆,该圆的半径,就是光斑在此横截面的半径;如果取束腰处的横截面来考察,此时的半径,即是束腰半径。沿着光斑前进,各处的半径的包络线是一个双曲面,该双曲面有渐近线。高斯光束的传输特性,是在远处沿传播方向成特定角度扩散,该角度即是光束的远场发散角,也就是一对渐近线的夹角,它与波长成正比,与其束腰半径成反比,计算式是:2*波长/(3.1415926*束腰半径),故而,束腰半径越小,光斑发散越快;束腰半径越大,光斑发散越慢。光斑描述如下图: 我们用感光片可以看到,在近距离时,准直器发出的光在一定范围内近似成平行光,距离稍远,光斑逐渐发散,亮点变弱变大;可是从光纤出来的光,很快就发散;这是因为,准直器的光斑直径大约有400微米,而光纤的光斑直径不到10微米。同时,对于准直器最大工作距离的定义,往往可理解为该准直器输出光斑的共焦参数,该参数与光斑束腰半径平方成正比,与波长成反比,计算式是:3.1415926*束腰半径*束腰半径/波长。所以要做成长工作距

离(意味着在更长的传输距离里高斯光束仍近似成平行光)的准直器,必然要把光斑做大,透镜相应要加长加粗。 我们对于准直系统的计算,理论根据就是高斯光束的传输特性计算式。对于线度远大于输入光斑的透镜来讲,该输入光可视为点光源,其远场发散角就是该点光源的“边沿线”夹角;于是我们可根据透镜的具体参数,简单的用几何光学的方法计算该准直系统的光斑大小和最大工作距离。 而从高斯函数,我们可以计算当通光孔径多大时,光能的损失是多少。并不是通光区直径等于或略大于光斑直径时,光能就可以完全通过,事实上,此时的损耗高达0.6dB。简单的估计,是让通光直径是光斑的2倍或以上。

激光光束透镜变化

激光光束透镜变化 【关键词】激光光束质量 m2因子透镜变化 一、引言 激光光束质量测量实验是激光原理与激光技术类课程常规配套的一项实验内容,可以利用高级的光束质量分析仪器对激光器出光光束的各类参数进行标定。在实际教学中易受到实验设备和实验环境的限制而无法开设,或仅对研究生等高年级学生开设。然而,该实验项目对于光学、光电科学相关专业学生的培养具有非常重要的理论意义与现实意义。它不但能帮助学生深入理解激光光束、直观认识激光光源与普通光源的差异,而且能培养和锻炼学生测试激光束相关参数的基本技能,使学生掌握简单实用的激光测试手段。 鉴于以上原因,该实验在激光类相关课程中的开设十分必要,并且其在本科教学中的推广和普及也是不容忽视的。具体如何克服设备及实验环境的限制,使实验的开始更具有可操作性,还需要结合各学校的实际情况。下面以激光光束质量m2因子的测量为例,介绍一种测量激光光束质量参数的简单方法。实验中使用的仪器及设备都是光学基础类实验仪器,获取难度相对不高。避免了对高级光束质量分析仪的依赖。 二、实验原理 了解激光束特性是应用的前提,概括的说,光束强度、光束束宽、光束发散角以及瑞利长度等参数从不同方面表征了激光束的基本

特性。 1.光束强度 通常所说的光强度(简称光强)是指单位面积上的平均光功率,或者说,是指光的平均能流密度,即单位时间内通过垂直于波传播方向的单位面积上的平均能量。光的最简单形式是单色的线偏振平面波,在均匀、无吸收的介质中,光强的横向分布一般是柱面对称的gauss(高斯)分布: (1) 式中,i0表示光轴(r=0)处的强度,w定义为光束半径。2.光束宽度(束宽) 在空间域中,光束宽度的常用定义有1/n定义、环围功率定义和二阶矩定义三种,[1]其中“1/n定义”,对旋转对称光束,是以在柱坐标系中光强分布曲线i(r)上最大值imax的1/n处两点间距离之半为束宽(半径)w。 (2) 而对矩形对称的光束,则是在直角坐标系中x、y方向各自光强分布曲线上最大值1/n处两点距离之半为对应方向上的束宽wx、wy,满足: (3) (4) 常用的n值有e2和2,通常称为光束的1/e2束宽(we)和半峰

相关主题
文本预览
相关文档 最新文档