当前位置:文档之家› 大跨度刚性空间结构竖向地震的静力弹塑性分析

大跨度刚性空间结构竖向地震的静力弹塑性分析

大跨度刚性空间结构竖向地震的静力弹塑性分析
大跨度刚性空间结构竖向地震的静力弹塑性分析

大跨度刚性空间结构竖向地震的静力弹塑性分析

摘要

大跨度空间结构是目前发展最快的结构类型,越来越多地应用于各种公用建筑中,其结构的动力特性正被广大研究人员所关注。随着国内外抗震研究的不断深入,对不同类型的结构分别采用相应特定的抗震计算方法。但对于大跨度刚性空间结构,由于结构形体变化较大,特别对于第一振型以竖向振动变形为主时,静力弹塑性分析的Push.over方法不再适用。然而时程分析法计算地震激励下规则大跨度刚性空间结构的响应和进行抗震性能评估时,设计和分析人员面临着计算工作量大、耗时长等困难,使得抗震评估较难掌握和实施。本文力图寻求一种简化的竖向抗震计算方法,提出竖向静力弹塑性分析的新概念,这也是目前大跨度空间结构研究领域的一个新课题。

首先本文在查阅大量研究文献的基础上,简要综述分析了工程结构抗震所采用的反应谱法、虚拟激励法、时程法以及静力弹塑性Push—over分析方法,并提出了本文的主要工作和研究内容。

详细介绍和分析了Push-over方法的基本假定和基本原理,明确了Push-over方法的适用范围及其在竖向刚度分布规则的多、高层结构中应用时的实施方法。

结构的动力问题日益引起更多的关注,以求更好地预测结构在地震、风等动力作用下的性能,并寻求更好的防护手段对结构振动进行主动和被动控制。根据多年来国内外学者对竖向地震特性的研究和分析成果,本文建立了竖向地震反应谱,并形成竖向设计反应谱,利用谱分析方法计算竖向地震作用下大跨度刚性空间结构的响应。将结构支座竖向剪力和结构控制点位移之间的关系,转化为典型的谱加速度和谱位移之间的关系(即弹性竖向需求谱),同时利用延性系数等方法形成弹塑性竖向需求谱。

根据规则大跨度刚性空间结构的特性,参照FEMA273(Federal Emergency ManagementAgency)和ATC-40(AppliedTechnology Council)中关于多、高层建筑结构抗震分析中所采用的Push.over 计算原理,提出一种大跨度刚性空间结构的竖向静力弹塑性分析方法即Push.down法,并对该方法进行详细的理论推导。

同时建立了计算竖向目标位移的基本方法并提出了结构的破坏准则;针对本文的Push.down 新方法,提出一阶模态加载模式的单模态Push.down法和多阶模态共同作用的多模态加载模式Push.down法,并进行了理论推导;得出了竖向能力谱法和改进的能力谱法的基本转化公式;推导了弹性竖向需求谱和考虑延性的弹塑性竖向需求谱的理论;提出了用Psuh.down方法进行竖向抗震性能分析和评估的分析步骤。

本文通过模态分析,得到特定大跨度刚性空间结构的动力特性以及各振型的特点、振型参与系数和参与质量,进而得出本文提出的大跨度刚性空间结构竖向静力弹塑性Push.down的应用范围。

给出了一个单模态Push.down法分析的简单算例,一个4×4井字网格楼盖的竖向抗震性能评估,并通过与时程法的比较,得出应用Push.down法能够有效的、方便的得到基本振型为竖向变形且第一阶振型参与为主的简单结构体系的抗震性能。

给出了一个多模态Push.down法分析的算例,一个单层网壳的竖向抗震性能评估,各模态下的响应采用模态组合法获得。同时将抗震评估结果与该结构竖向时程分析方法下的结果进行比较,结果表明多模态竖向静力弹塑性抗震评估方法与时程比较接近,能够考虑高阶模态的影响。

采用本文的研究成果竖向静力弹塑性分析方法Push.down法,可对基本振型为竖向振动的结构,在竖向地震作用下的抗震性能进行评估并做出有效的分析。本方法可以考虑多模态的组合作用,增加了计算结果的精确度。

关键词:大跨度刚性空间结构,性能设计,Push.OVer",模态分析,竖向反应谱,

Push.down,竖向需求谱,竖向能力谱,竖向荷载分布模式,抗震性能评估,多模态静力弹塑性分析

第七章结论与展望

(1)本文首先综述了目前国内外常见的抗震分析方法:反应谱法、随机振动法、时程法和静力弹塑性分析方法(Push-.over法)。反应谱方法基于线性反应的假定,对于非线性和弹塑性分析能力不足:随机振动方法解决工程问题快捷、准确,但将其应用于工程实践尚须改进和简化;时程法能够较真实和准确的反应地震动作用下结构的反应,但由于计算工作量大且地震波的选取困难,使得该方法实际操作不方便。静力弹塑性分析(Push-over法)仅仅只能分析竖向规则的多、高层结构,不适应于大跨度空间结构。

(2)通过对静力弹塑性分析(Push_0vef法)的介绍和研究,明确了静力简化方法的基本原理和处理方法。进而说明同样处理方法在竖向静力弹塑性分析可以借鉴。

(3)通过对竖向地震资料分析,得出竖向地震加速度与水平地震加速度的比值,建立了不同基本烈度下和不同场地的竖向地震影响系数曲线,进而得到基本烈度下的竖向反应谱关系;根据国内抗震设防三标准原则,将基本烈度下的竖向地震影响系数进行系数折减或放大,得到多遇地震作用下或罕遇地震作用下的设计竖向地震影响系数曲线;再通过阻尼处理和理论推导建立了弹性和弹塑性竖向反应谱。通过一个计算实例,比较了本文得出的竖向反应谱理论与抗震规范(GB5001 1-2001)简化计算方法的结果,得出结构在不同烈度、不同场地条件下,竖向地震影响系数随着结构固有周期的变化规律。竖向地震加速度与水平地震加速度的比值,对于基岩y/日=0.65;对于土层场地(II/Ⅲ/Ⅳ类场地类别)V/a与结构的基本周期相关,其比值在o.5~1.0之间。在II /III/Ⅳ场地条件下竖向地震的作用比规范简化计算的结果偏大,规范的计算结果偏小,略显不安全。

(4)根据规则大跨度刚性空间结构的特性,参照FEMA273ffederal Em郫弘cyManagem锄t Ag=c9和ATC40(A卵lied Technology Council)中关于多、高层建筑结构抗震分析中采用的PllSh-0ver 法的计算原理,提出一种大跨度刚性空间结构的竖向静力弹塑性分析方法(Push.own法),并对该方法进行详细的理论推导。同时建立了得到竖向目标位移的基本方法及提出了结构的破坏准则;提出了一阶模态加载模式的单模态Push.own法和多阶模态共同参与的多模态Push.own法,并进行了理论推导;得出了竖向能力谱法和改进的能力谱法的基本转化公式;推导了弹性竖向需求谱和考虑延性的弹塑性竖向需求谱的理论;通过文中建议的分析步骤可进行竖向抗震性能分析和评估。即完成了单模态加载法的竖向静力弹塑性分析方法的理论研究和分析方法;完成了多模态组合参与下的竖向静力弹塑性分析方法理论和分析方法。

(5)通过模态分析,明确大跨度刚性空间结构的动力特性以及各振型的特点、振型参与系数和参与质量。得出Push-down分析方法应用范围为:①第一振型为竖向变形的规则大跨度刚性空间结构(尤其适用于杆件采用梁、梁一柱单元来模拟的大跨度刚性空间结构体系);⑦模态分析中,竖向振动以一阶振型参与为主或由多阶模态共同参与作用的结构,不考虑各振型的耦合作用。

(6)给出了一个单模态Push-down法分析的简单算例,一个4 X 4井字网格楼盖的竖向抗震性能评估,并通过与时程法的比较,得出应用Push-down法能够有效的、方便的得到基本振型为竖向变形且第一阶振型参与为主的简单结构体系的抗震性能。

(7)给出了一个改进多模态Push-down法分析的算例,—个单层网壳的竖向抗震性能评估。各模态下的响应采用模态组合法获得。同时将抗震评估结果与该结构竖向时程分析方法下的结果进行比较,结果表明多模态竖向静力弹塑性抗震评估方法与时程比较接近,能够考虑高阶模态的影响。

(8)采用本文的研究成果竖向静力弹塑性分析方法Push-down法,可对基本振型为竖向振动的结构,在竖向地震作用下的抗震性能进行评估并作出有效的分析。本文方法可以考虑多模态的组

合作用,增加了计算结果的精确度。

7.2展望

由于目前国内外研究竖向静力弹塑性的方法研究较少。本文中的Push-down法是第一次提出。作者认为还需多方面的研究工作:

(1)结构的地震反应计算复杂,应用简化的静力法时,对于竖向质量参与系数较小的结构,模态的参与数量选取,各振型的耦合等问题比较突出,进一步需解决。

(2)竖向荷载模式的选取直接关系到计算结果的准确性。对于大跨度刚性空间刚性结构,结构体形复杂,就需要研究特定的对应竖向荷载模式。

(3)对于平板式大跨度刚性空间网格结构,由于构件并非完全可以用梁来模拟,即只会出现拉压杆,竖向抗震性能的评估需要研究特定的简化方法。

(4)目前对于竖向静力弹塑性分析方法,只是进行理论研究和简单的模型处理,对于复杂和单元数量较多的模型,进行程序化的工作非常必要。

方法还有待改进。

竖向地震作用对空间大跨结构的影响及计算方法

摘要

网架结构是一种较好的大跨度屋盖结构形式。在国内外的大型体育馆、停机场、中型练习馆、展览馆、俱乐部、剧院、食堂以及工业厂房等工程的屋盖结构中都得到.广泛应用。然而,随着地震等自然灾害的逐年频繁发生,如何进行网架结构的抗震设计,尤其是竖向地震作用对这种空间大跨结构的影响是我们所关心的重要问题。

本文主要研究的正是平板型周边支承正放四角锥网架在竖向地震作用下的动力特征以及动内力与在重力荷载代表值作用下静内力的关系,并寻找某种简便方法去计算出动内力值。主要步骤如下:

(1)引用竖向地震加速度反应谱,该反应谱是通过大量的实测记录,并通过分析、统计的方法得出,有较高的可信度。

(2)对9种跨度(30x30、33x33、36x36、39x39、42x42、48x48、54x54、60x60、72x72)的正放四角锥网架屋盖,在实测记录中出现频率较高的两种地震动强度等级(0.19~0.29、·O.29~0.49)及三种场地类别(I、II、Ⅲ场地)共6种场地条件下采用SAP2000有限元结构分析软件进行反应谱法和多遇地震下的时程法进行分析。

(3)引入动内力系数,将几种方法得到的结果进行分析对比,找出动内力系数分布规律,来评估该网架结构受到的竖向地震作用并与规范规定的竖向地震作用系数进行比较。

(4)利用等效地震作用系数及动内力系数,结合分布规律寻找出了两种比较实用的计算方法来计算网架的动内力。

关键词:竖向地震作用;正放四角锥网架:动内力系数;实用计算方法

结论与展望

本文对9种不同跨度的正放四角锥网架屋盖,在6条不同竖向地震加速度反应谱曲线下的地震动力反应进行研究和总结,得出以下结论:

l、网架结构自振频谱相当密集,第一阶竖向频率频一般在9(1/s)一--,16(1/s)之间,即周期在0.4s---一O.7s左右,随着跨度的变化,自振频率的变化很小。模型建立过程中任一参数的改变(如任一杆件质量、刚度、活荷载等)都必将引起结构自振频率的改变,但变化比较小。

2、相同等级荷载下(本文为荷载等级为2级),网架结构的竖向振动频率随着网架跨度的增大而减小,这也表明随着跨度的越大,网架的出平面刚度越小。

3、各种跨度的网架结构竖向振型曲面形状基本一致,第一阶正对称的竖向振型曲面形状与静力作用下的竖向位移曲面是非常相似,只是曲面上各点的位移不同。

4、网架结构上、下弦杆及腹杆在竖向地震作用下,其地震动内力分布规律与静力作用下相似,即上、下弦在四周边缘位置杆件动内力最小,向跨中位置逐渐增大,在跨中位置杆件动内力达到最大。腹杆内力则反之,边缘杆件内力最大,向跨中逐渐减小,跨中达到最小。在网架边缘腹杆的内力值与上、下弦杆相近,但跨中腹杆则要远小于上、下弦杆的内力。

5、网架结构在竖向地震作用下,各个杆件的动内力系数值分布呈明显规律:无论是上、下弦还是腹杆动内力系数值都是在四周边缘附近较小,逐渐向跨中增大,在网架平面中心位置处达到最大。

6、对于不同排或不同列的上弦杆或下弦杆,在相同的跨度比位置的动内力系数相差很小,只有在靠近周边支承位置相差略大些。

7、整体上看网架上弦杆的动内力比下弦杆的动内力要略大一些。而对于腹杆,其动内力系数值在网架四周边缘位置与上弦杆动内力系数值非常接近,但在跨中位置处,腹杆的动内力系数值则

要大于上弦杆动内力系数值,且相差比较大。尽管腹杆在跨中位置处的动内力系数值很大,但由于这部分杆件实际受到的竖向地震动内力很小,在设计过程中不需要过多的考虑腹杆,只需按构造选取腹杆截面即可。

8、在一定范围内,随着跨度的增加,上、下弦及腹杆各杆件对应位置的动内力系数均逐渐减小。

9、整体上看,上、下弦动内力系数的分布形状均近似的呈抛物面状。

10、等效竖向地震作用系数的值与上、下弦及腹杆的动内力系数值有一定的差别,比如36x36跨度的网架上弦杆动内力系数约为12%~16%之间,而等效竖向地震作用系数只有8.1%。在同一地震强度等级、同一场地条件下,不同跨度的网架等效竖向地震作用系数是不同的,这与规范中规定的有所不同。

11、通过分析知道同一强度等级、同种场地下的不同跨度网架的q与上弦杆的‰关系图,见图3.4即:

(1)当q一0时,‰一O,

(2)当q一佃时,‰趋于一个定值,‰呈水平直线。

12、由于网架结构的上弦杆动内力系数的分布在网架结构设计中起控制作用,本文采用了两种方法:一种是等效竖向地震作用系数法,另一种是直接动内力系数法,通过这两种方法计算上弦杆动内力的结果与阵型分解反应谱法计算的结果比较,都能很好的反应出该网架在竖向地震作用下各个杆件的受力情况,为简化竖向地震作用对网架结构的影响计算提供了方法。

展望

针对本文的研究课题,仍有以下问题值得继续研究:

(1)本文在研究的过程中一直很难解决的问题就是杆件的截面选取,网架结构自振频谱相当密集、也相当复杂,改变构件截面肯定会对结构的固有特性有一定的影响,在研究的过程中很难按照实际的各个杆件的截面进行定义,本文只是采用递增的方法适当的加大了上、下弦的杆件截面,对于腹杆受力比较小,直接采用了一种统一的杆件截面。杆件截面的选择对网架结构的影响需要进一步的研究。

(2)本文引用的竖向地震加速反应谱是贯彻整个研究过程的的主线,该反应谱是对大量事实的统计和分析而得出来的谱,本文采用的是地震动强度等级的不同和场地类别的不同进行的分组,地震动强度等级与地震烈度设防标准并没有具体的对应关系,本文列出的是6组不同竖向地震反应谱曲线情况,具体选择哪一组曲线,只有近似的根据现行的地震烈度设防标准去选取。

(3)对于本文总结出来的两种计算方法,即等效竖向地震作用系数法和直接动内力系数法,都能够比较好地反应网架结构在不同的地震动强度等级及不同场地类别下各个杆件的动内力,但与阵型分解反应谱法计算的结果还是有一定差距,需要进一步研究

国内外竖向地震研究现状

第三篇:结果表明,竖向与水平向反应谱谱比是周期的函数,并且与场地条件有关;短周期部分,场地越软比值越大,而长周期部分,场地越硬比值越大;同时,竖向与水平向反应谱谱比还与震源距有关,总的趋势呈现出随着震源距增加,竖向与水平向反应谱谱比变小。因此,竖向设计反应谱值不能简单的取为水平向设计谱值的2/3,其平台值及特征周期应依据不同震源距和不同场地类别分别进行统计和确定。

第一篇:1.2.2竖向地震作用计算

对于竖向地震作用的计算,各国抗震规范均有不同规定,归纳起来大致可以分为三种:(1)静力法,即各层竖向地震力Q取结构各层重力荷载代表值的一定百分数为Q=k·q (1.9) 式中G为第i层结构的重力荷载代表值:k为竖向地震作用参数,其值各国大致在O.1-4).5

静力弹塑性分析方法(Pushover方法)与动力弹塑性分析方法的优缺点

静力弹塑性分析方法(Pushover方法)与动力弹塑性分析方 法的优缺点 Pushover分析法 1、Pushover分析法优点: (1)作为一种简化的非线性分析方法,Pushover方法能够从整体上把握结构的抗侧力性能,可以对结构关键机构及单元进行评估,找到结构的薄弱环节,从而为设计改进提供参考。 (2)非线性静力分析可以获得较为稳定的分析结果,减小分析结果的偶然性,同时花费较少的时间和劳力,较之时程分析方法有较强的实际应用价值。 2、Pushover分析法缺点: (1)它假定所有的多自由度体系均可简化为等效单自由度体系,这一理论假定没有十分严密的理论基础。 (2)对建筑物进行Pushover分析时首先要确定一个合理的目标位移和水平加载方式,其分析结果的精确度很大程度上依赖于这两者的选择。(3)只能从整体上考察结构的性能,得到的结果较为粗糙。且在过程中未考虑结构在反复加载过程中损伤的累积及刚度的变化。不能完全真实反应结构在地震作用下性状。 二、弹塑性时程分析法 1、时程分析法优点: (1)采用地震动加速度时程曲线作为输入,进行结构地震反应分析,从而全面考虑了强震三要素,也自然地考虑了地震动丰富的长周期分量

对高层建筑的不利影响。 (2)采用结构弹塑性全过程恢复力特性曲线来表征结构的力学性质,从而比较确切地、具体地和细致地给出结构的弹塑性地震反应。 (3)能给出结构中各构件和杆件出现塑性铰的时刻和顺序,从而可以判明结构的屈服机制。 (4)对于非等强结构,能找出结构的薄弱环节,并能计算出柔弱楼层的塑性变形集中效应。 2、时程分析法缺点: (1)时程分析的最大缺点在于时程分析的结果与所选取的地震动输入有关,地震动时称所含频频成分对结构的模态n向应有选择放大作用,所以不同时称输入结果差异很大。 (2)时程分析法采用逐步积分的方法对动力方程进行直接积分,从而求得结构在地震过程中每一瞬时的位移、速度和加速度反应。所以此法的计算工作十分繁重,必须借助于计算机才能完成。而且对于大型复杂结构对计算机要求更高,耗时耗力。 (3)对工程技术人员素质要求较高,工程应用要求较高。从结构模型建立,材料本构的选取、地震波选取,到参数控制及庞大计算结果的整理及甄别都要求技术人员具有扎实的专业素质以及丰厚的工程经验。

【结构设计】弹塑性地震反应分析中的滞回曲线解析

弹塑性地震反应分析中的滞回曲线解析我们在进行弹塑性地震反应分析时,经常要用到结构的滞回曲线,今天为大家详细介绍一下这个神秘的东东. 滞回曲线,也叫恢复力曲线,是在循环力的往复作用下,得到结构的荷载-变形曲线.它反映结构在反复受力过程中的变形特征、刚度退化及能量消耗. 为啥要研究在反复受力过程中各种特性呢?因为地震力就是反复循环作用的.我们弹性设计只是拟静力法,不能体现反复力的作用. 大多材料都是具有弹塑性性质的,当荷载大于一定程度后,在卸荷时产生残余变形,即荷载为零而变形不回到零,称之为“滞后”现象,这样经过一个荷载循环,荷载位移曲线就形成了一个环,将此环线叫做滞回环,多个滞回环就组成了滞回曲线! 滞回曲线有哪几种呢? 1、梭形 梭形说明滞回曲线的形状非常饱满,反映出整个结构或构件的塑性变形能力很强,具有很好的抗震性能和耗能能力.例如受弯、偏压、压弯以及不发生剪切破坏的弯剪构件,具有良好塑性变形能力的钢框架结构或构件的P一△滞回曲线即呈梭形.

2、弓形 弓形具有“捏缩”效应,显示出滞回曲线受到了一定的滑移影响.滞回曲线的形状比较饱满,但饱满程度比梭形要低,反映出整个结构或构件的塑性变形能力比较强,节点低周反复荷载试验研究性能较好,.能较好地吸收地震能量.例如剪跨比较大,剪力较小并配有一定箍筋的弯剪构件和压弯剪构件,一般的钢筋混凝土结构,其滞回曲线均属此 类.

3、反S形 反S形反映了更多的滑移影响,滞回曲线的形状不饱满,说明该结构或构件延性和吸收地震能量的能力较差.例如一般框架、梁柱节点和剪力墙等的滞回曲线均属此类. 4、Z形 Z形反映出滞回曲线受到了大量的滑移影响,具有滑移性质.例如小剪跨而斜裂缝又可以充分发展的构件以及锚固钢筋有较大滑移的构件等,其滞回曲线均属此类.

大跨度屋盖结构

一、桁架 桁架应用极广,适用跨度范围(6—60m)非常大。以受力特点可分为: 平面桁架、立体桁架、空腹桁架。通常所指的桁架全是平面桁架,只在强调其与立体桁架或空腹桁架有所区别时,才称之为平面桁架。文艺复兴时期,改进完善了木桁架,解决了空间屋顶结构的问题;10 世纪工业大发展,因工业、交通建设需要,进一步加大跨度。出现了各种钢屋架采用桁架。 (一)桁架的基本特点 1.平面——外荷与支座反力都作用在全部桁架杆件轴线所在的平面内; 2.几何不变——桁架的杆件按三角形法则构成; 3.铰接——杆件相交的节点,计算按铰接考虑,木杆件的节点非常接近铰 接;钢桁架或钢筋混凝土桁架的节点非铰接、实属于刚架,其杆件除轴向力外,还存在弯矩,会产生应力但很小,依靠节点构造措施能解决,故一般仍按结点铰接考虑; 4,轴向受力——结点既是铰接,故各杆件(弦杆、竖杆、斜杆)均受轴向力,这是 材尽其用的有效途径。 (二)桁架的合理形式 选择桁架形式的出发点是受力合理,能充分发挥材力,以取得良好的经济效益。桁架杆件虽然是轴向受力,但桁架总体仍摆脱不了弯曲的控制,在节点竖向荷载作用下,其上弦受压、下弦受拉,主要抵抗弯矩,而腹杆则主要抵抗剪力。由力分析可以看出,在其他条件相同的情况下,受力最合理,结点构造最简单,用料最经济,自重最轻巧,施工也可行的是多边形或弧形桁架,因其上弦非直线,制作较复杂,仅适用于较大跨度的情况。一般为便于构造与制作,上下弦各采用等截面杆件,其截面按最大内力决定,故内力较小的节问,材料未尽其用;为充分发挥材力,应尽量使弦杆各节点内力值接近。为进一步改进多边形桁架,使其上弦制作方便些,可作成折线形上弦的桁架,其高度变化接近于抛物线,这样适用于中、大跨(l>18m),但其制作

静力弹塑性分析(Push-over Analysis)方法的研究

静力弹塑性分析(Push-over Analy sis)方法的研究 赵 琦1 桑晓艳2 (1.陕西金泰恒业房地产有限公司 710075 西安; 2.陇县建设工程质量安全监督站 721200 陇县) 摘 要:本文介绍了静力弹塑性分析(Push-over Analysis)的基本原理及实施步骤,为实际工程设计提供了一定的参政价值。 关键词:静力弹塑性;性能评价 引言 随着科技的发展,抗震设计方法在不断的完善,但是人类对自然的认识水平是一个渐进过程,地震运动的自然现象也是一样的,现行的抗震设计方法与抗震构造措施,在建筑结构遭遇罕遇地震时,并不能够保证“大震不倒”。那么,如何正确地把握建筑结构在地震中的破坏状况,追踪结构在地震时反应的全过程,了解结构抗震的薄弱楼层和构件,这些在抗震设计过程中都是非常重要的。因此,在设计中利用结构的弹塑性分析来追踪结构在地震时反应的全过程,便于设计者发现结构抗震的薄弱楼层和构件,故是检验地震时结构抗倒塌能力的有效方法。 我国现行抗震规范实行的是以概率可靠度为基础的三水准设防原则,即“小震不坏,中震可修,大震不倒”。所谓的“不坏、可修、不倒”是规范给定的各类结构的最低功能要求,反映的是结构抗震设计的“共性”,不能根据结构用途以及业主要求的不同确定结构各自不同的功能水平,反映结构的“个性”。我国对高层结构的抗震设计主要是采用传统的抗震设计方法和构造措施来保障。这样,结构在罕遇地震下进入弹塑性阶段后,现有结构措施有可能无法保证结构具有充足的延性来耗散施加在结构上的地震能量,进而可能导致结构发生倒塌。静力弹塑性分析方法(Push -over Analy sis)是近年来国内、外兴起的一种等效非线性的静力分析法。这种方法能够揭示出在罕遇地震作用下结构实际的屈服机制,各塑性铰的出现顺序,进而暴露出结构的薄弱环节。我国抗震规范规定:不规则且具有明显薄弱部位可能导致地震时严重破坏的建筑结构,可根据结构特点采用静力弹塑性分析或弹塑性时程分析方法。因此,采用静力弹塑性的分析方法,可以对结构在罕遇地震下的抗震性能进行分析研究,找出其中的薄弱环节,并通过相应的设计方法和构造措施予以加强,从而实现“大震不倒”的设计要求。静力弹塑性(Push-over)分析作为一种结构非线性响应的简化计算方法,比一般线性抗震分析更为合理和符合实际情况,在多数情况下它能够得出比静力弹性甚至动力分析更多的重要信息,且操作十分简便。 1.Push-over分析原理 静力弹塑性(Push-ov er)分析是一种考虑材料非线性来对建筑物的抗震性能进行评价的方法,其中还结合了最近在抗震设计方面很受重视的以性能为基本的抗震设计理论。性能基本设计法的目的是为了使设计人员明确地设定建筑物的目标性能,并为达到该性能而进行设计。故可采用一般方法进行设计后,通过Push-over分析对建筑物进行评价来判断其是否能够达到所设定的目标性能。 Push-over方法的应用范围主要集中于对现有结构或设计方案进行抗侧力能力的计算,从而得到其抗震能力的估计。这种方法从本质上说是一种静力非线性计算方法,对结构进行静力单调加载下的弹塑性分析。与以往的抗震静力计算方法不同之处主要在于它将设计反应谱引入了计算过程和计算成果的工程解释。具体地说,在结构分析模型上施加按某种方式

大跨度空间结构工程案例样本

大跨度空间结构案例及分析

1、大跨度空间结构选型的概念 跨度超过30米的空间结构就是大跨度空间结构。大跨度空间结构使建筑实现较大的跨度, 满足建筑大空间的使用要求, 而且结构轻巧, 造型优美, 受力合理, 实用耐久, 用钢量低。大跨度空间结构不但使空间的水平分隔的灵活性增大, 而且也增大了垂直方向的自由调整的可能性。大跨度空间结构的选型即大跨度空间结构体系方案的优化选择, 实际上就是对适合建筑设计的多种结构体系方案进行分析、比较、判断、假设、择优的过程。 2、大跨度空间结构选型的原则 大跨度建筑迅速发展的原因一方面是由于社会发展使建筑功能愈来愈复杂; 另一方面则是新材料、新结构、新技术的出现, 促进了大跨度建筑的进步。因此大跨度空间结构的发展是在结构受力合理, 造型美观等诸多因素的限制下发展起来的。各种结构不同的优势与劣势, 只有将它们合理的运用起来, 才能达到技术与艺术都最合适的结构选择, 甚至创造出完美的建筑。 在大跨度空间结构中引入现代预应力技术, 不但使结构体形更为丰富而且也使其先进性、合理性、经济性得到充分展示。经过适当配置拉索, 或可使结构获得新的中间弹性支点或使结构产生与外载作用反向的内力和挠度而卸载。前者即为斜拉结构体系, 后者则为预应力结构体系。这一类”杂交”结构体系将改进原结构的受力状态, 降低内力峰值, 增强结构刚度、经济效果明显提高。

一、案例 南京医科大学新建新基础医学教学与科研楼/教研服务中心工程, 位于南京市江宁大学城,分教学楼和教研服务中心两部分。其建筑群皆为四周办公楼中间设中庭的结构形式,中庭跨度约55米,屋面采用折叠钢屋架结构,钢屋架上铺设玻璃采光天窗,有效的解决了楼内的采光问题,外观造型线条优美,气势磅礴,在满足使用功能的同时,又给人以美的享受。 1.1 工程概况 中庭钢结构屋面, 结构形式为一倾斜的折叠钢屋架。位于一区、二区、三区、四区之间, 高端支撑于一区和四区的屋面钢结构上, 经过固定支座与一区和四区的屋面钢结构相连; 低端支撑于二区和三区的屋面钢结构上, 经过滑动支座与一区和四区的屋面钢结构相连, 边榀下设箱型柱支撑。 中庭折叠钢屋架由5榀正三角形管桁架组成, 两边悬挑。低端钢桁架下弦标高从15.831米至17.271米, 上弦标高从17.940米至19.080米, 高约2米, 宽23.477米; 高端下弦标高20.490米至22.274米, 上弦标高从24.752米至26.524米, 高约4米; 跨度: 第一榀40.306米, 第二榀48.133米, 第三榀56.825米, 第四榀58.673米, 第五榀53.862米, 钢折梁屋面部

最新大跨建筑 结构——空间结构体系

大跨建筑结构——空间结构体系

大跨建筑 屋架结构体系——高跨比:1:6 屋架形式及适用跨度 平行弦屋架拱形屋架折线形屋架梯形屋架 杆件受力不均匀,用料较多力情况虽然合 理,但由于上弦 各节点都落在抛 物线上,尺寸很 零件,施工不方 便 三角形屋架适用 于较小跨度的屋 盖(跨度宜在15m 以内) 弦支点座落在抛 曲线附近,所 以,受力比较合 理,折线形屋架 采用较多 上弦扦出两个坡 度较小的斜直线 组成,半边屋架 的外轮廓线为梯 形,斜杆呈人字 形。这种屋架的 刚度、构造比较 简单,自重较 大,一般用于跨 度为24m一36m 的工业建筑物

二、空间结构体系(一)网架结构体系网架的优点

?结构组成灵活多样但又有高度的规律性,适应各种支承条件和各种建筑造型,可适应各种建筑方面的要求 ?网架高度内的空间可以用以设置管道等设施,网架结构外露或部分外露,因其几何图形的规则,可以丰富建筑效果 ?网架的结构高度较小,不仅可以有效地利用建筑空间,而且能够利用较小规格的杆件建造大跨度的结构 ?杆件类型划一,适合于工厂化生产、地面拼装和整体吊装 网架结构受力特点 ?具有各向受力的性能,它改变了一般平面桁架的受力状态,是高次超静定空间结构 ?网架结构的各杆件之间互相起支撑作用,整体性强、稳定性好,空间刚度大,是一种良好的抗震结构型式,尤其对大跨度建筑其优越性更为显著 ?在结点荷裁作用下,网架的杆件主要承受轴力,充分发挥材料强度,节省钢材 网架的分类 1、几何形态上分:平板网架、柱面网架、球面网架 2、平面桁架系、四角锥体系、三角锥体系 3、螺栓球节点、焊接球节点 4、双层网架、多层网架 网架材料——钢材:钢管、型钢、钢球

大跨度空间结构的发展历史及分类

大跨度空间结构的发展历史及分类【摘要】按照古代、近代、现代的时间顺序介绍空间结构的发展历程。按传统划分方法、单元组成划分法对空间结构进行分类,后者能更好的囊括和包络既有的空间结构形式。 【关键词】大跨度空间结构;发展历史;分类 1982年中国成立空间结构委员会,在此后三十多年里大跨度空间结构发展迅速,兴建了大量体育场馆、会议展览馆、机场车库、大型娱乐场所、多功能厅等,结构在跨度上跨度的要求越来越高,在形式上,也不断创新。 一、空间结构的发展历史 在二十世纪前,古代空间结构就已经出现并大量应用,主要标志性结构为拱券式穹顶,该结构充分利用拱券合理传力的原理,有连环拱、交叉拱、拱上拱、大拱套小拱。该类结构的代表工程:南京无梁殿(明洪武14年),平面尺寸38m×54m,净高22m。 二十世纪初叶(1925年)后,涌现了大梁的近代空间结构,主要标志性结构为薄壳结构、网格结构和一般悬索结构。其中薄壳结构代表工程有:北京火车站(1959年),跨度35m×35m;网架结构代表工程有:首都体育馆(1968年),跨度99m ×112.2m;悬索结构代表工程:北京工人体育馆(1961年,跨度94m),浙江人民体育馆(1967年,跨度60m ×80m ),成都城北体育馆(1979年,跨度61m)。

到二十世纪末叶(1975 年前后),现代空间结构开始发展,其主要标志性结构为索膜结构、索杆张力结构、索穹顶结构等。例如,2008 年建成的114m×144m北京奥运会国家体育馆是世界上最大跨度的双向弦支桁架结构。 二、按传统方法划分空间结构 按传统的划分方法,空间结构分为薄壳结构、网架结构、网壳结构、悬索结构和膜结构五类。五种空间结构的定义及主要形式如下: (一)网架结构是以多根杆件按照一定规律组合而成的网格状高次超静定空间杆系结构,有以下主要形式:(1)平面桁架系组成的网架结构,主要有两向正交正放网架、两向斜交斜放网架、两向正交斜放网架、三向网架等型式。(2)四角锥体组成的网架结构主要有正放四角锥网架、斜放四角锥网架、正放抽空四角锥网架、棋盘形四角锥网架、星型四角锥网架、单向折线型网架等型式。(3)三角锥组成的网架结构主要有三角锥网架、抽空三角锥网架(分Ⅰ型和Ⅱ型)、蜂窝形三角锥网架等型式。(4)六角锥体组成的网架结构主要形式有正六角锥网架。 (二)网壳结构是将杆件沿着某个曲面有规律地布置而组成的空间结构体系其受力特点与薄壳结构类似,是以“薄膜”作用为主要受力特征的。主要有球面网壳、双曲面网壳、圆柱面网壳、双曲抛物面网壳等。

地震工程中的静力弹塑性_pushover_分析法

第32卷 第2期 贵州工业大学学报(自然科学版) Vol.32No.2 2003年 4月 JOURNAL OF GUIZHOU UNIVERSI TY OF TEC HNOLOGY April.2003 (Natural Science Edition) 文章编号:1009-0193(2003)02-0089-03 地震工程中的静力弹塑性(pushover)分析法 冯峻辉,闫贵平,钟铁毅 (北方交通大学土建学院,北京100044) 摘 要:静力弹塑性(pushover)分析法在抗震结构的设计和评估中,尤其是基于性能/位移的抗 震设计中,具有很大的潜力。根据其发展背景和近况,评述了它在运用中的一些关键论点用于 性能评估的缺陷。为了预测地震反应,提出了一些可能的发展方向。 关键词:抗震设计;静力弹塑性分析;推倒分析 中图分类号:TU311.3 文献标识码:A 0 引 言 基于性能的抗震结构设计概念,包括了工程的设计,评估和施工等,要求在未来不同强度水平的地震作用下结构达到预期的性能目标[1]。为此需在工程实践中完成一个近似且简易的性能评估方法,通常所指的是静力弹塑性分析法(简称为推倒法)。由于推倒法的优点突出:考虑了结构的弹塑性特性,可用图形方式直观表达结构的能力与需求,通常比同一模型的动力分析更快且易于运行,可提供一个较可靠的结构性能预测等特点,正逐渐受到重视和推广。目前国内外许多组织把其纳入抗震规范,如美国的ATC-40,FE MA274等。我国也把其引入 建筑抗震设计规范 (GB50011-2001)。 1 推倒(Pushover)分析方法的原理,用途和实施过程 1.1 Pushover的原理和用途 推倒法是一个用于预测地震引起的力和变形需求的方法。其基本原理是:在结构分析模型上施加按某种方式(如均匀荷载,倒三角形荷载等)模拟地震水平惯性力的侧向力,并逐级单调加大,直到结构达到预定的状态(位移超限或达到目标位移),然后评估结构的性能。 推倒法可用于建筑物的抗震鉴定和加固,以及对新建结构的抗震设计和性能评估。它可以对所设计的地震运动作用在结构体系和它的组件上的抗震需求提供充足的信息,如对潜在脆性单元的真实力的需求,估计单元非弹性变形需求,个别单元强度退化时对结构体系行为作用的影响,对层间移位的估计(考虑了强度和高度不连续),对加载路径的证实等,其中一些是不能从弹性静力或动力分析中获得的。 1.2 Pushover的实施过程 推倒分析法的实施步骤为: 1.准备结构数据。包括建立结构模型,构件的物理常数和恢复力模型等; 2.计算结构在竖向荷载作用下的内力(将其与水平力作用下的内力叠加,作为某一级水平力作用下构件的内力,以判断构件是否开裂或屈服); 3.在结构每一层的质心处,施加沿高度分布的某种水平荷载。施加水平力的大小按以下原则确定:水平力产生的内力与2步所计算的内力叠加后,使一个或一批构件开裂或屈服; 4.对于开裂或屈服的构件,对其刚度进行修改后,再施加一级荷载,使得又一个或一批构件开裂或屈服; 5.不断重复3,4步,直至结构顶点位移足够大或塑性铰足够多,或达到预定的破坏极限状态。 6.绘制基础剪力 顶部位移关系曲线,即推倒分析曲线。 收稿日期:2002-10-25

静力弹塑性分析_PushoverAnalysis_的基本原理和计算实例

收稿日期:2003-02-16; 修订日期:2003-05-12 基金项目:华东建筑设计研究院有限公司第2001年度科研项目. 作者简介:汪大绥(1941-),男,江西乐平人,教授级高工,主要从事大型复杂结构设计与研究工作. 文章编号:100726069(2004)0120045209 静力弹塑性分析(Pushover Analysis )的 基本原理和计算实例 汪大绥 贺军利 张凤新 (华东建筑设计研究院有限公司,上海200002) 摘要:阐述了美国两本手册FE M A273/274和AT C -40中关于静力弹塑性分析的基本原理和方法,给出了利用ET ABS 程序进行适合我国地震烈度分析的计算步骤,并用一框剪结构示例予以说明,表明 Pushover 方法是目前对结构进行在罕遇地震作用下弹塑性分析的有效方法。 关键词:静力弹塑性;能力谱;需求谱;性能点中图分类号:P315.6 文献标识码:A The basic principle and a case study of the static elastoplastic analysis (pushover analysis) W ANG Da 2sui HE Jun 2li ZH ANG Feng 2xin (East China Architectural Design &Research Institute C o.,Ltd ,Shanghai 200002,China ) Abstract :This paper reviews the basic principles and methods of the static elasto 2plastic analysis (pushover analysis )in FE MA273/274and in AT C 240.Its main calculation procedures are summarized and a case study is presented for the frame 2shearwall structure designed according to China C ode for Seismic Design by means of ET ABS.It has been proved that pushover analysis is a effective method of structural elastoplastic analysis under the maximum earthquake action.K ey w ords :static elastoplastic ;capacity spectrum ;demand spectrum ;performance point 1 前言 利用静力弹塑性分析(Pushover Analysis )进行结构分析的优点在于:既能对结构在多遇地震下的弹性设 计进行校核,也能够确定结构在罕遇地震下潜在的破坏机制,找到最先破坏的薄弱环节,从而使设计者仅对局部薄弱环节进行修复和加强,不改变整体结构的性能,就能使整体结构达到预定的使用功能;而利用传统的弹性分析,对不能满足使用要求的结构,可能采取增加新的构件或增大原来构件的截面尺寸的办法,结果是增加了结构刚度,造成了一定程度的浪费,也可能存在新的薄弱环节和隐患。 对多遇地震的计算,可以与弹性分析的结果进行验证,看总侧移和层间位移角、各杆件是否满足弹性极限要求,各杆件是否处于弹性状态;对罕遇地震的计算,可以检验总侧移和层间位移角、各个杆件是否超过弹塑性极限状态,是否满足大震不倒的要求。 20卷1期2004年3月 世 界 地 震 工 程 W OR LD E ARTH QUAKE E NGI NEERI NG V ol.20,N o.1 Mar.,2004

大跨度建筑结构形式与建筑造型实例分析

建筑构造作业——大跨度建筑结构形式与建筑造型实例分析

大跨度建筑通常是指跨度在30m以上的建筑,我国现行钢结构规范则规定跨度60m以上结构为大跨度结构。主要用于民用建筑的影剧院、体育场馆、展览馆、大会堂、航空港以及其他大型公共建筑。在工业建筑中则主要用于飞机装配车间、飞机库和其他大跨度厂房。 大跨度建筑在古代罗马已经出现,如公元120到124年建成的罗马万神庙,成圆形平面,穹顶直径达43.5m,用天然混凝土浇筑而成,是罗马穹顶技术的光辉典范。

罗马万神庙 虽然大跨度建筑在古代罗马已经出现,但是大跨度建筑真正得到迅速发展还是在19世纪后半叶以后,特别是第二次世界大战后的最近几十年中。 大跨建筑迅速发展的原因一方面是由于社会发展使建筑功能越来越复杂,需要建造高大的建筑空间来满足群众集会、举办大型的文艺体育表演、举办盛大的各种博览会等;另一方面则是新材料、新结构、新技术的出现,促进了大跨度建筑的进步。一是需要,二是可能,两者相辅相成,相互促进,缺一不可。19世纪后半叶以来,钢结构和钢筋混凝土结构在建筑上的广泛应用,使大跨建筑有了很快的发展,特别是近几十年来新品种的钢材和水泥在强度方面有了很大的提高,各种轻质高强材料、新型化学材料、高效能防水材料、高效能绝热材料的出现为建造各种新型的大跨度结构和各种造型新颖的大跨度建筑创造了更有利的物质技术条件。 大跨度建筑常用结构形式;大跨度常用建筑结构根据结构形式,受力构件排列组合不同可分平面平面机构体系和空间结构体系两大类,共有八种。它们是: 平面结构体系有拱、刚架以及桁(héng)架。空间结构体系有网架、折板(薄壳)、悬索、膜结构以及混合结构。 拱是古代大跨度建筑的主要结构形式。由于拱成曲面形状,在外力作用下,拱内的弯矩可以降到最小限度,主要内力变为轴向压力,且应力分布均匀,能充分利用材料的强度,比同样跨度的梁结构断面小,故拱能跨越较大的空间。 但是拱结构在承受荷载后将产生横向推力,为了保持结构的稳定性,必须设置宽厚坚固的拱脚支座抵抗横推力。常见方式是在拱的两侧作两道厚墙来支承拱,墙厚随拱跨增大而加厚。很明显,这会使建筑的平面空间组合受到约束。 拱的内力主要是轴向压力,结构材料应选用抗压性能好的材料。古代建筑的拱主要采用砖石材料,近代建筑中,多采用钢筋混凝土拱,有的采用钢衍架拱,跨度可达百米以上。拱结构所形成的巨大空间常常用来建造商场、展览馆、体育馆、散装货仓等建筑。

静力弹塑性分析方法与与动力弹塑性分析方法的优缺点

静力弹塑性分析方法与与动力弹塑性分析方法的优缺点 Pushover)分析法 1、静力弹塑性分析方法(Pushover)分析法优点: (1)作为一种简化的非线性分析方法,Pushover方法能够从整体上把握结构的抗侧力性能,可以对结构关键机构及单元进行评估,找到结构的薄弱环节,从而为设计改进提供参考。 (2)非线性静力分析可以获得较为稳定的分析结果,减小分析结果的偶然性,同时花费较少的时间和劳力,较之时程分析方法有较强的实际应用价值。 2、静力弹塑性分析方法(Pushover)分析法缺点: (1)它假定所有的多自由度体系均可简化为等效单自由度体系,这一理论假定没有十分严密的理论基础。 (2)对建筑物进行Pushover分析时首先要确定一个合理的目标位移和水平加载方式,其分析结果的精确度很大程度上依赖于这两者的选择。(3)只能从整体上考察结构的性能,得到的结果较为粗糙。且在过程中未考虑结构在反复加载过程中损伤的累积及刚度的变化。不能完全真实反应结构在地震作用下性状。 二、弹塑性时程分析法

1、时程分析法优点: (1)采用地震动加速度时程曲线作为输入,进行结构地震反应分析,从而全面考虑了强震三要素,也自然地考虑了地震动丰富的长周期分量对高层建筑的不利影响。 (2)采用结构弹塑性全过程恢复力特性曲线来表征结构的力学性质,从而比较确切地、具体地和细致地给出结构的弹塑性地震反应。 (3)能给出结构中各构件和杆件出现塑性铰的时刻和顺序,从而可以判明结构的屈服机制。 (4)对于非等强结构,能找出结构的薄弱环节,并能计算出柔弱楼层的塑性变形集中效应。 2、时程分析法缺点: (1)时程分析的最大缺点在于时程分析的结果与所选取的地震动输入有关,地震动时称所含频频成分对结构的模态n向应有选择放大作用,所以不同时称输入结果差异很大。 (2)时程分析法采用逐步积分的方法对动力方程进行直接积分,从而求得结构在地震过程中每一瞬时的位移、速度和加速度反应。所以此法的计算工作十分繁重,必须借助于计算机才能完成。而且对于大型复杂结构对计算机要求更高,耗时耗力。 (3)对工程技术人员素质要求较高,工程应用要求较高。从结构模型建立,材料本构的选取、地震波选取,到参数控制及庞大计算结果的整理及甄别都要求技术人员具有扎实的专业素质以及丰厚的工程经验。

地震作用下结构弹塑性位移反应规律的研究_尹保江

第21卷第5期重庆建筑大学学报Vol.21No.5 1999年10月Journal of Chon gq in g J ianzhu Universit y Oct.1999文章编号:1006-7329(1999)05-0010-06 地震作用下结构弹塑性位移反应规律的研究 尹保江1黄宗明2白绍良2 (1.中国建筑科学研究院抗震所100013;2.重庆建筑大学建筑工程学院400045) 摘要通过对单自由度体系在不同类型地面运动作用下的弹塑性位移反应特性的研究,总结了结构在地震作用下的位移反应规律,为考虑塑性累积疲劳损伤的结构地震破坏准则的研究提供依据。 关键词结构弹塑性地震反应;弹塑性位移反应规律;低周疲劳破坏准则 中图法分类号TU313文献标识码A 1问题的提出 结构地震破坏准则的研究,一直是工程结构抗震领域一个十分重要的课题。目前,人们已普遍认为结构在地震作用下的破坏是由于位移的首次超越和塑性累积疲劳损伤共同作用的结果。大量的试验研究表明〔1〕,结构在往复荷载作用下的疲劳损伤破坏,不但和塑性耗能总量有关,而且还和位移幅值的大小、偏移量、不同幅值位移的发生顺序及其组合方式等密切相关,是一个非常复杂的问题。因此,要想考虑不同位移组合的情况,通过较为完备的试验系列来建立一个比较客观的能够反映以上各种因素的具有普遍意义的通用低周疲劳破坏准则,是相当困难的。 本文认为,地震地面运动虽然复杂,但其分类特征是明显的,结构在不同类型地震作用下的位移反应也一定会遵循某种规律。既然如此,就可以考虑放弃建立具有普遍意义的通用低周疲劳破坏准则的研究方法,而主要针对适用于地震作用的结构低周疲劳破坏准则进行研究,使问题得到简化,同时使提出的破坏准则更具有针对性。基于这种思想,本文研究了单自由度体系在不同类型地震地面运动作用下的弹塑性位移反应规律,以期作为今后研究结构地震破坏准则的参考。 2结构位移反应规律的研究方法 根据文献〔2〕的研究成果,将地震地面运动分为5类:S型为短持时脉冲型地面运动;L-1型和M-1型分别为长持时和中等持时有较明显卓越周期的地面运动;L-2型和M-2型分别为长持时和中等持时不规则的地面运动。本文选择了79条峰值加速度在0.2g以上的典型地震地面运动记录作为输入,计算了单自由度体系在这些地面运动作用下的位移反应时程。各类地震输入的分布见表1。 表1本文采用地震动输入的类型分布 地面运动类型S型L-1型M-1型L-2型M-2型 数量(条)191719816 对于每一条地震记录输入,所计算结构的基本周期T0分别取为0.5s、1.0s和2.0s、结构的目标延性系数分别取为2.0、4.0和6.0,共九种情况;阻尼比ζ统一取为0.05,选用武田模型作为恢 收稿日期:1999-09-06 基金项目:国家自然科学基金资助项目 作者简介:尹保江(1972-),男,中国建筑科学研究院工程师。

大跨度空间结够组成及其受力特点

大跨空间结构课程报告 姓名:毛婷 学号:20092387 班级:土木0904 学院:土木工程与建筑学院

大跨度空间网架结构组成及其受力特点 摘要:大跨钢结构是经济和社会发展的需要,今年来,由于现代技术的支撑和新型材料的加盟,网架、网壳、管桁结构等大跨空间钢结构获得广泛应用。当今社会经济飞速发展,人民生活水平日益提高,在20世纪后半期土木工程和结构工程所取得的巨大成就鼓舞下,世界各国、尤其是发达国家纷纷筹划建造更大、更高、更长的各种超大型复杂结构物,来满足人们对生活空间的追求。各发达国家为大跨空间结构的发展提供了大量的物力、财力。并定期举办年会和各种学术交流活动(IASS)来发展这种结构形式。 Large span steel structure is the requirement of economic and social development, this year, due to modern technology and new materials to join, grid, shell, tube truss structure of large span spatial steel structure is widely used. In today's rapid economic development, increasing people's standard of living, in the second half of the twentieth Century civil engineering and structural engineering,inspired by the great achievemengts, all countries in the world, especially the developed countries are planning to build greater, higher, longer a variety of large and complex structures, to meet the needs of people living space for the pursuit of. In the developed countries for the large span space structure development provided the bulk of the material resources, financial capacity. And regularly holds annual meetings and various

大跨度空间结构选型

建筑设计原理Ⅲ课程论文 --------大跨度空间结构选型 班级:09城市规划(2)班 学号:09202020211 姓名:刘赛 指导教师:段伟 建筑与规划学院建筑系 2011-12

目录前言 1、大跨度空间结构选型的概念 2、大跨度空间结构的发展及现状 3、大跨度空间结构的形式及特点 3—1、点连接玻璃幕墙支承结构 3—2、膜结构 3—3、薄壳结构 3—4、悬索结构 3—5、网壳结构 3—6、网架结构 4、大跨度空间结构选型的原则 4—1、满足功能 4—2、造型美观 4—3、实用耐久 4—4、受力合理 4—5、安装简便 4—6、经济合理 5、结语

大跨度空间结构选型 前言 在人类社会的发展历程中,能够提供更大跨度和空间的结构常常是人们追求的梦想和目标,空间结构的发展很大程度上反映了人类建筑史的发展。大跨度空间结构的发展使其结构选型的复杂性和重要性日益明显。各种大跨度空间结构形式的产生和发展,一方面为土木工程师能力的发挥提供了更大的余地,另一方面,由于大跨度结构设计问题的复杂性,选择余地的增大意味着选择的结构体系和类型不恰当的可能性大大增加。结构选型是建筑结构设计是最大的问题。结构的好坏直接关系到建筑物是否安全、适用、经济、美观。建筑结构也关系着建筑的整体强度、刚度、抗震能力、经济性能等等。大跨度结构的选型具有十分重要的意义。 摘要:大跨度结构发展迅速,应用广泛。大跨度空间结构设计应正确合理地运用不同的计算理论和程序方法进行精确的分析,同时在空间结构的形体设计中不能只注重美观,还必须注重结构受力的合理性和工程成本的等因素。本文简单概述了大跨度空间结构的发展现状,着重就大跨度空间结构主要形式的特点进行详细的介绍,然后以汽车站设计为例说明了大跨度空间结构选型的原则。 关键词:大跨度空间结构发展形式特点原则 1、大跨度空间结构选型的概念 跨度超过30米的空间结构就是大跨度空间结构。大跨度空间结构不仅可以使建筑实现较大的跨度,满足建筑大空间的使要求,而且结构轻巧,造型优美,受力合理,实用耐久,用钢量低。大跨度空间结构不仅使空间的水平分隔的灵活性增大,而且也增大了垂直方向的自由调整的可能性。大跨度空间结构的选型即大跨度空间结构体系方案的优化选择,实际上就是对适合建筑设计的多种结构体系方案进行分析、比较、判断、假设、择优的过程。 2、大跨度空间结构的发展及现状 建筑物的跨度和规模越来越大,尺度达150m以上的超大规模建筑已非个别;大跨度空间结构形式丰富多彩,采用了许多新材料和新技术,发展了许多新的空间结构形式。例如 1975年建成的美国新奥尔良“超级穹顶”,直径207m,长期被认为是世界上最大的球面网壳;现在这一地位已被1993年建成直径为222m的日本福冈体育馆所取代,但后者更著名的特点是它的可开合性:它的球形屋盖由三块可旋转的扇形网壳组成,扇形沿圆周导轨移动,体育馆即可呈全封闭、开启1/3或开启2/3等不同状态。1983年建成的加拿大卡尔加里体育馆采用双曲抛物面索网屋盖,其圆形平面直径135m,它是为1988年冬季奥运会修建的,外形极为美观,迄今仍是世界上最大的索网结构。1988年东京建成的“后乐园”棒球馆,采用膜结构技术,其近似圆形平面的直径为204m;美国亚特兰大为1996年奥运会修建的“佐治亚穹顶”采用新颖的整体张拉式索一膜结构,其准椭圆形平面的轮廓尺寸达192mX241m。许多宏伟而富有特色的大跨度建筑已成为当地的象征性标志和著名的人文景观。 日本福冈体育馆“后乐园”棒球馆“佐治亚穹顶” 3、大跨度空间结构的形式及特点 3—1、点连接玻璃幕墙支承结构 由点支撑装置和支撑结构构成玻璃幕墙的结构为点连接玻璃 幕墙支承结构。点式玻璃幕墙的玻璃是用不锈钢爪件穿过玻璃上 预钻的孔固定的。 点连接玻璃幕墙支撑结构的建筑具有很多优点。(1)通透性 好:玻璃面板仅通过几个点连接到支撑结构上,几乎无遮挡,透 过玻璃视线达到最佳,视野达到最大,将玻璃的透明性应用到极 限。(2)灵活性好:在金属紧固件和金属连接件的设计中,为减 少、消除玻璃板孔边的应力集中,使玻璃板与连接件处于铰接状 态,使得玻璃板上的每个连接点都可自由地转动,并且还允许有 少许的平动,用于弥补安装施工中的误差。采用点支式玻璃幕墙 技术可以最大限度地满足建筑造型的需求。(3)安全性好:由于 点支式玻璃幕墙所用玻璃全都是钢化玻璃的,属安全玻璃,并且点连接玻璃幕墙 使用金属紧固件和金属连接件与支撑结构相连接,耐候密封胶只起密封作用,不承受荷载,即使玻璃意外破坏,钢化玻璃破裂成碎片,形成所谓的“玻璃雨”,不会出现整块玻璃坠落的严重伤人事故。(4)工艺感好:点支式玻璃幕墙的支撑结构有多种形式,支撑构件加工精细、表面光滑,具有良好的工艺感和艺术感。(5)环保节能性好:点支式玻璃幕墙的特点之一是通透性好,因此在玻璃的使用上多选择无光污染的白玻、超白玻等,尤其是中空玻璃的使用,节能效果更加明显。 3—2、膜结构 膜结构是以性能优良的织物为材料,或是向膜内充气,由空气压力支撑膜面,或是利用柔性钢索或刚性骨架将膜面绷紧,从而形成具有一定刚度并能覆盖大跨度结构体系。 膜结构既能承重又能起围护作用,与传统结构相比,其重量却大大减轻。膜结构跨度大;建筑造型自由丰富;施工方便;具有良好的经济性和较高的安全性;透光性和自结性好。但是耐久性较差。 3—3、薄壳结构 薄壳结构就是曲面的薄壁结构,按曲面生成的形式分为筒壳、圆顶薄壳、双曲扁壳和双曲抛物面壳等,材料大都采用钢筋

静力弹塑性分析方法简介

静力弹塑性分析方法简介 摘要:pushover方法是基于性能/位移设计理论的一种等效静力弹塑性近似计算方法,该方法弥补了传统的基于承载力设计方法无法估计结构进入塑性阶段的缺陷,在计算结果相对准确的基础上,改善了动力时程分析方法技术复杂、计算工作量大、处理结果繁琐,又受地震波的不确定性、轴力和弯矩的屈服关系等因素影响的情况,能够非常简捷的求出结构非弹性效应、局部破坏机制、和整体倒塌的形成方式,便于进一步对旧建筑的抗震鉴定和加固,对新建筑的抗震性能评估以及设计方案进行修正等。pushover方法以其概念明确、计算简单、能够图形化表达结构的抗震需求和性能等特点,正逐渐受到研究和设计人员的重视和推广。目前,国内外论述pushover方法的文章已经很多,但大部分是针对某一方面的论述。为了给读者一个比较快速全面的认识,本文在综合大量文献的基础上,对pushover方法的基本原理、分析步骤、等效体系的建立、侧向荷载的分布形式等方面做了比较全面的论述。 关键词:基于性能抗震设计;静力弹塑性分析;动力时程分析方法;恢复力模型;目标位移 abstract:pushover is an equivalent static elastoplastic approximate method which based on performance or displacement design theory. this method offsets the drawback of the force-base method which can’t estimate the inelastic characteristic of the structure, and improves the situation

静力弹塑性分析

静力弹塑性分析(Pushover分析) ■简介 Pushover分析是考虑构件的材料非线性特点,分析构件进入弹塑性状态直至到达极限状态时结构响应的方法。Pushover分析是最近在地震研究及耐震设计中经常采用的基于性能的耐震设计(Performance-Based Seismic Design, PBSD)方法中最具代表性的分析方法。所谓基于性能的耐震设计就是由用户及设计人员设定结构的目标性能(target performance),并使结构设计能满足该目标性能的方法。Pushover分析前要经过一般设计方法先进行耐震设计使结构满足小震不坏、中震可修的规范要求,然后再通过pushover分析评价结构在大震作用下是否能满足预先设定的目标性能。 计算等效地震静力荷载一般采用如图2.24所示的方法。该方法是通过反应修正系数(R)将设计荷载降低并使结构能承受该荷载的方法。在这里使用反应修正系数的原因是为了考虑结构进入弹塑性阶段时吸收地震能量的能力,即考虑结构具有的延性使结构超过弹性极限后还可以承受较大的塑性变形,所以设计时的地震作用就可以比对应的弹性结构折减很多,设计将会更经济。目前我国的抗震规范中的反应谱分析方法中的小震影响系数曲线就是反应了这种设计思想。这样的设计方法可以说是基于荷载的设计(force-based design)方法。一般来说结构刚度越大采用的修正系数R越大,一般在1~10之间。 但是这种基于荷载与抗力的比较进行的设计无法预测结构实际

的地震响应,也无法从各构件的抗力推测出整体结构的耐震能力,设计人员在设计完成后对结构的耐震性能的把握也是模糊的。 基于性能的耐震设计中可由开发商或设计人员预先设定目标性能,即在预想的地震作用下事先设定结构的破坏程度或者耗能能力,并使结构设计满足该性能目标。结构的耗能能力与结构的变形能力相关,所以要预测到结构的变形发展情况。所以基于性能的耐震设计经常通过评价结构的变形来实现,所以也可称为基于位移的设计(displacement-based design)。 Capacity (elastic) Displacement V B a s e S h e a r 图 2.24 基于荷载的设计方法中地震作用的计算 Pushover 分析是评价结构的变形性能的方法之一,分析后会得到如图2.25所示的荷载-位移能力谱曲线。另外,根据结构耗能情况会得到弹塑性需求谱曲线。两个曲线的交点就是针对该地震作用结构所能发挥的最大内力以及最大位移点。当该交点在目标性能范围内,则表示该结构设计满足了目标性能要求。

相关主题
文本预览
相关文档 最新文档