当前位置:文档之家› 双曲函数及其几何意义

双曲函数及其几何意义

双曲函数及其几何意义
双曲函数及其几何意义

Hyperbolic functions(双曲函数)and their geometric meaning

In mathematics, hyperbolic functions are analogs of the ordinary trigonometric, or circular, functions. The basic hyperbolic functions are the hyperbolic sine "sinh" (/?s?nt?/ or /??a?n/), and the hyperbolic cosine "cosh" (/?k??/), from which are derived the hyperbolic tangent "tanh" (/?t?nt?/ or /?θ?n/), hyperbolic cosecant "csch" or "cosech" (/?ko???k/ or /?ko?s?t?/), hyperbolic secant "sech" (/???k/ or /?s?t?/), and hyperbolic cotangent "coth" (/?ko?θ/ or /?k?θ/),[1] corresponding to the derived trigonometric functions. The inverse hyperbolic functions are the area hyperbolic sine "arsinh" (also called "asinh" or sometimes "arcsinh")[2] and so on.

Just as the points (cos t, sin t) form a circle with a unit radius, the points (cosh t, sinh t) form the right half of the equilateral hyperbola. The hyperbolic functions take a real argument called a hyperbolic angle. The size of a hyperbolic angle is the area of its hyperbolic sector. The hyperbolic functions may be defined in terms of the legs of a right triangle covering this sector.

Hyperbolic functions occur in the solutions of some important linear differential equations, for example the equation defining a catenary, of some cubic equations, and of Laplace's equation in Cartesian coordinates. The latter is important in many areas of physics, including electromagnetic theory, heat transfer, fluid dynamics, and special relativity.

In complex analysis, the hyperbolic functions arise as the imaginary parts of sine and cosine. When considered defined by a complex variable, the hyperbolic functions are rational functions of exponentials, and are hence meromorphic.

Hyperbolic functions were introduced in the 1760s independently by Vincenzo Riccati and Johann Heinrich Lambert.[3] Riccati used Sc. and Cc. ([co]sinus circulare) to refer to circular functions and Sh. and Ch. ([co]sinus hyperbolico) to refer to hyperbolic functions. Lambert adopted the names but altered the abbreviations to what they are today.[4] The abbreviations sh and ch are still used in some other languages, like European French and Russian.

A ray through the origin intercepts the unit hyperbola in the

point , where is twice the area between the ray, the hyperbola, and the -axis. For points on the hyperbola below the -axis, the area is considered negative (see animated version with comparison with

the trigonometric (circular) functions).

二次函数的几何最值问题

二次函数与几何图形结合 ---探究面积最值问题 〖方法总结〗: 在解答面积最值存在性问题时,具体方法如下: ①根据题意,结合函数关系式设出所求点的坐标,用其表示出所求图形的线段长; ②观察所求图形的面积能不能直接利用面积公式求出,若能,根据几何图形面积公式得到点的坐标或线段长关于面积的二次函数关系式,若所求图形的面积不能直接利用面积公式求出时,则需将所求图形分割成几个可直接利用面积公式计算的图形,进行求解; ③结合已知条件和函数图象性质求出面积取最大值时的点坐标或字母范围。 (2014?达州)如图,在平面直角坐标系中,己知点O(0,0),A(5,0),B(4,4). (1)求过O、B、A三点的抛物线的解析式. (2)在第一象限的抛物线上存在点M,使以O、A、B、M为顶点的四边形面积最大,求点M的坐标. (3)作直线x=m交抛物线于点P,交线段OB于点Q,当△PQB为等腰三角形时,求m的值.

(2014自贡)如图,已知抛物线c x ax y +- =232与x 轴相交于A 、B 两点,并与直线221-=x y 交于B 、C 两点,其中点C 是直线22 1-=x y 与y 轴的交点,连接AC . (1)求抛物线的解析式; (2)证明:△ABC 为直角三角形; (3)△ABC 内部能否截出面积最大的矩形DEFG ?(顶点D 、E 、F 、G 在△ABC 各边上)若能,求出最大面积;若不能,请说明理由.

(2014黔西南州)(16分)如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(﹣3,0)、B(1,0)、C(0,3)三点,其顶点为D,连接AD,点P是线段AD上一个动点(不与A、D重合),过点P作y轴的垂线,垂足点为E,连接AE. (1)求抛物线的函数解析式,并写出顶点D的坐标; (2)如果P点的坐标为(x,y),△PAE的面积为S,求S与x之间的函数关系式,直接写出自变量x的取值范围,并求出S的最大值; (3)在(2)的条件下,当S取到最大值时,过点P作x轴的垂线,垂足为F,连接EF,把△PEF沿直线EF折叠,点P的对应点为点P′,求出P′的坐标,并判断P′是否在该抛物线上.

云南省昆明市2019届高三1月复习诊断测试文科数学试题(解析版)

昆明市2019届高三复习诊断测试文科数学 一、选择题:本题共1小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合,,则() A. B. C. D. 【答案】B 【解析】 【分析】 由集合交集的运算求解即可. 【详解】由集合,,则 故选:B. 【点睛】此题考查了集合的交集运算,属于基础题. 2.在复平面内,复数对应的点位于 A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 【答案】D 【解析】 【分析】 利用复数的运算法则、几何意义即可得出. 【详解】在复平面内,复数==1﹣i对应的点(1,﹣1)位于第四象限. 故选:D. 【点睛】本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题. 3.某商家今年上半年各月的人均销售额(单位:千元)与利润率统计表如下: 根据表中数据,下列说法正确的是

A. 利润率与人均销售额成正比例函数关系 B. 利润率与人均销售额成反比例函数关系 C. 利润率与人均销售额成正相关关系 D. 利润率与人均销售额成负相关关系 【答案】C 【解析】 【分析】 由表格中的数据和线性相关关系的定义即可得到. 【详解】由表格中的数据显示,随着人均销售额的增加,利润率也随之增加,由变量之间的关系可得人均销售额和利润率成正相关关系. 故选:C. 【点睛】本题主要考查变量间的相关关系的定义,考查学生对基础知识的掌握,属于基础题. 4.已知,, ,则下列不等式正确的是( ) A. B. C. D. 【答案】D 【解析】 【分析】 由指数函数的单调性得,与常数‘1’比较得 即可得答案. 【详解】因为在R 上递减,且 ,所以 .又因为 在R 上递增,且 ,所以 . 所以. 故选:D. 【点睛】本题考查了指数函数的单调性和与常数‘1’比较大小,属于基础题. 5.在平面直角坐标系中,角的终边与单位圆交于点,则 ( ) A. B. C. D. 【答案】A 【解析】 【分析】 由任意角的三角函数的定义得 和 ,由正弦的两角和计算公式可得 .

反比例函数k的几何意义

反比例函数k 的几何意义 一、教学目标 1.理解反比例函数y=k/x(k ≠0)中比例系数k 的几何意义; 2.通过由特殊到一般,再由一般到特殊的探究方法,感受知识的形成过程,能够根据反比例函数表达式求出相关图形的面积,会根据图形的面积确定反比例函数中k 的值; 3.通过反比例函数与矩形的对应关系渗透数形结合的思想,使学生感受到代数与几何的内在联系,矩形的两条邻边的长度变化而面积不变,渗透了整体思考的数学思想方法。 二、教学过程 (一)、情境引入 1、平面直角坐标系内一点P (x ,y )到x 轴的距离为______,到y 轴的距离为______. 2、反比例函数的定义是什么?如何确定系数k 的值? 3、反比例函数的系数k 能决定函数图像的什么? 反比例函数的比例系数k 有一个很重要的几何意义,这节课我们来共同研究一下: (二)、探究新知 1、已知反比例函数 x y 2 -=图象上任一点A 作x 轴、y 轴的垂线AB 、AC ,垂足为 B 、 C (如下图所示), (1)则矩形ABOC 的面积是否发生变化?若不变,请求出其面积;若改变,请说明理由。 (2)则△AOB 的面积呢? (3)当k=5时呢? 学生自己先完成,在合作讨论展示,最后老师补充; 2、归纳总结: 过双曲线上任意一点作x 轴、y 轴的垂线,它们与x 轴、y 轴所 围成的矩形面积为常数 。

过双曲线上任意一点作x 轴(或y 轴)的垂线,连接这点和原点 的线段,它们与x 轴(或y 轴)所围成的三角形的面积为常数21。 在解有关反比例函数的问题时,若能灵活运用反比例函数中k 的几何意义,会给解题带来很多方便。现举例说明。 (三)、应用 1、基础练习 (1)若P 点为反比例函数(k <0)上任意一点,过P 点向x 轴作垂线交于A 点,已知S△AOP=4,则反比例函数的解析式为__________ (变式)如下图,在平面直角坐标系中,O 为坐标原点,菱形OABC 的对角线OB 在x 轴上,菱形面积为8,函数的图象经过点A ,则k 的值是_____. (2).如下图所示,设A 为反比例函数图象上一点,且长方形ABOC 的面积为3,则这个反比例函数解析式为______. (变式).如上图,点A 是反比例函数图象上一点,过点A 作AB ⊥y 轴于点B ,点C 、D 在x 轴上,且BC ∥AD ,四边形ABCD 的面积为3,则这个反比例函数的解析式为________. 2、提升练习 (1)、如下图,函数的图象与矩形?OABC 的边AB 、BC 交于M 、N 两点,O 为坐标原点,A 点在x 轴上,C 点在y 轴上,B (4,2),那么四边形OMBN 的面积为_________

二次函数中几何的最值问题

二次函数中几何的最值问题 一、解答题 1、如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(-2,0)、B (6,0)、C(0,-2),抛物线y=a+bx+c(a≠0)经过A、B、C三点。 (1)求直线AC的解析式; (2)求此抛物线的解析式; (3)若抛物线的顶点为D,试探究在直线AC上是否存在一点P,使得△BPD的周长最小,若存在,求出P点的坐标;若不存在,请说明理由。 2、如图,已知抛物线y=-+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0)。 (1)求m的值及抛物线的顶点坐标; (2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标。

3、如图,二次函数y=a+bx的图象经过点A(2,4)与B(6,0). (1)求a,b的值; (2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6),写出四边形OACB的面积S关于点C的横坐标x的函数表达式,并求S的最大值。 4、如图,抛物线y=+bx+c(a、b、c为常数,a≠0)经过点A(﹣1,0),B(5,﹣6),C(6,0). (1)求抛物线的解析式; (2)如图,在直线AB下方的抛物线上是否存在点P使四边形PACB的面积最大若存在,请求出点P的坐标;若不存在,请说明理由; (3)若点Q为抛物线的对称轴上的一个动点,试指出△QAB为等腰三角形的点Q 一共有几个并请求出其中某一个点Q的坐标.

5、如图,长方形OABC的OA边在x轴的正半轴上,OC在y轴的正半轴上,抛物线y=+bx经过点B(1,4)和点E(3,0)两点. (1)求抛物线的解析式; (2)若点D在线段OC上,且BD⊥DE,BD=DE,求D点的坐标; (3)在条件(2)下,在抛物线的对称轴上找一点M,使得△BDM的周长为最小,并求△BDM周长的最小值及此时点M的坐标; (4)在条件(2)下,从B点到E点这段抛物线的图象上,是否存在一个点P,使得△PAD的面积最大若存在,请求出△PAD面积的最大值及此时P点的坐标;若不存在,请说明理由. 6、如图,抛物线y=-3x+与x轴相交于A、B两点,与y轴相交于点C,点D是直线BC下方抛物线上一点,过点D作y轴的平行线,与直线BC相交于点E (1)求直线BC的解析式; (2)当线段DE的长度最大时,求点D的坐标。

绝对值几何意义知识点、经典例题及练习题带答案

绝对值的几何意义 【考纲说明】 1、 理解绝对值的几何意义,了解绝对值的表示法,会计算有理数的绝对值; 2、 能够利用数形结合思想来理解绝对值的几何意义,根据绝对值的意义及性质进行简单应用。 【趣味链接】 正式篮球比赛所用球队质量有严格的规定,下面是6个篮球的质量检测结果,用正数记超过规定质量的克数,用负数记不足规定质量的克数,检测结果为:-20,+10、+12、-8、-11 请指出那个篮球的质量好一些,并用绝对值的知识进行说明。 【知识梳理】 1、绝对值的定义:在数轴上,一个数所对应的点与原点的距离称为该数的绝对值,记作|a|。 2、绝对值的性质: (1) 绝对值的非负性,可以用下式表示:|a|≥0,这是绝对值非常重要的性质; a (a >0) (2) |a|= 0 (a=0) (代数意义) -a (a <0) (3) 若|a|=a ,则a≥0;若|a|=-a ,则a≤0; (4) 任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即|a|≥a , 且|a|≥-a ; (5) 若|a|=|b|,则a=b 或a=-b ;(几何意义) (6) |ab|=|a|·|b|;|b a |=| |||b a (b≠0); (7) |a|2=|a 2|=a 2 ; (8) |a+b|≤|a|+|b| |a -b|≥||a|-|b|| |a|+|b|≥|a+b| |a|+|b|≥|a -b|

【经典例题】 【例1】(2011青岛)若ab<|ab|,则下列结论正确的是( ) A.a <0,b <0 B.a >0,b <0 C.a <0,b >0 D.ab <0 【例2】(2011莱芜)下列各组判断中,正确的是( ) A .若|a|=b ,则一定有a=b B.若|a|>|b|,则一定有a >b C. 若|a|>b ,则一定有|a|>|b| D.若|a|=b ,则一定有a 2=(-b) 2 【例3】(2011日照)有理数a 、b 、c 在数轴上的位置如图所示,则式子|a|+|b|+|a+b|+|b-c|化简结果为( ) A .2a+3b-c B .3b-c C .b+c D .c-b 【例4】(2009淮安)如果a a -=||,下列成立的是( ) A .0>a B .0

几何最值与函数最值

几何最值与函数最值 “最值”问题大都归于两类:几何最值与函数最值 Ⅰ、归于几何“最值”,这类又分为两种情况: (1)归于“两点之间的连线中,线段最短”。 求“变动的两线段之和的最小值”时,大都应用这一类型。 (2)归于“三角形两边之差小于第三边” 凡属于求“变动的两线段之差的最大值”时,大都应用这一类型。 Ⅱ、归于函数类型: 即利用一次函数的增减性和二次函数的对称性及增减性,确定某范围内函数的最大或最小值一、求两线段和的最小值问题(运用三角形两边之和小于第三边) 基本图形解析: 1.在一条直线m上,求一点P,使PA+PB最小; (1)点A、B在直线m两侧:(2)点A、B在直线同侧: m B m m A B m 二、求两线段差的最大值问题(运用三角形两边之差小于第三边) 基本图形解析: 1、在一条直线m上,求一点P,使PA与PB的差最大; (1)点A、B在直线m 同侧: B

(1)解析:延长AB交直线m于点P,根据三角形两边之差小于第三边,P’A—P’B<AB,而PA—PB=AB此时最大,因此点P为所求的点。 (2)点A、B在直线m异侧: m A m A B' P P' (2)解析:过B作关于直线m的对称点B’,连接AB’交点直线m于P,此时PB=PB’,PA-PB最大值为AB’ 一、应用两点间线段最短的公理(含应用三角形的三边关系)求最值 1.(贵港)如图所示,在边长为2的正三角形ABC中,E、F、G分别为AB、AC、BC的中点,点P为线段EF上一个动点,连接BP、GP,则△BPG的周长的最小值是_ . 2.如图,正方形的边长为8,M在DC上,DM=2,N是AC上的一动点,则DN+MN的最小值=_______ 3.(贵港)如图,MN为⊙O的直径,A、B是O上的两点,过A作AC⊥MN于点C, 过B作BD⊥MN于点D,P为DC上的任意一点,若MN=20,AC=8,BD=6,则PA+PB的

解析几何中用几何意义解题的几种常用模式

解析几何中用几何意义解题的几种常用模式 解析几何的实质是用代数的方法研究几何对象,数形结合是解析几何最重要的思想方法,因此,如何赋予某些代数量以几何意义,从而通过它们的几何意义解题是解析几何的重要课题。下面介绍截距、斜率、距离等几种解析几何中常用的解题模式。 一、截距模式 把所求的目标量转化为截距,并借助截距的几何意义解题称为截距模式。 例1. 已知342+-≥x x y ,7≤+y x ,求y x -2之最值。 分析:本题为已知区域的双参数问题,直线求解显然是较困难的,考虑变量代换,令t y x =-2,则t -即为直线02=--t y x 在y 轴上的截距b 。 解:由条件,342+-≥x x y 及7≤+y x 表示的区域为图一的阴影部分, 由???=+-+-=0 2342b y x x x y 消去y 后令0=?的直线与抛物线相切时 的2L 的位置时b b -=2,此时b y x b t =-=-=max )2(, 又由? ??=++-=7342y x x x y ?)8,1(-A ,)3,4(B . 不难知直线经过)8,1(-A 时(即1L )截距最大,从而 10)2(min -=-=-=y x b t , ∴6max =t ,10min -=t . 例2. 求函数t t t f ---=42)(之最值. 解:令x t =-4,y t =,则)0,0(422≥≥=+y x y x ,且 y x t f --=2)(, ∴y x t f b +=-=2)(,即为直线b x y +-=2的截距,不难求得 52)(max -=t f . 点评:运用直线在y 轴的截距解决所求问题,非常直观、简洁。解此类问题往往通过平移来实现,同时还须注意目标量与截距是否同号。 二、斜率模式 用直线的斜率的几何意义解题的模式叫斜率模式。

2020-2021北京市海淀北部新区实验中学九年级数学下期中一模试卷(附答案)

2020-2021北京市海淀北部新区实验中学九年级数学下期中一模试卷(附答案) 一、选择题 1.如图,以O 为圆心,任意长为半径画弧,与射线OM 交于点A ,再以A 为圆心,AO 长为半径画弧,两弧交于点B ,画射线OB .则cos ∠AOB 的值等于( ) A . B . C . D . 2.如图,线段CD 两个端点的坐标分别为C (1,2)、D (2,0),以原点为位似中心,将线段CD 放大得到线段AB ,若点B 坐标为(5,0),则点A 的坐标为( ) A .(2,5) B .(2.5,5) C .(3,5) D .(3,6) 3.在Rt ABC ?中,90,2,1C AC BC ∠=?==,则cos A 的值是( ) A . 25 B . 5 C . 5 D . 12 4.如图,用放大镜看△ABC ,若边BC 的长度变为原来的2倍,那么下列说法中,不正确的是( ). A .边A B 的长度也变为原来的2倍; B .∠BA C 的度数也变为原来的2倍; C .△ABC 的周长变为原来的2倍; D .△ABC 的面积变为原来的4倍; 5.若3 5 x x y =+,则x y 等于 ( ) A . 3 2 B .38 C . 23 D . 85 6.若37a b =,则b a a -等于( ) A . 34 B . 43 C . 73 D . 37

7.在△ABC 中,若=0,则∠C 的度数是( ) A .45° B .60° C .75° D .105° 8.已知线段a 、b 、c 、d 满足ab=cd ,把它改写成比例式,错误的是( ) A .a :d =c :b B .a :b =c :d C .c :a =d :b D .b :c =a :d 9.图(1)所示矩形ABCD 中,BC x =,CD y =,y 与x 满足的反比例函数关系如图(2)所示,等腰直角三角形AEF 的斜边EF 过点C ,M 为EF 的中点,则下列结论正确的是( ) A .当3x =时,EC EM < B .当9y =时,E C EM < C .当x 增大时,EC CF ?的值增大 D .当x 增大时,B E D F ?的值不变 10.如图,在以O 为原点的直角坐标系中,矩形OABC 的两边OC 、OA 分别在x 轴、y 轴 的正半轴上,反比例函数k y x = (x >0)与AB 相交于点D ,与BC 相交于点E ,若BD=3AD ,且△ODE 的面积是9,则k 的值是( ) A . 92 B . 74 C . 245 D .12 11.若270x y -=. 则下列式子正确的是( ) A . 72 x y = B . 27x y = C . 27 x y = D . 27 x y = 12.给出下列函数:①y=﹣3x +2;②y= 3 x ;③y=2x 2;④y=3x ,上述函数中符合条作“当x >1时,函数值y 随自变量x 增大而增大“的是( ) A .①③ B .③④ C .②④ D .②③ 二、填空题 13.《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:“今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?”意思就是:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立

反比例函数比例系数的几何意义

反比例函数比例系数的几何意义 1.如图,⊙O的半径为2,双曲线的解析式分别为y=,则阴影部分的面积是()A.4πB.3πC.2πD.Π 1题图3题图4题图5题图 2.对于反比例函数y=,下列说法错误的是() A.函数图象位于第一、三象限B.函数值y随x的增大而减小 C.若A(﹣1,y1)、B(1,y2)、C(2,y3)是图象上三个点,则y1<y3<y2 D.P为图象上任意一点,过P作PQ⊥y轴于Q,则△OPQ的面积是定值 3.如图,菱形ABCD的两个顶点B,D在反比例函数y=的图象上,对角线AC与BD的交点恰好是坐标原点O,已知点A(﹣2,2),∠ABC=60°,则k的值是() A.4B.6C.4D.12 4.如图,平行于x轴的直线与函数y1=(a>0,x>0),y2=(b>0.x>0)的图象分别相交于A、B两点,且点A在点B的右侧,在X轴上取一点C,使得△ABC的面积为3,则a﹣b的值为()A.6B.﹣6C.3D.﹣3 5.如图,函数y=(x>0)和y=(x>0)的图象分别是l1和l2.设点P在l2上,P A∥y轴交l1于点A,PB∥x轴,交l1于点B,△P AB的面积为() A.B.C.D. 6.如图,矩形ABCD的顶点A和对称中心在反比例函数y=(k≠0, x>0),若矩形ABCD的面积为10,则k的值为() A.10B.4C.3D.5 7.对于反比例函数y=(k≠0),下列所给的四个结论中,正确的是()A.若点(2,4)在其图象上,则(﹣2,4)也在其图象上

B.当k>0时,y随x的增大而减小 C.过图象上任一点P作x轴、y轴的垂线,垂足分别A、B,则矩形OAPB的面积为k D.反比例函数的图象关于直线y=x和y=﹣x成轴对称 8.如图,两个反比例函数y=和y=在第一象限内的图象分别是C1和C2,设点P在C1上,P A⊥x轴于点A,交C2于点B,则△POB的面积为() A.1B.2C.4D.无法计算 8题图9题图10题图12题图 9.如图,A、B两点在双曲线y=上,分别经过A、B两点向坐标轴作垂线段,已知S阴影=1.7,则S1+S2等于() A.4B.4.2C.4.6D.5 10.如图,点A(m,1),B(2,n)在双曲线y=(k≠0),连接OA,OB.若S△ABO=8,则k的值是() A.﹣12B.﹣8C.﹣6D.﹣4 11.对于反比例函数y=(k≠0),下列所给的四个结论中,正确的是()A.若点(3,6)在其图象上,则(﹣3,6)也在其图象上 B.当k>0时,y随x的增大而减小 C.过图象上任一点P作x轴、y轴的线,垂足分别A、B,则矩形OAPB的面积为k D.反比例函数的图象关于直线y=﹣x成轴对称 12.如图,在平面直角坐标系中,△OAB的顶点A在x轴正半轴上,OC是△OAB的中线,点B、C 在反比例函数y=(x>0)的图象上,则△OAB的面积等于() A.2B.3C.4D.6 13.如图,四边形AOBC和四边形CDEF都是正方形,边OA在x轴上,边OB在y轴上,点D在边CB上,反比例函数y=在第二象限的图象经过点E,则正方形AOBC和正方形CDEF的面积之

高中数学 圆中巧用几何意义求最值

圆中巧用几何意义求最值 在圆中,有几种利用几何意义求最值的类型,没有这种意识,将无从下手,并且这类题目充分体现了数形结合的思想,容易考到,因此值得我们归纳总结一下。 一、利用直线的斜率 例1.如果实数x 、y 满足等式()2223x y -+=,求y x 的最大值。 分析:y x 可视为圆上的点(),x y 与原点所确定直线的斜率,即求斜率的最大值。 解:y x 可视为圆上的点(),x y 与原点所确定直线的斜率,由图可知,当相切时斜率最大或最小。设切线的方程为y kx =,即0kx y -=,()2223x y -+=表示圆心为()2,0,半径为3的圆。220 31k k -∴=+,解得3k =±。故 y x 的最大值为3。 变式:已知实数y x ,满足122=+y x ,求 12++x y 的取值范围 解:令(2),(1) y k x --=--则k 可看作圆122=+y x 上的动点到点(1,2)--的连线的斜率,而相切时的斜率为 34,2314 y x +∴≥+ 二、利用两点间的距离公式 例2.如果实数x 、y 满足等式()2 223x y -+=,求22x y +的最大值。 分析:22 x y +表示圆上的点(),x y 与原点间距离的平方,圆心和原点所确定直线与圆的两交点到原点的距离 分别为距离的最小值和最大值。 解:22x y +表示点(),x y 与原点间距离的平方。因为圆心到原点的距离为2,故圆上的点到原点的距离的最大值为23+,22x y +的最大值为(22373=+ 变式:已知x +y +1=0,那么(x +2)2+(y +3)2的最小值是________. 解析:答案为 2 2 (x +2)2+(y +3)2 表示点(x ,y)与点(-2,-3)之间的距离,又点(x ,y)在直线x +y +1=0上,故最小值为点(-2,-3)到直线x +y +1=0的距离,即 d =|-2-3+1|2 =2 2. 三、利用直线在y 轴上的截距 例3.如果实数x 、y 满足等式()2 223x y -+=,求y x -的最大值。

初中数学专题04几何最值存在性问题(解析版)

专题四几何最值的存在性问题 【考题研究】 在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为最值问题。 从历年的中考数学压轴题型分析来看,经常会考查到距离或者两条线段和差最值得问题,并且这部分题目在中考中失分率很高,应该引起我们的重视。几何最值问题再教材中虽然没有进行专题讲解,到却给了我们很多解题模型,因此在专题复习时进行压轴训练是必要的。 【解题攻略】 最值问题是一类综合性较强的问题,而线段和(差)问题,要归归于几何模型:(1)归于“两点之间的连线中,线段最短”凡属于求“变动的两线段之和的最小值”时,大都应用这一模型.(2)归于“三角形两边之差小于第三边”凡属于求“变动的两线段之差的最大值”时,大都应用这一模型. 两条动线段的和的最小值问题,常见的是典型的“牛喝水”问题,关键是指出一条对称轴“河流”(如图1).三条动线段的和的最小值问题,常见的是典型的“台球两次碰壁”或“光的两次反射”问题,关键是指出两条对称轴“反射镜面”(如图2). 两条线段差的最大值问题,一般根据三角形的两边之差小于第三边,当三点共线时,两条线段差的最大值就是第三边的长.如图3,P A与PB的差的最大值就是AB,此时点P在AB的延长线上,即P′.解决线段和差的最值问题,有时候求函数的最值更方便,建立一次函数或者二次函数求解最值问题. 【解题类型及其思路】 解决平面几何最值问题的常用的方法有:(1)应用两点间线段最短的公理(含应用三角形的三边关系)求最值;(2)应用垂线段最短的性质求最值;(3)应用轴对称的性质求最值;(4)应用二次函数求最值;(5)应用其它知识求最值。 【典例指引】 类型一【确定线段(或线段的和,差)的最值或确定点的坐标】

反比例函数图象的一些有趣几何性质

反比例函数图象的一些有趣几何性质 先给出结论,后给出解释。为简单起见下面反比例函数k值均>0,所有图形仅出现在第一象限。 结论一:有任意两个反比例函数图象,过原点任意作两条指向第一象限的射线,与前两图象分别交于A,C点以及B,D点。则AB∥CD。 结论二:取任一反比例函数图象上任一点A,以A为圆心AO为半径作圆交x轴于B点,构造等腰三角形AOB,则AB所在直线与反比例函数图象相切。 结论三:取任一反比例函数图象上任一点A,过A向x轴作垂线段AB,B为垂足。过B 作OA平行线交反比例函数图象于C点,则BC:OA=根5-1:2≈0.618,即黄金分割比例。 结论四:取任一反比例函数图象上任一点A,如结论二所示先构造等腰三角形OA1B1,再过B1 作OA平行线B1A1,构造下个相似的等腰三角形B1A2B2,依此类推,直到第n个等腰三角形Bn-1AnBn,则OBn=根n倍OB1,且如果A1坐标为(x1,y1),则An坐标为((根n+根(n-1))x1,(根n-根(n-1))y1) 接下来三个结论都来源自同一个背景一个本质。 结论五:取任一反比例函数图象上任一点A,以A为顶点构造等腰△AOC,AO与AC分别于另一k值较小的反比例函数图象交于B和D,当A点变化时,BCD位置跟随发生变化, 但AB:AO,AD:AC的值均不变(取决于A点双曲线参数k1和B点双曲线参数k2)

结论六:取任一反比例函数图象上任一点A,以A为顶点构造等腰△AOC,AO与AC分别于另一k值较小的反比例函数图象交于B和D。过A和B作x轴垂线垂足分别为E和F,过D作DG⊥AF于G,则S梯形ABEF=S△ADG 结论七:取任一反比例函数图象上任一点A,以A为顶点构造等腰△AOC,过A作x轴垂线垂足为B,在OA上取OD=OB,过D点的反比例函数图象交AC于E点,则有AE=AB。 以上结论的一些解释与推导: 结论(1):设A,B所在反比例函数参数为k1,C,D所在反比例函数参数为k2,AO:CO=BO:DO=根k1:根k2,所以AB∥CD。 结论(2):首先一个前提,任一直线不可能和双曲线产生三个交点。然后延长BA交y轴于C,显然A为BC中点。再结合之前文章中的结论三:过双曲线一支上两点作直线与坐标轴相交,则每点与其相邻坐标轴交点构成的线段长相等。则如果直线与双曲线无论在AC段还是AB段还有一交点,必存在另一关于A对称的交点。这将产生了3交点和前提矛盾。故仅存在A点唯一一个交点,即AB与双曲线相切。(当然也可以代数法推,只是个人嫌麻烦不喜欢用)

巧用绝对值的“几何意义”求多个绝对值之和的最小值问题

巧用绝对值的“几何意义”求多个绝对值之和的最小值问题 【例1】求y=|x+3|+|x+2|+|x+1|+|x|+|x-1|+|x-2|+|x-3|的最小值,并指出y为最小值时,x的值为多少? 初一引进绝对值的概念,但多数学生对绝对值的问题只是浅尝辄止。绝对值有两个方面的意义,一个是代数意义,另一个几何意义,但一般教学往往侧重于代数意义而忽略了其几何意义。 绝对值的代数意义:|a|=a, (a≥0);|a|=-a, (a<0)。 绝对值的几何意义:|a|是数轴上表示数a的点到原点的距离。 众所周知,如果数轴上有两点A,B,它们表示的数分别为a, b(a≤b),则A,B之间的距离:|AB|=|a-b|(如图1)。 设点X在数轴上表示的点为x,则|x-a|+|x-b|表示点X到点A和点B的距离之和:|XA|+|XB|, 由图2可以看出,如果X在A,B两点之间,那么|XA|+|XB|可以取到最小值|AB|,即:当a≤x≤b时,|x-a|+|x-b|取最小值|a-b|; 同样,设点C在数轴上表示的点为c,(a≤b≤c),则|x-a|+|x-b|+|x-c|表示点X到点A、点B和点C的距离之和:|XA|+|XB|+|XC|, 由图3可以看出,如果X落在B点,那么|XA|+|XB|+|XC|可以取到最小值|AC|,即:当x=b时,|x-a|+|x-b|+|x-c|取最小值|a-c|。 一般说来,设f(x)=|x-a?|+|x-a?|+|x-a?|+???+|x-a n|, 其中a?≤a?≤…≤a n,那么: 当n为偶数时,f min(x)=f(a),其中a n/2≤a≤a n/2+1; 且f(a)=(a n-a1)+(a n-1-a2)+???+(a n/2+1-a n/2) =(a n+a n-1+??? a n/2+1)-(a1+a2+???+a n/2) 当n为奇数时,f min(x)=f(a(n+1)/2); 且f(a)=(a n-a1)+(a n-1-a2)+???+【a(n+1)/2+1-a(n+1)/2-1】 =【a n+a n-1+??? a(n+1)/2+1】-【a1+a2+???+ a(n+1)/2-1】

2二次函数线段最值——利用几何模型求线段和差最值

二次函数线段最值(二) 课前小测 如图,抛物线322++-=x x y 与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C,点D 和点C 关于抛物线的对称轴对称,直线AD 与y 轴交于点E. (1)求直线AD 的解析式; (2)如图1,直线AD 上方的抛物线上有一点F,过点F 作FG ⊥AD 于点G,作FH 平行于x 轴交直线AD 于点H,求△FGH 周长的最大值; (3)点M 是抛物线的顶点,点P 是y 轴上一点,点Q 是坐标平面内一点,以A,M,P,Q 为顶点的四边形是以AM 为边的矩形.若点T 和点Q 关于AM 所在直线对称,求点T 的坐标.

利用几何模型求线段和差最值 例1如图,抛物线与x轴交与A(1,0),B(- 3,0)两点. (1)求该抛物线的解析式; (2)设(1)中的抛物线交y轴与C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.

例2、已知抛物线322--=x x y 与x 轴交A 、C 两点,与y 轴交于B 点,点P 、Q 为抛物线对称轴上的动点。 (1)求点A 、B 、C 的坐标; (2)当|CP-BP|取得最大值时,求此时点P 的坐标及最大值; (3)若PQ=1,当CP+PQ+QB 取得最小值时,求此时点P 、Q 的坐标及最小值。

巩固练习 1、如图,一元二次方程的0322=-+x x 二根) (,2121x x x x <,是抛物线c bx ax y ++=2与x 轴的两个交点B 、 C 的横坐标,且此抛物线过点A (3,6). (1)求此二次函数的解析式; (2)设此抛物线的顶点为P,对称轴与线段AC 相交于点Q,求点P 和点Q 的坐标; (3)在x 轴上有一动点M,当MQ+MA 取得最小值时,求点M 的坐标.

初三中考第一轮复习反比例函数(一对一 教案)

学科教师辅导讲义 学员编号: 年 级: 课 时 数: 学员姓名: 辅导科目: 学科教师: 授课类型 T 反比例函数 C 反比例函数的应用 T 反比例函数综合应用 授课日期及时段 教学内容 一、同步知识梳理 知识点1:反比例函数的概念 一般的,形如y=x k (k 不等于零的常数)的函数叫反比例函数。 反比例函数的解析式又可以写成:1,k xy k y kx x -== =( k 是不等于零的常数), 知识点2:反比例函数的图象及性质 (1)反比例函数的图象是两支曲线,且这两支曲线关于原点对称,这种图象通常称为双曲线。它与x 轴和y 轴没有交点,它的两个分支无限接近坐标轴,但永远不能到达坐标轴. (2)反比例函数y= x k 图象的两个分支位居的象限与k 的正负有关, ① 当k>0时,函数的图象分布在第 一、三象限; (如下图) 函数的图象在每个象限内,曲线从左向右下降,也就是在每个象限内y 的值随x 的增加而 减小; ②当k<0时,函数的图象分布在第 二、四 象限、函数的图象在每个象限内,曲线从左向右上升,也就是在每个象限内y 的值随x 的增大而增大。 (3)双曲线既是中心对称图形. 也是轴对称图形,它有两条对称轴,分别是一、三象限和二、四象限的角平分线

知识点3:反比例函数中的比例系数k 的几何意义 (1)反比例函数x k y = (0≠k )中比例系数k 的几何意义是:过双曲线x k y = (0≠k )上任意引x 轴y 轴的垂线,所得矩形面积为k 。 (2)过反比例函数图象上的任意一点作 x 轴的垂线,那么这点与垂足、坐标系原点构成的三角形的面积是一个定值,即22 xy k S = =。 知识点4: 反比例函数解析式的确定 反比例函数解析式的确定只需确定k 值,需要一个点即可列出方程 知识点5:反比例函数在实际问题中的应用 在利用反比例函数解决实际问题中,一定要注意y= x k 中的k 不等于零这一条件,结合图像说出性质,根据性质画 出图像,以及求函数表达式是必须牢牢记住的知识点 二、同步题型分析 题型1:反比例函数的概念、图像与性质 例1:下列函数关系中,哪些是反比例函数?如果是,比例系数是多少? (1)x y 4= ;(2)x y 21-=;(3)2 x y =;(4) x y -=1(5)1=xy 解:(1)是反比例函数,比例系数是4 (2)是反比例函数,比例系数是2 1- (3)不是 (4)不是 (5)是反比例函数,比例系数是1 例2:已知函数x k k y ) 3(+= 是反比例函数,则k 应满足的条件是( ) A .3≠k B .3-≠k C .0≠k 或3≠k D .0≠k 且3-≠k 解析:反比例函数x k y =(0≠k ),所以(3)0k k +≠,即D .0≠k 且3-≠k 答案:D

反比例函数K的几何意义

反比例函数K 的几何意义 知识引入 反比例函数)0(≠= k x k y 中k 的几何意义:双曲线)0(≠=k x k y 上任意一点向两坐标轴作垂线,两垂线与坐标轴围成的矩形面积为k 。 理由:如下图,过双曲线上任意一点P 作x 轴、y 轴的垂线PM PN 、所得的矩形 PMON 的面积 PMON S PM PN y x xy =?=?=矩形; k y x = ,xy k ∴=即S k =,即过双曲线上任意一点作x 轴、y 轴的垂线,所得的矩形面积均为k 。 下面两个结论是上述结论的拓展: 如下图,则有k xy S S AOB OPA 2 121== =?? (1)如图①,OPA OCD OPC ADCP S S S S ???==梯形; 图①图② (2)如图②,BPE ACE OAPB OBCA S S S S ??==梯形梯形;

典型例题 题型一:K 意义的直接运用 【例1】(2013?宜昌)如图,点B 在反比例函数()02 >= x x y 的图象上,横坐标为1,过点B 分别向x 轴,y 轴作垂线,垂足分别为A C 、,则矩形OABC 的面积为_______ 2、(2013?淄博)如图,矩形AOBC 的面积为4,反比例函数x k y =的图象的一支经过矩形对角线的交点P ,则该反比例函数的解析式是__________ 【变式练习】: 1、如图,A 是反比例函数图象上一点,过点A 作AB y ⊥轴于点B ,点P 在x 轴上:ABP ?的面积为2,则这个反比例函数的解析式为______________.

2、如图,A B 、为双曲线x y 12 - =上的点,AD x ⊥轴于D ,BC y ⊥轴于点C ,则四边形ABCD 的面积为。 题型二:知K 求面积 【例2】①双曲线x y 4 = 在第一象限内的图像如图所示,作一条平行于x 轴的直线分别交双曲线于A 点,交y 轴于B 点,点C 为x 轴上一点,连结AC 交y 轴于D 点,连结BC ,若 DBC ?的面积为3,则ABD ?的面积为。

反比例函数几何性质

反比例函数的几何性质

【考点训练】反比例函数系数k的几何意义-1 一、选择题(共5小题) 1.(2013?牡丹江)如图,反比例函数的图象上有一点A,AB平行于x轴交y轴于点B,△ABO的面积是1,则反比例函数的解析式是() A.B.C.D. 2.(2013?淄博)如图,矩形AOBC的面积为4,反比例函数的图象的一支经过矩形对角线的交点P,则该反比例函数的解析式是() A.B.C.D.3.(2013?六盘水)下列图形中,阴影部分面积最大的是() A.B.C.D. 4.(2013?宜昌)如图,点B在反比例函数y=(x>0)的图象上,横坐标为1,过点B 分别向x轴,y轴作垂线,垂足分别为A,C,则矩形OABC的面积为() A.1B.2C.3D.4

5.(2013?内江)如图,反比例函数(x>0)的图象经过矩形OABC对角线的交点M,分别于AB、BC交于点D、E,若四边形ODBE的面积为9,则k的值为() A.1B.2C.3D.4 二、填空题(共3小题)(除非特别说明,请填准确值) 6.(2013?永州)如图,两个反比例函数y=和y=在第一象限内的图象分别是C1和C2,设点P在C1上,PA⊥x轴于点A,交C2于点B,则△POB的面积为_________. 7.(2013?自贡)如图,在函数的图象上有点P1、P2、P3…、P n、P n+1,点 P1的横坐标为2,且后面每个点的横坐标与它前面相邻点的横坐标的差都是2,过点P1、P2、P3…、P n、P n+1分别作x轴、y轴的垂线段,构成若干个矩形,如图所示,将图中阴影部分的面积从左至右依次记为S1、S2、S3…、S n,则S1=_________,S n=_________.(用含n的代数式表示) 8.(2013?张家界)如图,直线x=2与反比例函数和的图象分别交于A、B两点,若点P是y轴上任意一点,则△P AB的面积是_________.

高二数学-导数的定义_几何意义_运算_单调性与极最值问题_(一) 2

高二数学-导数的定义,几何意义,运算,单调性与极最值问题 (一) 导数的定义:①)(x f 在0x 处的导数(或变化率)记作0 00000()()()lim lim x x x x f x x f x y f x y x x =?→?→+?-?'' ===??. ②)(x f 在),(b a 的导函数记作()dy df f x y dx dx ''===00()() lim lim x x y f x x f x x x ?→?→?+?-==??. 1-1.在曲线y =x 2 +1的图象上取一点(1,2)及附近一点(1+Δx ,2+Δy ),则x y ??为( ),_____)1('=f A.21+?+ ?x x B.21 -?-?x x C.2+?x D.x x ?- ?+12 1-2.若,2)(0='x f 则()k x f k x f k 2)(lim 000 --→等于( ) A.-1 B.-2 C.1 D.2 1 1-3.①若2 3)(x x f =,则_____)('=x f ②若f(x)=x 2 ,则_____)('=x f 2.导数运算的八个基本求导公式①(C)′=________;②)(n x ′=______;③______)'(sin =x ④______)'(cos =x ⑤ ______)'(=x a ⑥______)'(=x e ⑦______)'(log =x a ⑧_____)'(ln =x 2-1.求下列函数的导函数:①62 24)(2 3 -+ -=x x x x f ,则___________)('=x f ②4cos 4sin 2)(++=x x x f ,则___________)('=x f ③x x e x f x x ln 5log 432)(2++-=,______)('=x f 2-2复合函数求导_________)]}'([{=x g f ④)4 2sin(π+=x y ,______)('=x f ⑤x e y 42-= ______)('=x f ⑥y= )12ln(+x ,______)('=x f 3四个求导法则(m,n 为常数)① [mf(x)±ng(x)] ′= ________ ② [f(x)·g(x)]′=_________③]) () ([x g x f ′= __________ 3-1① y =x x sin _______',=y ②x x y x -+=)12ln(3_______',=y ③_____',tan ==y x y ④f (x )=sin x (cos x +1),则)(x f '=__________ ⑤f x x x f ()'()=+2 21,则f '()1等于( )A. 0B -2C -4D. 2 4. 函数)(x f y =在点0x 处的导数的几何意义与物理意义:①曲线y =f (x )在点P (x 0,f(x 0))处的切线的斜率是).(0x f ' 相应地,切线方程是__________________________________②瞬时速度:00()() ()lim lim t t s s t t s t s t t t υ?→?→?+?-'===?? ③瞬时加速度:00()()()lim lim t t v v t t v t a v t t t ?→?→?+?-'===??,4-1一物体2 1t t s +-=,其中s 米,t 是秒,那么物体在3 秒末的瞬时速度是( )A .7米/秒 B .6米/秒 C .5米/秒 D .8米/秒 4-2曲线x x y 43 -=在点(1,3)- 处的切线方程为__________; 4-3求垂直于直线2610x y -+=并且与曲线3 2 35y x x =+-相切的直线方程,并求切点坐标。

相关主题
文本预览
相关文档 最新文档