当前位置:文档之家› 混凝土课件5

混凝土课件5

第五章

受弯构件斜截面受剪承载力计算

5.1.1.斜裂缝破坏的应力分析

图5-1 主应力轨迹线

如图5-1所示,简支梁在两个对称荷载作用下产生的效应是弯矩和剪力。

在梁开裂前可将梁视为匀质弹性体,按材力公式分析。

§5.1概述

>45°45°

<45°

剪弯型

腹剪型

σtp

τσcp

1213

σ

τ

σ

σ

τ

a )

b )

d )

c )

1

..

在弯剪区段,由于M 和V 的存在产生正应力和剪应力。

将弯剪区段的典型微元进行应力分析,可以由σ,

τ求得主拉应力和主压应力。

…5-1

00

I My =

σ0

bI Vs =

τ…5-2

2

2

tp 4

2

τ

σ

σ

σ++

=

2

2

cp 4

2

τ

σ

σ

σ+-

=

主拉应力:主压应力:

并可求得主应力方向。剪弯区段的主应力迹线如图5-1所示。

主应力的作用方向与梁轴线的夹角α1 按下式确定:

?由于弯剪区的主拉应力σtp >f t 时,即产生斜裂缝,

故其破坏面与梁轴斜交

–––称斜截面破坏。

σ

π

α22-=

tg …5-3

5.1.2.

斜裂缝的类型

斜裂缝的类型

腹剪斜裂缝

弯剪斜裂缝

(b) 弯剪斜裂缝(a) 腹剪斜裂缝

图5-2 斜裂缝

1、斜裂缝梁中受力状态图:

现将梁沿斜裂缝AA 'B 切开,取出斜裂缝顶点左边部分脱离体。

A A '

B '

B D C

(a )

B 'D

C A A '

C a V A

V a V d

T s D

c V c M B

M A

P

P

图5-3 梁中斜裂缝的受力变化

2、应力状态变化分析:

?

开裂前,V A 由全截面承受;开裂后,V A 为残余的

较小面积承受;同时V A 和V C 组成的力偶应由T S 及D 来平衡,残余面上既受剪又受压--剪压区,且τ,σ明显增大。

?

开裂前,BB’处钢筋应力由M B 决定;开裂后,BB '处钢筋应力由M A 决定, M A >M B ,所以,BB '处钢筋应力突增。

? 最终随着荷载加大,斜裂缝形成,梁的受力有如一

拉杆拱的作用。

5.1.3.斜截面配筋的形式

梁中设置钢筋承担开裂后的拉力:箍筋、弯筋、纵筋、架立筋–––形成钢筋骨架,如图5-3所示。

图5-3 箍筋及弯起钢筋

有腹筋梁:箍筋、弯起钢筋(斜筋)、纵筋

无腹筋梁:纵筋

·

·

·弯终点

弯起点弯起筋

纵筋

箍筋架立筋

a s

h 0

A sv

s s

b

....

. .

剪跨比反映了截面上正应力和剪应力的相对比值,梁中弯矩和剪力的组合情况。

5.2.1.无腹筋梁的受剪破坏形态

剪跨比的定义

广义剪跨比:计算剪跨比:…5-4…5-5

0Vh M

=

λ0

h a

=

λ混凝土

第五章

§5.2斜截面受剪破坏形态

(b) 内力图

(a) 裂缝示意图图5-4 简支梁受力图

(a)

(b)

…5-6

对矩形截面梁,截面上的正应力σ和剪应力τ可表达为:

2

2

201;bh V

bh M ατασ==故λαααατσ?=?=2

1021Vh M …5-7

a 1 ,a 2 ——与梁支座形式、计算截面位置等有关的系数;

λ——广义剪跨比。

1、主应力迹线分布图

图5-5 剪跨比与主应力迹线分布

由图可见,剪跨比与无腹筋梁的斜截面破坏形态有很重要的关系。

2、破坏形态:

a

a P P

a P P

P P

(a)

(b)

(c)

图5-6 斜截面破坏形态(a) 斜压破坏

(b) 剪压破坏

(c) 斜拉破坏

3、破坏形态分析:

? 斜拉破坏:

λ>3,一裂,即裂缝迅速向集中荷载作用点延伸,一般形成一条斜裂缝将弯剪段拉坏。承载力与开裂荷载接近。

? 剪压破坏:

1<λ≤3,σtp≥ft开裂,其中某一条裂缝发展成为临界斜裂缝,最终剪压区减小,在σ,τ共同作用下,主压应力破坏。

? 斜压破坏:

λ≤1,由腹剪斜裂缝形成多条斜裂缝将弯剪区段分为斜向短柱,最终短柱压坏。

4、承载能力:

斜压> 剪压> 斜拉

5、破坏性质:

图5-7 斜截面破坏的F-f 曲线斜截面受剪均属于脆性破坏。除发生以上三种破坏形

态外,还可能发生纵筋锚固破坏(粘结裂缝、撕裂裂缝)或局

部受压破坏。

6、影响无腹筋梁斜截面承载力的主要因素

? 剪跨比λ,在一定范围内,? 混凝土强度等级

?纵筋配筋率λ,抗剪承载力c,抗剪承载力ρ,抗剪承载力

5.2.2 有腹筋梁的斜截面受剪破坏形态1、配置箍筋抗剪

裂缝出现后,形成桁架体系传力机构。

=

(a) 单肢箍(b) 双肢箍(c) 四肢箍

图5-8 箍筋的肢数

?衡量配箍量大小的指标

…5-8

bs

nA bs A 1

sv sv sv =

=ρ–––配箍率A sv1

s

s

b

A sv -配置在同一截面内箍筋各肢的全部截面面积,见图5-9;

A sv1-单肢箍筋的截面面积;

图5-9 配箍率

n ––箍筋的肢数,一般取n =2,当b ≥400mm 时n =4,见图5-8。

s —沿构件长度方向箍筋的间距;

b —梁的宽度。

2、有腹筋梁的破坏形态

配箍率ρ

sv

很低,或间距S 较大且λ较大的时候;

ρ

sv

很大,或λ很小(λ≤1)斜向压碎,箍筋未屈服;

配箍和剪跨比适中,破坏时箍筋受拉屈服,剪压区压

碎,斜截面承载力随ρ

sv 及f

yv

的增大而增大。

? 斜拉破坏:?斜压破坏:?剪压破坏:

3、影响斜截面受剪承载力的主要因素

1). 剪跨比λ

随着剪跨比λ的增加,梁的破坏形态按斜压(λ<1)、剪压(1 <λ<3)和斜拉(λ> 3)的顺序演变,其受剪承载力则逐步减弱。当λ> 3时,剪跨比的影响不明显。

2). 混凝土强度等级

梁斜压破坏时,受剪承载力取决于混凝土的抗压强度;

梁斜拉破坏时,受剪承载力取决于混凝土的抗拉强度;

剪压破坏时,混凝土强度的影响则居于上述两者之间。

3). 箍筋配筋率

在图5-10中横坐标为配筋

率ρ

sv 与箍筋强度f

yv

的乘积,纵

坐标V

U

/bh0称为名义剪应力,即

所用在垂直截面有效面积bh

的平均剪应力。

由图中可见梁的斜截面受

剪承载力随配箍率增大而提高,

两者呈线性关系。图5-10 配箍率对梁受

剪承载力的影响

《混凝土结构基本原理》练习题

《混凝土结构基本原理》练习题 一、单选题 1.与素混凝土梁相比,钢筋混凝土梁承载能力(C )。 A.相同B、有所降低 C.提高很多 D.提高很少 2.与素混凝土梁相比,钢筋混凝土梁抵抗开裂的能力(C)。 A.相同 B.有所降低 C.提高不多 D.提高很多 3.就混凝土的徐变而言,下列几种叙述中( D )不正确。 A.徐变是在荷载长期作用下,混凝土的变形随时间的延长而增长的现象。 B.持续应力的大小对徐变有重要影响。 C.徐变对结构的影响,多数情况下是不利的。 D.水灰比和水泥用量越大,徐变越小。 4.线性徐变是指(C )。 A.徐变与荷载持续时间为线性关系 B.徐变系数与初应力为线性关系 C.徐变与初应力为线性关系 D.瞬时变形与初应力为线性关系 5.对于无明显屈服点的钢筋,其强度取值的依据是( D )。 A.最大应变对应的应力 B.极限抗拉强度 C.0.9极限强度 D.条件屈服强度 6.钢筋的混凝土保护层厚度是指:(A) A.纵向受力钢筋外表面到构件外表面的最小距离 B.纵向受力钢筋形心到构件外表面的距离 C.箍筋外表面到构件外表面的最小距离 D.纵向受力钢筋的合力点到构件外表面的最小距离 7.超筋梁正截面受弯承载力与(A)。 A.混凝土强度有关 B.配筋强度f y A s有关 C.混凝土强度和配筋强度都有关 D.混凝土强度和配筋强度都无关 8.受弯构件正截面弯曲破坏形态的决定性因素是(C)。 A.荷载大小 B.混凝土强度等级 C.计算受压区高度 D.箍筋用量 9.钢筋混凝土单筋矩形截面适筋梁,若截面尺寸给定,混凝土及钢筋强度给定,则配筋率ρ越大(A )。 A.破坏时受压区高度越大 B.破坏时的变形越大 C.破坏时受压区边缘的压应变越大 D.破坏时受拉钢筋的应变越大 10.提高梁的配箍率可以(D )。 A.显著提高斜裂缝开裂荷载 B.防止斜压破坏的出现 C.使斜压破坏转化为剪压破坏 D.在一定范围内可以提高抗剪承载力 11.双筋矩形截面受弯构件设计时,当受压区x<2a s’时,表明(B )。 A.受拉钢筋不屈服 B.受压钢筋不屈服 C.受拉、受压钢筋均不屈服 D.应加大截面尺寸 12.钢筋与混凝土之间的粘结强度(D)。 A.随外荷载增大而增大 B.随钢筋强度增加而增大 C.随钢筋埋入混凝土中的长度增加而增大 D.随混凝土强度等级提高而增大 13.限制箍筋最大间距的目的主要是(B )。 A.控制箍筋的配筋率 B.保证箍筋和斜裂缝相交 C.防止出现斜压破坏 D.保证箍筋的直径不致太大 14.提高受弯构件抗弯刚度最有效的措施是( C )。 A.增加受拉钢筋截面面积 B.采用高强钢筋 C.增大构件截面有效高度 D.采用高强度等级混凝土

混凝土基本原理简答题

.钢筋和混凝土是两种物理、力学性能很不同的材料,它们为什么能结合在一起共同工作?答:(1)混凝土结硬后,能与钢筋牢固地粘结在一起,互相传递内力。粘结力是这两种性质不同的材料能够共同工作的基础。(2)钢筋的线膨胀系数1.2×10^(-5) ℃-1,混凝土的线膨胀系数为1.0×10^(-5)~1.5×10^(-5) ℃-1,二者数值相近。因此,当温度变化时,钢筋与混凝土之间不会存在较大的相对变形和温度应力而发生粘结破坏。 1-2.钢筋冷拉和冷拔的抗拉、抗压强度都能提高吗?为什么?答:冷拉能提高抗拉强度。冷拉是在常温条件下,以超过原来钢筋屈服点强度的拉应力,强行拉伸钢筋,使钢筋产生塑性变形达到提高钢筋屈服点强度和节约钢材的目的。冷拔能提高抗拉、抗压强度。冷拔是指钢筋同时经受张拉和挤压而发生塑性变形,截面变小而长度增加,从而同时提高抗拉、抗压强度。 1-7.简述混凝土在三向受压情况下强度和变形的特点。 答:在三向受压状态中,由于侧向压应力的存在,混凝土受压后的侧向变受到了约束,延迟和限制了沿轴线方向的内部微裂缝的发生和发展,因而极限抗压强度和极限压缩应变均有显著提高,并显示了较大的塑性。 1-8.影响混凝土的收缩和徐变的因素有哪些? 答:(1)影响徐变的因素:混凝土的组成和配合比;养护及使用条件下的温湿度;混凝土的应力条件。(2)影响收缩的因素:养护条件;使用环境的温湿度;水灰比;水泥用量;骨料的配级;弹性模量;构件的体积与表面积比值。 1-13.伸入支座的锚固长度越长,粘结强度是否越高?为什么?答:不是锚固长度越大,粘结力越大,粘结强度是和混凝土级配以及钢筋面有关系。 2-2.荷载按随时间的变异分为几类?荷载有哪些代表值?在结构设计中,如何应用荷载代表值?答:荷载按随时间的变异分为三类:永久作用;可变作用;偶然作用。永久作用的代表值采用标准值;可变作用的代表值有标准值、准永久值和频遇值,其中标准值为基本代表值;偶然作用的代表值采用标准值。 2-5.什么是结构的预定功能?什么是结构的可靠度?可靠度如何度量和表达?答:预定功能:1.在正常施工和正常使用时,能承受可能出现的各种作用。2.在正常维护下具有足够的耐久性能。3.在正常使用时具有良好的工作性能。 4.在设计规定的偶然事件发生时及发生后,仍能保持必须的整体稳定性。结构的可靠度是结构可靠性(安全性、适用性和耐久性的总称)的概率度量。用失效概率度量结构可靠性有明确的物理意义,但目前采用可靠指标β 来度量可靠性。 2-6.什么是结构的极限状态?极限状态分几类?各有什么标志和限值?答:结构的极限状态:整个结构或结构的一部分超过某一特定状态就不能满足设计规定的某一功能要求。极限状态分为两类:承载能力极限状态和正常使用极限状态。 3-3..螺旋箍筋柱应满足的条件有哪些? 答:螺旋箍筋柱截面形式一般多做成圆形或多边形,仅在特殊情况下才采用矩形或方形。(1)螺旋箍筋柱的纵向受力钢筋为了能抵抗偶然出现的弯矩,其配筋率ρ 应不小于箍筋圈内核心混凝土截面面积的0.5%,构件的核心截面面积应不小于构件整个截面面积的2/3.但配筋率ρ 也不宜大于3%,一般为核心面积的0.8%~1.2%之间。(2)纵向受力钢筋的直径要求同普通箍筋柱,但为了构成圆形截面,纵筋至少要采用6 根,实用根数经常为6~8 根,并沿圆周作等距离布置。箍筋太细有可能引起混凝土承压时的局部损坏,箍筋太粗则又会增加钢筋弯制的困难,螺旋箍筋的常用直径为不应小于纵向钢筋直径的1/4,且不小于8mm。螺旋箍筋或环形箍筋的螺距S(或间距)应不大于混凝土核心直径dcov 的1/5;且不大于80mm。为了保证混凝土的浇筑质量,其间距也不宜小于40mm。 ★为什么螺旋箍筋柱能提高承载力?答:混凝土三向受压强度试验表明,由于侧向压应力

钢筋混凝土结构基本原理

第二章 一、填空题 1、结构包括素混凝土结构、(钢筋混凝土结构)、(预应力混凝土结构)和其他形式加筋混凝土结构。 2 钢筋混凝土结构由很多受力构件组合而成,主要受力构件有楼板(梁)、(柱)、墙、基础等。 3. 在测定混凝土的立方体抗压强度时,我国通常采用的立方体标准试件的尺寸为(150mm×150mm×150mm)。 4.长期荷载作用下,混凝土的应力保持不变,它的应变随着时间的增长而增大的现象称为混凝土的(徐变)。 5.混凝土在凝结过程中,体积会发生变化。在空气中结硬时,体积要(缩小);在水中结硬时,则体积(膨胀)。 6.在钢筋混凝土结构的设计中,(屈服强度)和(延伸率)是选择钢筋的重要指标。 7.在浇筑混凝土之前,构件中的钢筋由单根钢筋按设计位置构成空间受力骨架,构成骨架的方法主要有两种:(绑扎骨架)与(焊接骨架)。 8.当构件上作用轴向拉力,且拉力作用于构件截面的形心时,称为(轴心受拉)构件。 9、轴心受拉构件的受拉承载力公式为(N≤fyAs或Nu=fyAs )。 10.钢筋混凝土轴心受压柱根据箍筋配置方式和受力特点可分为(普通钢箍)柱和(螺旋钢箍)柱两种。 11.钢筋混凝土轴心受压柱的稳定系数为(长柱)承载力与(短柱)承载力的比值。 12.长柱轴心受压时的承载力(小于)具有相同材料,截面尺寸及配筋的短柱轴心受压时的承载力。 13.钢筋混凝土轴心受压构件,稳定性系数是考虑了(附加弯矩的影响)。 二:简答题 1.混凝土的强度等级是怎样划分的? 答:混凝土强度等级按立方体抗压强度标准值划分为C15、C20、C25、C30、C35、C40、C45、C50、C55、C60、C65、C70、C75、C80等14个 2.钢筋混凝土结构对钢筋性能的要求。 答:1.采用高强度钢筋可以节约刚材,取得较好的经济效果;2.为了使钢筋在断裂前有足够的变形,要求钢材有一定的塑性;3.可焊性好;4满足结构或构件的耐火性要求;5.为了保证钢筋与混凝土共同工作,钢筋与混凝土之间必须有足够的粘结力。 3徐变定义;减少徐变的方法。 答:长期荷载作用下,混凝土的应力保持不变,它的应变随着时间的增长而增大的现象称为混凝土的徐变。 4.钢筋混凝土共同工作的基础。 1).二者具有相近的线膨胀系数; 2).在混凝土硬化后,二者之间产生了良好的粘结力,包括a. 钢筋与混凝土接触面上的化学吸附作用力; b混凝土收缩握裹钢筋而产生摩阻力; c 钢筋表面凹凸不平与混凝土之间产生的机械咬合作用力 3). 钢筋至构件边缘之间的混凝土保护层,起着防止钢筋发生锈蚀的作用,保证结构的耐久性。

混凝土施工岗前培训课件.pdf

混凝土施工岗前培训讲义 一、质量控制要点 1、耐久混凝土技术指标。 2、混凝土护筋性试件中的钢筋不应出现锈蚀。 3、耐久性混凝土配合比选定是保证T梁施工质量的关键。T梁生产前作好高性能混凝土配合比的选定工作。 4、施工中根据气温、输送距离来考虑坍落度损失。在混凝土拌合过程中,及时地进行混凝土有关性能(如坍落度、和易性、保水率、含气量) 的试验与观察,前5盘每盘测定坍落度,稳定后每20盘测一次。 5、混凝土灌注:采取快速、连续灌筑,一次成型的方式。灌注时间不 超过3.5h,炎热天气避开中午、下午的高温时间,尽量选择在低温或傍晚 进行混凝土的灌注。灌注中,两侧腹板混凝土高度应保持一致;灌注时采 用斜向分段,水平分层的方法灌注,水平分层厚度不得大于30cm,先后两层混凝土的间隔不得超过混凝土的初凝时间。灌注完毕后,对顶板混凝土 表面进行二次赶压抹光,保证防水层基面平整。 6、采用附着式振动器与插入式振动棒相结合的方式进行振捣。顶板混凝土以插入式振捣为主;腹板以附着式振动为主(点振)、插入式振捣为辅的振捣方式。附着式振动器安装在腹板外侧,按上下交错安装,每间隔0.75米安设一个。 7、实际操作中掌握最佳捣固时间,防止漏捣、欠捣或过捣现象。严禁 振动棒触碰抽拔棒。振捣时还要防止钢筋、抽拔棒变形、移动及松动。插

入式振动棒宜快插慢拔,移动距离不大于振捣棒作用半径 1.5倍,且插入下一层混凝土的深度为5~10cm。振捣时间以混凝土不再沉落、不出现气泡、表面出现浮浆为度。施工中,特别要加强端部锚垫板、钢筋密集处混 凝土的振捣工作,避免出现漏振现象。 8、灌注振捣过程中有人看模及时调整预埋件、预埋筋,检查模板支撑的稳定性和接缝处的密贴情况,避免螺栓松动造成跑模和变形,有漏浆处 及时封堵。 二、施工操作过程 1工艺流程 配合比设计——混凝土配料——混凝土拌制——混凝土输送——混凝 土浇注——混凝土养护 2准备工作 2.1施工配合比到位并能够满足相关要求。 2.2混凝土配制拌和之前,应对所有机器设备、工具、使用材料进行 认真检查,确保混凝土的拌制和灌注的正常连续进行。 2.3配制混凝土的各种材料均应符合有关规定,并有物设部的合格标识,无标识或标识不清者应请示物资部在得到确认合格意见后方可使用, 否则不得使用。 2.4外加剂及拌合料符合相关规范。 2.5开盘前混凝土拌和设备必须进行试运转,确保其性能符合施工要 求后才可以正式拌制。 2.6开盘前拌和楼负责人应核对各种衡量器具并按计量试验站提供的 配合比调好,并做好记录。 3混凝土配合比设计 3.1箱梁混凝土设计

混凝土基本原理—第三章

思考题 3.1 混凝土弯曲受压时的极限压应变cu ε取为多少? 答:混凝土弯曲受压时的极限压应变cu ε取为:因混凝土为弯曲受压,正截面处于非均匀受压,即存在应力梯度,cu ε的取值随混凝土的强度等级不同而不同, 取为5 ,=0.0033(50)100.0033cu cu k f ε---?≤。 3.2 什么叫“界限破坏”?“界限破坏”时的s ε和cu ε各等于多少? 答:“界限破坏”就是正截面上钢筋应力达到屈服的同时,受压区边缘纤维应变也恰好达到混凝土受弯时的极限压应变值; “界限破坏”时受拉钢筋拉应变为=/s y s f E ε,受压区混凝土边缘纤维极限压 应变为5 ,=0.0033(50)100.0033cu cu k f ε---?≤。 3.3 适筋梁的受弯全过程经历了哪几个阶段?各阶段的主要特点是什么?与计算或验算有何联系? 答:适筋梁的受弯全过程经历了未裂阶段、裂缝阶段以及破坏阶段; 未裂阶段:①混凝土没有开裂;②受压区混凝土的应力图形是直线,受拉区混凝土的应力图形在第I 阶段前期是直线,后期是曲线;③弯矩与截面曲率基本上是直线关系; 裂缝阶段:①在裂缝截面处,受拉区大部分混凝土退出工作,拉力主要由纵向受拉钢筋承担,但钢筋没有屈服;②受压区混凝土已有塑性变形,但不充分,压应力图形为只有上升段的曲线;③弯矩与截面曲率是曲线关系,截面曲率与挠度的增长加快; 破坏阶段:①纵向受拉钢筋屈服,拉力保持为常值;裂缝截面处,受拉区大

部分混凝土已经退出工作,受压区混凝土压应力曲线图形比较丰满,有上升段曲线,也有下降段曲线;②由于受压区混凝土合压力作用点外移使内力臂增大,故弯矩还略有增加;③受压区边缘混凝土压应变达到其极限压应变实验值0 cu ε时,混凝土被压碎,截面破坏;④弯矩和截面曲率关系为接近水平的曲线; 未裂阶段可作为受弯构件抗裂度的计算依据;裂缝阶段可作为正常使用阶段验算变形和裂缝开展宽度的依据;破坏阶段可作为正截面受弯承载力计算的依据。 3.4 正截面承载力计算的基本假定有哪些?单筋矩形截面受弯构件的正截面受弯承载力计算简图是怎样的?它是怎样得到的? 答:正截面承载力计算的基本假定: ①截面应变保持平面,即平均应变平截面假定; ②不考虑混凝土的抗拉强度; ③混凝土受压的应力与应变关系曲线按下列规定取用: 当0c εε≤时(上升段) ()011/n c c c f σεε??=--?? 当0c cu εεε<≤时(水平段) c c f σ= 式中,参数n 、0ε和cu ε的取值如下,,cu k f 为混凝土立方体抗压强度标准值。 ,2(50)/60 2.0cu k n f =--≤ 50,0.0020.5(50)100.002cu k f ε-=+?-?≥ 5,0.0033(50)100.0033cu cu k f ε-=--?≤ ④纵向受拉钢筋的极限拉应变取为0.01; ⑤纵向钢筋的应力取钢筋应变与其弹性模量的乘积,但其值应符合下列要求: 'y si y f f σ-≤≤ 单筋矩形截面受弯构件的正截面受弯承载力计算简图如下图所示: 其中受压区应力分布取等效矩形应力图来代换受压区混凝土理论应力图形,两个图形的等效条件是: ①混凝土压应力的合力C 大小相等;

混凝土结构基本原理

混凝土结构基本原理 实 验 指 导 书 建筑工程学院土木工程系

实验一:钢筋混凝土梁受弯试验 一、试验目的: 1、了解受弯构件正截面的承载力大小、挠度变化及裂缝出现和发展过程; 2、观察了解受弯构件受力和变形过程的三个工作阶段及适筋梁的破坏特征; 3、通过钢筋砼简支梁破坏试验,熟悉钢筋砼结构静载试验的全过程。 4、进一步学习静载试验中常用仪器设备的使用方法。 二、试验内容和要求: 1、量测试件在各级荷载下的跨中挠度值,绘制梁跨中的M —f 图。 2、量测试件在纯弯曲段沿截面高度的平均应变受拉钢筋的应变,绘制沿梁高的应变分布图。 3、观察试件在纯弯曲段的裂缝出现和开展过程,记下开裂荷载P t cr (M t cr ),并与理论值比较。 4、观察和描绘梁的破坏情况和特征,记下破坏荷载P u (M u ),并与理论值比较。 三、试验设备及仪表: 1、加载设备一套。 2、百分表及磁性表座若干。 3、压力传感器及电子秤一套。 4、静态电阻应变仪一套。 5、电阻应变片及导线若干。 6、手持式应变仪一套。 四、试件和试验方法: 1、试件: 试件为钢筋砼适筋梁,尺寸和配筋如图1所示。 图1.1 实验梁

2、试验方法: (1) 采用分级加载,开裂前每级加载量取5%~10%的破坏荷载,开裂后每级加载量增为15%的破坏荷载。 (2) 试验准备就绪后,首先预加一级荷载,观察所有仪器是否工作正常。 (3) 每次加载后持荷时间为不少于10分钟,使试件变形趋于稳定后,再仔细测读仪表读数,待校核无误,方可进行下一级加荷。加荷时间间隔控制为15分钟,直至加到破坏为止。 3、试验步骤: (1)安装试件,安装仪器仪表并联线调试。 (2)加载前读百分表和应变仪,用放大镜检查有无初始裂缝并记录。 (3)在估计的开裂荷载前分三级加载,每级荷载下认真读取应变仪读数,以确定沿载面高度的应变分布。在加第三级荷载时应仔细观察梁受拉区有无裂缝出现,并随时记下开裂荷载Ptcr。每次加载后五分钟读百分表,以确定梁跨中及支座的位移值。 (4)开裂载荷至标准荷载分两级加载,加至标准荷载后十五分钟读百分表和应变仪,并用读数放大镜测读最大裂缝宽度。 (5)标准荷载至计算破坏荷载Pu (Mu)之间分三级加载,加第三级荷载时拆除百分表,至完全破坏时,记下破坏荷载值Ptu (Mtu)。 五、注意事项: 1、试验前应明确本次试验的目的、要求,熟悉试验步骤及有关事项,对不清楚的地方 应首先进行研究、讨论或向指导老师请教,严禁盲目操作。 2、试验时要听从指导老师的指挥,试件破坏时要特别注意安全。 3、对与本试验无关的仪器设备不要乱动,否则损坏仪器由自己负责。

东南大学混凝土结构设计原理课件(共11)4

第四章受弯构件的正截面 受弯承载力 ?构件的构造 ?试验研究的主要结论 ?基本假定 ?矩形、T形截面承载力计算

4.1受弯构件的一般构造 4.1.1受弯构件的一般构造 与构件的计算轴线相垂直的截面称为正截面。 结构和构件要满足承载能力极限状态和正常使用极限状态的要求。梁、板正截面受弯承载力计算就是从满足承载能力极限状态出发的,即要求满足 M≤M u (4—1) 式中的M是受弯构件正截面的弯矩设计值,它是由结构上 的作用所产生的内力设计值;M u 是受弯构件正截面受弯承 载力的设计值,它是由正截面上材料所产生的抗力。(1)截面形状 梁、板常用矩形、T形、I字形、槽形、空心板和倒L形梁等对称和不对称截面

(2) 梁、板的截面尺寸 1)矩形截面梁的高宽比h/b一般取2.0~3.5;T形截面梁的h/b一般取2.5~4.0(此处b为梁肋宽)。矩形截面的宽度或T形截面的肋宽b一般取为100、120、150、(180)、200、(220)、250和300mm,300mm以下的级差为50mm;括号中的数值仅用于木模。 2)梁的高度采用h=250、300、350、750、800、900、1000mm等尺寸。800mm以下的级差为50mm,以上的为l00mm。 3)现浇板的宽度一般较大,设计时可取单位宽度(b=1000mm)进行计算。

(3)材料选择 1)混凝土强度等级,梁、板常用的混凝土强度等级是C20、C30、C40。 2)钢筋强度等级及常用直径,梁中纵向受力钢筋宜采用HRB400级或RRB400级(Ⅲ级)和HRB335级(Ⅱ级),常用直径为12mm、14mm、16mm、18mm、20mm、22mm和25mm。根数最好不少于3(或4)根。 3)梁的箍筋宜采用HPB235级(Ⅰ级)、HRB335(Ⅱ级)和HRB400(Ⅲ级钢筋)级的钢筋,常用直径是6mm、 8mm和10mm。 4)板的分布钢筋,当按单向板设计时,除沿受力方向布置受力钢筋外,还应在垂直受力方向布置分布钢筋。分布钢筋宜采用HPB235级(Ⅰ级)和HRB335级(Ⅱ级)级的钢筋,常用直径是6mm和8mm。

混凝土结构基本原理第9章

思考题 9-1冲切破坏的主要特点是什么? 答:破坏时,在板上、下表面的局部范围内存在环状的裂缝,环状裂缝内部的锥台状块体在荷载作用方向相对于其外围部分的板向板面外脱落(或有这样的趋势)。 9-2影响受冲切承载力的因素有哪些? 答:(1)混凝土强度; (2)板的有效高度; (3)荷载面积; (4)尺寸效应; (5)抗弯钢筋; (6)边界条件。 9-3为什么设置柱帽和托板能提高板的受冲切承载力? 答:柱帽增加局部荷载的作用面积;托板增大冲切破坏区域的板的厚度,提高受冲切承载力。 9-4常用的抗冲切钢筋有哪些形式? 答:箍筋,弯起钢筋。 9-5局部受压破坏的机理是什么? 答:在局部受压面上纵向压应力的数值较大,经过一定长度的过渡区段后(这个过渡区段的长度约等于构件截面的宽度2b),纵向压应力在整个截面中变成均匀分布。在端部的区段内,还存在横向应力。在局部受压荷载的表面附近,横向应力为压应力,往下逐渐转为拉应力,且在(0.5-1.0)b处出现最大拉应力,再往下趋近于零。 构件局部受压端范围内的这种应力状态可以分为三个区域:荷载面积下的混凝土在竖向压应力作用下产生横向膨胀变形,受到周围混凝土的约束而处于三轴受压状态;周围混凝土则因受向外级压力而产生沿周边的水平拉应力,处于二轴或三轴拉压状态;在主应力轨迹线和水平拉应力范围内则为三轴拉压状态。各区域的具体划分和应力值的大小主要取决于构件 截面面积和局部受压面积的比值,并因此决定了构件的局部受压破坏形态。当 较小(一般小于9)时,劈裂破坏的特征较明显;当很大(一般大于36)时, 局部荷载下混凝土的陷落现象较明显。 9-6间接钢筋有哪些形式?对局部受压承载力有何影响? 答:方格网配筋、螺旋式配筋。 可提高局部受压承载力。 练习题 9-1板柱借点的情况同例9-1,但柱子的轴压力为N=600kN。如果抗冲切钢筋分别采用配置箍筋和弯起钢筋两种方案,试确定所需的抗冲切钢筋面积各为多少,并画出配筋构造图。解:根据题意得,

混凝土基本原理词汇

------1------- Concrete structure 混凝土结构 Reinforced Concrete structure 钢筋混凝土结构 Plain Concrete structure 素混凝土结构 Prestressed Concrete structure 预应力混凝土结构 Fibre reinforced Concrete structure 纤维增强混凝土结构Rebar (reinforcement) 钢筋 Compressive strength 抗压强度 Tensile strength 抗拉强度 Section 截面 Crack 裂缝 Stress 应力 Strain 应变 Beam 梁 Bond 粘结 Coefficient 系数 Rust 生锈 Brittle 脆性 Ductility 延性 Moldability 可焊接性 Cast 浇注 Strength-cost ratio 强价比 Fire-resistance 抗火 Wood structure 木结构 Masonry structure 砌体结构 Steel structure 刚结构 Monolithic 整体性 Self-weight 自重 Span 跨度 Light-weight 轻质的 High-strength 高强的 High-performance concrete 高性能混凝土Prefabrication 预制 Plastic 塑性的 Load-carrying capacity 承载能力 Elastic 弹性的 Multiaxial 多轴的 scale effect 尺寸效应 size effect尺寸效应 bond 粘结 slip 滑移 deformation 变形 code 规范

混凝土结构基本原理

混凝土结构基本原理、简答题 1、简述受弯构件配筋计算的步骤? 答:步骤有:①画出计算简图,确定设计荷载;②根据设计荷载求得结构M 图,得控制截面最大弯矩;③由基本公式计算受拉纵筋;④进行公式适用条件验算;⑤根据求得的纵筋画截面配筋图。 2、结构极限状态设计方法的内容有哪些? 答:有二个方面:①承载能力极限状态设计;②正常使用极限状态设计。 3、 钢筋混凝土结构构件设计中,其构造设计措施的重要性和必要性是什 么? 答:一是为了施工的方便或可能;二是考虑到承载力计算时未考虑的因素如混凝土收缩、基础不均匀沉降等可能引起的结构内力变形,由构造配筋设计来承担。 4、受弯构件承载力基本公式导出的基本假定有哪些? 答:①截面应变保持为平面;②不计砼的抗拉强度;③砼的本构关系曲 线取简化形式,极限时D c = fc ;④钢筋的本构关系为理想弹塑性,构件破 5、 什么是延性破坏,脆性破坏?式各举二例。答:破坏前是否有预兆,能否有足够时间采取相应措施。 延性:适筋梁、大偏压柱 脆性:超筋梁、受剪中的斜拉破坏 6、简述结构功能两大极限状态的含义,并分别写出其计算表达式。 答:承载能力极限状态,是指结构或构件,达到最大承载能力,或不适于继续承载的变形,即Y o S兰R 0正常使用极限状态是指结构或构件达到正常使用或耐久性能的某项规定限值的状态,即f<[f]或 * [w: 7、简述受弯构件斜截面破坏的三种形态及破坏特征。 答:斜压破坏:剪跨比较小,腹筋过多时易发生。腹部首先出现斜裂缝, 将梁腹分割成若干倾斜受压柱,柱被压碎时,腹筋仍未屈服。 斜拉破坏:剪跨比较大,腹筋较少或无腹筋时易发生。斜裂缝一旦出现很快延伸至集中荷载作用点,梁即破坏,破坏很突然。 剪压破坏:腹筋配置恰当时发生。斜裂缝由垂直裂缝发展而来,逐渐形成一条主斜裂缝,与斜裂缝相交的腹筋逐渐屈服,剪压区砼最后压碎。

混凝土结构设计原理课件(共11)9

第九章混凝土构件的变形及裂缝宽度验算

9.1钢筋混凝土受弯构件的挠度验算 9.1.1截面弯曲刚度的概念及其定义材料力学中,匀质弹性材料梁的跨中挠度为 20 EI Ml S f =S ——与荷载类型和支承条件有关的系数; EI ——梁截面的抗弯刚度。 由于是匀质弹性材料,所以当梁截面的尺寸确定后,其抗弯刚度即可确定且为常量,挠度f 与M 成线性关系。 对钢筋混凝土构件,由于材料的非弹性性质和受拉区裂缝的开展,梁的抗弯刚度不是常数而是变化的,其主要特点如下:

①随荷载的增加而减少,即M越大,抗弯刚度越小。验算变形时,截面抗弯刚度选择在曲线第Ⅱ阶段(带裂缝工作阶段)确定; ②随配筋率ρ的降低而减少。对于截面尺寸和材料都相问的适筋梁,ρ小,变形大些;截面抗弯刚度 小些; ③沿构件跨度,弯矩在变化,截面刚度也在变化,即使在纯弯段刚度也不尽相同,裂缝截面处的小些,裂缝间截面的大些; ④随加载时间的增长而减小。构件在长期荷载作用下,变形会加大,在变形验算中,除了要考虑短期效应组合,还应考虑荷载的长期效应的影响,故有长 期刚度B s 和短期刚度B l 。

9.1.2短期刚度B s 短期刚度是指钢筋混凝土受弯构件在荷载短期效应组合下的刚度值(以N·mm2计)。对矩形、T形、工字形截面受弯构件,短期刚度的计算公式为 式中γ f ′——受压翼缘的加强系数; 2 6 1.150.2 1 3.5 s s s E f E A h B αρ ψ γ= ++ ' + 当h f ′>0.2h 时,取h f ′>0.2h 。 ) ( bh h b b f f f ' - ' = 'γ

混凝土基本原理—第四章

思考题 4.1 试述剪跨比的概念及其对无腹筋梁斜截面受剪破坏形态的影响? 答:剪跨比包括计算剪跨比和广义剪跨比;计算剪跨比是承受集中荷载的简支梁中,最外侧的集中力到临近支座的距离与截面有效高低的比值,表示为0/a h λ=;广义剪跨比是截面上弯矩与剪力和有效高度乘积的比值,表示为0/()M Vh λ=; 对于无腹筋梁,当剪跨比1λ<时,将发生斜压破坏;当剪跨比13λ≤≤时,将发生剪压破坏;当剪跨比3λ>时,将发生斜拉破坏。 4.2 梁的斜裂缝是怎样形成的?它发生在梁的什么区段? 答:钢筋混凝土梁在剪力和弯矩共同作用下的剪弯区段,将产生斜裂缝;在剪弯区段内,由于截面上同时作用有弯矩和剪力,在梁的下部剪拉区,因弯矩产生的拉应力和因剪力产生的剪应力形成了斜向的主拉应力,当混凝土的抗拉强度不足时,则开裂,并逐渐形成与主拉应力相垂直的斜向裂缝。 4.3 斜裂缝有几种类型?有何特点? 答:梁的斜裂缝主要包括腹剪斜裂缝和弯剪斜裂缝;腹剪斜裂缝主要发生在梁腹部,也即中和轴附近,此处正应力小,剪应力大,主拉应力方向大致与轴线成45°夹角,当荷载增大,拉应变达到混凝土的极限拉应变值时,混凝土开裂,沿主压应力迹线产生腹部的斜裂缝,称为腹剪斜裂缝,腹剪斜裂缝中间宽,两头细,呈枣核形,常见于I 形截面薄腹梁中;弯剪斜裂缝主要出现在梁的剪弯区段,在梁剪弯区段截面下边缘,主拉应力还是水平向的,在这些区段可能首先出现一些较短的竖向裂缝,然后发展成向集中荷载作用点延伸的弯剪斜裂缝,这种裂缝下宽上细,是最常见的。

4.4 试述梁斜截面受剪破坏的三种形态及其破坏特征。 答:梁斜截面破坏的三种形态:斜压破坏、剪压破坏以及斜拉破坏; 斜压破坏:破坏时,混凝土被腹剪斜裂缝分割成若干个斜向短柱而压坏,受剪承载力取决于混凝土的抗压强度,属于脆性破坏; 剪压破坏:在剪弯区段的受拉区边缘先出现一些竖向裂缝,他们沿竖向延伸一小段长度后,就斜向延伸形成一些裂缝,而后产生一条贯穿的较宽的主要斜裂缝(临界斜裂缝),斜裂缝出现后迅速延伸,使斜截面剪压区的高度缩小,最后导致剪压区的混凝土破坏,使斜截面丧失承载力,也属于脆性破坏; 斜拉破坏:当竖向裂缝一出现,就迅速向受压区斜向延伸,斜截面承载力随之丧失,破坏荷载与出现斜裂缝时的荷载很接近,破坏过程急骤,破坏前变形很小,具有明显的脆性。 4.5 试述简支梁斜截面受剪机理的力学模型。 答:简支梁斜截面受剪机理的力学模型有带拉杆的梳形拱模型、拱形桁架模型以及桁架模型; 带拉杆的梳形拱模型适用于无腹筋梁,该模型把梁的下部看成是被斜裂缝和竖向裂缝分割成一个个具有自由端的梳形状齿,梁的上部与纵向受拉钢筋则形成带有拉杆的变截面两铰拱; 拱形桁架模型适用于有腹筋梁,该模型把开裂后的有腹筋梁看作是拱形桁架,其中拱体是上弦杆,裂缝间的混凝土齿块是受压的斜腹杆,箍筋则是受拉腹杆,受拉纵筋是下弦杆; 桁架模型适用于有腹筋梁,该模型把有斜裂缝的钢筋混凝土梁比拟为一个铰接桁架,压区混凝土为上弦杆,受拉纵筋为下弦杆,腹筋为竖向拉杆,斜裂缝间的混凝土则为斜压杆。 4.6 影响斜截面受剪性能的主要因素有哪些?

混凝土基本原理第七章

思考题 7.1 按变角空间桁架模型计算扭曲截面承载力的基本思路是什么,有哪些基本假设,有几个主要计算公式? 答:变角空间桁架模型计算扭曲截面承载力的基本思路:在裂缝充分发展且钢筋应力接近屈服强度时,截面核心混凝土退出工作,从而实心截面的钢筋混凝土受扭构件可以用一个空心的箱形截面构件来代替,它由螺旋形裂缝的混凝土外壳、纵筋和箍筋三者共同组成变角空间桁架以抵抗扭矩; 基本假设:①混凝土只承受压力,具有螺旋形裂缝的混凝土外壳组成桁架的斜压杆,其倾角为α; ②纵筋和箍筋只承受拉力,分别为桁架的弦杆和腹杆; ③忽略核心混凝土的受扭作用及钢筋的销栓作用; 主要计算公式: 1y stl yv st cor f A s f A u ?= u T = 7.2 简述钢筋混凝土纯扭和剪扭构件的扭曲截面承载力的计算步骤。 答:剪扭构件: ①按公式0/()/(0.8)0.25t c c V bh T W f β+≤或0/()/(0.8)0.2t c c V bh T W f β+≤验算截面尺寸是否符合要求; ②按公式0/()/0.7t t V bh T W f +≤或00/()/0.70.07/()t t V bh T W f N bh +≤+验算是否需要按计算配置受扭、受剪箍筋和受扭纵筋;

③比较剪力和扭矩是否满足00.35t V f bh ≤,00.875/(1)t V f bh λ≤+或0.175t t T f W ≤,0.175h t t T f W α≤,若满足,则可不考虑剪力或者扭矩的作用,按纯 剪或者纯扭构件计算;否则,应考虑剪力和扭矩的作用; ④按公式[]01.5/10.5/()t t VW Tbh β=+或[]01.5/10.2 +/()t t VW Tbh βλ=+(1)计算受扭承载力降低系数,且应满足0.51t β≤≤; ⑤按公式000.7(1.5)/u t t yv sv V f bh f A h s β=-+或001.75(1.5)/(1)/u t t yv sv V f bh f A h s βλ=-++计算剪扭构件的受剪承载力,对于T 形和I 形截面假设剪力全部由腹板承担,并确定受剪箍筋的用量; ⑥按公式10.35/u t t t yv st cor T f W A A s β=+或10.35/u h t t t yv st cor T f W A A s αβ=+计算构件的受扭承载力,按腹板完整性原则分别确定翼缘和腹板的受扭箍筋和受扭纵筋的用量; ⑦验算箍筋和纵筋的最小配筋率是否满足。 纯扭构件: ①按公式/(0.8)0.25t c c T W f β≤或/(0.8)0.2t c c T W f β≤验算截面尺寸是否符合要求; ②按公式0.7t t T f W ≤或00.70.07/()t t t T f W NW bh ≤+验算是否需要按计算配置受扭和受扭纵筋; ③按公式10.35/u t t yv st cor T f W A A s =+或10.35/u h t t yv st cor T f W A A s α=+计算构件的受扭承载力,按腹板完整性原则分别确定翼缘和腹板的受扭箍筋和受扭纵筋的用量; ④验算箍筋和纵筋的最小配筋率是否满足。 7.3 纵向钢筋与箍筋的配筋强度比?的含义是什么?起什么作用?有什么限制?

混凝土基本原理—第五章

思考题 5.1 轴心受压普通箍筋短柱和长柱的破坏形态有何不同?轴心受压长柱的稳定系数?是如何确定的? 答:轴心受压普通箍筋短柱在临近破坏荷载时,柱子四周出现明显的纵向裂缝,箍筋间的纵筋发生压屈,向外凸出,混凝土被压碎,柱子即告破坏;轴心受压普通箍筋长柱在破坏时,首先在凹侧出现纵向裂缝,随后混凝土被压碎,纵筋被压屈向外凸出,凸侧混凝土出现垂直于纵轴方向的横向裂缝,侧向挠度急剧增大,柱子破坏。 稳定系数主要与构件的长细比有关: 当0/l b =8~34时:01.1770.02/l b ?=- 当0/l b =35~50时:00.870.012/l b ?=- 对于长细比0/l b 较大的构件,考虑到荷载初始偏心和长期荷载作用对构件承载力的不利影响较大,?的取值比按经验公式得到的?值还要降低一些,以保证安全;对于长细比0/l b 小于20的构件,考虑过去的使用经验,?的取值略微太高一些。 5.2 轴心受压普通箍筋柱与螺旋箍筋柱的正截面受压承载力计算有何不同? 答:轴心受压普通箍筋柱的正截面受压承载力计算公式: ''0.9()u c y s N f A f A ?=+ (1)

轴心受压螺旋箍筋柱的正截面受压承载力计算公式: ''00.9(2)u c cor y ss y s N f A f A f A α=++ (2) 对比可知:①普通箍筋柱中考虑了稳定系数,而螺旋箍筋柱中没有考虑,主要是因为螺旋箍筋柱中要求构件0/l b 必须不大于12,此时构件长细比对构件影响较小,可以不考虑其影响;②混凝土项截面面积螺旋箍筋柱取的是核心区混凝土截面面积,没有考虑保护层混凝土的贡献,主要是考虑到螺旋箍筋柱承载力较大,保护层在达到极限承载力之前就可能开裂剥落,同时为了保证混凝土保护层对抵抗剥落有足够的安全,要求按(2)计算的构件承载力不大于(1)的50%;③螺旋箍筋柱承载力计算公式中考虑了间接钢筋对混凝土约束的折减系数,主要是考虑高强混凝土的变形能力不如普通混凝土,而螺旋箍筋柱属于间接约束,需要通过混凝土自身的变形使箍筋产生对混凝土的侧向约束;④公式(2)要求计算出来的承载力不应低于(1),否则应按(1)计算。 5.3 受压构件的纵向钢筋与箍筋有哪些主要的构造要求? 答:纵筋:柱中纵筋的直径不宜小于12mm ,全部纵向钢筋的配筋率不宜大于5%,全部纵向钢筋的配筋率对于HRB500钢筋不应小于0.5%,对于HRB 400钢筋不应小于0.55%,对于HPB300和H RB 335钢筋不应小于0.6%,且一侧纵向钢筋配筋率不应小于0.2%;轴心受压构件纵向受力钢筋应沿截面的四周均匀放置,方柱中钢筋根数不得少于四根,圆柱不宜少于8根,不应少于6根;偏心受压构件,当截面高度h≥600mm 时,在侧面应设置直径为不小于10mm 的纵向构造钢筋,并相应地设置附加箍筋或拉筋;纵筋间距不应小于50mm ,不大于300mm ;对于直径大于25mm的受拉钢筋和直径大于28mm 的受压钢筋,或者轴拉和小偏心受拉构件,不得采用绑扎搭接接头。

同济大学《混凝土结构基本原理》试卷A含答案)

同济大学本科课程期末考试统一命题纸 A 卷 课 程:混凝土结构基本原理(重修) 班 级: 专 业:土木工程 学 号: 任课老师:林峰 姓 名: 出考试卷教师签名:林峰 教研室主任签名: 日前:2006年6月3日 二、计算题(40分,每题10分) 1.某钢筋混凝土梁的截面尺寸为b=250mm , h=600mm , 保护层厚25mm ,受压区已配有3φ22的纵筋,混凝土和钢筋材料的性能指标为fc=13N/mm 2, ft=1.2N/mm 2,fy=310N/mm 2,Es=1.97x105N/mm 2。承受的弯矩M =330kN *m ,求所需受拉钢筋As 。 注:s y b E f 0033.018 .0+ = ξ 2.如图所示的钢筋混凝土简支梁bxh=120mm x200mm , 保护层厚15mm ,承受两集中荷载作用,混凝土强度等级为C20(f c =9.6MPa , f t =1.1MPa ),梁内通长配置双肢箍筋Ф6@100(fy=210MPa ),不计梁自重, (1)画出该梁的剪力分布图; (2)如果梁中出现斜裂缝,请指出其可能的位置和裂缝形状; (3)当梁受斜截面抗剪强度控制时,极限荷载P=?。 注:0 0175.1h s A f bh f V sv yv t u ++= λ 3.某矩形截面偏心受压柱,bxh=500mm x800mm , mm A A s s 40' ==, l 0=12.5m , 混凝土C30, fc=14.3N/mm 2, 纵向钢筋HRB335,300' ==f y f f N/mm 2,Es=2x105N/mm 2, 承受设计轴向力Nc=1800kN , 设计弯矩M=1080kN *m , 采用不对称配筋,试求s A 及' s A 。 注:已知21.1=η 4.先张法预应力轴心受拉杆,截面尺寸200mm x200mm , 混凝土C40,已配置9ФHT 10预应力,张拉控制应力2 /1000mm N con =σ,无非预应力筋,第一批预应力损失2 /68mm N l =I σ,第二批预应力损伤2 /52mm N l =∏σ,试计算:(1)施工时混凝土的预应力c σ;(2)使用荷载加至多少时使混凝土的法向压应力为零;(3)使用荷载加至多少时构件即将出现裂缝;(4)构件的极限承载能力是多少? 二、简答题(60分,每题5分) 1. 请画出单调荷载作用下有明显流幅钢筋的应力-应变曲线,对其做必要的解释,并画出适用于该应 力-应变曲线的二种理论模型。 2. 什么是钢筋的疲劳强度?它在我国具体是如何确定的? 3. 如何确定混凝土立方体抗压强度、轴心抗压强度和轴心抗拉强度? 4. 什么是混凝土的徐变?画出并简述混凝土棱柱体徐变试验得到的应变-时间曲线。徐变对混凝土结 构构件的性能有什么影响? 5. 简述光圆钢筋与混凝土粘结作用产生的机理。 6. 为什么在混凝土轴心受压短柱中,不宜采用屈服强度较高(比如Mpa f y 400' >)的钢筋? 7. 画出混凝土偏心受压构件的u cu M N -相关曲线并对其做必要的说明。 8. 混凝土有腹筋梁的斜截面破坏形式有几种?分别简述之。 9. 简述基于承载力的弯剪扭构件截面设计步骤。即已知截面尺寸(b, h, h 0),材料强度(f c , f t , f y , f yv ) 及作用在构件上的弯矩M ,剪力V 和扭矩T ,求纵筋和箍筋的用量。 10 请简述预应力受弯构件和预应力轴心受拉构件预应力度的概念。 11.请按①施工期间产生的裂缝和 ②使用期间随时间发展的裂缝 简述裂缝的成因与特点。 12.请以图示说明,什么是计算受弯构件变形时采用的最小刚度原则。 120 200

混凝土结构基本原理第次

混凝土结构基本原理-(-第次-)

————————————————————————————————作者:————————————————————————————————日期:

第3次作业 一、单项选择题(本大题共30分,共 10 小题,每小题 3 分) 1. 以下使结构进入承载能力极限状态的是() A. 结构的一部分出现倾覆 B. 梁出现过大的挠度 C. 梁出现裂缝 D. 钢筋生锈 2. 钢筋混凝土结构对钢筋性能的要求不包括() A. 强度 B. 塑性 C. 与混凝土的粘结力 D. 耐火性 3. 钢材的含碳量越低,则() A. 屈服台阶越短,伸长率也越短,塑性越差; B. 屈服台阶越长,伸长率越大,塑性越好; C. 强度越高,塑性越好; D. 强度越低,塑性越差; 4. 结构功能函数(状态方程)R–S=0,表明结构处于() A. 可靠状态 B. 失效状态 C. 极限状态 D. 不确定状态 5. 配置螺旋筋的混凝土柱体受压构件,其抗压强度高于fc是因为()。 A. 螺旋筋参与受压 B. 螺旋箍筋使混凝土密实 C. 螺旋箍筋约束了混凝土的横向变形 D. 螺旋箍筋使混凝土中不出现内裂缝 6. 《规范》规定验算的受弯构件裂缝宽度是指()。 A. 纵筋表面的裂缝宽度 B. 纵筋水平处构件侧表面的裂缝宽度 C. 构件底面的裂缝宽度 D. 钢筋合力作用点的裂缝宽度 7. 钢筋混凝土纯扭构件的开裂扭矩() A. 等于按弹性材料计算的开裂扭矩 B. 等于按理想塑性材料计算的开裂扭矩 C. 介于之间 D. 低于 8. 验算受弯构件裂缝宽度和挠度的目的是() A. 使构件能够带裂缝工作 B. 使构件满足正常使用极限状态的要求 C. 使构件满足承载能力极限状态的要求 D. 使构件能够在弹性阶段工作 9. 钢筋与混凝土的粘结性能中,下列说法不正确的是()。 A. 钢筋与混凝土表面的化学吸附作用对其粘结强度影响不大 B. 光面钢筋主要靠摩擦作用提供粘结强度 C. 变形钢筋主要靠机械咬合作用提供粘结强度

混凝土结构设计原理复习重点(非常好)

混凝土结构设计基本原理复习重点(总结很好) 第 1 章绪论 1.钢筋与混凝土为什么能共同工作: (1)钢筋与混凝土间有着良好的粘结力,使两者能可靠地结合成一个整体,在荷载作用下能够很好地共同变形,完成其结构功能。 (2)钢筋与混凝土的温度线膨胀系数也较为接近,因此,当温度变化时,不致产生较大的温度应力而破坏两者之间的粘结。 (3)包围在钢筋外面的混凝土,起着保护钢筋免遭锈蚀的作用,保证了钢筋与混凝土的共同作用。 1、混凝土的主要优点:1)材料利用合理2 )可模性好3)耐久性和耐火性较好4)现浇混凝土结构的整体性好5)刚度大、阻尼大6)易于就地取材 2、混凝土的主要缺点:1)自重大2)抗裂性差3 )承载力有限4)施工复杂、施工周期较长5 )修复、加固、补强较困难 建筑结构的功能包括安全性、适用性和耐久性三个方面 作用的分类:按时间的变异,分为永久作用、可变作用、偶然作用 结构的极限状态:承载力极限状态和正常使用极限状态 结构的目标可靠度指标与结构的安全等级和破坏形式有关。 荷载的标准值小于荷载设计值;材料强度的标准值大于材料强度的设计值 第2章钢筋与混凝土材料物理力学性能 一、混凝土 立方体抗压强度(f cu,k):用150mm×150mm×150mm的立方体试件作为标准试件,在温度为(20±3)℃,相对湿度在90%以上的潮湿空气中养护28d,按照标准试验方法加压到破坏,所测得的具有95%保证率的抗压强度。(f cu,k为确定混凝土强度等级的依据) 1.强度轴心抗压强度(f c):由150mm×150mm×300mm的棱柱体标准试件经标准养护后用标准试验方法测得的。(f ck=0.67 f cu,k) 轴心抗拉强度(f t):相当于f cu,k的1/8~1/17, f cu,k越大,这个比值越低。 复合应力下的强度:三向受压时,可以使轴心抗压强度与轴心受压变形能力都得到提高。 双向受力时,(双向受压:一向抗压强度随另一向压应力的增加而增加;双向受拉:混凝土的抗拉强度与单向受拉的基本一样; 一向受拉一向受压:混凝土的抗拉强度随另一向压应力的增加而降低,混凝土的抗压强度随另一向拉应力的增加而降低) 受力变形:(弹性模量:通过曲线上的原点O引切线,此切线的斜率即为弹性模量。反映材料抵2.变形抗弹性变形的能力) 体积变形(温度和干湿变化引起的):收缩和徐变等。 混凝土单轴向受压应力-应变曲线数学模型 1、美国E.Hognestad建议的模型 2、德国Rusch建议的模型 混凝土的弹性模量、变形模量和剪变模量 弹性模量 变形模量 切线模量 3、(1)徐变:混凝土的应力不变,应变随时间而增长的现象。 混凝土产生徐变的原因: 1、填充在结晶体间尚未水化的凝胶体具有粘性流动性质 2、混凝土内部的微裂缝在载荷长期作用下不断发展和增加的结果 线性徐变:当应力较小时,徐变变形与应力成正比;非线性徐变:当混凝土应力较大时,徐变变形与应力不成正比,徐变比应力增长更快。影响因素:应力越大,徐变越大;初始加载时混凝土的龄期愈小,徐变愈大;混凝土组成成分水灰比大、水泥用量大,徐变大;骨料愈坚硬、弹性模量高,徐变小;温度愈高、湿度愈低,徐变愈大;尺寸大小,尺寸大的构件,徐变减小。养护和使用条件 对结构的影响:受弯构件的长期挠度为短期挠度的两倍或更多;长细比较大的偏心受压构件,侧向挠度增大,承载力下降;由于徐变产生预应力损失。(不利)截面应力重分布或结构内力重分布,使构件截面应力分布或结构内力分布趋于均匀。(有利) (2)收缩:混凝土在空气中结硬时体积减小的现象,在水中体积膨胀。 影响因素:1、水泥的品种:水泥强度等级越高,则混凝土的收缩量越大; 2、水泥的用量:水泥越多,收缩越大;水灰比越大,收缩也越大; 3、骨料的性质:骨料的弹性模量大,则收缩小; 4、养护条件:在结硬过程中,周围的温、湿度越大,收缩越小; 5、混凝土制作方法:混凝土越密实,收缩越小; 6、使用环境:使用环境的温度、湿度大时,收缩小; 7、构件的体积与表面积比值:比值大时,收缩小。 对结构的影响:会使构件产生表面的或内部的收缩裂缝,会导致预应力混凝土的预应力损失等。 措施:加强养护,减少水灰比,减少水泥用量,采用弹性模量大的骨料,加强振捣等。 混凝土的疲劳是荷载重复作用下产生的。(200万次及其以上) 二、钢筋 光圆钢筋:HPB235 表面形状 带肋钢筋:HRB335、HRB400、RRB400 有明显屈服点的钢筋:四个阶段(弹性阶段、屈服阶段、强化阶段、破坏阶段),屈服强度力学性能是主要的强度指标。(软钢)

相关主题
文本预览
相关文档 最新文档