当前位置:文档之家› 含氯代烃废水的生物毒性与处理方法探讨

含氯代烃废水的生物毒性与处理方法探讨

含氯代烃废水的生物毒性与处理方法探讨
含氯代烃废水的生物毒性与处理方法探讨

含氯代烃废水的生物毒性与处理方法探讨

贺启环

南京理工大学化工学院环境科学与工程系南京210094

摘要:卤代烃是在有机物分子中的碳原子上用卤素基团取代出氢的卤化产物,这个变化使有机物的生物毒性增大,是卤素有机态毒性的体现;另一方面,卤代烃在生物水解或降解过程中又会重新释放出带正电荷的卤素,与水结合后成为次卤酸而具有无机态卤素的生物毒性。作者在提出这种卤代烃生物毒性学说的基础上,提出了一系列在含卤代烃废水预处理与生物处理中的解毒、降毒、抗毒和减荷及提高可生化性的措施,以提高含卤代烃废水的综合处理效率。

关键词:卤代烃;氯代有机物;废水处理;生物毒性

Discussion on the Bio-toxicity and Treatment of Waste Water with

Chlorinated Hydrocarbon

HE Qi-huan

(Department of Environmental Science and Engineering, Nanjing University of S. & T., 210094 )

Abstract:

When the H ydrogen in the organic molecule’s carbon group is substituted by halogen, the compound is called halohydrocarbon. This substitution enhances the bio-toxicity of the organic compound (the toxicity of organic halogen). On the other side, halohydrocarbon can release electropositive halogen again in the process of bio-hydrolysis or bio-degradation. The released electropositive halogen can combine with water and show inorganic halogen bio-toxicity. Based on the his “halohydrocarbon’s bio-toxicity” theory, author put forward a series of methods on detoxification, decreasing toxicity, anti-toxification and improving the biochemistribility in the process of pretreatment and bio-treatment of waste water with halohydrocarbon. Thus, we can advance the efficiency of all-around treatment of waste water with halohydrocarbon

Key words:

halohydrocarbon; chlorinated organic compounds; wastewater treatment; bio-toxicity

1. 氯代烃的生物毒性机制解释

1-1 有机物的卤化

卤代烃(脂肪烃或芳烃)类被我国和许多其它国家列入水中污染物黑名单,许多情况下它是卤化反应的产物。卤化反应主要是在有机物分子中的碳原子上引入一

个卤素基团(用Cl+1代替与碳连接的H+1),生成卤代烃(简称卤烃),它们可用RX表示,其中R表示脂肪烃或芳烃,X代表氟、氯、溴和碘等。在精细化工中以氯化最为普遍,常用的卤化剂是氯或溴。另外,还可通过加成或取代反应成为卤化物,其常用的卤化剂有三氯化磷、氧氯化磷、五氯化磷、氯化亚砜、盐酸(氯化氢)或氢溴酸加催化剂(如氧化锌、三氯化铁等)。最简单的卤化反应如:CH3-H++Cl O-Cl O→CH3-Cl++H+-Cl-

┏→Cl+1

氯化原理:歧化(自氧化还原)--------- Cl O-Cl O(0阶)┫

┗→Cl-1

氯代烃中与碳原子相连的氯基都带正电荷。

1-2 氯代烃的生物降解与无机中间产物(HClO)

⑴生物降解历程

废水的生物处理中一般都比较关注微生物,而对污染物的降解过程与产物注意不夠,尤其对于像氯代烃(脂肪烃与芳香烃)这类物质(有机氯代化合物),其降解产物或中间产物对生物处理过程有重要影响。

┏→C→CO2

CH3-Cl +微生物+O2→━╋→H+→H2O

┗→Cl++H2O→HClO+H+

CH3-Cl +微生物+H2O(生物水解)→CH3-H +HClO

微生物将化合物生物降解的起始途径是多样的,但有些关键性的中间过程是完全一致的,例如氯代芳烃好氧生物降解中,在过氧化酶和加氧酶的作用下苯环上发生羟基化,转化成双酚类化合物,进一步氧化后苯环断裂开环,并且大多会从其连接的基团上开环脱氯,形成低分子脂肪酸和Cl+(HClO)。在厌氧生物降解中,在还原脱氢酶的作用下,脱去取代基氯(例如,氯酚的降解是从羟基的邻位脱氯成为苯酚开始的),脱氯出来的Cl+(HClO)在厌氧还原的环境中被还原成Cl-。由此可见,厌氧的还原水解条件有利于氯代烃的脱氯解毒和降解,在有硫酸盐还原的条件下,更有利于氯代烃的脱氯降解;通常情况下,进一步的降解和最终的矿化还得由好氧生物处理来完成,在这“厌氧-好氧”过程中,厌氧脱氯是关键。

HClO氧化还原的产物是HCl,从而使废水的pH不断下降,这也会抑制生化反应的深入进行。

⑵共基质代谢

氯代烃难以生物直接降解,但可以通过共基质代谢作用来使其间接得到降解。所谓“共基质代谢”就是微生物通过其它可利用基质(称为生长基质或第一碳源)的代谢生长,在氯代烃的诱导下产生一种可以降解氯代化合物(称为非生长基质)的酶,使氯代化合物发生结构改变,性质也因此变得温和:毒性变小、抗性降低;然后利用其它共存微生物(混合培养)将其进一步降解。

生长基质大多是一些与氯代烃结构相似,但易于降解的有机物(如甲苯、脂肪酸酯类、乙醇等),或易于获取营养的有机化合物(如葡萄糖)作为辅基和脱氯作用的电子受体。具体投加时应通过试验,筛选性价比好,易得易用的生长基质。

1-3 氯代烃的生物毒性和可降解性

此处的生物毒性是指废水中的污染物抑制微生物的代谢活动,使微生物活性降低,甚至中毒死亡的性质。一些污染物可能有较高的BOD/COD比值,但当它们超过一定浓度后即显示其生物毒性,因而变得难以为微生物所分解。例如苯酚(B/C=0.46)、丙烯腈(B/C=0.39)。有一些污染物毒性并不太大,但对生物氧化有很高的阻抗和持久性,生物降解速度十分缓慢,称为难(生物)降解污染物,例如三乙醇胺(B/C=0.005)。而氯代化合物常常二者兼而有之,并且通常是其生物毒性抑制了它的可降解性。

作者认为:氯代烃的生物毒性可分为有机态毒性和无机态毒性两部分。

⑴有机态毒性即氯代烃自身的生物毒性,它可能是通过阻断或干扰生物代谢链的方式起毒性作用,它有一个“传质-渗透-反应-中毒”的过程。

⑵无机态毒性是氯代烃在生物降解/水解过程中,释放出次氯酸类(HClO)氧化性消杀剂而起到毒性作用,这一过程甚至在胞外酶的作用下就可发生。由于微生物直接面对消杀剂,所以毒性更为强烈,但这是伴随在氯代烃转化和降解过程中产生的,所以中毒有一个过程;越易降解/水解的载体有机物结构,其无机态毒性释放越快,毒性也就越大。

⑶通常在污水消毒中,有效氯的投加量约20~25mg/L,相当于18mg/L CH3Cl,但由于一氯甲烷自身毒性较小,又难于生物降解,所以其实际生物毒性可高达500mg/L(对好氧降解微生物的抑制浓度)。而对于氯苯,25mg/L有效氯相当于40mg/L的氯苯,但由于氯苯自身的生物毒性很强,而苯系物的生物降解常从苯环上连接的基团开始,所以一旦开环就很容易释放出HClO,这就导致了氯苯实际的生物毒性低至17mg/L左右。

1-4 氯代有机化合物生物毒性和降解性的一般规律

⑴氯代芳烃的降解性能差于苯,远小于苯酚、苯甲酸、甲苯和苯胺,而好于硝基苯;

⑵卤素取代基对脂肪族的生物降解也很不利,卤化的链烷、链烯和链炔全都难生物降解;

⑶一般而言,多氯取代的脂肪族和芳香族化合物中,随着氯原子取代基数量的增加,或在同一个碳原子上卤素个数越多,其生物可降解性越差,毒性也越大。例如三氯甲烷、四氯化碳就几乎不能降解;

⑷溴基取代比氯基取代更难生物降解;

⑸一些其它取代基若被卤基置换,则化合物的生物降解性下降;

⑹取代基的位置也影响化合物的生物降解性:

①氯代苯酚和氯代苯甲酸中可降解性的大小次序为:邻位>间位>对位,对位氯代苯酚并具有强的抑制作用;

②二氯芳烃中邻位取代最难生物降解,而对二氯苯还具有升华性,可直接作为防霉、防蛀剂;

③两个氯取代基位于两个苯环上的同一位置也是难于生物降解的;

④氯原子取代基在同一苯环上要比在两个苯环上容易生物降解;

⑤对于其它一些芳烃,卤素间位取代的苯环,抗生物降解性更明显;

⑺对于其它类型的化合物,只要在分子中引入卤素原子,都会增加其毒性和生物可降解的难度,例如二氯苯氧乙酸、三氯乙醛、氯乙醇等。而有些有机氯化物如二氯异氰尿酸钠、氯胺T等,溶于水后即迅速水解释放出HClO,所以它们往往是作为一种含氯消杀剂来使用的。

⑻取代基的种类和数量越多,生物降解难度越大。如果卤代芳烃上还接有-OH(酚),-NO2(硝基)、-CN(腈)等基团,那么这类氯代烃的毒性更大。

⑼废水的pH值可能会影响到氯代烃的形态与分布,一般认为游离态比化合态的毒性更大;

⑽应该引起注意的是,卤化废水中除了卤代烃的产物与副产物外,还常常含有残余的卤化剂和催化剂及其它副产物与盐分等,这更增加了废水处理的难度。另外,卤代烃的生物毒性常会抑制硝化过程的进行,并降低生物池中活性污泥的浓度。

1-5 生物毒性說明例

高效农药:氯氟氰菊酯(功夫菊酯)C23H19ClF3NO3

化学名称:3-(2-氯-3,3,3-三氟丙烯基)-2,2-二甲基环丙烷羧酸-α-氰基-3-苯氧苄基酯,

别名:三氟氯氰菊酯、氟氯氰菊酯、氯氟氰菊酯

⑴性质:难溶于水,可溶于大多数有机溶剂。稳定性好,在酸性溶液中稳定,在碱性介质中易分解。

⑵性能:杀虫活性高,属神经毒剂,拟除虫菊酯类杀虫剂。以触杀和胃毒作用为主,并有一定的驱避作用,无内吸和熏蒸作用。具有速效、持效期长,能耐雨水淋洗,杀虫谱广的特点,主要用于大麦、玉米、棉花、蔬菜、烟草等作物防治。

⑶结构式(用甲醇和异丙胺差向异构化):

⑷机理分析:氯氟氰菊酯被生物(虫)体接触后渗透入其体内,通过胞內外代谢分解释放出游离Cl+、F+、CN-,它们极具氧化性和杀伤力(例如氰化物对人体的致死剂量是毫克级)。而菊酯类的有机结构和空间构型又使其具有很强的生物亲和性、渗透性、环境稳定性及生物分解性,对于虫子来说尤如糖衣地雷,所以成为高效杀虫剂。

2. 对策措施

2-1 改善与强化生化处理

⑴采用“厌氧水解-好氧曝气”的(A/O或A2/O)生化处理工艺,水解酸化和厌氧产气过程中可以对卤烃进行脱卤反应,同时也利于卤代烃的毒性分散释放。

⑵由于卤代烃(尤其是氯苯类)的生物氧化速度较慢,因此需延长好氧生化处理时间,即要在低容积负荷下运行。好氧生化采用MBR膜生物反应器则可强化卤代烃的降解。

⑶生化池采用全混合式(如生物流化床)或多点进水方式,降低生化池进水端混合液中卤代烃的局部浓度,将毒性分散开来。

⑷筛选投加分解卤烃的专用降解菌(如邻单孢菌属),和保持足夠的反应温度,可使活性污泥的生物氧化速度加快。

⑸投加粉末活性炭、蒙脱土等作为微生物促进剂和抗毒剂以提高降解卤烃的效果,而活性炭还有脱氯效果。

⑹用生活污水、生物发酵废水混合稀释,或适量添加营养基质(如葡萄糖、醋酸)与生长基质等,也可明显提高卤烃的去除率。

⑺由于卤代烃废水生化处理过程中pH不断下降,所以应注意适时加碱中和或提高废水的缓冲能力,以降低废水毒性和保持生物降解的良好条件。

⑻在碱性条件下(pH=8~10)进行生化处理,将杀伤力大的HClO转化成杀伤力相对较小的NaClO;用Na2CO3比用NaOH好,因为前者调pH时会生成NaHCO3,可与Na2CO3形成缓冲体系,pH易控、易稳定。

⑼在微偏碱性条件下用投加Fe2+(或SO32-)来还原破解HClO:

2Fe(OH)2+HClO+NaOH→2Fe(OH)3+NaCl

理论上1mg/L有效氯要加入3.2mg/L的Fe2+。铁离子的补充也使生物氧化还原过程有更充足的电子载体,所以它也是微生物的代谢生长元素。

⑽如果废水中缺乏NH3-N,在生化池进水端投加适量硫酸铵或氯化铵,使HClO与氨反应转化成杀伤力较弱的氯胺(NH2Cl),进而HClO又使氯胺转化成氮气N2(折点加氯的原理),从而达到脱氯的目的。

2-2 加强针对性的预处理

通常作为溶剂的卤代烃都作回收回用处理,但如果废水中的氯代烃浓度较高,则应先进行解毒减荷预处理,经过物化预处理后废水中的卤代烃浓度一般可以降到10mg/L左右,为后续的生化处理创造了条件。实用的工业方法有:

⑴混凝沉淀法:绝大部分卤代烃在水中的溶解度很小,可用FeCl3作混凝剂,再用石灰乳将pH调到9,可以除去大部分液态水不溶性卤烃。

⑵碱性水解法:含氯仿废水不但难以生化降解,而且毒性也大,为此也可采用碱性水解法把氯仿水解成甲酸盐来解毒。在pH>12.5,温度控制在95~100℃下加热1h,水中氯仿几乎全部水解。此法尤其适用于处理高浓度的含卤代烃废水。

⑶金属还原法:利用金属(Fe、Zn等)或双金属(如Pd/Fe、Cu/Fe、Ni/Fe等)及含铁化合物(如FeS、氧化铁、绿锈等)的还原作用,脱除卤代脂肪烃分子中的卤原子,对氯苯则因去除了氯原子而形成毒性较小的环己醇。其动力学过程受控于溶液的pH(偏酸性)和金属的表面积与活性(如用铜等来激活)等。由于该方法常需引入Pd、Cu、Ni等,甚至盐作催化剂、激活剂,以保持快速持久的效果,所以在进入生化处理系统之前,还得去除这些溶入水体中的金属离子。另外,这些催化剂、激活剂的使用需要付出成本。

⑷电化学法:采用微电解膨松床或电解絮凝进行阴极脱卤解毒,然后由电解过程溶出的Fe2+混凝沉淀处理也可去除相当数量的污染物,卤代烃的总脱氯/去除率可达80%以上,并可改善废水的可生化性。由于在阴极还原,以及溶出的Fe2+有还原性,所以脱下来的氯其形态为Cl-,这有利于降低废水的毒性。

[R-X]+2e+H2O →[R-H]+X-+OH-

⑸吹脱法:少量低沸点的卤代烃也可在一定温度下用空气吹脱、高烟囱排放;但须符合相关的排放标准,防止二次污染。如果吹脱出来的气体中卤代有机物的浓度较高,可以采用燃烧法处理,但燃烧废气中含氯化氢,须用碱液洗涤净化后才可排放。

⑹吸附法:废水中的工业卤烃可用吸附法去除,吸附剂有活性炭和大孔树脂等。吸附剂须要解吸再生,并且通常应该回收卤烃。这种方法操作较复杂、能耗高,比较适用于具有回收价值的卤代烃处理。另外,沸石、膨润土、磷石膏、珍珠岩等也可作吸附剂,它们改性后吸附量还可进一步提高。纤维、纸张,聚氨酯泡沫塑料,甚至剩余生化污泥也可吸附卤烃化合物,吸附后再作焚烧处理。

⑺氧化法:用催化臭氧法、Fenton试剂法来处理卤烃废水效果较好,但一般情况下由于费用高、性价比低而少有工业应用。也可以将微电解与H2O2结合起来使用,即所谓的“微电解-Fenton法”,可以起到一定的强化处理效果。近年

来,电催化氧化也在处理氯代烃废水中崭露头角。

3. 结束语

⑴只有在了解卤代烃的生物降解过程和生物毒性的基础上,才能提出有针对性的处理卤烃废水的有效对策措施。

⑵做好含卤代烃废水的解毒减荷预处理是关键。

⑶创造微生物代谢生长的良好条件,优化和强化生化处理是达标排放的保证。

⑷摸清废水特征,方法因地置宜,综合措施得力,含卤代烃废水是可以得到经济又有效处理的。

参考文献

⑴钱易,汤鸿霄、文相华.水体颗粒物和难降解有机物的特性与控制技术原理(下卷)[M]. 北京:中国环境科学出版社,2000.

⑵王连生.有机污染化学[M]. 北京:高等教育出版社,2004.

⑶金志刚,张彤,朱怀兰.污染物生物降解[M]. 上海:华东理工大学出版社,1997.

⑷冯晓西,乌锡康.精细化工废水治理技术[M]. 北京:化学工业出版社,2000.

⑸周红艺等.含铁化合物对有机氯化物的脱氯处理技术[J].环境污染治理技术与设备.2002,3(1):52~56

污水的生物处理方法生物膜法

污水的生物处理方法生 物膜法 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

污水的生物处理方法——生物膜法 教学要求: 1)掌握生物膜法的微生物学特征和工艺特征 2)掌握高负荷生物滤池、曝气生物滤池、塔式生物滤池以及生物转盘三 相传质和工艺运行特点。 3)掌握生物接触氧化特点及其工艺设计 第一节概述 生物膜——是使细菌、放线菌、蓝绿细菌一类的微生物和原生动 物、后生动物、藻类、真菌一类的真核微生物附着在滤料或某些载体上 生长繁殖,并在其上形成膜状生物污泥。 生物膜法:污水经过从前往后具有细菌→原生动物→后生动物、从 表至里具好氧→兼氧→厌氧的生物处理系统而得到净化的生物处理技 术。 一、生物构造及其对有机物的降解 1 生物膜的构造特征 生物膜(好氧层+兼氧层+厌氧层) Array+附着水层(高亲水性)。 2 降解有机物的机理 1)微生物:沿水流方向为细菌—— 原生动物——后生动物的食物链 或生态系统。具体生物以菌胶团 为主、辅以球衣菌、藻类等,含

有大量固着型纤毛虫(钟虫、等枝虫、独缩虫等)和游泳型纤毛虫(楯纤虫、豆形虫、斜管虫等),它们起到了污染物净化和清除池内生物(防堵塞)作用。 2) 污染物:重→轻(相当多污带→α中污带→β中污带→寡污带). 3) 供氧:借助流动水层厚薄变化以及气水逆向流动,向生物膜表面供 氧。 4) 传质与降解:有机物降解主要是在好氧层进行,部分难降解有机物经 兼氧层和厌氧层分解,分解后产生的H 2S ,NH 3等以及代谢产物由内向外传递而进入空气中,好氧层形成的NO 3--N 、NO 2--N 等经厌氧层发生反硝化,产生的N2也向外而散入大气中。 5) 生物膜更新:经水力冲刷,使膜表面不断更新(DO 及污染物),维持 生物活性(老化膜固着不紧)。 二、生物膜的主要特征 1 微生物相方面的特征 1) 参与净化反应微生物多样化; 2) 食物链长,污泥产率低; 3) 能够存活世代较长的微生物; 4) 可分段运行,形成优势微生物种群,提高降解能力。 2 工艺方面的特征 1) 对水质水量变动有较强适应性; 2) 污泥沉降性能好,宜于固液分离; 3) 能处理低浓度污水;

废水厌氧生物处理与废水好氧生物处理的原理,特点及适用条件.

废水厌氧生物处理与废水好氧生物处理的原理,特点及适用条件 好氧生物处理 好氧生物处理是在有游离氧(分子氧)存在的条件下,好氧微生物降解有机物,使其稳定、无害化的处理方法。微生物利用废水中存在的有机污染物(以溶解状与胶体状的为主),作为营养源进行好氧代谢。 过程:有机物被微生物摄取后,通过代谢活动,约有三分之一被分解、稳定,并提供其生理活动所需的能量;约有三分之二被转化,合成为新的原生质(细胞质),即进行微生物自身生长繁殖。后者就是废水生物处理中的活性污泥或生物膜的增长部分,通常称其剩余活性污泥或生物膜,又称生物污泥。在废水生物处理过程中,生物污泥经固—液分离后,需进行进一步处理和处置。 优点:好氧生物处理的反应速度较快,所需的反应时间较短,故处理构筑物容积较小。且处理过程中散发的臭气较少。所以,目前对中、低浓度的有机废水,或者说BOD浓度小于500mg/L的有机废水,基本上采用好氧生物处理法。 在废水处理工程中,好氧生物处理法有活性污泥法和生物膜法两大类。 厌氧生物处理是在没有游离氧存在的条件下,兼性细菌与厌氧细菌降解和稳定有机物的生物处理方法。在厌氧生物处理过程中,复杂的有机化合物被降解、转化为简单的化合物,同时释放能量。在这个过程中,有机物的转化分为三部分进行:部分转化为CH4,这是一种可燃气体,可回收利用;还有部分被分解为 CO2、H20、NH3、H2S等无机物,并为细胞合成提供能量;少量有机物被转化、合成为新的原生质的组成部分。由于仅少量有机物用于合成,故相对于好氧生物处理法,其污泥增长率小得多。 废水厌氧生物处理 废水厌氧生物处理过程不需另加氧源,故运行费用低。此外,它还具有剩余污泥量少,可回收能量(CH4)等优点。其主要缺点是反应速度较慢,反应时间较长,处理构筑物容积大等。但通过对新型构筑物的研究开发,其容积可缩小。此外,为维持较高的反应速度,需维持较高的反应温度,就要消耗能源。 对于有机污泥和高浓度有机废水(一般BOD5≥2 000mg/L)可采用厌氧生物处理法。

废水的生物处理

废水的生物处理 废水是环境污染“三废”之一,利用微生物的代谢作用可除去废水中的有机污染物,其方法简单、科学,常分为需氧生物处理法和厌氧生物处理法两种,现对其机制简述如下: 一、需氧生物处理废水 生活污水中的典型有机物是碳水化合物、合成洗涤剂、脂肪、蛋白质及其分解产物如尿素、甘氨酸、脂肪酸等。这些有机物可按生物体系中所含元素量的多寡顺序表示为C H O N S。  生物体系中这些反应有赖于生物体系中的酶来加速。酶按其催化反应分为:1)氧化还原酶在细胞内催化有机物的氧化还原反应,促进电子转移,使其与氧化合成脱氢。可分为氧化酶和还原酶。氧化酶可活化分子氧,形成水或过氧化氢。还原酶包括各种脱氢酶,可活化基质上的氢,并由输酶将氢传给被还原的物质,使基质氧化,受氢体还原;2)水解酶对有机物的加水分解反应起催化作用。水解反应是在细胞外产生的最基本的反应,能将复杂的高分子有机物分解为小分子,使之易于透过细胞壁。如将蛋白质分解为氨基酸,将脂肪分解为甘油和脂肪酸,将复杂的多糖分解为单糖等。此外还有脱氨基、脱羧基、磷酸化和脱磷酸等酶。 在需氧生物处理过程中,污水中的有机物在微生物酶的催化作用下被氧化降解,分3个阶段:第1阶段,大的有机物分子降解成为构成单元——单糖、氨基酸或甘油和脂肪酸。在第2阶段中,第1阶段的产物部分地被氧化为下列物质中的一种或几种:二氧化碳、水、乙酰基辅酶A,酮戊二酸和草醋酸。第3阶段(即三羧酸循环)是乙酰基辅酶A、酮戊二酸和草醋酸被氧化为二氧化碳和水。有机物在氧化降解的各个阶段,都释放出一定的能量。 在有机物降解的同时,还发生微生物原生质的合成反应。在第1阶段中由被作用物分解成的构成单元可以合成碳水化合物、蛋白质和脂肪,再进一步合成细胞原生质。合成能量是微生物在有机物的氧化过程

生物制药厂废水处理方案毕业设计

1000m3/d生物制药厂废水处理方案 引言 水是人类的生命之源,它孕育和滋养了地球上的一切生物。与我们人类密切相关的是淡水。但是,水环境中的淡水资源却很少,仅占总量的2.53%。因此,保护和珍惜水资源,是整个社会的共同职责。在我国,淡水资源人均不超过2545立方米,不到世界人均的1/4,因此我们更应该保护和珍惜水资源。 20世纪以来,医药工业的迅速发展,给人类文明带来了飞跃。与此同时,在其生产过程中所排放出来的废水对环境的污染也日益加剧,给人类健康带来了严重的威胁。据文献报道,医药废水成分复杂、浓度和盐分高、色度和毒性大,往往含有种类繁多的有机污染物质,这些物质中有不少属于难生化降解的物质,可在相当长的时间内存留于环境中。采用传统的处理工艺很难达标排放。对于这些种类繁多、成分复杂的有机废水的处理,仍然是目前国内外水处理的难点和热点。 结合某生物制药厂污水特点,通过调查收集资料和查阅文献,以SBR法处理该制药厂所排放的污水,处理后可以达标排放,有利于当地水环境的良性循环。 第一章概论 1.1设计任务及依据 1.1.1设计任务

本设计方案的编制范围是某生物制药厂废水处理工艺,处理能力为1000 ,内容包括处理工艺的确定、各构筑物的设计计算、设备选型、平面布置、高程计算、经济技术分析。完成绘制处理工艺流程组图、各构筑物设计计算图、处理工艺组合平面布置及高程布置图。 1.1.2设计依据 (1)《中华人民共和国环境保护法》和《水污染防治法》 (2)《污水综合排放标准GB8978-1996》 (3)《给水排水工程结构设计规范》(GBJ69-84) (4)《毕业设计任务书》 (5)《毕业设计大纲》 1.2 设计要求 1.2.1设计原则 (1)必须确保污水厂处理后达到排放要求。 (2)污水处理厂采用的各项设计参数必须可靠。在设计中一定要遵守现行的设计规范,保证必要的安全系数。对新工艺、新技术、新结构和新材料的采用积极慎重的态度。 (3)污水处理厂设计必须符合经济的要求。 (4)污水厂设计应当力求技术合理。在经济合理的原则下,必须根据需要,尽可能采用先进的工艺、机械和自控技术,但要确保安全可靠。

ao生物接触氧化污水处理工艺介绍

A/O生物接触氧化污水处理工艺介绍 A/O生物接触氧化工艺,操作简单,运转费用低,处理效果好,运行稳定,是目前较为成熟的生活污水处理工艺,能有效地确保污水达标排放。 1、工艺流程 见下图: 经处理后的餐饮污水 2、工艺说明 污水由排水系统收集后,进入污水处理站的格栅井,去除颗粒杂物后,进入调节池,进行均质均量,调节池中设置预曝气系统,再经液位控制仪传递信号,由提升泵送至初沉池沉淀,废水自流至A级生物接触氧化池,进行酸化水解和硝化反硝化,降低有机物浓度,去除部分氨氮,然后入流O级生物接触氧化池进行好氧生化反应,在此绝大部分有机污染物通过生物氧化、吸附得以降解,出水自流至二沉池进行固液分离后,沉淀池上清液流入消毒池,经投加氯片接触溶解,杀灭水中有害菌种后达标外排。 由格栅截留下的杂物定期装入小车倾倒至垃圾场,二沉池中的污泥部分回流至A级生物处理池,另一部分污泥至污泥池进行污泥消化后定期抽吸外运,污泥池上清液回流至调节池再处理。 3、工艺设施 (1)格栅井 设置目的: 在生活污水进入调节池前设置一道格栅,用以去除生活污水中的软性缠绕物、较大固颗粒杂物及飘浮物,从而保护后续工作水泵使用寿命并降低系统处理工作负荷。 设置特点: 格栅井设置钢筋砼结构,格栅采用手动机械框式。 (2)调节池 设置目的: 生活污水经格栅处理后进入调节池进行水量、水质的调节均化,保证后续生化处理系统水量、水质的均衡、稳定,并设置预曝气系统,用于充氧搅拌,以防止污水中悬浮颗粒沉淀而发臭,又对污水中有机物起到一定的降解功效,提高整个系统的抗冲击性能和处理效果。 设计特点:

调节池设计为钢筋砼结构。 (3)调节池提升水泵 设置目的: 调节池内设置潜污泵,经均量,均质的污水提升至后级处理。 设计特点: 潜污泵设置二台,液位控制,水泵采用无堵塞撕裂杂物泵。 (4)沉淀池 设置目的: 进行固液分离去除生化池中剥落下来的生物膜和悬浮污泥,使污水真正净化。 设计特点: 设计为竖流式沉淀池,其污泥降解效果好。 采用三角堰出水,使出水效果稳定。 污泥采用气提法定时排泥至污泥池,并设污泥气提回流装置,部分污泥回流至A级生物处理池进行硝化和反硝化,也减少了污泥的生成,也利于污水中氨氮的去除。 该池设计为A3钢结构。 (5)A级生物处理池(缺氧池) 设置目的: 将污水进一步混合,充分利用池内高效生物弹性填料作为细菌载体,靠兼氧微生物将污水中难溶解有机物转化为可溶解性有机物,将大分子有机物水解成小分子有机物,以利于后道O级生物处理池进一步氧化分解,同时通过回流的硝炭氮在硝化菌的作用下,可进行部分硝化和反硝化,去除氨氮。 设计特点: 内置高效生物弹性填料,又具有水解酸化功能,同时可调节成为O级生物氧化池,以增加生化停留时间,提高处理效率。 该池设计为A3钢结构。 (6)O级生物处理池(生物接触氧化池) 设置目的: 该池为本污水处理的核心部分,分二段,前一段在较高的有机负荷下,通过附着于填料上的大量不同种属的微生物群落共同参与下的生化降解和吸附作用,去除污水中的各种有机物质,使污水中的有机物含量大幅度降低。后段在有机负荷较低的情况下,通过硝化菌的作用,在氧量充足的条件下降解污水中的氨氮,同时也使污水中的COD值降低到更低的水平,使污水得以净化。 设计特点: 该池由池体、填料、布水装置和充氧曝气系统等部分组成。 该池以生物膜法为主,兼有活性污泥法的特点。 池中填料采用弹性立体组合填料,该填料具有比表面积大,使用寿命长,易挂膜耐腐蚀不结团堵塞。填料在水中自由舒展,对水中气泡作多层次切割,更相对增加了曝气效果,填料成笼式安装,拆卸、检修方便。 该池分二级,使水质降解成梯度,达到良好的处理效果,同时设计采用相应导流紊流措施,使整体设计更趋合理化。 池中曝气管路选用优质ABS管,耐腐蚀。不堵塞,氧利用率高。 该池设计为A3钢结构。 (7)沉淀池 设置目的: 进行固液分离去除生化池中剥落下来的生物膜和悬浮污泥,使污水真正净化。 设计特点: 设计为竖流式沉淀池,其污泥降解效果好。

工业废水分类处理原则及处理方法

工业废水分类处理原则及处理方法 工业废水是指工业生产排放的废水、污水和废液,对环境的污染非常严重,必须做到工业废水的有效治理。随着工业的迅速发展,废水的种类和数量迅猛增加,对水体的污染也日趋广泛和严重,威胁人类的健康和安全。因此,对于保护环境来说,工业废水处理比城市污水处理更为重要。 一、工业废水分类及处理的基本原则 工业废水分类通常有以下三种:第一种是按工业废水中所含主要污染物的化学性质分类,含无机污染物为主的为无机废水,含有机污染物为主的为有机废水。例如电镀废水和矿物加工过程的废水,是无机废水;食品或石油加工过程的废水,是有机废水。第二种是按工业企业的产品和加工对象分类,如冶金废水、造纸废水、炼焦煤气废水、金属酸洗废水、化学肥料废水、纺织印染废水、染料废水、制革废水、农药废水、电站废水等。第三种是按废水中所含污染物的主要成分分类,如酸性废水、碱性废水、含氰废水、含铬废水、含镉废水、含汞废水、含酚废水、含醛废水、含油废水、含硫废水、含有机磷废水和放射性废水等。前两种分类法不涉及废水中所含污染物的主要成分,也不能表明废水的危害性。第三种分类法,明确地指出废水中主要污染物的成分,能表明废水一定的危害性。

处理的基本原则: (一)优先选用无毒生产工艺代替或改革落后生产工艺,尽可能在生产过程中杜绝或减少有毒有害废水的产生。 (二)在使用有毒原料以及产生有毒中间产物和产品过程中,应严格操作、监督,消除滴漏,减少流失,尽可能采用合理流程和设备。 (三)含有剧毒物质废水,如含有一些重金属、放射性物质、高浓度酚、氰废水应与其它废水分流,以便处理和回收有用物质。 (四)流量较大而污染较轻的废水,应经适当处理循环使用, 不宜排入下水道,以免增加城市下水道和城市污水处理负荷。 (五)类似城市污水的有机废水,如食品加工废水、制糖废水、造纸废水,可排入城市污水系统进行处理。 (六)一些可以生物降解的有毒废水,如酚、氰废水,应先经处理后,按允许排放标准排入城市下水道,再进一步生化处理。 (七)含有难以生物降解的有毒废水,应单独处理,不应排入 城市下水道。工业废水处理的发展趋势是把废水和污染物作为有用资源回收利用或实行闭路循环。

制药废水处理方案

目录 第一章概述 (2) 第二章设计依据、范围及原则 (3) 第三章设计规模与目标 (4) 第四章处理工艺流程设计 (5) 第五章主要构(建)筑物说明及报价 (10) 第六章主要设备及报价 (14) 第七章运行费用 (15) 第八章服务承诺 (16)

第一章概述 制药行业是我国传统支柱产业。随着国民经济的快速发展,制药企业迅速发展。制药行业是工业废水的来源之一。制药废水包括四种类型的废水,即有机合成药物废水、无机合成药物废水、抗生素废水和草药生产废水。这些废水具有浓度高、色度深、含难降解和对生物产生抑制作用的毒性物质以及间歇排放的特点。多数厂家未经处理就直接排放,对水体环境造成严重危害。 近年以来,我们从各种制药废水污染的环境中探索出高效降解制药废水中污染物的方法,并将它们实践于治理制药废水的项目。XX制药厂位于西高新,主要生产中药药剂,其废水排放量在3吨/小时左右,废水来源主要是设备清洗废水和原料浸泡清洗废水,废水不含对生物有毒的物质,主要成分为糖类、淀粉、纤维素和乳酸菌等有机物。此种废水如不加以处理,会对水体和周围环境造成一定污染。 XX制药厂在全厂奋力进取,不断跨越发展的同时,对环境保护高度重视,加强终端处理,严格达标排放,以顺应环保法规要求,体现企业的社会责任,为保护人类赖以生存的水环境作出应有的贡献。 我公司工程部应业主要求,编制了本设计方案。

第二章设计依据、范围及原则 一、设计依据 1、《污水综合排放标准》GB8978-1996; 2、《建筑给水排水设计规范》GBJ15-88; 3、工程建设的有关文件与设计资料及说明。 二、设计范围 废水处理站内从废水进口至出口的工艺流程与处理设备。 三、设计原则 1、设计方案严格执行有关环境保护的规定,污水处理后必须保证出水指标均达到国家污水综合排放二级标准。 2、采用经济合理的处理工艺,保证处理效果,并节省投资和运行管理费用。 3、设备选型兼顾通用性和先进性,处理稳定可靠、效率高、管理方便、维护维修工作量小、价格适中。 4、尽量减少对周围环境的影响,合理控制噪声、气味,妥善处理废弃物,避免二次污染。 5、工程建设完成后,力争达到社会效益、经济效益、环境效益的最佳统一。

城市污水生物处理

城市生活污水生物处理 利用微生物的代谢作用除去废水中有机污染物的一种方法,亦称废水生物处理法,简称废水生物法,分需氧生物处理法和厌氧生物处理法两种。需氧生物处理法是利用需氧微生物在有氧条件下将废水中复杂的有机物分解的方法。 生活污水中的典型有机物是碳水化合物、合成洗涤剂、脂肪、蛋白质及其分解产物如尿素、甘氨酸、脂肪酸等。这些有机物可按生物体系中所含元素量的多寡顺序表示为COHNS。在废水需氧生物处理中全部反应可用以下两式表示:微生物细胞+COHNS+O2—→较多的细胞+CO2+H2O+NH3 生物体系中这些反应有赖于生物体系中的酶来加速。酶按其催化反应分为:氧化还原酶:在细胞内催化有机物的氧化还原反应,促进电子转移,使其与氧化合或脱氢。可分为氧化酶和还原酶。氧化酶可活化分子氧,作为受氢体而形成水或过氧化氢。还原酶包括各种脱氢酶,可活化基质上的氢,并由辅酶将氢传给被还原的物质,使基质氧化,受氢体还原。水解酶:对有机物的加水分解反应起催化作用。水解反应是在细胞外产生的最基本的反应,能将复杂的高分子有机物分解为小分子,使之易于透过细胞壁。如将蛋白质分解为氨基酸,将脂肪分解为脂肪酸和甘油,将复杂的多糖分解为单糖等。此外还有脱氨基、脱羧基、磷酸化和脱磷酸等酶。 许多酶只有在一些称为辅酶和活化剂的特殊物质存在时才能进行催化反应,钾、钙、镁、锌、钴、锰、氯化物、磷酸盐离子在许多种酶的催化反应中是不可缺少的辅酶或活化剂。在需氧生物处理过程中,污水中的有机物在微生物酶的催化作用下被氧化降解,分三个阶段:第一阶段,大的有机物分子降解为构成单元——单糖、氨基酸或甘油和脂肪酸。在第二阶段中,第一阶段的产物部分地被氧化为下列物质中的一种或几种:二氧化碳、水、乙酰基辅酶A、α-酮戊二酸(或称α-氧化戊二酸)和草醋酸(又称草酰乙酸)。第三阶段(即三羧酸循环,是有机物氧化的最终阶段)是乙酰基辅酶A、α-酮戊二酸和草醋酸被氧化为二氧化碳和水。有机物在氧化降解的各个阶段,都释放出一定的能量。 在有机物降解的同时,还发生微生物原生质的合成反应。在第一阶段中由 被作用物分解成的构成单元可以合成碳水化合物、蛋白质和脂肪,再进一步合成细胞原生质。合成能量是微生物在有机物的氧化过程中获得的。 厌氧生物处理法:主要用于处理污水中的沉淀污泥,因而又称污泥消化,也用于处理高浓度的有机废水。这种方法是在厌氧细菌或兼性细菌的作用下将污泥中的有机物分解,最后产生甲烷和二氧化碳等气体,这些气体是有经济价值的能源。中国大量建设的沼气池就是具体应用这种方法的典型实例。消化后的污泥比原生污泥容易脱水,所含致病菌大大减少,臭味显著减弱,肥分变成速效的,体积缩小,易于处置。 城市污水沉淀污泥和高浓度有机废水的完全厌氧消化过程可分为三个阶段。在第一阶段,污泥中的固态有机化合物借助于从厌氧菌分泌出的细胞外水解酶得到溶解,并通过细胞壁进入细胞中进行代谢的生化反应。在水解酶的催化下,将复杂的多糖类水解为单糖类,将蛋白质水解为缩氨酸和氨基酸,并将脂肪水解为甘油和脂肪酸。第二阶段是在产酸菌的作用下将第一阶段的产物进一步降解为比

废水生物处理基本原理-厌氧生物处理原理

废水生物处理基本原理 ——废水厌氧生物处理原理 废水厌氧生物处理在早期又被称为厌氧消化、厌氧发酵;是指在厌氧条件下由多种(厌氧或兼性)微生物的共同作用下,使有机物分解并产生CH 4和CO 2的过程。 1.1.1 厌氧生物处理中的基本生物过程——阶段性理论 1、两阶段理论: 20世纪30~60年代,被普遍接受的是“两阶段理论” 第一阶段:发酵阶段,又称产酸阶段或酸性发酵阶段;主要功能是水解和酸化,主要产物是脂肪酸、醇类、CO 2和H 2等;主要参与反应的微生物统称为发酵细菌或产酸细菌;这些微生物的特点是:1)生长速率快,2)对环境条件的适应性(温度、pH 等)强。 图1厌氧反应的两阶段理论图示 内源呼 吸产物 碱性发酵阶段 酸性发酵阶 段 水解胞外酶 胞内酶产甲烷菌 胞内酶产酸菌 不溶性有机物 可溶性有机物 细菌细 胞 脂肪酸、醇 类、H 2、CO 2 其它产物 细菌细胞 CO 2、CH 4

第二阶段:产甲烷阶段,又称碱性发酵阶段;是指产甲烷菌利用前一阶段的产物,并将其转化为CH4和CO2;主要参与反应的微生物被统称为产甲烷菌(Methane producing bacteria);产甲烷细菌的主要特点是:1)生长速率慢,世代时间长;2)对环境条件(温度、pH、抑制物等)非常敏感,要求苛刻。 1.1.2 三阶段理论 对厌氧微生物学的深入研究后,发现将厌氧消化过程简单地划分为上述两个过程,不能真实反映厌氧反应过程的本质; 厌氧微生物学的研究表明,产甲烷菌是一类十分特别的古细菌(Archea),除了在分类学和其特殊的学报结构外,其最主要的特点是:产甲烷细菌只能利用一些简单有机物作为基质,其中主要是一些简单的一碳物质如甲酸、甲醇、甲基胺类以及H2/CO2等,两碳物质中只有乙酸,而不能利用其它含两碳或以上的脂肪酸和甲醇以外的醇类;

微生物处理污水方法资料

1、流离生物床(FSBB) “流离”是近年出现的有机废水处理新技术,填料为表面经过特殊处理的碎石球的集合体(流离球)。污水在流动中存在着球体外流速快,球体内流速慢的场所,污水中漂浮物集中在流速慢的地方产生流离。经过无数次流离作用,使污水中的固形物和有机物胶体与水分离。 填料:由聚乙烯外壳和填料组成,直径100mm。其中厌氧流离球填料使用化学改性火山岩,池内填充比例40%,粒径15mm~25mm;曝气流离球填料使用化学涂层的碎石块,池内填充比例70%,粒径12mm~20mm。 驯化:(1)驯化阶段:采用逐渐提高合成污水浓度的方式对种污泥进行预驯化,氨氮与COD 最终达到垃圾渗滤液进水水质浓度;(2)实际垃圾渗滤液生化处理阶段:垃圾渗滤液分别经过厌氧流离生化池、曝气流离生化池生化处理之后进入中间水池。 驯化具体步骤如下:取垃圾渗滤液和自来水一齐注入均质池,CODcr控制范围为1000~1200mg/L,搅拌机混合搅拌约30min。水泵启动,加入接种污泥,控制MLSS范围7800~9620mg/L。注满厌氧池和曝气池,控制MLSS为3560~4560mg/L。厌氧池面的水由进水泵送入十字形布水器,形成内循环搅拌,至CODcr值低于2000mg/L时,关闭进水泵。静置2h后再次启动进水泵,向厌氧池中注入约1/3进水量以及适量的种泥,同样由进水泵进行内循环。直至填料和从池底排放出的污泥呈现致密的橙黑色,至此厌氧流离生化池启动成功。启动回转式鼓风机对曝气池进行闷曝,溶解氧浓度应控制在2~4mg/L间。检测CODcr低至500mg/L时,采用低负荷间歇法,通过进水泵向均质池中适当进水和接种污泥,日进水时间相对增长,直到填料上呈橙黄色膜,说明生物膜培养完成。此时,厌氧池和曝气池均停止接种污泥,按设计量20%的进水量持续向均质池输注垃圾渗滤液,检测CODcr低至500mg/L后,进水量提升至设计量的30%~40%,反复运作,直到达成设计处理量。再按同等比例增加进水浓度,直至到达垃圾

制药废水现状及处理介绍

1 制药工业概述 1.1 分类 根据生产工艺的特点,制药工业可以分为发酵类、化学合成类、混装制剂类、生物工程类、提取类、中药类。 1.1.1 发酵类 1)定义 发酵类制药指通过微生物发酵的方法产生抗生素或其他的活性成分,然后经过分离、纯化、精制等工序生产出药物的过程。 2)分类及其代表性药物 发酵类药物主要包括抗生素、维生素、氨基酸和其他类,其代表性药物如下表所示: 1.1.2 化学合成类 1)定义 化学合成类制药指采用一个化学反应或者一系列化学反应生产药物活性成分的过程,包括完全合成制药和半合成(主要原料来自提取或生物制药方法生产

的中间体)之制药。 2)分类及其代表性药物 其主要品种有合成抗菌药(如喹诺酮类、磺胺类等)、解热镇痛药和非甾体抗炎药、麻醉药、镇静催眠药(如巴比妥类、苯并氮杂卓类、氨基甲酸酯类等)、抗癫痫药、抗精神失常药、镇痛药和镇咳祛痰药、中枢兴奋药和利尿药、拟肾上腺素药、心脑血管系统药物、解痉药及肌肉松弛药、抗过敏药和抗溃疡药、寄生虫病防治药物、抗病毒药和抗真菌药、抗肿瘤药、甾体药物、代谢类药物等约近千个品种。 1.1.3 混装制剂类 1)定义 混装制剂类制药是指用药物活性成分和辅料通过混合、加工和配制,制成各种剂型药物的过程。 2)分类及其代表性药物

1.1.4 生物工程类 1)定义 生物工程类制药指利用微生物、寄生虫、动物毒素、生物组织等,采用现代生物技术方法(主要是基因工程技术等)进行生产,作为治疗、诊断等用途的多肽和蛋白质类药物、疫苗等药品的过程 2)分类及其代表性药物 主要包括括基因工程药物、基因工程疫苗、克隆工程制备药物等。根据不完全统计,我国已经批准上市的基因工程药物和疫苗如下表所示:

废水好氧生物处理工艺其它工艺水处理教案

第五章 废水好氧生物处理工艺(3)——其它工艺 第一节 氧化沟工艺 氧化沟也称氧化渠,又称循环曝气池,是活性污泥法的一种变形;是20世纪50年代荷兰的Pasveer 首先设计的;最初一般用于日处理水量在5000m 3以下的城市污水。 一、氧化沟的工作原理与特征 1、氧化沟的工艺流程 图1 氧化沟及氧化沟系统平面图 图2 以氧化沟为主的废水处理流程 2、氧化沟的特征 ① 池体狭长,(可达数十米甚至上百米);池深度较浅,一般在2米左右; ② 曝气装置多采用表面机械曝气器,竖轴、横轴曝气器都可以; ③ 进、出水装置简单; ??构造上的特征 ④ 氧化沟呈完全混合?推流式;沟内的混合液呈推流式快速流动(0.4~0.5m/s ),由于流速高,原废水很快就与沟内混合液相混合,因此氧化沟又是完全混合的; ⑤ BOD 负荷低,类似于活性污泥法的延时曝气法,处理出水水质良好; ⑥ 对水温、水质和水量的变动有较强的适应性; ⑦ 污泥产率低,剩余污泥产量少; ⑧ 污泥龄长,可达15~30d ,为传统活性污泥法的3~6倍; ⑨ 世代时间很长的细菌如硝化细菌能在反应器内得以生存,从而使氧化沟具有脱氮的功能。 二、氧化沟的几种典型的构造型式 原废水 格栅 氧 化 沟 出水

目前主要的氧化沟形式有:Carrousel氧化沟、Orbal氧化沟、交替工作式 氧化沟、曝气—沉淀一体化氧化沟等四种。 1、Carrousel 式氧化沟(图3) Carrousel 式氧化沟又称平行多渠形氧化沟;是60年代末荷兰DHV公司开 创的。采用竖轴低速表面曝气器;水深可达4~4.5m,沟内流速达0.3~0.4m/s; 混合液在沟内每5~20min循环一次;沟内混合液总量是入流废水量的30~50倍; BOD5去除率可达95%以上,脱氮率可达90%,除磷效率可达50%;应用广泛,最大规模为650000m3/d;在国内主要有昆明兰花沟污水处理厂、上海龙华肉联厂、桂林市东区废水厂等。 2、Orbal氧化沟(图4) Orbal氧化沟又称同心圆型氧化沟,其主要特点如下: ①圆形或椭圆形的沟渠,能更好地利用水流惯性,可节省能耗; ②多沟串联可减少水流短路现象; ③最外层第一沟的容积为总容积的60~70%,其中的DO接近于 零,为反硝化和磷的释放创造了条件; ④第二、三沟的容积分别为总容积的20~30%和10%,而DO则 分别为1和2mg/l; ⑤这种沟渠间的DO浓度差,有利于提高充氧效率; Orbal氧化沟在国内的主要工程实例有:①抚顺石油二厂废水处理站(28,800m3/d);②北京燕山石化公司新建废水处理厂(60000m3/d);③成都市天彭镇污水处理厂。 3、交替工作氧化沟 交替工作氧化沟由丹麦Kruger公司所开发的,有二沟和三沟式两种形式;其主要特点是其中的每一条沟均交替用做曝气池和沉淀池,而无需二沉池和污泥回流装置;但其中的曝气转刷的利用率较低,D型二沟只有40%,三沟式则提高到了58%; 图5:VR型氧化沟图6:D型氧化沟

含油工业废水的生物处理方法.doc

含油工业废水的生物处理方法4 含油工业废水的生物处理方法 摘要:工业生产过程中产生的含油工业废水,如果不及时处理会对环境造成非常严重的污染。含油类物质废水的处理方法与油类物质在水中的存在状态有密切关系,分离起来较困难。处理含油类物质的废水的方法与污水常规处理方法基本相同,主要有物理、化学、物理化学和生化处理四种。生物法具体的方法有接触氧化法、好氧处理法和厌氧处理法。 1、前言 全球经济的快速发展,使我国的经济飞速发展,人们的生活水平也得到了较大改善,同时也存在不足。例如,工业生产中环境污染的问题日益严重,工业生产含油废水的污染问题如不进行正确处理,将会影响到我国的水体复氧问题、影响到水体的自净能力,严重时,导致水体的生态系统失衡、环境受到污染,威胁人类的生活健康。为此,探讨工业生产含油废水的生物处理工艺、研究其的未来发展趋势很有必要,有助于改善我国的环境质量,进一步促进人们生活水平、促进我国经济的健康发展。 2、含油工业废水的特点及危害 含油废水主要来源于石油、石油化工、钢铁、焦化、煤气发生站、机械加工等工业部门。油类物质在废水中通常以四种状态存在。浮上油:油滴粒径大于100μm,易于从废水中分离出来。油品在废水中分散的颗粒较大,粒径大于100微米,易于从废水中分离出来。在石油污水中,这种油占水中总含油量60~80%。

分散油:油滴粒径介于10一100μm之间,悬浮于水中。 乳化油:油滴粒径小于10μm,油品在废水中分散的粒径很小,呈乳化状态,不易从废水中分离出来。溶解油:油类溶解于水中的状态。含油废水中所含的油类物质,包括天然石油、石油产品、焦油及其分馏物,以及食用动植物油和脂肪类。从对水体的污染来说,主要是石油和焦油。由于不同工业部门排出的废水中含油浓度差异很大,如炼油过程中产生废水,含油量约为150一1000mg/L,焦化废水中焦油含量约为500一800mg/L,煤气发生站排出废水中的焦油含量可达2000一3000mg/L。因此,含油废水的治理应首先利用隔油池,回收浮油或重油,处理效率为60%一80%,出水中含油量约为100一200mg/L;废水中的乳化油和分散油较难处理,故应防止或减轻乳化现象。方法之一,是在生产过程中注意减轻废水中油的乳化;其二,是在处理过程中,尽量减少用泵提升废水的次数、以免增加乳化程度。处理方法通常采用气浮法和破乳法。 含油废水如果不加以回收处理,会造成浪费;排入河流、湖泊或海湾,会污染水体,影响水生生物生存;用于农业灌溉,则会堵塞土壤空隙,妨碍农作物生长。对企业的危害。含乳化油的废水,会在工艺设施和管道设备中与废水中悬浮颗粒及氧化铁皮一起沉降,形成具有较大黏性的油泥团,堵塞管道和设备影响生产的正常进行。对环境的危害。油类物质对环境的影响是多方面的,如污染水体,在水面上形成油膜,能阻碍水体复氧作用,水体中 由于溶解氧减少,藻类光合作用受到限制,影响水生生物的正常生长,使水生动植物有油味或毒性,甚至使水体变臭,破坏水资源的利用价值;油类黏附在鱼鳃上,可使鱼窒息,浓度为

污水处理中的微生物原理

污水处理中的微生物原理 编辑说明:此章在很多书上都有涉及,但深层次讲解的少,编写此章的目标是,使入门者真正理解各类微生物特点和会用生物相分析系统环境,使本章作为中控室、化验室观测生物相的必要知识。编写时要注意多涉猎专业书籍,结合微生物学和一些论文,力图达到不仅知道结论,还要深究原因。 我们在第三章已经说过: 生物处理方法的核心(或者说城镇污水处理厂的运行核心)是,使用设施、设备,控制曝气量、水量、污泥量、营养物质等,创造出适宜微生物存活和生长的环境,并有意的引导微生物的生长向我们需要去除的污染物性质方向发展,最终达到污水处理的目的。所以,凡是采用了微生物处理方法的城镇污水处理厂,微生物原理是污水处理的核心知识,一个好的运营师,可以通过微生物的状态和变化就可判断外部环境、内部环境的各种变化,并提前采取措施将出现的问题苗头消灭。 在活性污泥法中,微生物生活于活性污泥中,在生物膜法中,微生物生活于生物膜中,存在地方虽不一样,但生物种群是基本一致的。另:微生物种群非常多,按世代期(可理解为生长周期)分,从几个小时长一代到几十天长一代不等,活性污泥是由人为控制泥龄的,一般在10~25天之间,不会超过30天,所以种群是人为遴选优化过的,具有去除污染物针对性更强,但难以降解的污染物去除效果不好的特点;而生物膜法的污泥变化是由生物自行生长脱落决定的,所以各种世代期不同的种群在理论上均有存在,具有去除污染物更彻底,但处理量有限制的特点。 在微生物学领域里,习惯将动胶菌属形成的细菌团块称为菌胶团。在水处理工程领域内,则将所有具有荚膜或粘液或明胶质的絮凝性细菌互相絮凝聚集成的菌胶团块也称为菌胶团,这是广义的菌胶团。如上所述,菌胶团是活性污泥(绒粒)的结构和功能的中心,表现在数量上占绝对优势(丝状膨胀的活性污泥除外),是活性污泥的基本组分。它的作用表现在: 1、有很强的生物吸附能力和氧化分解有机物的能力。一旦菌胶团受到各种因素的影响和破坏,则对有机物去除率明显下降,甚至无去除能力。 2、菌胶团对有机物的吸附和分解,为原生动物和微型后生动物提供了良好的生存环境,例如去除毒物、提供食料、溶解氧升高。 3、为原生动物、微型后生动物提供附着场所。 4、具有指示作用:通过菌胶团的颜色、透明度、数量、颗粒大小及结构的松紧程度可衡量好氧活性污泥的性能。例如新生菌胶团颜色浅、无色透明、结构紧密,则说明菌胶团生命力旺盛,吸附和氧化能力强,即再生能力强。老化的菌胶团,颜色深,结构松散,活性不强,吸附和氧化能力差。 第一节活性污泥中的微生物(要求化验室强记,中控室熟悉)在污水处理中,活性污泥中的微生物形成了一个类似于社会的环境,各个种

污水处理方法-生物处理法

污水处理方法-生物处理法 环境10-2 郑兴14 摘要:研究污水的微生物处理就是研究微生物对废水中的有机物、营养盐类及重金属等物质去处的微生物学原理及其规律,并加以实际应用的一门科学。通过人为的创造适于微生物生存和繁殖的环境,使之大量繁殖,以提高其氧化分解有机物的效率。它则作为末端处理装置广泛应用于各行业的废水处理中。与物理法、化学法相比,微生物处理法具有经济、高效的优点,并可实现无害化、资源化,所以长期以来始终占重要位置。 关键词:污水处理生物处理活性污泥生物膜法效率 正文 一生物处理法的分类 1好氧生物处理2 活性污泥3 普通活性污泥法3 高浓度活性污泥法4 接触稳定法5氧化沟6 SBR 7生物膜法8普通生物滤池9 生物转盘10生物接触氧化法11厌氧生物处理法12 厌氧滤器工艺 好氧生物处理:利用好氧微生物(包括兼性微生物)在有氧气存在的条件下进行生物代谢以降解有机物,使其稳定、无害化的处理方法。微生物利用水中存在的有机污染物为底物进行好氧代谢,经过一系列的生化反应,逐级释放能量,最终以低能位的无机物稳定下来,达到无害化的要求,以便返回自然环境或进一步处理。污水处理工程中,好氧生物处理法有活性污泥法和生物膜法两大类。 活性污泥:活性污泥法是以活性污泥为主体的废水生物处理的主要方法。活性污泥法是向废水中连续通入空气,经一定时间后因好氧性微

生物繁殖而形成的污泥状絮凝物。其上栖息着以菌胶团为主的微生物群,具有很强的吸附与氧化有机物的能力。 生物膜法:生物膜法是一种处理污水的好氧生物方法,是一大类生物处理方法的统称。共同的特点是微生物附着在作为介质的滤料表面,生长成为一层由微生物构成的膜。污水与之接触后,其中的溶解性有机污染物被生物膜吸附,进而被为什么氧化分解,转化为H2O、CO2、NH3和微生物细胞质,污水得以净化。生物膜法通常无需曝气,微生物所需氧气直接来自大气。 二常用的两种方法:活性污泥和生物膜发 1影响活性污泥性能的环境因素 溶解氧——溶解氧浓度以不低于2mg/L为宜(2—4mg/L)。 水温——维持在15~25摄氏度,低于5摄氏度微生物生长缓慢。 营养料——细菌的化学组成实验式为C5H7O2N,霉菌为C10H17O6原生动物为C7H14O3N,所以在培养微生物时,可按菌体的主要成分比例供给营养。微生物赖以生活的主要外界营养为碳和氮,此外,还需要微量的钾,镁,铁,维生素等。碳源--异氧菌利用有机碳源,自氧菌利用无机碳源。 2活性污泥法工艺原理: 1)曝气池:作用:降解有机物(BOD5) 2) 二沉池:作用:泥水分离。 3) 曝气装置:作用于①充氧化②搅拌混合 4) 回流装置:作用:接种污泥

污水处理工艺流程

污水处理工艺流程 工业废水处理理论 一、工业废水(Industrial Wastewater)的含义和分类 定义:指工业企业各行业生产过程中产生和排放的废水。 包括:生产污水(包括生活污水)和生产废水两大类。 二、工业废水的分类、种类、指标 1分类 按行业的产品加工对象:冶金、造纸、纺织、印染等。 按工业废水中主要污染物分:无机废水(电镀、矿物加工),有机废水(食品加工) 按废水中污染物的主要成分:酸性、碱性、含酚等 按处理难易程度和危害性分:易处理危害性小的废水,易生物降解无明显毒性的废水,难生物降解又有毒性的废水。 2工业废水造成环境污染的种类 1)含无毒物质的有机废水和无机废水的污染; 2)含有毒物质的有机废水和无机废水的污染; 3)含有大量不溶性悬浮物废水的污染; 4)含油废水产生的污染; 5)含高浊度和高色度废水产生的污染; 6)酸性和碱性废水产生的污染; 7)含有多种污染物质废水产生的污染; 8)含有氮、磷等工业废水产生的污染。 三、工业废水处理方法概述 1 工业废水的物理处理(Physical Treatment) 定义:应用物理作用没有改变废水成分的处理方法称为物理处理法; 操作单元(Operating Units):调节(Adjust)、离心分离(CentrifugalSeparation)、除油(Oil Elimination)、过滤(Filtration)等。 废水经过物理处理过程后并没有改变污染物的化学本性,而仅使污染物和水分离。 2 工业废水的化学处理(Chemical Treatment) 定义:应用化学原理和化学作用将废水中的污染物成分转化为无害物质,使废水得到净化的方法称为化学处理。 操作单元(Operating Units):中和( Neutralization)、化学沉淀( Chemical Precipitation)、药剂氧化还原(Chemical Oxidation Reduction)、臭氧氧化(Ozone Oxidation )、电解(Electrolysis)、光氧化法(Photo- Oxidation)等。 污染物在经过化学处理过程后改变了化学本性,处理过程中总是伴随着化学变化。 3工业废水的物理化学处理(Physic-chemicalTreatment) 定义:废水中的污染物在处理过程中是通过相转移的变化而达到去除的目的的处理方法称为物理化学处理。 操作单元(Operating Units):混凝(Coagulation)、气浮(Floatation)、吸附(Adsorption)、离子交换(Ion Exchange)、电渗析(Electro-dialysis)、扩散渗析(Diffusion Dialysis)、反渗透(Reverse Osmosis)、超滤(Ultra Filtrate)等。 污染物在物化过程中可以不参与化学变化或化学反应,直接从一相转移到另一相,也可以经过化学反应后再转移。

废水生物处理工艺概况

废水生物处理工艺概况 一、生物吸附法 利用生物体本身的化学结构及成分特性来吸附溶于水中的金属离子,再通过固液两相分离去除水溶液中的金属离子的方法。利用胞外聚合物分离金属离子,有些细菌在生长过程中释放的蛋白质,能使溶液中可溶性的重金属离子转化为沉淀物而去除。 废水中的污染物种类繁多,不可能只用一种处理方法就能把所有的污染物质除净,所以一般往往要通过几种方法处理系统进行处理才能达到要求。对于某一种废水来说,采用哪种方法好,须根据废水的水质和水量、排放标准,处理方法的特点、成本等,通过调査,分析对比后才能决定。 二、生物化学法 通过微生物处理含重金属废水,将可溶性离子转化为不溶性化合物而去除。 三、需氧生物处理法 利用需氧微生物在有氧条件下将废水中复杂的有机物分解的方法。当废水同微生物接触后,水中的有机物进入菌体内,在菌体内通过分解代谢过程被氧化降解,产生的能量供细菌生命活动的需要;一部分氧化中间产物通过合成代谢成为新的细胞物质,使细菌得以生长繁殖。最终产物是二氧化碳、水、氨、硫酸盐和磷酸盐等,处理彻底时,还可产生硝酸盐。 四、生物絮凝法 利用微生物或微生物产生的代谢物进行絮凝沉淀的一种除污方法。微生物絮凝剂是一类由微生物产生并分泌到细胞外,具有絮凝活性的代谢物。一般由多糖、蛋白质、DNA、纤维素、糖蛋白、聚氨基酸等高分子物质构成,分子中含有多种官能团,能使水中胶体悬浮物相互凝聚沉淀。 五、厌氧生物处理法 主要用于处理污水中的沉淀污泥,因而又称污泥消化,也用于处理高浓度的有机废水。这种方法是在厌氧细菌或兼性(好氧兼厌氧)细菌的作用下将污泥中的有机物分解,最后产生甲烷和二氧化碳等气体,这些气体是有经济价值的能源。

常见的污水生物处理方法

常见的污水生物处理方法 (1)传统活性污泥法。传统活性污泥处理法是一种最古老的工业污水处理工艺,其工业污水处理的关键组成部分为沼气池与沉淀池,主要处理部分关系框图如图2-1所示。 图2-1传统活性污泥法工艺流程图 污水中的有机物在曝气池停留的过程中,曝气池中的微生物吸附污水中的大部分有机物,并且在曝气池中被氧化成无机物,然后在沉淀池中经过沉淀后的部分活性泥需要回流到曝气池中。该工艺的优点有:有机物去除率高,污泥负荷高,池的容积小,耗电省,运行成本低。该工艺的缺点有:普通曝气池占地多,建设投资大,满足国家标准相关指标范围小、易产生污泥膨胀现象,磷和氮的去除率低。 (2)A/O法。A/O法是在传统活性污泥法的基础上发展起来的一种工业污水处理工艺,其中A代表Anoxic(缺氧的),O代表Oxic(好氧的)。A/O法是一种缺氧----好氧生物工业污水处理工艺。该工艺通过增加好氧池与缺氧池所形成的硝化----反硝化反应系统,很好的处理了污水中的氮含量,具有明显的脱氮效果。但是此硝化----反硝化反应系统需要得到很好的控制,这样就对该工艺提出了更高的管理要求,这也成为了该工艺的一大缺点。其工艺流程图如下:

(3)A2/O法。A2/O法也是在传统活性污泥法的基础上发展起来的一种工业污水处理工艺,其中A2,即A-A,前一个A代表Anaerobic(厌氧的),后一个A代表Anoxic(缺氧的);O代表(好氧的)。A2/O是一种厌氧—缺氧—好氧工业污水处理工艺。A2O法的除磷脱氮效果非常好,非常适合用于对除磷脱氮有要求的工业污水处理。因此,在对除磷脱氮有特别要求的城市工业污水处理厂,一般首选A2/O工艺。其工艺流程图如图2.3所示。 图2-3 A2/O法工艺流程图 (4)A/B法。A/B法是吸附生物降解法的简称,该工艺没有初沉淀,将曝气池分为高低负荷两段,并分别有独立的沉淀和污泥回流系统。高负荷段停留时间约为20~40min,以生物絮凝吸附作用为主,同时发生不完全氧化反应,去除BOD 达50%以上。B段与常规活性污泥法相识,负荷较低。AB法中A段效率很高,并有较强的缓冲能力。B段起到出水把关作用,处理稳定性较好。对于高浓度的工业污水处理,AB法具有很好的适用性,并有较高的节能效益。尤其在采用污泥消化和沼气利用工艺时,优势最为明显。但是,AB法污泥产量较大,A段污泥有机物含量极高,因此必须添加污泥后续稳定化处理,这样就将增加一定的投资和费用。另外,由于A段去除了较多的BOD,造成了碳源不足,难以实现脱氮工艺的要求。对于污水浓度低的场合,B段也比较困难,也难以发挥优势。 总体而言,AB法工艺较适合于污水浓度高,具有污泥消化等后续处理设施的大中规模的城市工业污水处理厂,且有明显的节能效果,而对于有脱氮要求的城市工业污水处理厂,一般不宜采用。 (5)SBR法。SBR法是歇式活性污泥法的简称,是一种按照一定的时间顺序间歇式操作的污水生物处理技术,也是一种按间歇曝气方式来运行的活性污泥工业污水处理技术,又称序批式活性污泥法。其反应机理及去除污染物的机理与传统的活性污泥法基本相同,只是运行操作方式不尽相同。SBR法与传统的水处理工艺的最大区别在于它是以时间顺序来分割流程各单元,以时间分割操作代替空间分割操作,非稳态生化反应代替生化反应,静置理想沉淀代替动态沉淀等。整个过程对于单个操作单元而言是间歇进行的,但是通过多个单元组合调度后又是连续的,在运行上实现了有序和间歇操作相结合。

相关主题
文本预览
相关文档 最新文档