当前位置:文档之家› 拉普拉斯变换题库

拉普拉斯变换题库

拉普拉斯变换题库
拉普拉斯变换题库

六.拉普拉斯变换

㈠选择

㈡填空

1.)(2)(t t f δ=的拉普拉斯变换是_______________

2.)1()(-=t u t f 的拉普拉斯变换是_________________.

3.)2()(-=t u t f 的拉普拉斯变换是_________________.

4.t e t t f 22)(+=的拉普拉斯变换是_______________.

5.)(5)(2t e t f t δ+=的拉普拉斯变换是_______________

6.)2()(2-=t u e t f t 的拉普拉斯变换是________________.

7.k e t t f kt n ()(=为实数)的拉普拉斯变换是__________________.

8.t e

t f t 3sin )(2-=的拉普拉斯变换是__________________. 9.t

e t

f 2)(-=的拉普拉斯变换是_________________. 10.t

e t

f 2)(=的拉普拉斯变换是__________________。

11.t t f =)(的拉普拉斯变换是________________

12.t te t f -=)(的拉普拉斯变换是____________________.

13.t t f 2cos )(=的拉普拉斯变换是_____________.

14.at t f sin )(=的拉普拉斯变换是_________________.

15.t t t f cos sin )(=的拉普拉斯变换是___________________.

16. ()()sin f t u t t =的拉普拉斯变换是________________.

17. ()sin(2)f t t =-的拉普拉斯变换是________________.

18.t t f 2cos )(=的拉普拉斯变换是________________.

19.t t f 2sin )(=的拉普拉斯变换是_______________.

20.t e t f t sin )(-=的拉普拉斯变换是_________________.

21.t e t f t cos )(=的拉普拉斯变换是______________.

22.t e t t f 2)1()(-=的拉普拉斯变换是________________.

23.t t t f cos 32sin 5)(-=的拉普拉斯变换是_________________.

24.)(3sin 2)(t u t t f -=的拉普拉斯变换是_______________.

25.)(3)(t t t f δ+=的拉普拉斯变换是___________________.

26.t te t f -=1)(的拉普拉斯变换是__________________.

27.)53()(-=t u t f 的拉普拉斯变换是_______________. 28.t

t t f sin )(=的拉普拉斯变换是__________________. 29.t e t t f )()(δ=的拉普拉斯变换是_____________.

30.t t t f sin )(=的拉普拉斯变换是______________. 31.9

32)(2++=

s s s F 的拉普拉斯逆变换是___________________. 32.2

)(+=s s s F 的拉普拉斯逆变换是_______________. 33.s

s F 1)(=的拉普拉斯逆变换是_________________. 34.1

1)(-=s s F 的拉普拉斯逆变换是_________________. 35.1

1)(+=s s F 的拉普拉斯逆变换是___________________. 36.21)(s

s F =的拉普拉斯逆变换是________________. 37.11)(2+=s s F 的拉普拉斯逆变换是________________. 38.2

)1(1)(+=s s F 的拉普拉斯逆变换是________________. 39.1

1)(2-=s s F 的拉普拉斯逆变换是_________________. 40.s

e s F s

2)(-=的拉普拉斯逆变换是____________________.

41.3

1)(s s F =

的拉普拉斯逆变换是________________. 42.91)(2+=s s F 的拉普拉斯逆变换是______________ 43.4)(2+=s s

s F 的拉普拉斯逆变换是_______________. 44.41)(2+-=

s s s F 的拉普拉斯逆变换是____________. 45.41)(2--=

s s s F 的拉普拉斯逆变换是________________. 46.42)(s s F =

的拉普拉斯逆变换是_______________. 47.51)(+=

s s F 的拉普拉斯逆变换是______________. 48.2)(-=

s s s F 的拉普拉斯逆变换是_______________. 49.)

3)(1(2)(-+-=s s s s F 的拉普拉斯逆变换是________________. 50.4

32)(2++=

s s s F 的拉普拉斯逆变换是__________________. 51.6

1)(2-++=s s s s F 的拉普拉斯逆变换是____________________. 52.6

1)(2--+=s s s s F 的拉普拉斯逆变换是________________. 53.161)(4-=s s F 的拉普拉斯逆变换是____________________. 54.23)(s

e s F s

-=的拉普拉斯逆变换是__________________. 55.)

1(1)(22+=s s s F 的拉普拉斯逆变换是__________________. 56.)

2)(1(3)(+-=s s s s F 的拉普拉斯逆变换是_________________ 57.651)(2++-=

s s s s F 的拉普拉斯逆变换是__________________。 58.)

4)(1(1)(22++=s s s F 的拉普拉斯逆变换是_______________________. 59.32)(s

s s F +=的拉普拉斯逆变换是__________________.

60.s s F 321)(+

=的拉普拉斯逆变换是_________________.

㈢计算 1.求函数3f(t)+2sint 的付氏变换,

其中 f(t)=??

?>≤1||,01||,1t t . 2.(1)求e -t 的拉氏变换F[e -t ];

(2)设F(p)=F[y(t)],其中函数y(t)二阶可导,F[y ′(t)]、F[y ″(t)]存在,且y(0)=0, y ′(0)=1,求F[y ′(t)]、F[y ″(t)];

(3)利用拉氏变换求解常微分方程初值问题:?

??='==-'+''-1)0(y ,0)0(y e 2y 3y 2y t

3.(1)求sint 的拉氏变换 [sint];

(2)设F(p)= [y(t)],若函数y(t)可导,而且y(0)=0,求 [)t (y '];

(3)利用拉氏变换解常微分方程的初值问题

?

??==+'0)0(y t sin y y (2)利用拉氏变换解常微分方程初值问题?

??='==-'-''0)0(y ,1)0(y 2y 6y y (附:(sinat)=22a p a +, (cosat)=22a p p +, (e at )=a

p 1-) 4.(1)求cost 的拉氏变换F[cost]

(2)设F(p)=F[[y(t)], 其中函数y(t)可导,而且y(0)=0.求F[[)t (y '].

(3)利用拉氏变换解常微分方程的初值问题 ?

??==-'0)0(y t cos 2y y 5..利用拉氏变换解常微分方程的初值问题:?

??='==+'+''-1)0(y )0(y e y 3y 4y t

6.用拉氏变换解微分方程:

y ″+2y ′+2y=e -t

,y(0)=0, y ′(0)=0

7.用拉氏变换解下列微分方程:

y ″+3y ′+2y=2e -3t ,y(0)=0, y ′(0)=1

8.求)1(t e u --的拉普拉斯变换

9.求t te t 2cos -的拉普拉斯变换

10.求)

1(122-s s 的拉普拉斯逆变换 11.求3

21s e s

-+的拉普拉斯逆变换 12.解微分方程1)0(,0)0(,cos 33='==+'+''y y t y y y

13.求)2sin()(-=t t f 的拉普拉斯变换。

14.求)2sin()(+=t t f 的拉普拉斯变换。

15.求)1()(2t

e u t t

f --=的拉普拉斯变换 16.求221ln )(s

s s F -=的拉普拉斯逆变换 17.求函数t e t f a t βsin )()(+-=的拉普拉斯变换

18.求函数3

)(22-=-s e s F s

的拉普拉斯逆变换 19.求?-=t

t dt t t e t f 02cos )(的拉普拉斯变换 20.解微分积分方程0)()(sin 210)(2=---?-t

t d y e t y t τττ

21.求bt at t f sin cos )(=的拉普拉斯变换

22.利用拉氏变换解常微分方程初值问题:''-'+=='=-??

?y y y y y 210001,(),(). 23.求)2()2sin()(--=t u t t f 的拉普拉斯变换

25.求)2(sin )(-=t tu t f 的拉普拉斯变换

26.求)]2()1()[1()(----=t u t u t t f 的拉普拉斯变换

27.求s

s F )(=的拉普拉斯逆变换 28.求4

)(22-=-s e s F s

的拉普拉斯逆变换 29.求322)1(2)(s

e s e s s F s

s --+-=的拉普拉斯逆变换 30.求t e t t f 2)1()(-=的拉普拉斯变换

31.求t e t f a t βcos )()(+-=的拉普拉斯变换

32.求t te t f at βsin )(-=的拉普拉斯变换

33.已知)(t f 的拉普拉斯变换为)(s F ,求)0(),()(>=-a a

t f e t g a t

的拉普拉斯变换 34.求t

t e t f t 2sin )(3-=的拉普拉斯变换 35.求2

cos 1)(t t t f -=的拉普拉斯变换 36.求)1()(t e u t f --=的拉普拉斯变换

37.求)sin ()(t e dt

d t f t -=的拉普拉斯变换 38.求?-=t t tdt

e t t

f 0

32sin )(的拉普拉斯变换 39.求?-=t t tdt te t f 0

32sin )(的拉普拉斯变换 40.求?-=t

t dt t t e t f 02cos )(的拉普拉斯变换 41.求4

)2(1)(+=s s F 的拉普拉斯逆变换 42.求)()

)(()(222222b a b s a s s s F ≠++=的拉普拉斯逆变换 43.求22)54(2)(+++=

s s s s F 的拉普拉斯逆变换

44.求22)(π

+=s s F 的拉普拉斯逆变换 45.求微分方程0)0(,2=+=-'y t e y y t 的解

46.求微分方程2)0(,1)0(,2cos 5sin 4-='-=+=-''y y t t y y 的解

47.求微分方程1)0(,0)0(),1(23='=-=+'+''y y t u y y y 的解

48.求微分方程0)0()0()0(,1=''='=='+'''y y y y y 的解

49.求微分方程0)0()0()0(,633=''='==+'+''+'''-y y y e y y y y t 的解

50.求微分方程0)0()0()0()0(),(22)4(='''=''='==-'-'''+y y y y t y y y y

δ的解 51.求微分方程4

1)0(,2)0(,1)0(,0)0(,cos 2)4(='''=''='==+''+y y y y t t y y y 的解 52.求微分方程组6)0(,5)0(,0

)(220=-=?????=+'+'-=++'?y x y y x t u ydt b x x t 的解

53.求微分方程组21)0(,1)0(,21)0(,23)0(,222-='=='-=?????=-''-'='--''y y x x t

y y x e y x x t 的解 54.求微分方程组,1)0()0(,0

)5()72(0)3()92(='=???=+'-''-+'+''=+'+''-+'-''x x y y y x x x y y y x x x 0)0()0(='=y y 的解

55.解积分方程t t

e dt t y t y -=+?0)()(

56.解微分积分方程0)0(,1)()(0==+

'?y d y t y t ττ 57.解积分方程?-+=t

d y t at t y 02)()sin()(τττ

58.求微分方程8)0(,2)0(,4322='==-'-''y y e y y y t 的解

59.求微分方程组0)0()0()0()0(,22)1(='=='=???-=+'-''-''-='+''-''y y x x t

x y x y t e y x y t 的解 60.求解积分方程?-+

=t d t f t t f 0))(()(τττ 61.求)

(1)(3a s s s F -=的拉普拉斯逆变换

62.求2)

)(()(b s a s c s s F +++=的拉普拉斯逆变换 63.求23)1(2)(-+=s s s s F 的拉普拉斯逆变换

拉普拉斯变换

拉普拉斯变换 Prepared on 22 November 2020

§13拉普拉斯变换 重点:1.拉普拉斯反变换部分分式展开 2.基尔霍夫定律的运算形式、运算阻抗和运算导纳、运算电路 3.应用拉普拉斯变换分析线性电路的方法和步骤 难点: 1.拉普拉斯反变换的部分分式展开法 2.电路分析方法及定理在拉普拉斯变换中的应用 本章与其它章节的联系: 是后续各章的基础,是前几章基于变换思想的延续。 预习知识: 积分变换 §13-1拉普拉斯变换的定义 1.拉普拉斯变换法 拉普拉斯变换法是一种数学积分变换,其核心是把时间函数f(t)与复变函数F(s)联系起来,把时域问题通过数学变换为复频域问题,把时间域的高阶微分方程变换为复频域的代数方程,在求出待求的复变函数后,再作相反的变换得到待求的时间函数。由于解复变函数的代数方程比解时域微分方程较有规律且有效,所以拉普拉斯变换在线性电路分析中得到广泛应用。 2.拉普拉斯变换的定义 一个定义在[0,+∞)区间的函数f(t),它的拉普拉斯变换式F(s)定义为 式中s=σ+jω为复数,被称为复频率;F(s)为f(t)的象函数,f(t)为F(s)的原函数。 由F(s)到f(t)的变换称为拉普拉斯反变换,它定义为 式中c为正的有限常数。 注意: 1)定义中拉氏变换的积分从t=0-开始,即: 它计及t=0-至0+,f(t)包含的冲激和电路动态变量的初始值,从而为电路的计算带来方便。 2)象函数F(s)一般用大写字母表示,如I(s),U(s),原函数f(t)用小写字母表示,如 i(t),u(t)。 3)象函数F(s)存在的条件: 3.典型函数的拉氏变换 1)单位阶跃函数的象函数

拉普拉斯变换公式总结

拉普拉斯变换、连续时间系统的S 域分析 基本要求 通过本章的学习,学生应深刻理解拉普拉斯变换的定义、收敛域的概念:熟练掌握拉普拉斯变换的性质、卷积定理的意义及它们的运用。能根据时域电路模型画出S 域等效电路模型,并求其冲激响应、零输入响应、零状态响应和全响应。能根据系统函数的零、极点分布情况分析、判断系统的时域与频域特性。理解全通网络、最小相移网络的概念以及拉普拉斯变换与傅里叶变换的关系。会判定系统的稳定性。 知识要点 1. 拉普拉斯变换的定义及定义域 (1) 定义 单边拉普拉斯变换: 正变换0[()]()()st f t F s f t dt e ζ∞ --==? 逆变换 1 [()]()()2j st j F s f t F s ds j e σσζπ+∞ -∞ ==? 双边拉普拉斯变换: 正变换 ()()st B s f t dt e F ∞--∞ =? 逆变换1 ()()2j st B j f t s ds j e F σσπ+∞ -∞ = ? (2) 定义域 若0σσ>时, lim ()0t t f t e σ-→∞ =则()t f t e σ-在0σσ>的全部范围内收敛,积分0()st f t dt e +∞ --?存在,即()f t 的拉普拉斯变换存在。0σσ>就是()f t 的单边拉普拉斯变换的收敛域。 0σ与函数()f t 的性质有关。

2. 拉普拉斯变换的性质 (1) 线性性 若 11[()]() f t F S ζ=, 22[()]() f t F S ζ=, 1 κ, 2 κ为常数时,则 11221122[()()]()()f t f t F s F s ζκκκκ+=+ (2) 原函数微分 若[()]()f t F s ζ=则() []()(0)df t sF s f dt ζ-=- 式中() (0)r f -是r 阶导数() r r d f t dt 在0-时刻的取值。 (3) 原函数积分 若[()]()f t F s ζ=,则(1)(0)()[()]t f F s f t dt s s ζ---∞=+?式中0(1) (0)()f f t dt ---∞=? (4) 延时性 若[()]()f t F s ζ=,则0 00[()()]()st f t t u t t e F s ζ---= (5) s 域平移 若[()]()f t F s ζ=,则[()]()at f t e F s a ζ-=+ (6) 尺度变换 若[()]()f t F s ζ=,则1[()]()s f at F a a ζ=(a >0) (7) 初值定理lim ()(0)lim ()t o s f t f sF s + +→→∞ == (8) 终值定理lim ()lim ()t s f t sF s →+∞ →∞ = (9) 卷积定理 若11[()]()f t F s ζ=,22[()]()f t F s ζ=,则有1212[()()]()()f t f t F s F s ζ*= 12121[()()][()()]2f t f t F s F s j ζπ= *= 121 ()()2j j F p F s p dp j σσπ+∞ -∞-? 3. 拉普拉斯逆变换

拉普拉斯变换

§13 拉普拉斯变换 重点:1.拉普拉斯反变换部分分式展开 2.基尔霍夫定律的运算形式、运算阻抗和运算导纳、运算电路 3.应用拉普拉斯变换分析线性电路的方法和步骤 难点: 1. 拉普拉斯反变换的部分分式展开法 2. 电路分析方法及定理在拉普拉斯变换中的应用 本章与其它章节的联系: 是后续各章的基础,是前几章基于变换思想的延续。 预习知识: 积分变换 §13-1 拉普拉斯变换的定义 1. 拉普拉斯变换法 拉普拉斯变换法是一种数学积分变换,其核心是把时间函数f(t) 与复变函数F(s) 联系起来,把时域问题通过数学变换为复频域问题,把时间域的高阶微分方程变换为复频域的代数方程,在求出待求的复变函数后,再作相反的变换得到待求的时间函数。由于解复变函数的代数方程比解 时域微分方程较有规律且有效,所以拉普拉斯变换在线性电路分析中得到广泛应用。 2. 拉普拉斯变换的定义 一个定义在[0,+∞) 区间的函数f(t) ,它的拉普拉斯变换式F(s) 定义为 式中s=σ+jω为复数,被称为复频率;F(s)为f(t)的象函数,f(t)为F(s)的原函数。 由F(s) 到f(t) 的变换称为拉普拉斯反变换,它定义为 式中 c 为正的有限常数。 注意: 1)定义中拉氏变换的积分从t=0- 开始,即: 它计及t=0- 至0+ ,f(t) 包含的冲激和电路动态变量的初始值,从而为电路的计算带来方 便。 2)象函数F(s) 一般用大写字母表示, 如I(s),U(s) ,原函数f(t) 用小写字母表示,如i(t),u(t)。 3)象函数F(s) 存在的条件: 3.典型函数的拉氏变换 1) 单位阶跃函数的象函数

拉普拉斯变换

一.实验目的 1.掌握连续时间系统的复频域分析的基本方法。 2.掌握MATLAB中laplace、ilaplace、ezplot等函数的调用方法。 3.掌握使用MATLAB函数绘制系统函数零极点图的方法,并判断系统的稳定性。 二.实验原理 从傅里叶变换到拉普拉斯变换 有些函数不满足绝对可积条件,求解傅里叶变换困难。为此,可用一衰减因子(为实常数)乘信号,适当取的值,使乘积信号当t→时信号幅度趋向于0,从而使的傅里叶变换存在。 相应的傅里叶逆变换为 令 单边拉普拉斯变换 常见函数的拉普拉斯变换 (1) (2)

(3)指数函数 (4)周期信号 令 特例为 拉普拉斯变换性质 1.线性性质 若,则 。 2.尺度变换 。 证明 令 3.时移特性 。 4.复频移特性

。 5.时域的微分特性 证明 6.时域积分特性 证明 (1)。 (2) 7.卷积定理 。 8.S域微分和积分 9.初值定理和终值定理 (1)初值定理:设函数不含及其各阶导数(即假分式化为真分式),则 (2)终值定理:若,,则 微分方程的变换解

描述n阶系统的微分方程的一般形式为,系统的初始状态为, 用拉普拉斯变换微分特性 。 [] 系统函数 系统函数定义为,它只与系统的结构,元件参数有关,而与激励,初始状态无关 1. (t+2)u(t)的拉普拉斯变换

2.(1) H(s)=(s+2)/(s^3+s^2+2s+6)的零极点图 2.(2) H(s)=(2s^2+1)/(3s^3+5s^2+4s+6)的零极点图

2.(3) H(s)=(s+2)/(s^4+2s^2+3s+1)的零极点图 3. 输入为cos(2t+pi/4)u(t)时的稳态响应 4.使用MATLAB完成下列设计 已知系统传输函数为H(s)=s/s^2+3s+2,使用拉普拉斯变换求解:

拉普拉斯变换

§13拉普拉斯变换 重点:1.拉普拉斯反变换部分分式展开 2.基尔霍夫定律的运算形式、运算阻抗和运算导纳、运算电路 3.应用拉普拉斯变换分析线性电路的方法和步骤 难点: 1.拉普拉斯反变换的部分分式展开法 2.电路分析方法及定理在拉普拉斯变换中的应用 本章与其它章节的联系: 是后续各章的基础,是前几章基于变换思想的延续。 预习知识: 积分变换 §13-1拉普拉斯变换的定义 1.拉普拉斯变换法 拉普拉斯变换法是一种数学积分变换,其核心是把时间函数f(t)与复变函数F(s)联系起来,把时域问题通过数学变换为复频域问题,把时间域的高阶微分方程变换为复频域的代数方程,在求出待求的复变函数后,再作相反的变换得到待求的时间函数。由于解复变函数的代数方程比解时域微分方程较有规律且有效,所以拉普拉斯变换在线性电路分析中得到广泛应用。 2.拉普拉斯变换的定义 一个定义在[0,+∞)区间的函数f(t),它的拉普拉斯变换式F(s)定义为 式中s=σ+jω为复数,被称为复频率;F(s)为f(t)的象函数,f(t)为F(s)的原函数。 由F(s)到f(t)的变换称为拉普拉斯反变换,它定义为 式中c为正的有限常数。 注意: 1)定义中拉氏变换的积分从t=0-开始,即: 它计及t=0-至0+,f(t)包含的冲激和电路动态变量的初始值,从而为电路的计算带来方便。 2)象函数F(s)一般用大写字母表示,如I(s),U(s),原函数f(t)用小写字母表示,如i(t),u(t)。 3)象函数F(s)存在的条件: 3.典型函数的拉氏变换 1)单位阶跃函数的象函数

2)单位冲激函数的象函数 3)指数函数的象函数 §13-2 拉普拉斯变换的性质拉普拉斯变换的性质列于表13.1中。 表13-1 拉氏变换的若干性质和定理 时域延迟为一非负实数 频域延迟 或存在 或 所有奇点均在 为与的卷积 应用拉氏变换的性质,同时借助于表13.2中所示的一些常用函数的拉普拉斯变式可以使一些函数的象函数求解简化。

常用拉普拉斯变换总结

常用拉普拉斯变换总结 1、指数函数 000)(≥

??∞-∞-∞ ----==000d d ][t s e s e t t te t L st st st 2 01d 1s t e s st ==?∞- 6、正弦函数 00sin 0)(≥

常用函数的拉氏变换[1]

附录A 拉普拉斯变换及反变换 419

420

421 3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式 1110 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++= =---- (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110- 都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算: )()(lim s F s s c i s s i i -=→ (F-2) 或 i s s i s A s B c ='= )() ( (F-3) 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数 []??????-==∑=--n i i i s s c L s F L t f 11 1 )()(=t s n i i i e c -=∑1 (F-4) ② 0)(=s A 有重根 设0)(=s A 有r 重根1s ,F(s)可写为 ()) ()()() (11n r r s s s s s s s B s F ---= + = n n i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++-- 11 111 111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根;

拉氏变换及应用

§2-3拉普拉斯变换及其应用 时域的函数可以通过线性变换的方法在变换域中表示,变换域的表示有时更为简捷、方便。例如控制理论中常用的拉普拉斯变换,简称拉氏变换,就是其中的一种。 一、拉氏变换的定义 已知时域函数,如果满足相应的收敛条件,可以定义其拉氏变换为 (2-45) 式中,称为原函数,称为象函数,变量为复变量,表示为 (2-46) 因为是复自变量的函数,所以是复变函数。 有时,拉氏变换还经常写为 (2-47) 拉氏变换有其逆运算,称为拉氏反变换,表示为 (2-48) 上式为复变函数积分,积分围线为由到的闭曲线。 二、常用信号的拉氏变换 系统分析中常用的时域信号有脉冲信号、阶跃信号、正弦信号等。现复习一些基本时域信号拉氏变换的求取。 (1)单位脉冲信号

理想单位脉冲信号的数学表达式为 (2-49) 且 (2-50) 所以 (2-51) 说明: 单位脉冲函数可以通过极限方法得到。设单个方波脉冲如图2-13所示,脉冲的宽度为,脉冲的高度为,面积为1。当保持面积不变,方波脉冲的宽度趋于无穷小时,高度趋于无穷大,单个方波脉冲演变成理想的单位脉冲函数。 在坐标图上经常将单位脉冲函数 表示成单位高度的带有箭头的线段。 由单位脉冲函数的定义可知,其面积积分的上下限是从到的。因此在求它的拉氏变换时,拉氏变换的积分下限也必须是。由此,特别指明拉氏变换定义式中的积分下限是,是有实际意义的。所以,关于拉氏变换的积分下限根据应用的实际情况有,,三种情况。为不丢掉信号中位于处可能存在的脉冲函数,积分下限应该为。

(2)单位阶跃信号 单位阶跃信号的数学表示为 (2-52) 又经常写为 (2-53) 由拉氏变换的定义式,求得拉氏变换为 (2-54) 因为 阶跃信号的导数在处有脉冲函数存在,所以单位阶跃信号的拉氏变换,其积分下限规定为。 (3)单位斜坡信号 单位斜坡信号的数学表示为 (2-55) 图2-15单位斜坡信号 另外,为了表示信号的起始时刻,有时也经常写为 (2-56)

拉普拉斯变换公式

附录A 拉普拉斯变换及反变换

3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式 1110 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++= =----ΛΛ (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110-Λ都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)(ΛΛ (F-1) 式中,n s s s ,,,21Λ是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在i s 处的留数,可 按下式计算: )()(lim s F s s c i s s i i -=→ (F-2) 或 i s s i s A s B c ='= )() ( (F-3) 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数 []??????-==∑=--n i i i s s c L s F L t f 11 1 )()(=t s n i i i e c -=∑1 (F-4) ② 0)(=s A 有重根 设0)(=s A 有r 重根1s ,F(s)可写为 ()) ()()() (11n r r s s s s s s s B s F ---= +Λ =n n i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++--ΛΛΛ11 111111)()()(

拉普拉斯变换27530

§14 拉普拉斯变换 重点:1. 拉普拉斯反变换部分分式展开 2. 基尔霍夫定律的运算形式、运算阻抗和运算导纳、运算电路 3. 应用拉普拉斯变换分析线性电路的方法和步骤 4. 网络函数的的定义和极点、零点的概念; *5. 网络函数的零点、极点与冲激响应(ch7)的关系; *6. 网络函数的零点、极点与频率响应的关系 难点: 1. 拉普拉斯反变换的部分分式展开法 2. 电路分析方法及定理在拉普拉斯变换中的应用 *3. 零点、极点与冲激响应的关系 *4. 零点、极点与频率响应的关系 本章与其它章节的联系: 1.是前几章基于变换思想的延续。 2.是叠加定理的一种表现 预习知识:积分变换卷积积分 学时安排: 教学方式: 课件: 参考资料:

§14-1 拉普拉斯变换的定义 1. 拉普拉斯变换法 拉普拉斯变换法是一种数学积分变换,其核心是把时间函数f(t) 与复变函数F(s) 联系起来,把时域问题通过数学变换为复频域问题,把时间域的高阶微分方程变换为复频域的代数方程,在求出待求的复变函数后,再作相反的变换得到待求的时间函数。由于解复变函数的代数方程比解时域微分方程较有规律且有效,所以拉普拉斯变换在线性电路分析中得到广泛应用。 2. 拉普拉斯变换的定义 一个定义在[0,+∞) 区间的函数f(t) ,它的拉普拉斯变换式F(s) 定义为 式中s=σ+jω为复数,被称为复频率;F(s)为f(t)的象函数,f(t)为F(s)的原函数。 由F(s) 到f(t) 的变换称为拉普拉斯反变换,它定义为 式中 c 为正的有限常数。 注意: 1)定义中拉氏变换的积分从t=0- 开始,即: 它计及t=0- 至0+ ,f(t) 包含的冲激和电路动态变量的初始值,从而为电路的计算带来方便。 2)象函数F(s) 一般用大写字母表示, 如I(s),U(s) ,原函数f(t) 用小写字母表示,如i(t),u(t)。 3)象函数F(s) 存在的条件: 3.典型函数的拉氏变换 1) 单位阶跃函数的象函数 2) 单位冲激函数的象函数 3) 指数函数的象函数

(完整版)拉普拉斯变换及其逆变换表

拉普拉斯变换及其反变换表

3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式 1 1 n 1 n n n 1 1 m 1 m m m a s a s a s a b s b s b s b )s (A )s (B )s (F ++++++++==----ΛΛ (m n >) 式中系数n 1 n 1 a ,a ,...,a ,a -,m 1 m 1 b ,b ,b ,b -Λ都是实常数;n m ,是正整数。按 代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。 ∑ =-=-++-++-+-=n 1 i i i n n i i 2 2 1 1 s s c s s c s s c s s c s s c )s (F ΛΛ 式中,Sn 2S 1S ,,,Λ是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算: )s (F )s s (lim c i s s i i -=→ 或 i s s i ) s (A ) s (B c ='= 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数 []t s n 1 i i n 1i i i 11i e c s s c L )s (F L )t (f -==--∑∑=??????-== ② 0)(=s A 有重根 设0)(=s A 有r 重根1s ,F(s)可写为

附表A-2 常用函数的拉氏变换和z变换表

附录A拉普拉斯变换及反变换1.拉氏变换的基本性质 附表A-1 拉氏变换的基本性质 419

2.常用函数的拉氏变换和z变换表 附表A-2 常用函数的拉氏变换和z变换表 420

421 3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式,即 11 10111) ()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++== ---- (m n >) 式中,系数n n a a a a ,,...,,110-和011,,,,m m b b b b - 都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 (1)0)(=s A 无重根:这时,F(s)可展开为n 个简单的部分分式之和的形式,即 ∑ =-= -+ +-+ +-+ -= n i i i n n i i s s c s s c s s c s s c s s c s F 1 2 21 1)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根;i c 为待定常数,称为()F s 在i s 处的留数,可按下列两式计算:lim ()()i i i s s c s s F s →=- (F-2) 或 i s s i s A s B c ='= ) ()( (F-3) 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数为 []?? ????-==∑=--n i i i s s c L s F L t f 11 1)()(=1i n s t i i c e =∑ (F -4) (2)0)(=s A 有重根:设0)(=s A 有r 重根1s ,F(s)可写为

拉普拉斯变换

拉普拉斯变换 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

§13拉普拉斯变换 重点:1.拉普拉斯反变换部分分式展开 2.基尔霍夫定律的运算形式、运算阻抗和运算导纳、运算电路 3.应用拉普拉斯变换分析线性电路的方法和步骤 难点: 1.拉普拉斯反变换的部分分式展开法 2.电路分析方法及定理在拉普拉斯变换中的应用 本章与其它章节的联系: 是后续各章的基础,是前几章基于变换思想的延续。 预习知识: 积分变换 §13-1拉普拉斯变换的定义 1.拉普拉斯变换法 拉普拉斯变换法是一种数学积分变换,其核心是把时间函数f(t)与复变函数F(s)联系起来,把时域问题通过数学变换为复频域问题,把时间域的高阶微分方程变换为复频域的代数方程,在求出待求的复变函数后,再作相反的变换得到待求的时间函数。由于解复变函数的代数方程比解时域微分方程较有规律且有效,所以拉普拉斯变换在线性电路分析中得到广泛应用。 2.拉普拉斯变换的定义 一个定义在[0,+∞)区间的函数f(t),它的拉普拉斯变换式F(s)定义为 式中s=σ+jω为复数,被称为复频率;F(s)为f(t)的象函数,f(t)为F(s)的原函数。 由F(s)到f(t)的变换称为拉普拉斯反变换,它定义为 式中c为正的有限常数。 注意: 1)定义中拉氏变换的积分从t=0-开始,即: 它计及t=0-至0+,f(t)包含的冲激和电路动态变量的初始值,从而为电路的计算带来方便。 2)象函数F(s)一般用大写字母表示,如I(s),U(s),原函数f(t)用小写字母表示,如 i(t),u(t)。 3)象函数F(s)存在的条件: 3.典型函数的拉氏变换 1)单位阶跃函数的象函数

拉普拉斯变换及逆变换

第十二章 拉普拉斯变换及逆变换 拉普拉斯(Laplace)变换就是分析与求解常系数线性微分方程得一种简便得方法,而且在自动控制系统得分析与综合中也起着重要得作用。我们经常应用拉普拉斯变换进行电路得复频域分析。本章将扼要地介绍拉普拉斯变换(以下简称拉氏变换)得基本概念、主要性质、逆变换以及它在解常系数线性微分方程中得应用。 第一节 拉普拉斯变换 在代数中,直接计算 32 8 .95781 2028.6?? =N 5 3)164.1(? 就是很复杂得,而引用对数后,可先把上式变换为 164 .1lg 53 )20lg 28.9lg 5781(lg 3128.6lg lg ++-+=N 然后通过查常用对数表与反对数表,就可算得原来要求得数N 。 这就是一种把复杂运算转化为简单运算得做法,而拉氏变换则就是另一种化繁为简得做法。 一、拉氏变换得基本概念 定义12、1 设函数()f t 当0t ≥时有定义,若广义积分 ()pt f t e dt +∞ -? 在P 得某一区域内 收敛,则此积分就确定了一个参量为P 得函数,记作()F P ,即 dt e t f P F pt ? ∞ +-= )()( (12、1) 称(12、1)式为函数()f t 得拉氏变换式,用记号[()]()L f t F P =表示。函数()F P 称为()f t 得 拉氏变换(Laplace) (或称为()f t 得象函数)。函数()f t 称为()F P 得拉氏逆变换(或称为 ()F P 象原函数),记作 )()]([1t f P F L =-,即)]([)(1P F L t f -=。 关于拉氏变换得定义,在这里做两点说明: (1)在定义中,只要求()f t 在0t ≥时有定义。为了研究拉氏变换性质得方便,以后总假定在0t <时,()0f t =。 (2)在较为深入得讨论中,拉氏变换式中得参数P 就是在复数范围内取值。为了方便起见,本章我们把P 作为实数来讨论,这并不影响对拉氏变换性质得研究与应用。 (3)拉氏变换就是将给定得函数通过广义积分转换成一个新得函数,它就是一种积分变换。一般来说,在科学技术中遇到得函数,它得拉氏变换总就是存在得。 例12、1 求斜坡函数()f t at = (0t ≥,a 为常数)得拉氏变换。 解:00 00 []()[]pt pt pt pt a a a L at ate dt td e e e dt p p p +∞ +∞+∞---+∞-= =- =-+? ?? 2020 ][0p a e p a dt e p a pt pt =-=+ =∞ +-∞+-? ) 0(>p

很好的拉普拉斯变换讲解

拉普拉斯(Laplace)变换是分析和求解常系数线性微分方程的一种简便的方法,而且在自动控制系统的分析和综合中也起着重要的作用.本章将扼要地介绍拉普拉斯变换(以下简称拉氏变换)的基本概念、主要性质、逆变换以及它在解常系数线性微分方程中的应用.拉氏变换的基本概念 在代数中,直接计算 是很复杂的,而引用对数后,可先把上式变换为 , 然后通过查常用对数表和反对数表,就可算得原来要求的数. 这是一种把复杂运算转化为简单运算的做法,而拉氏变换则是另一种化繁为简的做法.7.1.1 拉氏变换的基本概念 定义设函数当时有定义,若广义积分在的某一区域内收敛,则此积分就确定了一个参量为的函数,记作,即 (7-1)称(7-1)式为函数的拉氏变换式,用记号表示.函数称为的拉氏变换(Laplace) (或称为的象函数).函数称为的拉氏逆变换(或称为象原函数),记作 ,即. 关于拉氏变换的定义,在这里做两点说明: (1) 在定义中,只要求在时有定义.为了研究拉氏变换性质的方便,以后总假定在时,.(2)在较为深入的讨论中,拉氏变换式中的参数是在复数范围内取值.为了方便起见,本章我们把作为实数来讨论,这并不影响对拉氏变换性质的研究和应用. (3)拉氏变换是将给定的函数通过广义积分转换成一个新的函数,它是一种积分变换.一般来说,在科学技术中遇到的函数,它的拉氏变换总是存在的. 例7-1 求一次函数(为常数)的拉氏变换. 解 . 7.1.2 单位脉冲函数及其拉氏变换 在研究线性电路在脉冲电动势作用后所产生的电流时,要涉及到我们要介绍的脉冲函数,在原来电流为零的电路中,某一瞬时(设为)进入一单位电量的脉冲,现要确定电路上的电流,以表示上述电路中的电量,则

拉氏变换常用公式

附录A 拉普拉斯变换及反变换表A-1 拉氏变换的基本性质

表A-2 常用函数的拉氏变换和z变换表

用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设 )(s F 是s 的有理真分式 11 10 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110- 都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算: )()(lim s F s s c i s s i i -=→ (F-2) 或 i s s i s A s B c ='= )() ( (F-3) 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数 []??????-==∑=--n i i i s s c L s F L t f 1 1 1 )()(=t s n i i i e c -=∑1 (F-4) ② 0)(=s A 有重根 设0)(=s A 有r 重根1s ,F(s)可写为 ()) ()()() (11n r r s s s s s s s B s F ---= + =n n i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++-- 11 111111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根;

拉普拉斯变换公式

附录A拉普拉斯变换及反变换 419

420

421 3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式 1110 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++= =---- (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110- 都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算: )()(l i m s F s s c i s s i i -=→ (F-2) 或 i s s i s A s B c ='=)() ( (F-3) 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数 []??????-==∑=--n i i i s s c L s F L t f 11 1 )()(=t s n i i i e c -=∑1 (F-4) ② 0)(=s A 有重根 设0)(=s A 有r 重根1s ,F(s)可写为 ()) ()()() (11n r r s s s s s s s B s F ---= + = n n i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++-- 11 111 111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根;

Laplace拉氏变换公式表

拉普拉斯变换及反变换1.表A-1 拉氏变换的基本性质 2.表A-2 常用函数的拉氏变换和z变换表 1

2

3 3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式 1110 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++= =---- (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110- 都是实常数;n m ,是正整数。按代数定理可将 )(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算: )()(lim s F s s c i s s i i -=→ (F-2) 或 i s s i s A s B c ='= )() ( (F-3) 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数 []??????-==∑=--n i i i s s c L s F L t f 11 1 )()(=t s n i i i e c -=∑1 (F-4) ② 0)(=s A 有重根 设0)(=s A 有r 重根1s ,F(s)可写为 ()) ()()() (11n r r s s s s s s s B s F ---= + = n n i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++-- 11 111 111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根; 其中,1+r c ,…, n c 仍按式(F-2)或(F-3)计算,r c ,1-r c ,…, 1c 则按下式计算:

拉普拉斯变换

拉普拉斯变换(英文:Laplace Transform),是工程数学中常用的一种积分变换。 如果定义: f(t),是一个关于t,的函数,使得当t<0,时候,f(t)=0,; s, 是一个复变量; mathcal 是一个运算符号,它代表对其对象进行拉普拉斯积分int_0^infty e^ ,dt;F(s),是f(t),的拉普拉斯变换结果。 则f(t),的拉普拉斯变换由下列式子给出: F(s),=mathcal left =int_ ^infty f(t),e^ ,dt 拉普拉斯逆变换,是已知F(s),,求解f(t),的过程。用符号mathcal ^ ,表示。 拉普拉斯逆变换的公式是: 对于所有的t>0,; f(t) = mathcal ^ left =frac int_ ^ F(s),e^ ,ds c,是收敛区间的横坐标值,是一个实常数且大于所有F(s),的个别点的实部值。 为简化计算而建立的实变量函数和复变量函数间的一种函数变换。对一个实变量函数作拉普拉斯变换,并在复数域中作各种运算,再将运算结果作拉普拉斯反变换来求得实数域中的相应结果,往往比直接在实数域中求出同样的结果在计算上容易得多。拉普拉斯变换的这种运算步骤对于求解线性微分方程尤为有效,它可把微分方程化为容易求解的代数方程来处理,从而使计算简化。在经典控制理论中,对控制系统的分析和综合,都是建立在拉普拉斯变换的基础上的。引入拉普拉斯变换的一个主要优点,是可采用传递函数代替微分方程来描述系统的特性。这就为采用直观和简便的图解方法来确定控制系统的整个特性(见信号流程图、动态结构图)、分析控制系统的运动过程(见奈奎斯特稳定判据、根轨迹法),以及综合控制系统的校正装置(见控制系统校正方法)提供了可能性。 用f(t)表示实变量t的一个函数,F(s)表示它的拉普拉斯变换,它是复变量s=σ+j&owega;的一个函数,其中σ和&owega; 均为实变数,j2=-1。F(s)和f(t)间的关系由下面定义的积分所确定: 如果对于实部σ >σc的所有s值上述积分均存在,而对σ ≤σc时积分不存在,便称σc为f(t)的收敛系数。对给定的实变量函数f(t),只有当σc为有限值时,其拉普拉斯变换F(s)才存在。习惯上,常称F(s)为f(t)的象函数,记为F(s)=L[f(t)];称f(t)为F(s)的原函数,记为ft=L-1[F(s)]。 函数变换对和运算变换性质利用定义积分,很容易建立起原函数f(t)和象函数F(s)间的变换对,以及f(t)在实数域内的运算与F(s)在复数域内的运算间的对应关系 1

常用的拉氏变换表

1 常用函数的拉氏变换和z 变换表 序号 拉氏变换E(s) 时间函数e(t) Z 变换E(z) 1 1 δ(t) 1 2 Ts e --11 ∑∞ =-=0)()(n T nT t t δδ 1 -z z 3 s 1 )(1t 1 -z z 4 21s t 2 )1(-z Tz 5 3 1s 2 2t 3 2 )1(2)1(-+z z z T 6 1 1+n s !n t n )(!)1(lim 0aT n n n a e z z a n -→-??- 7 a s +1 at e - aT e z z -- 8 2 )(1a s + at te - 2 )(aT aT e z Tze --- 9 )(a s s a + at e --1 ) )(1()1(aT aT e z z z e ----- 10 ) )((b s a s a b ++- bt at e e --- bT aT e z z e z z ---- - 11 22ω ω +s t ωsin 1 cos 2sin 2+-T z z T z ωω 12 2 2ω+s s t ωcos 1 cos 2)cos (2+--T z z T z z ωω 13 22)(ω ω++a s t e at ωsin - aT aT aT e T ze z T ze 22cos 2sin ---+-ωω 14 2 2)(ω+++a s a s t e at ωcos - aT aT aT e T ze z T ze z 222cos 2cos ---+--ωω 15 a T s ln )/1(1- T t a / a z z -

常用拉普拉斯变换及反变换

附录A 拉普拉斯变换及反变换1.表A-1 拉氏变换的基本性质 419

2.表A-2 常用函数的拉氏变换和z变换表 420

421 3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式 1110 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++= =????L L (m n >) 式中系数n n a a a a ,,...,,110?,m m b b b b ,,,110?L 都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。 ∑=?=?++?++?+?=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)(L L (F-1) 式中,n s s s ,,,21L 是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算: )()(lim s F s s c i s s i i ?=→ (F-2) 或 i s s i s A s B c =′= )() ( (F-3) 式中,)(s A ′为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数 []???????==∑=??n i i i s s c L s F L t f 11 1 )()(=t s n i i i e c ?=∑1 (F-4) ② 0)(=s A 有重根 设0)(=s A 有r 重根1s ,F(s)可写为 ()) ()()() (11n r r s s s s s s s B s F ???= +L = n n i i r r r r r r s s c s s c s s c s s c s s c s s c ?++?++?+?++?+?++??L L L 11 111 111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根;

相关主题
文本预览
相关文档 最新文档