当前位置:文档之家› 《菱形》典型例题

《菱形》典型例题

《菱形》典型例题
《菱形》典型例题

菱形

例1 如图,在菱形ABCD 中,E 是AB 的中点,且a AB AB DE =⊥,,求:

(1)ABC ∠的度数;(2)对角线AC 的长;(3)菱形ABCD 的面

例2 已知:如图,在菱形ABCD 中,AB CE ⊥于AD CF E ⊥,于 F .求证:AE=AF

例4 如图,ABCD 中,AB AD 2=,E 、F 在直线CD 上,且CF CD DE ==. 求证:AF BE ⊥.

例5 如图,在Rt △ABC 中,

90=∠ACB ,E 为AB 的中点,四边形BCDE 是平行四边形.求证:AC 与DE 互相垂直平分

例6、如图,在是△ABC 中,∠ACB=90°,BC 的垂直平分线DE 交BC 于D ,交AB 于E ,点F 在直线DE 上,AF=CE .

(1)说明,四边形ACEF 是平行四边形;(5分)

(2)当∠B 的大小满足什么条件时,四边形ACEF 是菱形说明理由.(4

分)

例7、如图,△ABC 中,点O 是AC 边上一动点,过点O 作直线MN ∥BC,设MN 交∠BCA 的平分线于E ,交∠BCA 的外角平分线于点F .

(1)说明:EO =OF

(2)当点O 运动到时,四边形BEFC 可能是菱形吗并说明理由. (3)当点O 运动到何处时,四边形AECF 是矩形并说明理由.

(4)在(3)的条件下,当△ABC 满足什么条件时,四边形AECF 是正方形并说明理由.

C

D

E

A B

F

巩固练习

1、梯形ABCD 中,AD ∥BC,BD 平分∠ABC,∠C=60°,当AB=CD=4时,梯形ABCD 的周长

2、在等腰梯形ABCD 中,AB ∥CD , 对角线AC 平分∠BAD ,∠B =60o,CD =2cm ,则梯形ABCD 的面积为

3.如图,梯形ABCD 中,AD ∥BC ,AC 为对角线,AE ⊥BC 于E ,AB ⊥AC ,若 ∠ACB =30°,BE =2.则EC =___________.

5.在梯形ABCD 中,AD ∥BC ,AB =AC ,若∠D =110°,∠ACD =30°,则∠BAC 等于 7.直角梯形一腰长16 cm,该腰和一个底所成的角为30°,那么另一腰长________ cm. 9、如图,等腰梯形ABCD 中,AD ∥BC ,AB =DC ,AC ⊥BD ,过D 点作DE ∥AC 交BC 的延长线于E 点.

⑴求证:四边形ACED 是平行四边形;

⑵若AD =3,BC =7,求梯形ABCD 的面积.

菱形的测试题 一. 填空题

1. 若平行四边形ABCD 是菱形,则与AD 相等的线段有___。 2. 如图,菱形ABCD 中,对角线AC,BD 相交于点O ,如果∠A=60o,对角线BD=7cm ,则菱形的周长=___cm

3. 若菱形的两条对角线长分别为6cm 和8cm ,则菱形的面积是___,周长是___。

4. 若菱形的高为3cm ,较小的内角是30o,则菱形的边长为___,面积为___。

5. 已知菱形的周长为20cm ,两条对角线的比为3 :4,则菱形的面积为___cm 2

。 二. 选择题

1. 菱形具有其它平行四边形不一定具有的性质( )

A .对边平行 B.对角相等 C.对角线互相平分 D.对角线互相垂直

2. 在菱形ABCD 中,AE ⊥BC 于E,AF ⊥CD 于F ,且E,F 分别是BC,CD 的中点,那么 ∠EAF 等于( )

A .75o o o o

3.菱形ABCD 的周长20cm ,∠A:∠B=2:1,则顶点A 到对角线BD 的距离是( )

O

F E

C D

B N

M A

A D

B E 60?

D C

B

A B

A C

D

D

A

C

F

H E B

4.菱形的一边和等腰直角三角形的一直角边等长,若菱形的一个角是30o,则菱形和三角形的面积比为( )

A .1:2 B. 1: C. 1:1 :3

5.菱形的周长为52,较短的一条对角线长为10,那么菱形的面积是( ) C. 120

6.能够判定一个四边形是菱形的条件是( )

A.对角线相等且互相平分

B.对角线互相垂直

C.对角线相等且两组对角相等

D.两组对角相等且一组对角线平分一组对角 三. 解答题

1,菱形ABCD 的对角线相交于点O,AC=8cm ,BD=6cm ,求菱形的高

4.如图,平行四边形ABCD 的对角线AC 的垂直平分线与AD,BC,AC 分别交于点E,F,O,

求证:四边形AFCE 是菱形

A E D

B F

C 8、如右上图,两张等宽的纸条交叉重叠在一起,重叠的部分ABC

D 是菱形吗为什么

9、如左下图,四边形ABCD 中,对角线AC 和BD 相交于点O ,且AC ⊥BD ,点M 、N 分

别在BD 、AC 上,且AO =ON =NC ,BM =MO =OD. 求证:BC =2 DN

11、 【提高题】 如图所示,△ABC 中,∠ACB=90°,∠ABC 的平分线BD?交AC 于点D ,CH⊥AB 于H ,且交BD 于点F ,DE⊥AB 于E ,四边形CDEF 是菱形吗请说明理由.

菱形的判定证明题练习

1如图,梯形ABCD 中,AB ∥CD ,AC 平分∠BAD ,CE ∥AD 交AB 于点E .求证:四边形AECD

O

D C

B

A O

E

是菱形.

2、如图,在四边形ABCD 中,点E ,F 分别是AD BC ,的中点,G H ,分别是BD AC ,的中点,AB CD ,满足什么条件时,四边形EGFH 是菱形请证明你的结论.

3、 如图,在平行四边形ABCD 中,BE 平分ABC ∠交AD 于点E ,DF 平分∠ADC 交BC 于点F .求证:(1)ABE CDF △≌;

(2)若BD EF ⊥,则判断四边形EBFD 是什么特殊四边形,请证明你的结论.

4. 如图,O 为矩形ABCD 对角线的交点,DE ∥AC ,CE ∥BD .

(1)试判断四边形OCED 的形状,并说明理由; (2)若AB =6,BC =8,求四边形OCED 的面积.

6. 已知:如图,在梯形ABCD 中,AB CD ∥,BC CD =,AD BD ⊥,E 为AB 中

点.

求证:四边形BCDE 是菱形.

7. 如图,在△ABC 中,∠ACB =90°,BC 的垂直平分线DE 交BC 于D ,交AB 于E ,F 在DE 上,且AF =CE =AE .

(1)说明四边形ACEF 是平行四边形;

(2)当∠B 满足什么条件时,四边形ACEF 是菱形,并说明理由.

A

B C D E

A B C D

E

G H F

D E C

A

B

假言推理的例子

17.禄东赞巧破难题 巧媳妇智斗知府 ——要正确运用假言推理 唐朝文成公主远嫁西藏,成为汉藏两民族关系史上的一段佳话。藏王的求婚使者禄东赞,以聪明机智著称。他千里迢迢、风尘仆仆地来到长安。唐朝皇帝有意当面考一考他,给他出了三道难题,禄东赞沉着应对,名不虚传。 下面我们就来看看皇帝出的三道难题以及禄东赞巧破难题 的办法。 第一道难题:皇帝叫人把禄东赞引到有500匹马的一个马群里,让禄东赞辨认每一匹母马的亲生仔马。 禄东赞眼珠子一转,就有办法了。他叫手下人赶紧搬来许多上好的马料,让母马美美地饱餐一顿。母马吃饱喝足了,就昂头高叫,招呼着各自的小马驹去吃奶。小马驹听到母马亲切的呼唤声,欢蹦乱跳地各自向自己的母马那里窜去。于是,禄东赞就把每一匹母马的亲生仔马分辨出来了。 第二道难题:皇帝叫人拿来一颗九曲明珠和一根线,让禄东赞把线穿进弯弯曲曲的珠孔里去。 禄东赞眨了眨眼,就有主意了。他叫手下人捉来一只蚂蚁,把线粘在蚂蚁的脚上,把这只蚂蚁放在珠孔的一端,在珠孔的另一端涂上蜜糖。蚂蚁闻到蜜香,就带着线从珠孔的这一端很快地穿到有蜜糖的那一端去了。 第三道难题:皇帝叫人搬来一根两头一样粗的巨木,让禄东赞辨认哪头是根,哪头是尾。 禄东赞眉头一皱,计上心来。他懂得树木根重尾轻的道理,即刻叫手下人把这根巨木放到御河里去。这根巨木在水面上飘流了一会儿,轻的在前,重的在后。于是禄东赞就准确地指出哪头是根,哪头是尾。 禄东赞为什么能巧破难题呢?除了丰富的生活经验之外,那就是善于推理了。他用什么推理来破这三道难题呢?他用的推理形式主要是假言推理。 什么是假言推理 什么是假言推理呢? 假言推理是前提中有一个是假言判断,并且根据假言判断前

小学数学中的合情推理

小学数学中的合情推理 (2009-07-29 16:35:15) 分类:教学 标签: 杂谈 合情推理,是美籍数学家波利亚在30年代提出的概念,它是指“观察、归纳、类比、实验、联想、猜测、矫正和调控等方法”。波利亚在致力改变美国数学落后状态的工作中,大力倡导合情推理的方法,并获得成功。 在数学学科教学中,我们重视和加强了双基教学,但学生在校所学到的学科知识,随着他们离开学校,多数会逐渐忘掉,甚至有的会忘得“一干二净”。如果说“教育是所有学会的东西都忘却以后,仍然留下来的那些东西”(M?劳厄),学生学习数学获得的不仅仅是知识,除此之外,更为重要的是思想与方法。而在研究探究性学习的今天,我们的教学一直在研究如何组织和组织的形式上,对在发展过程中使用的合情推理等方法没有予以足够的重视,而这些恰恰是人的优秀文化素质的重要组成部分。再联想到有关团体对中外学生调查结果显示的中国学生科学测验成绩较差的信息,不能不使我们感到加强对合情推理能力的培养已是刻不容缓。 一、合情推理在数学能力发展中的功能和作用 《数学课程标准(实验稿)》在课程的具体目标中明确提出了“培养和发展学生的合情推理能力”。合情推理,它“是在认知过程中,主体根据自己在日常生活中积累的知识、经验,经过非演绎(或非完全演绎)的思维而得到合乎情理、理想化结论的一种推理方式”。其主要表现在:“它可能是……”(猜测),“做出来看一看”(实验),“由上所述可得……”(归纳),“将人心比自心”(类比),“可以想象”(联想)等。 合理推理与通常所说的论证推理是不相同的。论证推理是可靠的;而合情推理是根据经验、知识、直观与感觉得到的一种可能性结论的推理,它推出的结论不一定都正确,却和论证推理一样在数学和生活中都有广泛的应用。在社会生活中,医生诊断疾病,法官审判案件,军事家指挥战争,人际交往等都应用合情推理。一些科学发现的思维,也主要是合情推理:量子力学方程是猜出来的;球体公式是阿基米德“称”出来的;而现代仿生学则是类比推理在科技中应用的杰出成果。事实证明,合情推理的这两种主要推理方式…归纳?和…类比?,不受逻辑规则的约束具有强烈的创造性质,它推动了数学的进步和发展。尽管由类比、归纳得出的结论不一定正确,必须加以论证才能确立,但它在数学教学中突出发展学生创造性思维的

矩形、菱形经典题型总结

课 题 矩形、菱形 授课日期及时段 教学目的 1、掌握矩形的性质及其判定; 2、掌握菱形的性质及其判定。 教学内容 【知识梳理】 1.矩形的性质:①矩形的四个角都是直角.②矩形的对角线相等.③矩形具有平行四边形的所有性质. 2.矩形的判定:①有一个角是直角的平行四边形是矩形.②对角线相等的平行四边形是矩形. ③有三个角是直角的四边形是矩形. 【典例讲解】 例1、如图,已知矩形ABCD 的纸片沿对角线BD 折叠,使C 落在C ’处,BC ’边交AD 于E ,AD=4,CD=2 (1)求AE 的长 (2)△BED 的面积 巩固练习: 1.如图,矩形ABCD 中,AD=9,AB=3,将其折叠,使其点D 与点B 重合,折痕为EF 求DE 和EF 的长。 2.如图,已知将矩形ABCD 沿EF 所在直线翻折,使点A 与C 重合,AB=6,AD=8求折痕EF 的长 C ’ D A B C E F D A B C E C ’ E F A B C D

例2:如图,矩形ABCD中,E是BC上一点,且AE=AD,又DF⊥AE,F为垂足。求证:EC=EF 巩固练习 1.矩形的相邻两边的长分别是12㎝和5㎝,则矩形的对角线的长是。 2.若矩形的面积是36 3 cm2,两条对角线相交成60o锐角,则此矩形的两邻边长分别是㎝和㎝。3.将两个同样的长为3厘米,宽为2厘米的长方形重新拼一个长方形,则此长方形的对角线长为______厘米。 4. 如图,矩形ABCD中,AD=2AB,点E在AD上, AE=AB。求∠CEB的度数。 5.如图,矩形ABCD的对角线AC、BD交于点O,AE⊥BD,BE⊥AC且AE、BE交于点E。求证:AE=BE E D C OOOOO A B 例3.已知:在矩形ABCD中,AE BD于E,∠DAE=3∠BAE ,求:∠EAC的度数。

《菱形的性质与判定》典型例题

《菱形的性质与判定》典型例题 例1 如图,在菱形ABCD 中,E 是AB 的中点,且a AB AB DE =⊥,,求: (1)ABC ∠的度数;(2)对角线AC 的长;(3)菱形ABCD 的面积. 例2 已知:如图,在菱形ABCD 中,AB CE ⊥于AD CF E ⊥,于 F . 求证:.AF AE = 例 3 已知:如图,菱形ABCD 中,E ,F 分别是BC ,CD 上的一点,?=∠=∠60EAF D ,?=∠18BAE ,求CEF ∠的度数. 例4 如图,已知四边形ABCD 和四边形BEDF 都是长方形,且DF AD =. 求证:GH 垂直平分CF .

例 5 如图,ABCD中,AB =,E、F在直线CD上,且 AD2 =. DE= CF CD 求证:AF BE⊥. 例6 如图,在Rt△ABC中, ∠ACB,E为AB的中点,四边形BCDE = 90 是平行四边形. 求证:AC与DE互相垂直平分

参考答案 例1 分析 (1)由E 为AB 的中点,AB DE ⊥,可知DE 是AB 的垂直平分线,从而DB AD =,且AB AD =,则ABD ?是等边三角形,从而菱形中各角都可以求出.(2)而OC AO BD AC =⊥,,利用勾股定理可以求出AC .(3)由菱形的对角线互相垂直,可知.2 1BD AC S ?= 解 (1)连结BD ,∵四边形ABCD 是菱形,∴.AB AD = E 是AB 的中点,且AB DE ⊥,∴.DB AD = ∴ABD ?是等边三角形,∴DBC ?也是等边三角形. ∴.120260?=??=∠ABC (2)∵四边形ABCD 是菱形,∴AC 与BD 互相垂直平分, ∴.2 12121a AB BD OB === ∴a a a OB AB OA 2 3)21(2222=-=-=,∴.32a AO AC == (3)菱形ABCD 的面积.2 3321212a a a BD AC S =??=?= 说明:本题中的菱形有一个内角是60°的特殊的菱形,这个菱形有许多特点,通过解题应该逐步认识这些特点. 例2 分析 要证明AF AE =,可以先证明DF BE =,而根据菱形的有关性质不难证明DCF BCE ???,从而可以证得本题的结论. 证明 ∵四边形ABCD 是菱形,∴D B CD BC ∠=∠=,,且?=∠=∠90DFC BEC ,∴DCF BCE ???,∴DF BE =, AD AB = ,

(整理)合情推理和演绎推理》.

第十七章推理与证明 ★知识网络★ 第1讲合情推理和演绎推理 ★知识梳理★ 1.推理 根据一个或几个事实(或假设)得出一个判断,这种思维方式叫推理. 从结构上说,推理一般由两部分组成,一部分是已知的事实(或假设)叫做前提,一部分是由已知推出的判断,叫结论. 2、合情推理: 根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出的推理叫合情推理。 合情推理可分为归纳推理和类比推理两类: (1)归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象具有这些特征的推理,或者由个别事实概括出一般结论的推理。简言之,归纳推理是由部分到整体、由个别到一般的推理 (2)类比推理:由两类对象具有某些类似特征和其中一类对象具有的某些已知特征,推出另一类对象也具有这些特征的推理,简言之,类比推理是由特殊到特殊的推理。 3.演绎推理: 从一般性的原理出发,推出某个特殊情况下的结论的推理叫演绎推理,简言之,演绎推理是由一般到特殊的推理。三段论是演绎推理的一般模式,它包括:(1)大前提---已知的一般原理;(2)小前提---所研究的特殊情况;(3)结论——根据一般原理,对特殊情况作出的判断。 ★重难点突破★ 重点:会用合情推理提出猜想,会用演绎推理进行推理论证,明确合情推理与演绎推理的区别与联系

难点:发现两类对象的类似特征、在部分对象中寻找共同特征或规律 重难点:利用合情推理的原理提出猜想,利用演绎推理的形式进行证明 1、归纳推理关键是要在部分对象中寻找共同特征或某种规律性 问题1<;…. 对于任意正实数,a b ≤成立的一个条件可以是 ____. 点拨:前面所列式子的共同特征特征是被开方数之和为22,故22=+b a 2、类比推理关键是要寻找两类对象的类似特征 问题2:已知抛物线有性质:过抛物线的焦点作一直线与抛物线交于A 、B 两点,则当AB 与抛物线的对称轴垂直时,AB 的长度最短;试将上述命题类比到其他曲线,写出相应的一个真命题为 . 点拨:圆锥曲线有很多类似性质,“通径”最短是其中之一,答案可以填:过椭圆的焦点作一 直线与椭圆交于A 、B 两点,则当AB 与椭圆的长轴垂直时,AB 的长度最短(22 2||a b AB ≥) 3、运用演绎推理的推理形式(三段论)进行推理 问题3:定义[x]为不超过x 的最大整数,则[-2.1]= 点拨:“大前提”是在],(x -∞找最大整数,所以[-2.1]=-3 ★热点考点题型探析★ 考点1 合情推理 题型1 用归纳推理发现规律 [例1 ] 通过观察下列等式,猜想出一个一般性的结论,并证明结论的真假。 2 3135sin 75sin 15sin 020202= ++;23150sin 90sin 30sin 0 20202=++; 23165sin 105sin 45sin 020202=++;23 180sin 120sin 60sin 020202=++ 【解题思路】注意观察四个式子的共同特征或规律(1)结构的一致性,(2)观察角的“共性” [解析]猜想:2 3 )60(sin sin )60(sin 0 2202= +++-ααα 证明:左边=2 00 2 2 00 )60sin cos 60cos (sin sin )60sin cos 60cos (sin ααααα+++- = 2 3 )cos (sin 2322=+αα=右边 【名师指引】(1)先猜后证是一种常见题型 (2)归纳推理的一些常见形式:一是“具有共同特征型”,二是“递推型”,三是“循环型”(周期性) [例2 ] (09深圳九校联考) 蜜蜂被认为是自然界中最杰出的建筑师,单个蜂 巢可以近似地看作是一个正六边形,如图为一组蜂 巢的截面图. 其中第一个图有1个蜂巢,第二个图

假言命题及推理

三、假言命题及推理 1.定义 假言推理是根据假言命题的逻辑性质进行的推理。分为充分条件假言推理,必要条件假言推理和充分必要条件假言推理三种。 2.充分条件假言推理 充分条件假言推理是根据充分条件假言命题的逻辑性质进行的推理。 充分条件假言推理有两条规则: 规则1:肯定前件,就要肯定后件;否定前件,不能否定后件。 规则2:否定后件,就要否定前件;肯定后件,不能肯定前件。 根据规则,充分条件假言推理有两个正确的形式: (1)肯定前件式 如果p,那么q p ___________ 所以,q (2)否定后件式 如果p,那么q 非q ___________ 所以,非p 例如: 1.如果谁骄傲自满,那么他就要落后;小张骄傲自满,所以,小张必定要落后。 2.如果谁得了肺炎,他就一定要发烧;小李没发烧,所以,小李没患肺炎。 例1和例2都是充分条件假言推理,前者是肯定前件式;后者是否定后件式。这两个推理都符合推理规则,所以,都是正确的。 根据规则,充分条件假言推理的否定前件式和肯定后件式都是无效的。例如: 3.如果降落的物体不受外力的影响,那么,它不会改变降落的方向;这个物体受到了外力的影响,所以,它会改变降落的方向。 4.如果赵某是走私犯,那么,他应受法律制裁;经查明,赵某确实受到了法律制裁,所以,赵某是走私犯。 例3和例4都是不正确的充分条件假言推理,因为例3违反了“否定前件,不能否定后件”的规则;例4违反了“肯定后件,不能肯定前件”的规则。 3.必要条件假言推理 必要条件假言推理是根据必要条件假言命题的逻辑性质进行的推理。 必要条件假言推理有两条规则: 规则1:否定前件,就要否定后件;肯定前件,不能肯定后件。 规则2:肯定后件,就要肯定前件;否定后件,不能否定前件。 根据规则,必要条件假言推理有两个正确的形式: (1)否定前件式 只有p,才q 非p

平行四边形 经典例题

平行四边形 一、 基础知识平行四边形 二、1、三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三遍的一半。 2、由矩形的性质得到直角三角形的一个性质:直角三角形斜边上的中线等于斜边的一半。 三、例题 例1、如图1,平行四边形ABCD 中,AE ⊥BD ,CF ⊥BD ,垂足分别为E 、F. 求证:∠BAE =∠DCF. 例2、如图2,矩形ABCD 中,AC 与BD 交于O 点,BE ⊥AC 于E ,CF ⊥BD 于F. 求证:BE = CF. 例3、已知:如图3,在梯形ABCD 中,AD ∥BC ,AB = DC ,点E 、F 分别在AB 、CD 上,且BE = 2EA , CF = 2FD. 求证:∠BEC =∠CFB. (图1) B O A B C D E F (图2)

例4、如图6,E 、F 分别是 ABCD 的AD 、BC 边上的点,且AE = CF. (1 △ ABE ≌△CDF ; (2)若 、N 分别是BE 、DF 的中点,连结MF 、EN ,试判断四边形MFNE 是怎样的四 边形,并证明你的结论. 例5、如图7 的对角线AC 的垂直平分线与边AD ,BC 分别相交于点E ,F.,求证:四边形AFCE 是菱形. 例6、如图8,四边形ABCD 是平行四边形,O 是它的中心,E 、F 是对角线AC 上的点. (1)如果 ,则△DEC ≌△BFA (请你填上一个能使结论成立的一个条件); (2)证明你的结论. 例7、如图9,已知在梯形ABCD 中,AD ∥BC ,AB = DC ,对角线AC 和BD 相交于点O ,E 是BC 边上一个动点(点E 不与B 、C 两点重合),EF ∥BD 交AC 于点F ,EG ∥AC 交BD 于点C. (1)求证:四边形EFOG 的周长等于2OB ; (2)请你将上述题目的条件“梯形ABCD 中,AD ∥BC ,AB = DC”改为另一种四边形,其他条件不变,使得结论,“四边形EFOG 的周长等于2OB”仍成立,并将改编后的题目画出图形,写出已知、求证、不必证明. 例8、有一块梯形形状的土地,现要平均分给两个农户种植(即将梯形的面积两等分),试设计两种方案(平分方案画在备用图13(1)、(2)上),并给予合理的解释. A D B C E F (图6) M N 备用图(1) 备用图(2) B C B

第1讲 菱形(培优课程讲义例题练习含答案)

菱形(提高) 【学习目标】 1. 理解菱形的概念. 2. 掌握菱形的性质定理及判定定理. 【要点梳理】 要点一、菱形的定义 有一组邻边相等的平行四边形叫做菱形. 要点诠释:菱形的定义的两个要素:①是平行四边形.②有一组邻边相等.即菱形是一个平行四边形,然后增加一对邻边相等这个特殊条件. 要点二、菱形的性质 菱形除了具有平行四边形的一切性质外,还有一些特殊性质: 1.菱形的四条边都相等; 2.菱形的两条对角线互相垂直,并且每一条对角线平分一组对角. 3.菱形也是轴对称图形,有两条对称轴(对角线所在的直线),对称轴的交点就是对称 中心. 要点诠释:(1)菱形是特殊的平行四边形,是中心对称图形,过中心的任意直线可将菱形分成完全全等的两部分. (2)菱形的面积由两种计算方法:一种是平行四边形的面积公式:底×高; 另一种是两条对角线乘积的一半(即四个小直角三角形面积之和). 实际上,任何一个对角线互相垂直的四边形的面积都是两条对角线乘 积的一半. (3)菱形可以用来证明线段相等,角相等,直线平行,垂直及有关计算问题. 要点三、菱形的判定 菱形的判定方法有三种: 1.定义:有一组邻边相等的平行四边形是菱形. 2.对角线互相垂直的平行四边形是菱形. 3.四条边相等的四边形是菱形. 要点诠释:前两种方法都是在平行四边形的基础上外加一个条件来判定菱形,后一种方法是在四边形的基础上加上四条边相等. 【典型例题】 类型一、菱形的性质 1、如图所示,菱形ABCD中,E、F分别是BC、CD上的点,∠B=∠EAF=60°,∠BAE =18°.求∠CEF的度数. 【思路点拨】由已知∠B=60°,∠BAE=18°,则∠AEC=78°.欲求∠CEF的度数,只要求出∠AEF的度数即可,由∠EAF=60°,结合已知条件易证△AEF为等边三角形,从而∠AEF=60°.

(完整版)合情推理教案

合情推理教案 一、教学目标: (1)结合已学过的数学事例实例和生活中的实例,了解合情推理的含义。 (2)能利用归纳进行简单的推理,体会并认识合情推理在数学发现中的作用 二、教学重点、难点 1.重点:归纳推理和类比推理的理解和应用. 2.难点:合情推理的应用,尤其是类比推理的应用,能根据已知类比出一些数学结论. 三、教学方法: 启发式讲解、互动式讨论、反馈式评价的课堂教学方法。 一、归纳推理 1. 导入新课:1.举一些日常生活中常常用到的推理:如走到家门口闻到菜香,猜想已经做好饭了等。 2.介绍数学史(预习) 简单介绍课本出现的歌德巴赫猜想、费马猜想、地图的“四色猜想”、歌尼斯堡七桥猜想, 2.分析特例:问题1:你了解哥德巴赫是怎么提出猜想的吗? 歌德巴赫猜想的提出过程:3+7=10,3+17=20,13+17=30, · ····· 改写为:10=3+7,20=3+17,30=13+17.6=3+3, 8=3+5,10=5+5, 12=5+7,14=7+7,16=5+11, 18 =7+11, …,1000=29+971, 1002=139+863, ······ 歌德巴赫猜想:“任何一个不小于6的偶数都等于两个奇质数之和” 即:偶数=奇质数+奇质数 3.得出结论: 归纳推理定义: 这种由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概栝出一般结论的推理,称为归纳推理.(简称:归纳) 归纳推理的特点 1.归纳推理是由部分到整体,由个别到一般的推理. 2.人们在进行归纳推理的时候,总是先搜集一定的事实材料,有了个别性、特殊性的事实作为前提,然后才能进行归纳推理,因此归纳推理要在观察和试验的基础上进行。 3.归纳推理能够发现新事实,获得新结论,是做出科学发现的重要手段。 归纳推理的一般步骤⑴ 对有限的资料进行观察、分析、归纳 整理 ⑵ 在此基础上提出带有规律性的结论,即猜想 (3)检验猜想 说明: 由归纳推理所获得的结论,仅仅是一种猜想,未必可靠,(如:费马猜想)但它由特殊到一般,由具体到抽象的认识性能,对于提供科学的发现方法,确实是非常有用的 4.例题 例题1:已知数列{}n a 的第1项12a =,且1(1,2,)1n n n a a n a += =+L ,试归纳出通项公式. 分析思路:试值n =1,2,3,4 → 猜想n a =1n 。 5.反馈练习1 ?L *11135f(n)=1+ +++(n N )算得f(2)=,f(4)>2,f(8)>,f(16)>3,23n 22

合情推理与演绎推理的教学案例

2.1合情推理与演绎推理导学案 一、教学目标:通过几个练习题的思考和讨论,培养学生的合情推理能力和演绎推理能力; 二、教学过程展示: 展示题组一: 1.已知:如图,点C、D在线段AB上,PC=PD,请你添加一个条件,使图中存在全等三角形,并给予证明.所添加的条件为.你得到的一对全等三角形是△≌△. 2.如图,在△ABC和△DEF中,B、E、C、F在同一条直线上,下面有四个条件,请你从其中选三个作为题设,余下的一个作为结论,写一个真命题,并证明.①AB=DE;②AC=DF;③∠ABC=∠DEF;④BE=CF. 课后练习:如图,在△AFD和△CEB中,点A、E、F、C在同一条直线上,有下面四个结论:①AD=CB;②AE=CF;③∠B=∠D;④AD∥BC.请用其中三个作为条件,余下的一个作为结论编一道数学题,并写出解答过程. 考查内容:1.从复杂图形中分解出基本的图形,能否利用合情推理能力获得合理的数学猜想。2、从图形中观察猜想,通过合情推理组成命题,然后用演绎推理验证命题的正确

性,从而正确解决问题。3.考查内容同2,课后练习巩固此类题的解决方法,进一步培养其推理能力。

展示题组二: 1、如图,M为线段AB的中点,AE与BD交于点C,∠DME =∠A=∠B=α,且DM交AC于F,ME交BC于G. (1)写出图中三对相似三角形,并证明其中的一对; (2)连结FG,如果α=45°,AB=4√2,AF=3,求FG的长. 2、图①、图②均为7×6的正方形网格,点A、B、C在格点上. (1)在图①中确定格点D,并画出以A、B、C、D为顶点的四边形,使其为轴对称图形.(画一个即可)(3分) (2)在图②中确定格点E,并画出以A、B、C、E为顶点的四边形,使其为中心对称图形.(画一个即可)

最新菱形讲义(经典)

第一章特殊的平行四边形 一、菱形: 【知识梳理】 1.菱形的定义:有一组邻边相等的平行四边形叫做菱形. 2.菱形的性质 菱形是特殊的平行四边形,它具有平行四边形的所有性质,?还具有自己独特的性质: ①边的性质:对边平行且四边相等. ②角的性质:邻角互补,对角相等. ③对角线性质:对角线互相垂直平分且每条对角线平分一组对角. ④对称性:菱形是中心对称图形,也是轴对称图形. 菱形的面积等于底乘以高,等于对角线乘积的一半. 点评:其实只要四边形的对角线互相垂直,其面积就等于对角线乘积的一半. 3.菱形的判定 判定①:一组邻边相等的平行四边形是菱形. 判定②:对角线互相垂直的平行四边形是菱形. 判定③:四边相等的四边形是菱形. 【例题精讲】板块一、菱形的性质 例1.如图,菱形ABCD的对角线交于点O,AC=16cm,BD=12cm. (1)求菱形ABCD的边长; (2)求菱形ABCD的高DM. 例2.如图,在菱形ABCD中,AB=BD,点E,F分别在AB,AD上,且AE=DF.连接BF与DE 相交于点G,连接CG与BD相交于点H. 求证:(1)求∠BGD的度数。(2)求证:DG+BG=CG

例3.将两张宽度相等的长方形纸片叠放在一起得到如图29所示的四边形ABCD. (1)求证:四边形ABCD是菱形. (2)如果两张长方形纸片的长都是8,宽都是2,那么菱形ABCD的周长是否存在最大值或最小值?如果存在,请求出来;如果不存在,请简要说明理由. 例4. 已知,菱形 ABCD 中,E、F分别是BC、CD上的点,若AE AF EF AB ===,求C ∠的度数. F E D C B A 跟踪练习: 1.如图,在菱形ABCD中,AB=5,对角线AC=6.若过点A作AE⊥BC,垂足为E,则AE的长为() A.4 B.2.4 C.4.8 D.5 2.如图,在菱形ABCD中,∠B=60°,AB=2,E、F分别是BC和CD的中点,连接AE、EF、AF,则△AEF的周长为() A.23 B.33 C.43 D.3. 3.如图所示,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为120°的菱形,剪口 与第二次折痕所成角的度数应为() A.15°或30° B.30°或45°

合情推理

合情推理 (上饶市秦峰中学朱校华2014·11·03原创)美国有一位数学家、数学教育家叫波利亚,他撰了一本论著叫《数学与猜想》,在这本书的序言中,其中有这样一段话说得特别好,他说:“作为以后要想把数学作为自己终身职业的人,应该学习演绎推理,因为这是该学科的一大特点,当然他还要学习合情推理,因为这是使得他的研究工作能够得以进行的一种推理形式;如果你不是把数学作为自己终身职业的人,同样也要学习演绎推理,因为学习了演绎推理,你就获得了一种标准,这个标准就可以用来衡量日常生活中,我们碰到的一些事情;更应该要学习合情推理,因为在你的日常生活当中,方方面面都要用到合情推理.”波利亚很辩证地说清了演绎推理和合情推理这两种推理形式,对于一个无论是以后做数学研究的人,还是不做数学研究的人,它的重要性都阐释得很充分.说明合情推理对于我们每个人来说都是很重要的!必须要掌握! 事实上,推理不光是数学的一种基本思维方式,也是人们学习和生活当中,具备并经常使用的一种思维方式,推理主要包括演绎推理和合情推理。 演绎推理是从已知的事实出发,按照一些已确定的规则,然后进行逻辑的推理、证明和计算的一个过程。换句话说,演绎推理是从一般到特殊的一种思维形式,常常是由普通性的前提推出特殊性的结论的一种推理,主要有三段论、假言推理和选言推理三种样式。在几何的证明当中,实际上都是这样一种推理的形式。下面就三种形式分别举三个例子来悟悟:①正方形一定是长方形,这个图形是正方形,所以它一定是长方形;②如果一个图形是长方形,那么它的四个内角均是直角,这个图形四个内角不是直角,所以它不是长

方形;③一个三角形,或者是锐角三角形,或者是直角三角形,或者是钝角三角形,这个三角形不是锐角三角形和钝角三角形,所以它一定是直角三角形。 来推断,以获得一些可能性结论的一种思维方式。和演绎推理对比不一样的地方在于:合情推理往往是从特殊到一般的一种推理,所以合情推理得到的结论,可能不一定是对的,通常可称之为猜想或推测,是一个可许性结论。但是合情推理在数学整个发展过程当中,包括在学生学习数学和今后的社会实践和生活当中,却是特别重要的。有两个常用思维可用来支持这个合情推理的重要性。第一个就是抽象思维,抽象的过程,是从特殊到一般的过程,很多重要概念的形成,实际上是抽象的过程,这样一个过程对于概念的认识和理解,是非常重要的;第二个就是统计思维,最基本的推理方式是归纳,当然这里面还有其他直觉的、经验的成份,包括特殊化和一般化。事实上,数学概念的形成,定理的得到,是经历了归纳、类比的过程,最后才能形成所得到的一些认知. 在人的成长过程中,不专门从事数学工作,可能很少有机会接触严格的演绎推理,但是合情推理却要经常被使用到。我们日常生活中的许多现象,其实往往都是由合情推理得来的。比如,有一句谚语叫“红云变黑云,必有大雨淋;天色亮一亮,河水涨一丈!”你说怎么用演绎的方法去证明呢,它就是由合情推理产生的,但是它却能够给我们提供生活指导与帮助。因此,平常数学学习要注重大胆地去猜想、大胆地去归纳、大胆地去验证。通过动手动脑感悟到的东西,一定要先写出来;再利用演绎的方法从逻辑上去证明;另外,合情推理和演绎推理能力的培养,许多领域里面也都会有所体现。下面给出两例予以悟之! 第一例:有关含“绝对值式”计算的系列题: a a ⑴计算=?,(显然字母a≠0,下同;答案:±1,说明“1个式子,有2个答案”!)

菱形练习题(含答案)

特殊的平行四边形——菱形 一.菱形的定义:有一组邻边相等的平行四边形叫做菱形. 二.菱形的性质:菱形具有平行四边形一切性质,此外,它还具有如下特殊性质: 1.菱形的四条边相等。 2.菱形的两条对角线互相垂直,且每一条对角线平分一组对角。 3.菱形是轴对称图形也是中心对称图形,两条对角线所在的直线是它的两条对称轴。 三.菱形的判定办法:1.用菱形的定义:有一组邻边相等的平行四边形是菱形; 2.四条边都相等的四边形是菱形; 3.对角线垂直的平行四边形是菱形; 4.对角线互相垂直平分的四边形是菱形。 四.菱形的面积:等于两条对角线乘积的一半.(有关菱形问题可转化为直角三角形或 等腰三角形的问题来解决.),周长=边长的4倍 复习: 1.如图,在ABC △中,E 是AD 的中点,过点A 作BC 的平行线交BE 的延长线于F ,且AF DC =,连接CF . (1)求证:D 是BC 的中点;(2)若AB AC =,试猜测四边形ADCF 的形状,并证明. 解答:(1)证明:AF BC ∥,AFE DBE ∴∠=∠.∵E 是AD 的中点,AE DE ∴=. 又AEF DEB ∠=∠,AEF DEB ∴△≌△.AF DB ∴=.∵AF DC =,DB DC ∴=. (2)解:四边形ADCF 是矩形,证明:∵AF DC ∥,AF DC =,∴四边形ADCF 是平 行四边形.∵AB AC =,D 是BC 的中点,AD BC ∴⊥.即90ADC ∠=.∴四边形ADCF 是矩形. 菱形例题讲解: 1.已知点D 在△ABC 的BC 边上,DE ∥AC 交AB 于E ,DF ∥AB 交AC 于F .若AD 平分∠BAC , 试判断四边形AEDF 的形状,并说明理由. 解答:四边形AEDF 是菱形,∵DE ∥AC ,∠ADE=∠DAF ,同理∠DAE=∠FDA ,∵AD=DA , ∴△ADE ≌△DAF ,∴AE=DF ; ∵DE ∥AC ,DF ∥AB ,∴四边形AEDF 是平行四边形,∴∠DAF=∠FDA .∴AF=DF .∴平行四边形AEDF 为菱形. 2.已知:如图,在梯形ABCD 中,AB ∥CD ,BC=CD ,AD ⊥BD ,E 为AB 中点,求证:四边形BCDE 是菱形. 证明:∵AD ⊥BD ,∴△ABD 是Rt △∵E 是AB 的中点,∴BE=DE ,∴∠EDB=∠EBD , ∵CB=CD ,∴∠CDB=∠CBD ,∵AB ∥CD ,∴∠EBD=∠CDB , ∴∠EDB=∠EBD=∠CDB=∠CBD ,∵BD=BD ,∴△EBD ≌△CBD (ASA ),∴BE=BC , ∴CB=CD=BE=DE ,∴菱形BCDE .(四边相等的四边形是菱形) 3.如图,△ABC 与△CDE 都是等边三角形,点E 、F 分别在AC 、BC 上,且EF ∥AB , (1)求证:四边形EFCD 是菱形;(2)设CD=4,求D 、F 两点间的距离. 解答:(1)证明:∵△ABC 与△CDE 都是等边三角形,∴ED=CD=CE .∵EF ∥AB ∴∠EFC=∠ACB=∠FEC=60°, ∴EF=FC=EC ∴四边形EFCD 是菱形. (2)解:连接DF ,与CE 相交于点G ,由CD=4,可知CG=2, ∴ ∴. 4.如图,平行四边形ABCD 的对角线AC 的垂直平分线与边AD 、BC 分别相交于点E 、F .求证:四边形AFCE 是菱形. 证明:∵AE ∥FC .∴∠EAC=∠FCA .又∵∠AOE=∠COF ,AO=CO ,∴△AOE ≌△COF . ∴EO=FO .又EF ⊥AC ,∴AC 是EF 的垂直平分线. ∵EF 是AC 的垂直平分线.∴四边形AFCE 为菱形 5.在 ABCD 中,E F ,分别为边AB CD ,的中点,连接DE BF BD ,,. (1)求证:ADE CBF △≌△. (2)若AD BD ⊥,则四边形BFDE 是什么特殊四边形?请证明你的结论. 解:(1)在平行四边形ABCD 中,∠A =∠C ,AD =CB ,AB =CD .∵E ,F 分别为AB ,CD 的中点∴AE =CF , (S A S )A E D C F B ∴△≌△. (2)若AD ⊥BD ,则四边形BFDE 是菱形. 证明:AD BD ⊥,ABD ∴△是Rt △, 且AB 是斜边(或90ADB ∠=),E 是AB 的中点,12 DE AB BE ∴==.由题意可EB DF ∥且EB DF =, ∴四边形BFDE 是平行四边形,∴四边形BFDE 是菱形. O D C B A

合情推理──归纳推理

《合情推理─归纳推理》的评课 朱辉华 师:我们知道,“推理”活动对于人们认知客观世界和改造客观世界而言,具有非常重要的意义。所以我们有必要对“推理”的数学意义进行较深入的学习和加强。虽然,以古希腊为代表的西方数学在“推理”方面具有明显的特点与优势,但中国古代也产生了大量的、擅长“推理”的“专家”。现在请大家观看一段视频,并且在观看的同时思考一个问题:即里面所涉及的主要人物是怎样对面临的问题进行推理的? 下面的视频是三国演义中有关“草船借箭”的视频,主要演示当晚江中两军对峙的若干场景以及曹操面对“敌军忽至”的应对策略,时间为1分20秒。 师:视频中显示的主人公是谁呀? 生:曹操! 师:那“草船借箭”真正的主人公是谁? 生:诸葛亮! 师:俗话说的好:三个臭皮匠,顶个诸葛亮,下面我们来分析一下他怎么敢在周瑜面前夸下海口,保证能借到“箭”呢?有什么理由? 生:因为曹操性格是多疑的,他怀疑有埋伏,…… 老师和学生一起进一步分析,得到: ?????? ?? (1)今夜恰有大雾(2)曹操生性多疑草船借箭必将成功(3)弓弩利于远战(4)北军不擅水战 师:由上可见,诸葛亮显然是一个善于利用推理的“专家”。象这种利用几个已知的判断来确定一个新的判断,这就是我们前面所讲的“推理”。 教师下面介绍了“推理”的概念。并利用如下的“思考1”让学生学习了“推理”与“合情推理”的分类,引出了本节课的主题───归纳推理。 思考1:试根据以下前提进行猜想。 ①由铜、铁、铝、金、银等金属都能导电 ②由三角形内角和为180°,凸四边形内角和为360°,凸五边形内角和为540°。 ③地球上有生命,火星具有一些与地球类似的特征。 ④因为所有人都会死,而苏格拉底是人。 师:我们通过“思考1”的前面两个小题与屏幕上的两种推理(注:这里略去)能不能总结出“归纳推理”的某些特征。 生:很好!我们可以借此得到归纳推理的概念。即由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或由个别事实概括出一般结论的推理,称为归纳推理(简称归纳)。这里面哪些是关键词? 生:部分对象,全部对象,个别事实,一般结论。 师:很不错!事实上归纳推理即为由部分到整体,由个别到一般的推理。这种推理在生活及学习中极为常见。大家能不能分组讨论一下,得到一些例子? 学生积极参与了讨论,也得到了一些生活以及学科上的例子,如市场的菜涨价问题、用样本去估计总体以及化学中酸与碱反应问题等等。

《菱形》典型例题

菱形 例1 如图,在菱形ABCD 中,E 就是AB 得中点,且,求: (1)得度数;(2)对角线A C得长;(3)菱形A BCD 得面 例2 已知:如图,在菱形ABCD 中,于于 F 。求证:AE=AF 例4 如图,中,,、在直线上,且。 求证:. 例5 如图,在△中,,为得中点,四边形就是平行四边形.求证:与互相垂直平分 例6、如图,在就是△AB C中,∠ACB =90°,B C得垂直平分线DE 交BC 于D,交AB 于E,点 F 在直线DE 上,AF=CE 。 (1)说明,四边形ACEF 就是平行四边形;(5分) (2)当∠B 得大小满足什么条件时,四边形ACEF 就是菱形?说明理由、(4分) 例7、如图,△ABC 中,点O 就是AC 边上一动点,过点O作直线MN ∥BC,设MN 交∠BC A得平分线于E,交∠BCA 得外角平分线于点F . (1)说明:EO=O F (2)当点O 运动到时,四边形BE FC 可能就是菱形不?并说明理由. (3)当点O 运动到何处时,四边形AECF 就是矩形?并说明理由. (4)在(3)得条件下,当△ABC 满足什么条件时,四边形A ECF 就是正方形?并说明理由、 巩固练习 1、梯形ABCD 中,AD ∥BC,BD 平分∠ABC,∠C=60°,当AB=C D=4时,梯形A BCD 得周长 2、在等腰梯形A BC D中,AB ∥CD, 对角线A C平分∠BA D,∠B =60 o,CD=2cm,则梯形ABCD 得面积为 3.如图,梯形ABCD 中,AD ∥BC ,A C为对角线,AE ⊥BC 于E ,AB ⊥AC ,若 ∠AC B=30°,BE =2。则EC =___________、 5。在梯形ABCD 中,AD∥BC ,AB =AC ,若∠D =110°,∠A C D =30°,则∠BAC 等于 7.直角梯形一腰长16 cm,该腰与一个底所成得角为30°,那么另一腰长________ cm 。 9、如图,等腰梯形ABCD 中,AD ∥B C,AB =D C,AC ⊥BD ,过D 点作DE ∥A C交BC 得延长线于E 点。 ⑴求证:四边形ACED 就是平行四边形; ⑵若AD =3,BC =7,求梯形ABCD 得面积、 菱形得测试题 一. 填空题 1. 若平行四边形ABC D就是菱形,则与AD 2. 如图,菱形ABCD 中,对角线AC,BD 相交于点O,如果∠A=60o,对角线BD =7cm,则菱形 得周长=___cm 3. 若菱形得两条对角线长分别为6cm 与8cm,则菱形得面积就是___,周长就是___、 4. 若菱形得高为3cm,较小得内角就是30o,则菱形得边长为___,面积为___。 5。 已知菱形得周长为20cm,两条对角线得比为3 :4,则菱形得面积为___c m。 二. 选择题 1。 菱形具有其它平行四边形不一定具有得性质( ) A 。对边平行 B 。对角相等 C 、对角线互相平分 D。对角线互相垂直 2、 在菱形AB CD 中,AEBC 于E,AFCD 于F,且E,F分别就是BC,CD 得中点,那么 C D E A B F O F E C D B N M A E

假言推理的例子教学提纲

假言推理的例子

17.禄东赞巧 破难题 巧媳妇智斗知府 ——要正确运用假言推理 唐朝文成公主远嫁西藏,成为汉藏两民族关系史上的一段佳话。藏王的求婚使者禄东赞,以聪明机智著 称。他千里迢迢、风尘仆仆地来到长安。唐朝皇帝有意当面考一考他,给他出了三道难题,禄东赞沉着应对,名不虚传。 下面我们就来看看皇帝出的三道难题以及禄东赞巧破难题的办法。 仅供学习与交流,如有侵权请联系网站删除谢谢2

第一道难题:皇帝叫人把禄东赞引到有500匹马的一个马群里,让禄东赞辨认每一匹母马的亲生仔 马。 禄东赞眼珠子一转,就有办法了。他叫手下人赶紧搬来许多上好的马料,让母马美美地饱餐一 顿。母马吃饱喝足了,就昂头高叫,招呼着各自的 小马驹去吃奶。小马驹听到母马亲切的呼唤声,欢 蹦乱跳地各自向自己的母马那里窜去。于是,禄东 赞就把每一匹母马的亲生仔马分辨出来了。 第二道难题:皇帝叫人拿来一颗九曲明珠和一根线,让禄东赞把线穿进弯弯曲曲的珠孔里去。 禄东赞眨了眨眼,就有主意了。他叫手下人捉来一只蚂蚁,把线粘在蚂蚁的脚上,把这只蚂蚁放 在珠孔的一端,在珠孔的另一端涂上蜜糖。蚂蚁闻 到蜜香,就带着线从珠孔的这一端很快地穿到有蜜 糖的那一端去了。 第三道难题:皇帝叫人搬来一根两头一样粗的巨木,让禄东赞辨认哪头是根,哪头是尾。 仅供学习与交流,如有侵权请联系网站删除谢谢3

禄东赞眉头一皱,计上心来。他懂得树木根重尾轻的道理,即刻叫手下人把这根巨木放到御河里 去。这根巨木在水面上飘流了一会儿,轻的在前, 重的在后。于是禄东赞就准确地指出哪头是根,哪 头是尾。 禄东赞为什么能巧破难题呢?除了丰富的生活经验之外,那就是善于推理了。他用什么推理来破这三道难题呢?他用的推理形式主要是假言推理。 什么是假言推理 什么是假言推理呢? 假言推理是前提中有一个是假言判断,并且根据假言判断前后件之间的关系而推出结论的推理。例如: 如果得了急性胆囊炎,那么就有腹痛现象; 小宁得了急性胆囊炎; 这就是一个假言推理。它的大前提是假言判断。“得了急性胆囊炎”是前件,“有腹痛现象”是后件,根据前后件之间的关系可以推出“有腹痛现象”的结论。 假言推理的种类 仅供学习与交流,如有侵权请联系网站删除谢谢4

第45讲 合情推理与演绎推理

第45讲合情推理与演绎推理 1.了解合情推理的含义,能进行简单的归纳推理与类比推理. 2.了解演绎推理的重要性,掌握演绎推理的“三段论”,能运用“三段论”进行简单的演绎推理. 3.了解合情推理与演绎推理之间的联系与差异. 知识梳理 1.合情推理 (1)归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事物概括出一般结论的推理.归纳推理是由部分到整体、由个别到一般的推理. (2)类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理.类比推理是由特殊到特殊的推理. (3)合情推理:归纳推理和类比推理都是根据已有的事实,经过观察,分析,比较,联想,再进行归纳,类比,然后提出猜想的推理,我们把它们统称为 合情推理. 2.演绎推理 (1)从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理,演绎推理是由一般到特殊的推理. (2)三段论是演绎推理的一般模式,包括: ①大前提——已知的一般原理; ②小前提——所研究的特殊情况; ③结论——根据一般原理,对特殊情况做出的判断. 热身练习 1.(2015·陕西卷)观察下列等式:

1-12=12 , 1-12+13-14=13+14 , 1-12+13-14+15-16=14+15+16, …… 据此规律,第n 个等式为 1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+1 2n . 等式左边是一个和式,先观察其通项: 等式的左边的通项为 12n -1-12n , 前n 项和为1-12+13-14+…+12n -1-1 2n ; 右边的每个式子的第一项为1 n +1 , 共有n 项,故为1n +1+1n +2+…+1 n +n . 所以第n 个等式为1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+1 2n . 2 类比得:b 1·b 2·b 3·b 4·b 5=b 53. 3.如图(1)有面积关系:S △P A ′B ′S △P AB =P A ′·PB ′P A ·PB ,则由图(2)有体积关系:V P -A ′B ′C ′ V P -ABC = P A ′·PB ′·PC ′ P A ·PB ·PC . 平面上的面积可类比到空间上的体积. V P -A ′B ′C ′V P -ABC =1 3·S △P A ′B ′·h ′13·S △P AB ·h =P A ′·PB ′·PC ′P A ·PB ·PC .

相关主题
文本预览
相关文档 最新文档