当前位置:文档之家› 基于路面使用性能分析和设计路面结构及路面材料技术在工程上的应用

基于路面使用性能分析和设计路面结构及路面材料技术在工程上的应用

基于路面使用性能分析和设计路面结构及路面材料技术在工程上的应用
基于路面使用性能分析和设计路面结构及路面材料技术在工程上的应用

基于路面使用性能分析和设计路面结构及路面材料技术在工程

上的应用

摘要高速公路路面的早期损坏问题至今没有取得重大突破,高

速公路的一些通病如桥头跳车、车辙、半刚性基层反射裂缝等依然存在。本文通过笔者工程实践总结,针对工程中路面使用性能和设计路面结构应用进行了分析。

关键词路面;设计路面结构;路面材料

中图分类号u416.2 文献标识码a 文章编号

1674-6708(2010)22-0152-02

我国高速公路建设起步晚、时间段、发展迅猛,在十几年的时间内,通车里程已近7万km,跃居世界第二位。造成高速公路路面早期损坏严重,根本达不到设计年限,通车三、五年就进行大中修。

1 基于路面使用性能对早期损坏现象机理分析

第一,半刚性基层引起收缩裂缝的反射缝问题,沥青面层较薄时

半刚性基层开裂引起反射缝的问题。我国高等级公路经过十几年的建设,积累了丰富的经验,在路面结构方面形成了一种主流模式——半刚性基层沥青路面,但半刚性材料﹑沥青材料对温度和湿度变化比较敏感,在其强度形成过程中以营运期间会产生干缩裂缝和低温收缩裂缝。在路面交通荷载重复作用下,半刚性基层的干缩裂缝和收缩裂缝会扩展到沥青路面面层形成反射裂缝而具有弱点。路面裂缝不仅影响路面美观﹑减低平整度,而且会削弱路面的整体平整度。特别是路面开裂后水分通过裂缝渗到路面基层﹑底基层甚至土

城市道路混凝土路面结构设计

城市道路混凝土路面结构设计 一、水泥路面的特性 混凝土路面以其强度高、刚性大和耐久性好,能适应重载、高速而密集的汽车运输要求,已在城市道路中广泛采用。 1、强度高、刚性大和耐久性好:混凝土路面具有较高的抗压、抗弯拉和抗磨耗的力学强度,具有较高的承载能力和扩荷载能力,耐久性好,一般可使用20~30年以上,沥青路面一般在10~15年,是沥青路面使用年限的2倍。 2、稳定性好:环境温度和湿度对混凝土路面的力学强度影响甚小,因而热稳定性、水稳定性和时间稳定性都比较好。抗油类侵蚀能力强,抗洪能力比沥青路面强。 3、平整度和粗糙度好:表面起伏变形少,路面在潮湿时候仍能保持足够的粗糙度,使车辆不打滑而能保持较高的安全行车速度。 4、养护费用少,维修成本低:水泥路面的建造费用比沥青路面节省一倍。按每立方米混合料测算,沥青混合料需要1000元~1400元,而水泥路面仅需要330元~580元。维护方面:沥青路面局部修复养护费用比新建费用大致高4倍~5倍,而水泥路面局部修复的养护费用是建造费用的2倍~3倍。 5、运输成本低:以V=60km/h行车速度计算,水泥路面的油耗比沥青路面节省8%;随着速度的加大,在V=80km/h行车速度时,水泥路面的油耗比沥青路面可节省10.5%。在当前高油价、高污染的时代,

达到低碳节能的目标。 综上所述,由于我国资源和能源的紧缺,加快水泥混凝土路面技术进步是我国道路建设的客观需求,也是促进我国能源大发展的重要战略措施。 二、混凝土路面的设计概况 混凝土板厚一般采用等厚度形式,根据交通量大小及轴载大小确定路面厚度,板厚最小18cm。板宽一般按每车道,耽不大于4.5m;板长一般采用4~5m,最长不超过6m。胀缝间距一般直线段为200m设一道,在交叉口与直线联接处设胀缝。 三、水泥混凝土路面板尺寸的确定 水泥混凝土路面板尺寸包括板的厚度及平面尺寸。采用弹性半无限地基板理论和有限元法计算板内应力,以荷载应力和温度应力产生的综合疲劳损坏(断裂)为设计控制标准。以BZZ-100KN的单轴荷载作为标准轴载,按等效原则将各级轴载换算为标准轴载。 1、混凝土面层厚度的确定 (1)使用年限内标准轴载在车道内的累计重复作用次数。在使用年限内,标准轴载在车道内的累计重复作用次数Ne,可通过对现有道路的轴载情况调查和交通增长分析后,按下式计算:Ns=365N0[(1十)-T]./式中:N0一设计初期车道上日标准轴载作用次数; 平均年交通量增长率(%); T一路面的使用年限; 一车轮轮迹横向分布系数。对双向双车道混合行驶者取0.30~

路面工程施工计划材料汇报

广西靖西至那坡高速公路路面工程 №B合同段 房建工程 总体施工计划 广西路桥建设有限公司 二○一二年十一月一日

靖那高速公路指挥部、靖那高速公路№Ⅱ总监办: 我项目部根据项目部目前的具体情况,加强了前期准备工作的管理,精心筹备,现向贵部、贵办就我项目的施工计划作简单汇报: 一、项目部施工计划 1、驻地建设及各工区施工计划 1)项目部驻地 本项目经理部驻地设定在那坡服务区(北),交通方便,而且水、电取用便利。现项目经理部驻地计划利用业主扩建服务区的永久用地中的14282m2,利用服务区永久住房和办公用房约536m2,另项目部搭建标准活动板房2504m2,包括各职能部门办公室、会议室、中心试验室、仓库、职工宿舍以及驻地监理的办公、住宿等设施,目前土地征用工作已完成,路基合同段正在进行场地平整,估计两个月内可完成驻地建设。 现项目部临时驻地原位于坡荷乡上一租用的四层民房内,办公设施配置基本完成,具备办公条件,员工生活区分别租用了三栋民房,基础设施完善,前期基本满足员工正常生活、工作需要,现根据实际施工需要,临时驻地已搬至一工区驻地内; 2)、工区驻地及施工计划: 第一工区段(K44+913.412~K63+235):全长18.322Km。一工区驻地及第一水稳拌合站设在K47+000右侧约50米处,占用安德镇附近项目部临时租用的约26410m2旱地,办公生活建筑面积约1402m2,负责路段桩号为K44+913.412~K63+235的路面垫层、基层、交安工程施工及管理。料场和拌合站位于工区内,占地约25亩。搭建装配式标准化钢板简易房作为办公室、试验室、仓库、职工宿舍及其他设施。设有水稳混合料厂拌设备一套(600m3/h以上),安装315千伏安变压器一台,配备300千瓦发电机1台,建仓库1个,水池1座。目前驻地建设方案已批复,场站建设工作已基本完成,正在组织进行材料收

沥青路面结构计算书

新建路面设计 1. 项目概况与交通荷载参数 该项目位于西南地区,属于二级公路,设计时速为40Km/h,12米双车道公路,设计使用年限为12.0年,根据交通量OD调查分析,断面大型客车和货车交通量为1849辆/日, 交通量年增长率为8.2%, 方向系数取55.0%, 车道系数取 70.0%。根据交通历史数据,按表A.2.6-1确定该设计公路为TTC4类,根据表 A.2.6-2得到车辆类型分布系数如表1所示。 表1. 车辆类型分布系数 根据路网相邻公路的车辆满载情况及历史数据的调查分析,得到各类车型非满载与满载比例,如表2所示。 表2. 非满载车与满载车所占比例(%) 根据表6.2.1,该设计路面对应的设计指标为沥青混合料层永久变形与无机结合料层疲劳开裂。根据附表A.3.1-3,可得到在不同设计指标下,各车型对应的非满载车和满载车当量设计轴载换算系数,如表3所示。 表3. 非满载车与满载车当量设计轴载换算系数

根据公式(A.4.2)计算得到对应于沥青混合料层永久变形的当量设计轴载累计作用次数为8,109,551, 对应于无机结合料层疲劳开裂的当量设计轴载累计作用次数为562,339,245。本公路设计使用年限内设计车道累计大型客车和货车交通量为4,989,710,交通等级属于中等交通。 2. 初拟路面结构方案 初拟路面结构如表4所示。 表4. 初拟路面结构 路基标准状态下回弹模量取50MPa,回弹模量湿度调整系数Ks取1.00,干湿与冻融循环作用折减系数Kη取1.00,则经过湿度调整和干湿与冻融循环作用折减的路基顶面回弹模量为50MPa。 3. 路面结构验算 3.1 沥青混合料层永久变形验算 根据表G.1.2,基准等效温度Tξ为20.1℃,由式(G.2.1)计算得到沥青混合料层永久变形等效温度为21.5℃。可靠度系数为1.04。 根据B.3.1条规定的分层方法,将沥青混合料层分为6个分层,各分层厚度(hi)如表5所示。利用弹性层状体系理论,分别计算设计荷载作用下各分层顶部的竖向压应力(Pi)。根据式(B.3.2-3)和式(B.3.2-4),计算得到d1=-8.23,d2=0.77。把d1和d2的计算结果带入式(B.3.2-2),可得到各分层的永久变形修正系数(kRi),并进而利用式(B.3.2-1)计算各分层永久变形量(Rai)。各计算结果汇总于表5中。 各层永久变形累加得到沥青混合料层总永久变形量Ra=19.2(mm),根据表3.0.6-1,沥青层容许永久变形为20.0(mm),拟定的路面结构满足要求。

路面结构组合设计

路面结构组合设计 1.1设计说明 1.1.1工程概况 (1)工程所在地:湖南省境内 (2)公路自然区划:区,由地下水位资料可知该路基为潮湿状态; (3)公路等级:一级公路(双向四车道、设中央分隔带); (4)路线总长度:1223.061m。 1.1.2设计内容 沥青混凝土路面 (1)拟定路面结构组合方案,进行方案比较。 (2)进行轴载换算(手算和程序计算),确定路面设计弯沉值。 (3)确定路基路面结构层设计参数。 (4)各结构层材料组成设计。 1.1.3设计成果 (1)设计说明书; (2)沥青路面结构设计图。 1.2 主要技术经济指标 1.2.1交通组成 经调查预测,本路竣工后第一年双向平均日交通量下表(辆/d)

预测交通组成表表2 备注:依据规范,轴重小于25KN的车辆不计入计算; 使用期内交通量平均增长率为4.7%,沥青混凝土路面设计使用年限15年。 2. 沥青混凝土路面结构设计 2.1轴载换算 路面设计以双轮组单轴载100KN为标准轴载,小客车不考虑轴载。 2.1.1 以设计弯沉值为指标及验算沥青层层底拉应力中的累计当量轴次,昼夜交通量(辆/日)为双向车道年平均日通行车辆数。 ①轴载换算 轴载换算采用如下的计算公式: 式中:轴数系数 轮组系数 其中: 计算结果如下表(表3)所示:

轴载换算结果表 表3 注:轴载小于25KN 不计 ②累计当量轴次 根据设计规范,一级公路沥青路面的设计年限15年,四车道的车道系数取0.45。 累计当量轴次: 式中:第一年双向日平均当量轴次(次/日) 设计年限内交通量的平均增长率(%) 设计车道的车轮轮迹横向分布系数 2.1.2 验算半刚性基层底拉应力中的累计当量轴次

路面结构设计中存在的问题分析

路面结构设计中存在的问题分析 【摘要】目前,我国在路面结构设计上已经拥有较为完善的设计理论与方法,但由于各种外界条件影响,在沥青路面结构设计上仍然存在问题,本文以阜康市迎宾路道路工程为例,对迎宾路结构层做简要分析,探讨路面结构设计的有效方法,以期为设计单位及施工单位提供科学的参考依据。 【关键词】路面;结构设计;分析 1.路面结构设计的内容 路面结构设计就是以最低的寿命周期费用提供最合适的路面的结构,在这种结构的设计使用期内,要按照目标达到可靠的使用要求和最大的满意度,具体来讲,沥青路面的设计内容主要包括路面结构层原材料的选择、混合料配合比设计、设计参数的测试与确定、路面结构层组合与厚度计算、路面结构方案的比较与选择等以及路面排水系统设计和路肩加固等的设计。 2.影响路面结构的因素 2.1面层厚度 面层厚度直接影响路面的使用品质。路面面层直接承受行车荷载,风雨与温度的变化对层面都有不同程度的影响。在路面设计过程中,要考虑到层面厚度的影响,对结构层的设计分析要结合合适的材料、施工工艺同等,沥青路面的厚度与公路的等级、交通量及组成、沥青品种、质量息息相关。 2.2基层类型 半刚性基层和碎砾石基层是基层的两大类,二者的作用机理有着本质的不同,但同一类基层不同材料间性能相似。在有季节性冰冻且冰冻较深的情况下,路基土是易冻胀土,这时的路面极易出现冻胀和翻浆现象,这样的状态下,路面结构设计应设置防止冻胀和翻浆的垫层。路面总厚度的确定既要满足公路的强度要求还要处理好路面的防冻,积极避免路基内出现聚冰带,导致路面出现不均匀的冻胀,新疆年温差、日温差大,在路面的设计中,尤其要重视这一因素,并要注意无机结合料稳定土的基层产生的收缩裂缝。 2.3结构强度 一定的结构强度是路面具有良好行驶质量的必要保证,结构强度足够的路面

城市道路工程路面结构设计探究

城市道路工程路面结构设计探究 城市道路工程建设中,对路面结构设计的要求比较高,目的是保障路面结道路修建是城市现代化发展中的核心工程,与车辆通行、运输的安全存在直接的联系。城市道路在路面结构设计方面,考虑到交通、行人等因素,提出了安全要求,在保障城市道路路面结构稳定的基础上,维护路面的安全与强度,消除路面结构设计中潜在的风险因素。设计人员遵循道路修建的根本要求,完善路面结构的具体设计。 1 城市道路工程的路面结构设计 城市道路工程在进行路面结构设计之前,需要重点研究城市道路,深入分析城市道路的实况,进而才能真实的设计出路面结构的方案。设计人员要选择有代表性的城市道路进行研究,路线、路段需属于典型城市道路,由此才能提升路面结构的设计水平[1]。路面结构设计时,按照《城市道路路面基层施工技术规范》中的要求,提前选择一定年龄的路面,约3年或以上年龄,调查路面的性能状况,尽量包含不同类型的路基结构,所以针对城市道路路面结构设计的调查工作,提出三点要求。 第一,路面结构设计和调查的过程中,需要反馈不同调查路段的具体情况,特别是城市道路的修建水平,以便优化方案的设计,进而为路面结构设计提供详细的依据。 第二,掌握道路路面结构设计部分的土基实况,尤其是强度等级、回弹模量范围等项目内容,各项参数之间的关系如表1所示,促使设计人员掌握路面设计中的各项要点内容,有效控制路面结构设计中的影响因素,一方面控制结构设计时的沉降,另一方面优化路面的设计过程。 第三,根据路面结构设计的要求,确定结构的设计类型,维护路面设计组合的优质性,以免路面结构工程中出现误差,体现设计的科学性。 2 城市道路工程中路面结构的方案设计 2.1 设计原则 设计原则是城市道路路面工程中的主要部分,专门用于约束路面设计,确保路面设计的规范性[2]。例举路面结构设计的原则,如:(1)站在经济、技术角度上分析城市道路路面的整体设计,改进方案中的不足点,选择最优的结构设计方案;(2)路面结构材料的选择,必须考虑到城市道路所处的环境,包括交通环境、气候环境等,有针对性的选择路面材料,维护路面结构的稳定性;(3)设计人员着重分析沥青的面层结构,在质量、力学等方面评价路面结构设计,为路面结构提供优质的级配方案,强化路面的结构;(4)路面结构设计中,设计人员要遵循环保、节能的原则,既要保障城市道路的质量和性能,又要落实相关热的原

JTGF40-2004公路沥青路面施工技术规范资料

1 总则 1.0.1为贯彻“精心施工,质量第一”的针,保证沥青路面的施工质量,特制定本规。1.0.2 本规适用于各等级新建和改建公路的沥青路面工程。 1.0.3沥青路面施工必须符合环境和生态保护的规定。 1.0.4沥青路面施工必须有施工组织设计,并保证合理的施工工期。沥青路面不得在气温10℃(高速公路和一级公路)或5℃(其他等级公路),以及雨天、路面潮湿的情况下施工。 1.0.5沥青面层宜连续施工,避免与可能污染沥青层的其他工序交叉干扰,以杜绝施工和运输污染。 1.0.6沥青路面施工应确保安全,有良好的劳动保护。沥青拌和厂应具备防火设施,配制和使用液体油沥青的全过程禁烟火。使用煤沥青时应采取措施防止工作人员吸入煤沥青或避免皮肤直接接触煤沥青造成身体伤害。 1.0.7沥青路面试验检测的实验室应通过认证,取得相应的资质,试验人员持证上岗,仪器设备必须检定合格。 1.0.8沥青路面工程应积极采用经试验和实践证明有效的新技术、新材料、新工艺。 1.0.9沥青路面施工除应符合本规外,尚应符合颁布的现行有关标准、规的规定。特殊地质条件和地区的沥青路面工程,可根据实际情况,制订补充规定。各省、市、自治区或工程建设单位可根据具体情况,制订相应的技术指南,但技术要求不宜低于本规的规定。

2 术语、符号、代号 2.1术语 2.1.1沥青结合料asphalt binder,asphalt cement 在沥青混合料中起胶结作用的沥青类材料(含添加的外掺剂、改性剂等)的总称。 2.1.2乳化沥青emulsified bitumen(英), asphalt emulsion,emulsified asphalt(美) 油沥青与水在乳化剂、稳定剂等的作用下经乳化加工制得的均匀的沥青产品,也称沥青乳液。 2.1.3液体沥青liquid bitumen(英), cutback asphalt(美) 用汽油、煤油、柴油等溶剂将油沥青稀释而成的沥青产品,也称轻制沥青或稀释沥青。 2.1.4改性沥青modified bitumen(英) , modified asphalt cement(美) 掺加橡胶、树脂、高分子聚合物、天然沥青、磨细的橡胶粉或者其他材料等外掺剂(改性剂),使沥青或沥青混合料的性能得以改善而制成的沥青结合料。 2.1.5 改性乳化沥青modified emulsified bitumen (英), modified asphalt emulsion(美) 在制作乳化沥青的过程中同时加入聚合物胶乳,或将聚合物胶乳与乳化沥青成品混合,或对聚合物改性沥青进行乳化加工得到的乳化沥青产品。 2.1.6 天然沥青natural bitumen (英)natural asphalt(美) 油在自然界长期受地壳挤压、变化,并与空气、水接触逐渐变化而形成的、以天然状态存在的油沥青,其中常混有一定比例的矿物质。按形成的环境可以分为湖沥青、岩沥青、海底沥青、油页岩等。 2.1.7透层prime coat 为使沥青面层与非沥青材料基层结合良好,在基层上喷洒液体油沥青、乳化沥青、煤沥青而形成的透入基层表面一定深度的薄层。 2.1.8粘层tack coat 为加强路面沥青层与沥青层之间、沥青层与水泥混凝土路面之间的粘结而洒布的沥青材料薄层。 2.1.9封层seal coat 为封闭表面空隙、防止水分侵入而在沥青面层或基层上铺筑的有一定厚度的沥青混合料薄层。铺筑在沥青面层表面的称为上封层,铺筑在沥青面层下面、基层表面的称为下封层。 2.1.10稀浆封层slurry seal 用适当级配的屑或砂、填料(水泥、灰、粉煤灰、粉等)与乳化沥青、外掺剂和水,按一定比例拌和而成的流动状态的沥青混合料,将其均匀地摊铺在路面上形成的沥青封层。 2.1.11微表处micro-surfacing 用适当级配的屑或砂、填料(水泥、灰、粉煤灰、粉等)采用聚合物改性乳化沥青、外掺剂和水,按一定比例拌和而成的流动状态的沥青混合料,将其均匀地摊铺在路面上形成的沥青封层。

(完整word版)沥青路面结构设计

第四章 路面结构设计 1.1设计资料 (1)自然地理条件 新建济南绕城高速,道路路基宽度为24.5米,全长5km ,结合近几年济南经济增长及人口增长的情况,根据近期的交通量预测该路段的年平均交通量为5000辆/日,交通量平均年增长率γ=4%。路面结构设计为沥青混凝土路面结构,设计年限为15年。 (2)土基回弹模量 济南绕城高速北环所在地区为属于温带季风气候,季风明显,四季分明,春季干旱少雨,夏季温热多雨,秋季凉爽干燥,冬季寒冷少雪。据区域资料,年平均气温13.8℃,无霜期178天,最高月均温27.2℃(7月),最低月均温-3.2℃(1月),年平均降水量685毫米。道路沿线土质路基稠度 c ω=1.3;因此该路基 处于干燥状态,根据公路自然区划可知济南绕城高速处于5 Ⅱ区,根据【JTG D50-2006】《公路沥青路面设计规范》中表5.1.4-1可确定工程所在地土基回弹模量设计值为46MPa 。 (3)交通资料

1.2交通分析 (1)轴载换算 路面设计以双轮组-单轴载为100KN 为标准轴载,以BZZ-100表示。标准轴载的计算参数按表1-2确定。 ○ 1当以设计弯沉为指标时及验算沥青层层底拉应力时,凡大于25kN 的各级轴载Pi 的作用次数Ni 按下式换算成标准轴载P 的当量作用次数N 的计算公式为: 35 .4121∑=? ?? ??=k i i i P P N C C N 式中:N ——标准轴载当量轴次数(次/d ); Ni ——被换算的车型各级轴载作用次数(次/d ); P ——标准轴载(kN ); Pi ——被换算车型的各级轴载(kN ); C1——被换算车型的各级轴载系数,当其间距大于3m 时,按单独的一个 轴计算,轴数系数即为轴数m ,当其间距小于3m 时,按双轴或多轴计算,轴数系数为C1=1+1.2(m-1); C2——被换算车型的各级轴载轮组系数,单轮组为6.4,双轮组为1.0, 四轮组为0.38。 沥青路面营运第一年双向日平均当量轴次为: 35 .41 21∑=? ?? ??=k i i i P P N C C N = 4709.00(次/d ) ○ 2当以半刚性层底拉应力为设计指标时,标准轴载当量轴次数N ': 8 121 k i i i P N C C N P =?? '''= ? ??∑ 式中: 1C ' ——轴数系数 2C '——轮组系数,单轮组为18.5,双轮组为1.0,四轮组为0.09。 注:轴载小于50KN 的特轻轴重对结构的影响可以忽略不计,所以不纳入当 量换算。 沥青路面营运第一年双向日平均当量轴次:

低温地区沥青路面结构设计分析

低温地区沥青路面结构设计分析 发表时间:2019-05-23T11:01:43.723Z 来源:《防护工程》2019年第1期作者:潘攀 [导读] 因此对沥青路面进行结构设计具有非常重要的意义,特别是针对低温地区的沥青路面,合理的结构设计有助于提高道路使用寿命与质量。 中铁四局集团有限公司设计研究院 230000 摘要:本文就低温地区沥青路面结构破坏类型及低温影响效果进行简单分析,并从沥青混合料、基层结构、联结层结构及表面层结构四个方面展开设计研究,旨在为低温地区沥青路面结构设计提供参考建议。 关键词:低温地区;沥青路面;结构设计 沥青路面具有平坦整洁、环保美观、舒适安全、维修养护简单等特点,因此逐渐成为世界道路桥梁建设工程首要选择,调查发现沥青路面在我国道路建设项目所占比重也呈现逐渐增加的趋势。因此对沥青路面进行结构设计具有非常重要的意义,特别是针对低温地区的沥青路面,合理的结构设计有助于提高道路使用寿命与质量。 一、低温地区沥青路面结构破坏研究 1、沥青路面结构破坏类型 通过对部分沥青道路调研发现,虽然道路结构、材料配比及使用年限存在较大差异,但道路路面呈现的结构破坏类型及特点却大致相同,具体表现在于:低温地区大多存在周期性冻土现象,道路基层在冻胀融缩的物理作用下容易出现结构变异,破坏道路结构引起不同程度的路面开裂问题。图1展示的就是低温地区常见的沥青路面结构破坏类型。 (a)路面剪裂(b)温缩开裂(c)反射开裂 图1 沥青论结构破坏类型 2、低温对沥青路面结构影响 道路建设需要应用到多种建筑材料,这些材料若长期处于低温状态会出现不同程度的收缩现象,由此产生较大拉应力,若拉应力超过材料拉伸强度将会导致材料结构被破坏进而出现开裂问题。道路路面纵向长度远大于横向长度,因此低温收缩引起的裂缝往往呈现为横向间隔,严重时才会出现纵向裂缝。种类各异的沥青基层对应特定的温度拉应力,因此结合实际情况选择合适的沥青材料显得尤为重要。 二、低温地区沥青路面结构设计研究 对低温地区沥青路面进行结构设计研究的时候需要针对基层耐受性、面层抗车辙、表面层抗裂性进行综合考量,因此需要对沥青混合料配比、基层温差、联结层荷载、表面层开裂等内容进行重点分析,以便确保结构设计的科学合理。 图2 沥青路面基本结构图 1、基于感温性能的沥青混合料设计 进行沥青混合料配比设计时需要综合考虑混合料所在位置及耐受特点,进而实现最优设计。图2展示的是沥青路面基本结构,分析可知表面层及联结层处于主要压力承载的高压应力区域,在进行建筑设计时需要选择抗磨损、高模量的沥青混合料,联结层处于表面层与基层的过度位置,最好选择传导效果优异的沥青材料,以便做好路面压力疏导工作。基层结构承受较大的拉应变,就整个路面而言担负着路面压力的重任,因此就沥青道路基层而言结构设计需要围绕荷载疲劳展开,研究发现沥青占比高的混合基层能够承受更大的荷载压力,有效避免了疲劳裂缝的出现。对于处于低温地区的沥青路面设计还需要着重考虑混合料感温性能,不同类型的沥青混合料其感温性能存在差异,在此基础上计算获得代表其粘弹性的劲度抗压指标,进而明确沥青混合料在特定温度时的物理特性。 2、基于大温差作用的沥青基层设计 沥青路面各结构在低温大温差的作用下会沿着路面横向出现不均衡温度场,此时的沥青路面这一受约整体在温度场作用下将产生温度

JTGF40-2004《公路沥青路面施工技术规范》资料

1 总则 1.0.1 为贯彻“精心施工,质量第一”的方针,保证沥青路面的施工质量,特制定本规范。 1.0.2 本规范适用于各等级新建和改建公路的沥青路面工程。 1.0.3 沥青路面施工必须符合国家环境和生态保护的规定。 1.0.4 沥青路面施工必须有施工组织设计,并保证合理的施工工期。沥青路面不得在气温10C(高速公路和一级公路)或5C(其他等级公路),以及雨天、路面潮湿的情况下施工。 1.0.5 沥青面层宜连续施工,避免与可能污染沥青层的其他工序交叉干扰,以杜绝施工和运输污染。 1.0.6 沥青路面施工应确保安全,有良好的劳动保护。沥青拌和厂应具备防火设施,配制和使用液体石油沥青的全过程严禁烟火。使用煤沥青时应采取措施防止工作人员吸入煤沥青或避免皮肤直接接触煤沥青造成身体伤害。 1.0.7 沥青路面试验检测的实验室应通过认证,取得相应的资质,试验人员持证上岗,仪器设备必须检定合格。 1.0.8 沥青路面工程应积极采用经试验和实践证明有效的新技术、新材料、新工艺。 1.0.9 沥青路面施工除应符合本规范外,尚应符合国家颁布的现行有关标准、规范的规定。特殊地质条件和地区的沥青路面工程,可根据实际情况,制订补充规定。各省、市、自治区或工程建设单位可根据具体情况,制订相应的技术指南,但技术要求不宜低于本规范的规定。

2 术语、符号、代号 术语 2.1.1 沥青结合料asphalt binder ,asphalt cement 在沥青混合料中起胶结作用的沥青类材料(含添加的外掺剂、改性剂等)的总称。 2.1.2 乳化沥青emulsified bitumen(英), asphalt emulsion ,emulsified asphalt(美) 石油沥青与水在乳化剂、稳定剂等的作用下经乳化加工制得的均匀的沥青产品,也称 沥青乳液。 2.1.3 液体沥青liquid bitumen(英), cutback asphalt(美) 用汽油、煤油、柴油等溶剂将石油沥青稀释而成的沥青产品,也称轻制沥青或稀释沥 青。 2.1.4 改性沥青modified bitumen(英) , modified asphalt cement(美) 掺加橡胶、树脂、高分子聚合物、天然沥青、磨细的橡胶粉或者其他材料等外掺剂(改性剂),使沥青或沥青混合料的性能得以改善而制成的沥青结合料。 2.1.5 改性乳化沥青modified emulsified bitumen (英), modified asphalt emulsion(美) 在制作乳化沥青的过程中同时加入聚合物胶乳,或将聚合物胶乳与乳化沥青成品混合,或对聚合物改性沥青进行乳化加工得到的乳化沥青产品。 2.1.6 天然沥青natural bitumen (英)natural asphalt(美) 石油在自然界长期受地壳挤压、变化,并与空气、水接触逐渐变化而形成的、以天然状态存在的石油沥青,其中常混有一定比例的矿物质。按形成的环境可以分为湖沥青、岩沥青、海底沥青、油页岩等。 2.1.7 透层prime coat 为使沥青面层与非沥青材料基层结合良好,在基层上喷洒液体石油沥青、乳化沥青、 煤沥青而形成的透入基层表面一定深度的薄层。 2.1.8 粘层tack coat 为加强路面沥青层与沥青层之间、沥青层与水泥混凝土路面之间的粘结而洒布的沥青材料薄层。 2.1.9 封层seal coat 为封闭表面空隙、防止水分侵入而在沥青面层或基层上铺筑的有一定厚度的沥青混合料薄层。铺筑在沥青面层表面的称为上封层,铺筑在沥青面层下面、基层表面的称为下封层。稀浆封层slurry seal 用适当级配的石屑或砂、填料(水泥、石灰、粉煤灰、石粉等)与乳化沥青、外掺剂 和水,按一定比例拌和而成的流动状态的沥青混合料,将其均匀地摊铺在路面上形成的沥青 封层。 2.1.11 微表处micro-surfacing 用适当级配的石屑或砂、填料(水泥、石灰、粉煤灰、石粉等)采用聚合物改性 乳化 沥青、外掺剂和水,按一定比例拌和而成的流动状态的沥青混合料,将其均匀地摊铺在路面上形成的沥青封层。 2.1.12 沥青混合料bituminous mixtures(英),asphalt(美) 由矿料与沥青结合料拌和而成的混合料的总称。按材料组成及结构分为连续级配、间断级配混合料,按矿料级配组成及空隙率大小分为密级配、半开级配、开级配混合料。按公 称最大粒径的大小可分为特粗式(公称最大粒径等于或大于31.5mm)、粗粒式(公称最大粒径26.5mm)、中粒式(公称最大粒径16或19mm、细粒式(公称最大粒径或13.2mm)、砂粒式(公

(全过程精细讲解)路面结构设计及计算

路面结构设计及计算 7.1 轴载分析 路面设计以双轴组单轴载100KN 作为标准轴载 a.以设计弯沉值为指标及验算沥青层层底拉应力中的累计当量轴次。 (1)轴载换算 轴载换算采用如下的计算公式:35 .421? ? ? ??=P P N C C N i i (7.1) 式中: N —标准轴载当量轴次,次/日 i n —被换算车辆的各级轴载作用次数,次/日 P —标准轴载,KN i p —被换算车辆的各级轴载,KN K —被换算车辆的类型数 1c —轴载系数,)1(2.111-+=m c ,m 是轴数。当轴间距离大于3m 时,按单独的一个轴载计算;当轴间距离小于3m 时,应考虑轴数系数。 2c :轮组系数,单轮组为6.4,双轮组为1,四轮组为0.38。

轴载换算结果如表所示: 注:轴载小于25KN 的轴载作用不计。 (2)累计当量轴数计算 根据设计规,一级公路沥青路面的设计年限为15年,四车道的车道系数η取0.40,γ =4.2 %,累计当量轴次: ][γ η γ13651)1(N N t e ??-+= [] 次)(.5484490042 .040 .0327.184********.0115 =???-+= (7.2) 验算半刚性基层层底拉应力的累计当量轴次 b.轴载换算 验算半刚性基底层底拉应力公式为 8 1 ' 2' 1' ) (∑==k i i i P p n c c N (7.3) 式中:'1c 为轴数系数,)1(21' 1-+=m c '2c 为轮组系数,单轮组为1.85,双轮组为1,四轮组为0.09。 计算结果如下表所示: 表7.3

注:轴载小于50KN 的轴载作用不计。 [] γ η γ'13651)1(N N t e ??-+= ? [] 次3397845% 042.040 .0313.13473651%) 042.01(15 =???-+= 7.2 结构组合与材料选取 由上面的计算得到设计年限一个行车道上的累计标准轴次约为700万次左右,根据规推荐结构,路面结构层采用沥青混凝土(15cm )、基层采用石灰粉煤灰碎石(厚度待定)、底基层采用石灰土(30cm )。 规规定高速公路一级公路的面层由二至三层组成,查规,采用三层沥青面层,表面层采用细粒式密级配沥青混凝土(厚4cm ),中间层采用中粒式密级配沥青混凝土(厚5cm ),下面层采用粗粒式密级配沥青混凝土(厚6cm )。 7.3 各层材料的抗压模量与劈裂强度 查有关资料的表格得各层材料抗压模量(20℃)与劈裂强度

路面结构设计计算示例

课程名称: 学生: 学生学号: 专业班级: 指导教师: 年月日

路面结构设计计算 1 试验数据处理 1.1 路基干湿状态和回弹模量 1.1.1 路基干湿状态 路基土为粘性土,地下水位距路床顶面高度0.98m~1.85m。查路基临界高度参考值表可知IV5区H1=1.7~1.9m,H2=1.3~1.4m,H3=0.9~1.0m,本路段路基处于过湿~中湿状态。 1.1.2 土基回弹模量 1) 承载板试验 表1.1 承载板试验数据 承载板压力(MPa) 回弹变形 (0.01mm) 拟合后的回弹变形 (0.01mm) 0.02 20 10 0.04 35 25 0.06 50 41 0.08 65 57 0.10 80 72 0.15 119 剔除 0.20 169 剔除 0.25 220 剔除 计算路基回弹模量时,只采用回弹变形小于1mm的数据,明显偏离拟合直线的点可剔除。拟合过程如图所示:

路基回弹模量: 210101 1000 (1)4 n i i n i i p D E l πμ===-=∑∑ 2)贝克曼梁弯沉试验 表1.2 弯沉试验数据 测点 回弹弯沉(0.01mm ) 1 155 2 182 3 170 4 174 5 157 6 200 7 147 8 173 9 172 10 207 11 209 12 210 13 172 14 170 根据试验数据: l = ∑ll l = 155+?+170 14 =178.43

15.85(0.01mm)S = =s = √∑(ll ?l )2l ?1 =20.56(0.01mm) 式中:l ——回弹弯沉的平均值(0.01mm ); S ——回弹弯沉测定值的标准差(0.01mm ); l i ——各测点的回弹弯沉值(0.01mm ); n ——测点总数。 根据规要求,剔除超出(2~3)l S ±的测试数据,重新计算弯沉有效数据的平均值和标准差。计算代表弯沉值: 1174.79 1.64515.85200.86(0.01mm)a l l Z S - =+=+?=l 1=l +l l l =178.43+ 1.645×20.56=21 2.25 Z a 为保证率系数,高速公路、一级公路取2.0,二、三级公路取1.645,四级公路取1.5。 土基的回弹模量: 220201220.70106.5 (1)(10.35)0.71246.3(MPa)200.860.01 p E l δμα??= -=?-?=? 1.2 二灰土回弹模量和强度 1. 2.1 抗压回弹模量 二灰土抗压回弹模量为:735MPa 。 1.2.2 f50mm×50mm试件劈裂试验 表1.3 二灰土试件劈裂试验数据 f50mm×50mm试件劈裂试验 最大荷载(N ) 2t P Dh σπ= (kPa ) 处理结果 有效数据平均值t σ(kPa ) 250.57 有效数据样本标准差S (kPa ) 12.07 变异系数C v (%) 4.82 变异系数应小于6%,否则可在剔除偏差较大的数据后,重新计算平均值和标准差。设计

路面结构设计

5.路面结构设计 5.1沥青路面 5.1.1交通量及轴载计算分析 路面设计以单轴载双轮组100KN 为标准轴载。 1) 以设计弯沉值为指标及验算沥青层层底拉应力中的累计当量轴次: ①轴载换算: 轴载换算采用如下的计算公式:=N ∑=k i i i P P n C C 135.421)/( 计算结果如下表所示: 表5.1轴载换算表 =i i i 1 21

②累计当量轴次 根据《公路沥青路面设计规范JTG D50-2006》,高速公路沥青路面的设计年限取15年,四车道的车道系数是取0.5。 累计当量轴次: ()111365 t e N N γηγ ??+-???= ()[]18918830 5.060.430336506449 .0365106449.0115 =????-+= (次) 2) 验算半刚性基层层底拉应力中的累计当量轴次 ①轴载换算 验算半刚性基层层底拉应力轴载换算公式:812'1')/('P P n C C N i k i i ∑== 计算结果如下表所示: 表5.2 轴载换算结果(半刚性基层层底拉应力) =i i i 1 21

②累计当量轴次 参数取值同上,设计年限是15年,车道系数取0.5。 累计当量轴次: ()111365 t e N N γηγ ??+-???= ()[]321652575.087.731636506449 .0106449.0115 =???-+= (次) 5.1.2结构组合设计及材料选取 1) 拟订路面结构组合方案 根据规定推荐结构,并考虑到公路沿途有大量碎石且有石灰供应,路面结构面层采用沥青混凝土(取18cm ),基层采用水泥碎石(取20cm ),下基层采用石灰土(厚度待定)。 另设20cm 厚的中粗砂垫层。 2) 拟订路面结构层的厚度 由于计算所得的累计当量轴载达到了500万次,按一级路的路面来设计,由设计规范《公路沥青路面设计规范JTG D50-2006》规定高速公路、一级公路的面层由二层至三层组成。采用三层式沥青面层,表面层采用细粒式密级配沥青混凝土(厚度为4cm ),中面层采用中粒式密级配沥青混凝土(厚度为6cm ),下面层采用粗粒式密级配沥青混凝土(厚度为8cm )。 5.1.3设计指标及设计参数确定 1) 确定路面等级和面层类型 由上面的计算得到设计年限内一个行车道上的累计标准轴次约为大于500万次。根据规范《公路沥青路面设计规范JTG D50-2006》和设计任务书的要求可确定路面等级为高级路面,面层类型采用沥青混凝土,设计年限为15年。 2) 确定土基的回弹模量 ① 此路为新建路面,根据设计资料可知路基干湿状态为干燥状态。 ② 根据设计资料,由设计规范《公路沥青路面设计规范JTG D50-2006》,该路段处于II 2a 区,为粉质土,确定土基的稠度为1.05。

路面结构设计分析

路面结构设计 学院: 专业: 学号: 姓名: 授课老师:

0 前言 道路是人类社会发展和进步的垫脚石,道路工程在人类社会发展中有着重要的作用。随着运输工具的现代化和人们交往的日益扩大,道路交通的作用更大重要和突出。道路是人们生活、学习、工作、旅游等出行的通道,是旅客、货物中转和集散的最主要途径,是城乡结构的骨架、城市建设的基础,是抵御自然灾害的通道,是自然灾害或战争时人员集散的场地,等等。总之,道路是社会发展的基础产业,是经济发展的先行设施,在工农业生产、国土开发、国防建设、旅游事业等国民经济和社会发展个方面发挥了举足轻重的作用。 我国家高速公路常用的路面结构形式主要有刚性和柔性两种,即水泥混凝土和沥青混凝土路面。水泥混凝土路面具有刚度大承载能力强,耐久性、耐候性、耐高温性能强,抗弯拉强度高、疲劳寿命长,平整度衰减慢、高平整度持续时间长,扩散荷载能力强,稳定性好、施工取材方便,路面环保,运行油耗低经济性好,路面色度低、色差小、隔热性好等优点,但水泥混凝土路面同等平整度舒适性差,板体性强、对基层的抗冲刷性能要求高,反射易使眼睛疲劳,超载、板底脱空等很敏感,且受施工质量的影响大,一旦出现质量问题,破坏就会迅速发展,难以维修、维护,并且破坏后修复困难,维修费用很高。沥青混凝土路面具有可以分期修建、通车快,平整度易于得到保证、整体性好、行车舒适、易于修复、噪音小等优点,但沥青混凝土路面具有对水和温度比较敏感,在水文、气候条件较差及缺乏碱性集料的地区,易造成沥青路面的早期破坏,路面平整度保持性差,路面材料耐久性差,使用寿命较短,运行及养护维修成本较高、环保性能差等缺点。 综上所述,沥青混凝土路面和水泥混凝土路面各有其的优缺点。路面结/构设计就是合理设置路面各结构层的位置和层厚,充分发挥各层材料的特性,以抵抗车轮荷载和环境因素的作用,实现路面的设计使用寿命,同时,提供良好的服务质量。在设计路面结构时,采用何种结构类型不是简单的问题。很有必要从筑路地区气候环境、地质状况、交通量大小、材料种类及供给情况、施工技术水平等因素,两种路面的施工方法、使用性能、破坏状况、维护方式、养护费用等方面进行全面比较权衡,从道路等级、路用性能要求、经济、技术、社会、环境效益等方面进行综合分析,优选出较合理的路面结构类型。

路面施工材料技术要求

路面施工材料技术要求 1、沥青混凝土面层 (1)沥青 沥青采用70号A级道路石油沥青。沥青原材料应严格按现行《公路工程沥青及沥青混合料试验规程》(JTG E-2011)进行检验,其技术要求应符合下表规定。 表1道路石油沥青技术要求 (2)SBS改性沥青 制造改性沥青的基质沥青应与改性剂有良好的配伍性,其质量满足 A 级道路石油沥青的技术要求。用作改性剂的SBR 胶乳中的固体物含量不宜

少于45%,使用中严禁长时间曝晒或遭冰冻。改性沥青宜在固定式工厂或在现场设厂集中制作,也可在拌和厂现场边制造边使用,改性沥青的加工温度不宜超过180℃。胶乳类改性剂和制成颗粒的改性剂可直接投入拌和缸中生产改性沥青混合料。用溶剂法生产改性沥青母体时,挥发性溶剂回收后的残留量不得超过5%。现场制造的改性沥青宜随配随用,需作短时间保存,或运送到附近的工地时,使用前必须搅拌均匀,在不发生离析的状态下使用。改性沥青制作设备必须设有随机采集样品的取样口,采集的试样宜立即在现场灌模。工厂制作的成品改性沥青到达施工现场后存贮在改性沥青罐中,改性沥青罐中必须加设搅拌设备并进行搅拌,使用前改性沥青必须搅拌均匀。 (3)粗集料 沥青面层粗集料采用玄武岩,玄武岩的选材应洁净、干燥、表面粗糙、无风化、无杂质,具有足够的强度、耐磨耗性。粗集料应具有良好的颗粒形状,不宜采用颚式破碎机加工。路面抗滑表层粗集料应选用坚硬、耐磨、抗冲击力好的碎石或破碎砾石,不得使用筛选砾石、矿渣及软质集料。粗集料质量应符合下表的要求,其粒径规格应按《公路沥青路面施工技术规范》JTG F40-2004表4.8.3选用。集料质量应从源头抓起,派专人驻集料加工厂,对不合格的集料不得装车、装船,对进场粗集料严格按有关规定进行检查。 表2 沥青面层用粗集料质量要求

路面结构设计计算书

公路路面结构设计计算示例 、刚性路面设计 交通组成表 1 )轴载分析 路面设计双轮组单轴载 100KN ⑴ 以设计弯沉值为指标及验算面层层底拉力中的累计当量轴次。 ①轴载换算: 双轴一双轮组时,按式 i 1.07 10 5 p °型;三轴一双轮组时,按式 N s i N i P i 16 100 式中:N s ——100KN 的单轴一双轮组标准轴载的作用次数; R —单轴一单轮、单轴一双轮组、双轴一双轮组或三轴一双轮组轴型 i 级轴载的总重KN ; N i —各类轴型i 级轴载的作用次数; n —轴型和轴载级位数; i —轴一轮型系数,单轴一双轮组时, i =1 ;单轴一单轮时,按式 3 2.22 10 P 0.43 计算; 8 0.22 2.24 10 R 计算

N i1 NA 注:轴载小于40KN 的轴载作用不计。 ②计算累计当量轴次 根据表设计规范,一级公路的设计基准期为 30年,安全等级为二级,轮迹横向分布系数 g r 0.08,则 , :t 30 N N s (1 g r ) 1 365 834.389 (1 0.08) g r 4 4 量在100 10 ~ 2000 10中,故属重型交通。 2) 初拟路面结构横断面 由表3.0.1,相应于安全等级二级的变异水平为低 ~中。根据一级公路、重交通等级和低级变异水平等 级,查表 初拟普通混凝土面层厚度为 24cm ,基层采用水泥碎石,厚 20cm ;底基层采用石灰土,厚 20cm 。 普通混凝土板的平面尺寸为宽 3.75m ,长5.0m 。横缝为设传力杆的假缝。 式中:E t ――基层顶面的当量回弹模量,; E 0——路床顶面的回弹模量, E x ――基层和底基层或垫层的当量回弹模量, E 1,E 2 ――基层和底基层或垫层的回弹模量, h x ――基层和底基层或垫层的当量厚度, 1 365 0.2 6900125362 其交通 0.08 查表的土基回弹模量 设计弯拉强度:f cm 结构层如下: E 。 35.0MP a ,水泥碎石 E 1 1500MP a ,石灰土 E ? 550 MP a 5.0MP a E c 3.1 104 MP a 水泥混凝土 24cm E = . x .g'-iF 水泥碎石20cm E :=150OMP Q 石灰土 20cm E =53C MPa E x h 2 D x h ; E z h ; h x 12 3 1500 0.2 12 4.700(MN ( 12D ( W E t 12 6.22 0.202 1500 0.202 550 2 2 1025MP a 0.202 0.202 m 0)2 ( 1 4 3 550 0.2 (0.2 12 m) ( 1025 0.380m 1 )1 E 2h 2 0.2) 4 2 ( 1500 0.2 550 0.2 1 )1 1.51(牙) E 。 0.45 6.22 1 1.51 (^) 0.45 35 4.165 E x 、0.55 1 1.44( ) 1 E E 1 ah E ( -) 4.165 0.38635 1.44 (些)0.55 35 0.786 1025 丄 ( )3 212276MP a 35 按式() s tc 计算基层顶面当量回弹模量如下: h 12 E 1 h ;E 2 2 3) 确定基层 E , E

相关主题
文本预览
相关文档 最新文档