当前位置:文档之家› 功放实训报告

功放实训报告

功放实训报告
功放实训报告

功放实训报告

专业:应用电子技术

实训课题:普通功率放大器班级: 08电子

姓名:胡松陈琳

指导教师:余攀

2010年12月3日

摘要

随着社会的发展,人们的追求,现代人对听觉的水平要求越来越高,所以对音响的音质真实性要求越来越多,并能对音频信号进行适当的加工装饰,使声音音质真实优美动听。因此,我们这次的研究主要对象是高保真家用功率放大器, 然而功率放大器是在音响系统中是把微弱的音频信号放大到足以驱动喇叭单元工作,重放出人耳能听到的声音设备。本设计主要介绍采用TA7630为主芯片设计的功率放大器,它在应用场合能提供非常低的失真度和高质量的音色,还具有了高增益、快转换速率、宽功率带宽、大输出电压摆幅、大电流能力和非常宽的电源范围等特性。它可用于家用功放,高品质音频系统,立体声唱机等。

随着电子技术的发展,音频功放(APA)技术的最新发展进一步提高了音响的音质,以及人们生活水平的不断提高,各种新型家庭影院的新技术、新品种器材不断涌现,市场中的音响设备品种繁多,音响爱好者被商店里的设备搞得眼花缭乱,无从下手,往往投入较大的资金而得不到较好的重放效果。高保真功放就克服了传统音响的这些缺点.表现出了声音的真实性.我们所做的TA7630功率放大器就是使重放的声音跟真实的声音高度相似.如果从重放声的角度来讲,高保真音响系统非常讲究表现音乐的内涵和细节,通过器材的重放能够表现出音乐所要表达的深刻含义,与欣赏者产生情感上的交流,在重放时对音乐中的细微声音都能表现出来。

摘要 (2)

引言 (3)

第一章概述 (3)

1.1 主要内容 (3)

1.2 功放的发展史 (3)

第二章功放的定义 (4)

2.1 功放的定义 (4)

第三章功放的组成模块 (5)

3.1 电源部分 (6)

3.2 调音部分 (7)

3.3 放大部分 (7)

第四章 TDA2030音频放大电路的基本原理 (9)

第五章电路板的制作与调试 (11)

4.1 电路板的制作 (11)

4.2 电路板的调试 (11)

总结 (13)

参考文献: (14)

附录1 (15)

第一章概述

1.1主要内容

本文主要介绍功率放大器,我们的控制电路芯片采用TA7630专用的音质控制集成电路,为16脚双列苴插式塑料封装。放大电路所用的芯片TDA2030A,TDA2030A是德律风根生产的音频功放电路,用它来做电脑有源音箱的功率放大部分或小型功放再合适不过了。

1.2 功放的发展史

功率放大器是一个技术已经相当成熟的领域,几十年来,人们为之付出了不懈的努力,无论从线路技术还是元器件方面,乃至于思想认识上都取得了长足的进步。回顾一下功率放大器的发展历程,对我们广大音响爱好者来说也许是一件饶有趣味的事情。发展历史可以分为电子管、晶体管、集成电路、场效应管四个阶段。

1906年美国人德福雷斯特发明了真空三极管,开创了人类电声技术的先河。1927年贝尔实验室发明了负反馈技术后,使音响技术的发展进入了一个崭新的时代,比较有代表性的如"威廉逊"放大器,较成功地运用了负反馈技术,使放大器的失真度大大降低,至50年代电子管放大器的发展达到了一个高潮时期,各种电子管放大器层出不穷。由于电子管放大器音色甜美、圆润,至今仍为发烧友所偏爱。

60年代晶体管的出现,使广大音响爱好者进入了一个更为广阔的音响天地。晶体管放大器具有细腻动人的音色、较低的失真、较宽的频响及动态范围等特点。

在60年代初,美国首先推出音响技术中的新成员--集成电路,到了70年代初,集成电路以其质优价廉、体积小、功能多等特点,逐步被音响界所认识。发展至今,厚膜音响集成电路、运算放大集成电路被广泛用于音响电路。

70年代的中期,日本生产出第一只场效应功率管。由于场效应功率管同时具有电子管纯厚、甜美的音色,以及动态范围达90dB、THD<0.01%(100kHz时)的特点,很快在音响界流行。现今的许多放大器中都采用了场效应管作为末级输出。80年代,数字功放成为了新一代的宠儿.

第二章功放的定义

2.1 功放的定义

利用三极管的电流控制作用或场效应管的电压控制作用将电源的功率转换为按照输入信号变化的电流。因为声音是不同振幅和不同频率的波,即交流信号电流,三极管的集电极电流永远是基极电流的β倍,β是三极管的交流放大倍数,应用这一点,若将小信号注入基极,则集电极流过的电流会等于基极电流的β倍,然后将这个信号用隔直电容隔离出来,就得到了电流(或电压)是原先的β倍的大信号,这现象成为三极管的放大作用。经过不断的电流及电压放大,就完成了功率放大。

功率放大器,简称“功放”。很多情况下主机的额定输出功率不能胜任带动整个音响系统的任务,这时就要在主机和播放设备之间加装功率放大器来补充所需的功率缺口,而功率放大器在整

个音响系统中起到了“组织、协调”的枢纽作用,在某种程度上主宰着整个系统能否提供良好的音质输出。

第三章功放的组成模块

2.1 电源部分

电源系统通常由电源变压器、整流电路、滤波电路、稳压电路等构成。电源变压器将电网提供的交流电压变换到电子线路所需的交流电压范围,同时还可起到直流电源与电网的隔离作用,可升压也可降压。

整流电路将变压器变换和交流电压变为单向脉动直流电压。

滤波电路对整流输出的脉动直流进行平滑处理。

稳压电路将滤波输出的直流电压进行调节,以保持输出电压的基本稳定。出于我们对电路的选择,还有考虑到TDA2030a的特性,我们选择输入为12V交流电压,如图,经整流桥堆整流后输出±12V双向直流电压。然后经电容滤波升压输出双向直流电压输出供电。

图2.1 电源

2.2 调音部分

在调音控制块里,我们采用TA7630芯片为核心制作,此芯片就是专用的音质控制集成电路,为16脚双列直插式塑料封装。利用直流电压通过电位器间接实现音量、音调及平衡控制。该电路可用单或双电源供电,具有音量控制范围宽、谐波失真小、声道平衡性能好等特点。调音原理图如图2.2,我们采用的是12V电源供电,以下是芯片引脚功能介绍:

1 接地端。 9 低音控制电压输入。

2 左声道伴音信号输入。 10 高音控制电压输入。

3 高音频率设定端(左声道)。 11 右声道音频信号输出。

4 低音频率设定端(左声道)。 12 12V电源输入。

5 12V基准电压控制输入。 13 右声道低音转折频率设定端。

6 左声道音频信号输出。 14 右声道高音转折频率设定端。

7 左、右声道音量平衡控制电压输入。 15 右声道音频信号输入。

8 音量控制电压输入。 16 基准滤波端。

图2.2 调音

2.3 放大部分

放大电路我们采用的芯片是TDA2030A。TDA2030A是德律风根生产的音频功放电路,采用V型5 脚单列直插式塑料封装结构。如图1所示,按引脚的形状引可分为H型和V型。该集成电路广泛应用于汽车立体声收录音机、中功率音响设备,具有体积小、输出功率大、失真小等特点。并具有内部保护电路。意大利SGS公司、美国RCA公司、日本日立公司、NEC公司等均有同类产品生产,虽然其内部电路略有差异,但引出脚位置及功能均相同,可以互

换。

电路特点:

[1].外接元件非常少。[2].输出功率大,Po=18W(RL=4Ω)。

[3].采用超小型封装(TO-220),可提高组装密度。[4].开机冲击极小。[5].内含各种保护电路,因此工作安全可靠。主要保护电路有:短路保护、热保护、地线偶然开路、电源极性反接(Vsmax=12V)以及负载泄放电压反冲等。[6].TDA2030A 能在最低±6V最高±22V的电压下工作在±19V、8Ω阻抗时能够输出16W的有效功率,THD≤0.1%。无疑,用它来做电脑有源音箱的功率放大部分或小型功放再合适不过了。

图2.3 功放原理图

第四章 TDA2030音频功率放大器电路工作原理

本文介绍的音频功率放大器是用集成功放TDA2030为主的电路,其制作简单,价格低廉,输出功率大,保真性好,适合初学者和大、中专学生。

一、电路工作原理

图1所示电路为音频功率放大器原理图,其中TDA2030是高保真集成功率放大器芯片,输出功率大于10W,频率响应为10~1400Hz,输出电流峰值最大可达3.5A。其内部电路包含输入级、中间级和输出级,且有短路保护和过热保护,可确保电路工作安全可靠。TDA2030使用方便、外围所需元器少,一般不需要调试即可成功。RP是音量调节电位器,C1是输入耦合电容,R1是TDA2030同相输入端偏置电阻。R2、R3决定了该电路交流负反馈的强弱及闭环增益。该电路闭环增益为(R2+R3)/R2=(0.68+22)/0.68=33.3倍,C2起隔直流作用,以使电路直流为100%负反馈。静态工作点稳定性好。C4、C5为电源高频旁路电容,防止电路产生自激振荡。R4、R5称为茹贝网路,用以在电路接有感性负载扬声器时,保证高频稳定性。VD1、VD2是保护二极管,防止输出电压峰值损坏集成块TDA2030。

二、元器件的选择

集成功率放大器TDA2030。RP为碳膜电位器。C1、C2为电解电容器,耐压为16V,C3、C4、C5为瓷介电容。R1、R2、R3为碳膜电阻,额

定功率为1/8W。R4为碳膜电阻,额定功率为1/4W。VD1、VD2为IN4007小功率整流二极管。B为4Ω或8Ω、15W全频扬声器。

第五章电路板的制作与调试

5.1电路板的制作

焊接:

本次设计采用万能板,工具为20W普通内热式电烙铁一把、钳子、螺丝刀等等。经过一系列的准备就绪之后,焊接也是最麻烦的一关,焊接时首先把TA7630引脚插座焊接到万能板中间位置,然后根据电路原理图把电阻、电容、电位器焊接到合适位置。最后焊接功放部分TDA2030。焊接TDA2030前须先把TDA2030用螺丝固定在散热片上,要不然的话会由于焊接时温度过高导致芯片烧坏否则在最后装散热片时螺丝很难打进去。TDA2030与散热片接触的部分必须涂少量的散热脂,以利散热。焊接时必须注意焊接质量,避免虚焊,最后检查一下,及时补焊。要不然会导致电路不通。

5.2 电路板的调试

本功放板调试,电路板焊好电子元件后,要仔细检查电路板有无焊错的地方,特别要注意有极性的电子元件,如电解电容,一旦焊反即有烧毁元器件之险,请特别注意。起初第一次静态调试的时候,就是由于电解电容极性接反,而且电流偏高,电容被烧掉了,经过失败的教训后,总结经验,用万用表仔细的检查电路的每一个部分,然后进行第二次的静态调试,调试时首先输入双18VAC电源, 然后进行静态调试,使输入短路U1=0, 输出也要为U0=0,接上变压器,放

大器的输出端先不接扬声器,而是接万用电表,最好是数显的,万用表置于DC*2V档。功放板上电注意观察万用电表的读数,在正常情况下,读数应在30mV以内,否则应立即断电检查电路板。若电表的读数在正常的范围内,则表明该功放板功能基本正常,第一步静态调试成功。

第二步就是动态调试,先输入信号源1000Hz, 用示波器测到此时输出波形电压有效值为U=17V,看示波器上的波形是否失真,然后测失真度, 最后接上8Ω扬声器,CD机播放惠威测试音乐作为输入信号,旋转音量电位器,音量大小应该有变化,当旋转音量电位器慢慢增大听是否扬声器失真,旋转音量电位器慢慢减小到最小听扬声器是否有噪音有的话说明放大器音质不是很好,调节高低音旋钮,就可以听到各种频率变化时,所输出来的悦耳的声音了,这就是音响的效果。

分工情况:本次功率放大器的制作大大加强了我们的团队合作精神。

原理图的设计与PCB的设计:陈琳

原理图的审核:胡松

功率放大器的焊接:胡松陈琳

功率放大器的调试:胡松

实训报告的整合:胡松陈琳

总结

经过多才测试和改善,我们的家用功放取得了初步成功,我们的电路输入电源电压为±12V,电路调试所达到的试听效果使输出的声音还让人满意,达到我们先前的预测,电路越是简洁,电信号在传输过程中的损失就越小,电路对电信号的影响也就越小,失真也就越小,重放的音质也就越好。

通过这次的毕业设计,使我进一步巩固了所学的知识,理论和实践方面都有了很大的提高,也是对我们大学所学的东西的一次肯定,但由于时间短、经验少、设备和资料缺乏,本次的设计还是存在一些不足之处。比如可以简化电路、美化外观、信号干扰、散热片整体性的设计等,还有布线这方面有待进一步改进,本放大器适用性强,可扩展到±12V~±25V,10W~25W的功放,并且用途广泛,比如在商场、家里、KTV、学校等。

参考文献:

1.音响设备技术童建华主编电子工业出版社。

2.低频电子线路(第2版)刘树林主编电子工业出版社。

3 数字电路与逻辑设计(第2版)胡锦主编高等教育出版社。

4 网上资料。

附录:PCB图

实物图正面

6低频功率放大器实验报告1

实验报告 姓名: 学号: 日期: 成绩 : 课程名称 模拟电子实验 实验室名称 模电实验室 实验 名称 低频功率放大器 同组 同学 指导 老师 一、实验目的 1、进一步理解OTL 功率放大器的工作原理 2、学会OTL 电路的调试及主要性能指标的测试方法 二、实验原理 图7-1所示为OTL 低频功率放大器。其中由晶体三极管T 1组成推动级(也称前置放大级),T 2、T 3是一对参数对称的NPN 和PNP 型晶体三极管,它们组成互补推挽OTL 功放电路。由于每一个管子都接成射极输出器形式,因此具 图7-1 OTL 功率放大器实验电路 有输出电阻低,负载能力强等优点,适合于作功率输出级。T 1管工作于甲类状态,它的集电极电流I C1由电位器R W1进行调节。I C1 的一部分流经电位器R W2及二极管

D , 给T 2、T 3提供偏压。调节R W2,可以使T 2、T 3得到合适的静态电流而工作于甲、 乙类状态,以克服交越失真。静态时要求输出端中点A 的电位CC A U 21 U =,可以 通过调节R W1来实现,又由于R W1的一端接在A 点,因此在电路中引入交、直流电压并联负反馈,一方面能够稳定放大器的静态工作点,同时也改善了非线性失真。 当输入正弦交流信号u i 时,经T 1放大、倒相后同时作用于T 2、T 3的基极,u i 的负半周使T 2管导通(T 3管截止),有电流通过负载R L ,同时向电容C 0充电,在u i 的正半周,T 3导通(T 2截止),则已充好电的电容器C 0起着电源的作用,通过负载R L 放电,这样在R L 上就得到完整的正弦波。 C 2和R 构成自举电路,用于提高输出电压正半周的幅度,以得到大的动态范围。 OTL 电路的主要性能指标 1、最大不失真输出功率P 0m 理想情况下,L 2CC om R U 81P =,在实验中可通过测量R L 两端的电压有效值,来 求得实际的L 2 O om R U P =。 2、 效率η 100%P P ηE om = P E —直流电源供给的平均功率 理想情况下,ηmax = 78.5% 。在实验中,可测量电源供给的平均电流I dC , 从而求得P E =U CC ·I dC ,负载上的交流功率已用上述方法求出,因而也就可以计算实际效率了。 3、 频率响应 详见实验二有关部分内容 4、 输入灵敏度 输入灵敏度是指输出最大不失真功率时,输入信号U i 之值。 三、实验设备与器件 1、 +5V 直流电源 5、 直流电压表 2、 函数信号发生器 6、 直流毫安表

音频功率放大器设计实验报告

题目:音频功率放大器电路 音频功率放大器设计任务 1、基本要求 (1)频带范围 200Hz —— 10KHz,失真度 < 5%。 (2)电压增益 >= 20dB。 (3)输出功率 >= 1 W (8欧姆负载)。 (4)功率放大电路部分使用分立元件设计。 发挥部分 (1)增加音调控制电路。 (2)增加话筒输入接口,灵敏度 5mV,输入阻抗 >> 20 欧姆。 (3)输出功率 >= 10W (8欧姆负载)。 (4)其他。 目录 1 引言····························································· 2 总体设计方案·····················································2.1 设计思路······················································· 2.2 总体设计框图··················································· 3 设计原理分析·····················································3.1设计总原理图 3.2设计的PCB电路图 ··· 1 引言 在现代音响普及中,人们因生活层次、文化习俗、音乐修养、欣赏口味的不同,令对相同电气指标的音响设备得出不同的评价。所以,就高保真度功放而言,应该达到电气指标与实际听音指标的平衡与统一。

音频功率放大器是一个技术已经相当成熟的领域,几十年来,人们为之付出了不懈的努力,无论从线路技术还是元器件方面,乃至于思想认识上都取得了长足的进步。本次设计旨在熟悉设计流程,达到基本指标。 2 总体方案 根据实验要求,本次设计主要是也能够是用集成功放TDA2030为主的电路 一、电路工作原理 图1所示电路为音频功率放大器原理图,其中TDA2030是高保真集成功率放大器芯片,输出功率大于10W,频率响应为10~1400Hz,输出电流峰值最大可达3.5A。其内部电路包含输入级、中间级和输出级,且有短路保护和过热保护,可确保电路工作安全可靠。TDA2030使用方便、外围所需元器少,一般不需要调试即可成功。 RP是音量调节电位器,C1是输入耦合电容,R1是TDA2030同相输入端偏置电阻。 R2、R3决定了该电路交流负反馈的强弱及闭环增益。该电路闭环增益为 (R2+R3)/R2=(0.68+22)/0.68=33.3倍,C2起隔直流作用,以使电路直流为100%负反馈。静态工作点稳定性好。 C4、C5为电源高频旁路电容,防止电路产生自激振荡。R4、R5称为茹贝网路,用以在电路接有感性负载扬声器时,保证高频稳定性。VD1、VD2是保护二极管,防止输出电压峰值损坏集成块TDA2030。 2.电流反馈 电流反馈是指在一个反馈电路中,若反馈量与输出电流成正比则为电流反馈;若反馈量与输出电压成正比则为电压反馈。通常可以采用负载短路法来判断。 从概念上说,若反馈量与输出电压(有时不一定是输出电压,而是取样处的电压)成正比则为电压反馈;若反馈量与输出电流(有时不一定是输出电流,而是取样处的电流)成正比则为电流反馈。在判断电压反馈和电流反馈时,除了上述方法外,也可以采用负载短路法。负载短路法实际上是一种反向推理法,假设将放大电路的负载电阻RL短路(此时,),若

音频功率放大器实验报告_音频功率放大器课程设计报告.docx

音频功率放大器实验报告_音频功率放大器课程设计报告 本科实验报告 课程名称:姓名:学院:系:专业:学号:指导教师: 电子电路安装与调试 信息与电子工程学院 电子科学与技术 一、实验目的二、实验任务与要求 三、实验方案设计与实验参数计算(3.1 总体设计、3.2 各功能电路设计与计算、3.3完整的实验电路……)四、主要仪器设备五、实验步骤与过程六、实验调试、实验数据记录七、实验结果和分析处理八、讨论、心得 一、实验目的 1、学习并初步掌握音频功率放大器的设计、调试方法。 2、学习并掌握电路布线、元器件安装和焊接。 3、掌握音频功率放大器各项主要性能及指标的调试方法。 二、实验任务与要求 1、设计 (1)设计一音频功率放大器,使其达到如下主要技术指标:负载阻抗:R L =4Ω额定功率:P o =10W 带宽:BW ≥(50~15000) Hz 音调控制: 低音:100Hz ±12dB 高音:10kHz ±12dB 失真度:γ≤3% 输入灵敏度:U " i (2)设计满足以上设计要求的稳压电源。 2、在Altium Designer中画出原理图, 并进行PCB 板的编辑与设计。 3、根据给定的功率放大器的原理图(三),做如下工作: (1)分析计算晶体管前置放大器的直流工作电压、电流、输入电阻、输出电阻、各级放大器的交流增益。 (2)分析音调控制电路的工作原理,计算4个极端情况下的交流增益。(3)安装实验电路板 (4)调试和测试实验电路的增益、频响特性曲线、输入电阻和输出电阻、以及改变某实验名称:音频功率放大器的设计、安装和调试姓名:陈肖苇学号:3140104580_ 些电路参数后的性能测试(电路图中括号内的数字)。 (5)分析实验数据,并与理论计算值比较,讨论二者之间的误差和产生误差的原因。三、实验原理和实验方案设计 作为音频放大器的音源部分,其输出电平既有高至数百毫伏(如调谐器:50~500mV,线路输出:100~500mV),也有低至1mV (如话筒:1~5mV),相差达几百倍。音频放大器就是要把这些不同大小的音源放大后驱动喇叭,发出同等强度的声音。因此,根据不同音源的需要,可以画出音频放大器的原理框图,如图1所示。 P.2 装订线 图1音频功率放大器框图 1、各部分电路电压增益的确定 根据额定输出功率P o =10W和负载R L =4Ω,可求得输出电压为 : V o ===6.32V 所以整机中频电压增益为:A O um =

音频功率放大器实验报告

一、实验目的 1)了解音频功率放大器的电路组成,多级放大器级联的特点与性能; 2)学会通过综合运用所学知识,设计符合要求的电路,分析并解决设计过程中遇到的问题,掌握设计的基本过程与分析方法; 3)学会使用Multisim、Pspice等软件对电路进行仿真测试,学会Altium Designer使用进行PCB制版,最后焊接做成实物,学会对实际功放的测试调试方法,达到理想的效果。 4)培养设计开发过程中分析处理问题的能力、团队合作的能力。 二、实验要求 1)设计要求 设计并制作一个音频功率放大电路(电路形式不限),负载为扬声器,阻抗8Ω。要求直流稳压电源供电,多级电压、功率放大,所设计的电路满足以下基本指标: (1)频带宽度50Hz~20kHz,输出波形基本不失真; (2)电路输出功率大于8W; (3)输入阻抗:≥10kΩ; (4)放大倍数:≥40dB; (5)具有音调控制功能:低音100Hz处有±12dB的调节范围,高音10kHz 处有±12dB的调节范围; (6)所设计的电路具有一定的抗干扰能力; (7)具有合适频响宽度、保真度要好、动态特性好。 发挥部分: (1)增加电路输出短路保护功能; (2)尽量提高放大器效率; (3)尽量降低放大器电源电压; (4)采用交流220V,50Hz电源供电。 2)实物要求 正确理解有关要求,完成系统设计,具体要求如下: (1)画出电路原理图; (2)确定元器件及元件参数; (3)进行电路模拟仿真; (4)SCH文件生成与打印输出;

(5)PCB文件生成与打印输出; (6)PCB版图制作与焊接; (7)电路调试及参数测量。 三、实验内容与原理 音频功率放大器是一种应用广泛、实用性强的电子音响设备,它主要应用于对弱音频信号的放大以及音频信号的传输增强和处理。按其构成可分为前置放大级、音调控制级和功率放大级三部分,如图1所示。 v 图1 音频功率放大器的组成框图 1)前置放大级 音频功率放大器的作用是将声音源输入的信号进行放大,然后输出驱动扬声器。声音源的种类有多种,如传声器(话筒)、电唱机、录音机(放音磁头)、CD 唱机及线路传输等,这些声音源的输出信号的电压差别很大,从零点几毫伏到几百毫伏。一般功率放大器的输入灵敏度是一定的,这些不同的声音源信号如果直接输入到功率放大器中的话,对于输入过低的信号,功率放大器输出功率不足,不能充分发挥功放的作用;假如输入信号的幅值过大,功率放大器的输出信号将严重过载失真,这样将失去了音频放大的意义。所以一个实用的音频功率放大系统必须设置前置放大器,以便使放大器适应不同的输入信号,或放大,或衰减,或进行阻抗变换,使其与功率放大器的输入灵敏度相匹配。另外在各种声音源中,除了信号的幅度差别外,它们的频率特性有的也不同,如电唱机输出信号和磁带放音的输出信号频率特性曲线呈上翘形,即低音被衰减,高音被提升。对于这样的输入信号,在进行功率放大器之前,需要进行频率补偿,使其频率特性曲线恢复到接近平坦的状态,即加入频率均衡网络放大器。 对于话筒和线路输入信号,一般只需将输入信号进行放大和衰减,不需要进行频率均衡。前置放大器的主要功能一是使话筒的输出阻抗与前置放大器的输入阻抗相匹配;二是使前置放大器的输出电压幅度与功率放大器的输入灵敏度相匹配。由于话筒输出信号非常微弱,一般只有100μV~几毫伏,所以前置放大器输入级的噪声对整个放大器的信噪比影响很大。前置放大器的输入级首先采用低噪声电路,对于由晶体管组成的分立元件组成的前置放大器,首先要选择低噪声的晶体管,另外还要设置合适的静态工作点。由于场效应管的噪声系数一般比晶体管小,而且它几乎与静态工作点无关,在要求高输入阻抗的前置放大器的情况下,

测量放大器实验报告

目录 摘要 (1) Abstract (2) 1. 设计准备 (3) 1.1 引言 (3) 1.2 Multisim简单介绍 (3) 2. 测量放大器原理图设计 (5) 2.1 设计任务及要求 (5) 2.2 设计原理 (5) 2.3 设计方案及实现 (7) 2.3.1 方案1及电路图 (7) 2.3.2 方案2及电路图 (8) 2.3.3 方案3及电路图 (9) 2.3.4 方案4及电路图 (9) 2.4 比较后选择的方案及合适器件 (13) 2.5 部分功能电路 (10) 3. 电路的仿真、测量波形及实物图 (13) 3.1 电路的仿真 (13) 3.2 测量波形 (15) 3.2.1输入差模信号 (19) 3.2.1输入共模信号 (20) 3.3 实物图和调试波形图 (20) 3.3.1实物图 (20) 3.3.1调试波形图 (21) 4. 设计过程的问题和解决办法........................................................................ . (19) 4.1 元器件的选择............................................................................................... .19 4.2 实验发现的问题和解决方法....................................................................... .19 5. 元器件清单............................................................................................................ .21 6. 小结........................................................................................................................ .22 7. 参考文献................................................................................................................ .23

OTL功率放大器实验报告(DOC)

课程设计 课程名称模拟电子技术 题目名称功率放大器 专业班级12网络工程本2 学生姓名郭能 学号51202032019 指导教师孙艳孙长伟 二○一三年十二月二十三日 目录 引言 (2)

一、设计任务与要求 (2) 1.1 设计任务 (2) 1.2 设计要求 (2) 二、方案设计 (3) 三、总原理图及元器件清单 (4) 四、电路仿真与调试 (6) 五、性能测试与分析 (7) 六、总结 (8) 七、参考文献 (8)

OTL功率放大器 引言:OTL(Output transformerless )电路是一种没有输出变压器的功率放大电路。过去大功率的功率放大器多采用变压器耦合方式,以解决阻抗变换问题,使电路得到最佳负载值。但是,这种电路有体积大、笨重、频率特性不好等缺点,目前已较少使用。OTL电路不再用输出变压器,而采用输出电容与负载连接的互补对称功率放大电路,使电路轻便、适于电路的集成化,只要输出电容的容量足够大,电路的频率特性也能保证,是目前常见的一种功率放大电路。它的特点是:采用互补对称电路(NPN、PNP参数一致,互补对称,均为射随组态,串联,中间两管子的射极作为输出),有输出电容,单电源供电,电路轻便可靠。两组串联的输出中点”可理解为采用互补对称电路(NPN、PNP参数一致,互补对称,均为射随组态,串联,中间两管子的射极作为输出)。 1:设计任务与要求 1.1设计任务: 1.学习基本理论在实践中综合运用的初步经验,掌握模拟电路设计的基本方法、设计步骤,培养综合设计与调试能力。 2.培养实践技能,提高分析和解决实际问题的能力。 3.掌握OTL音频功率放大器的设计方法,基本工作原理和性能指标测试方法。 4. 通过一个OTL功率放大器的设计、安装和调试,进一步加深对互补对称功率放大电路的理解,增强实际动手能力。 1.2 设计要求: 1.设计时要综合考虑实用,经济并满足性能指标的要求,合理选用元器件。 2.广泛查阅相关的资料,不懂的地方积极向老师同学请教,讨论。认真独立的完成课题的设计。 3.按时完成课程设计并提交设计报告。 2:方案设计 要求设计一个由二极管,三极管,电容,电阻等元件组合而成的OTL音频功

小型功率音频放大器LM386的性能测试试验报告

BY:华中师范大学电信专业DYLAN 小型功率音频放大器LM386的性能测试试验报告 1、试验目的: 1.熟悉焊接工艺。 2.熟悉测量的理解和仪器的使用。 3.增强对电路的理解。 4.熟悉电路的调试以及电路参数的测量。 2、试验原理: LM386的封装形式为塑封8引线双列直插式和贴片式。,主要应用于低电压消费类产品。为使外围元件最少,电压增益内置为20。即在不接外接电路的情况下电压增益为20倍。但在1脚和8脚之间增加一只外接电容,便可将电压增益调为任意值,当外接电容20uf 时电压增益为最大200。 LM386引脚图 3、电路分析 1.第一级为差分放大电路,T1和T3、T2和T4分别构成复合管,作为差分放大电路的放大管;T5和T6组成镜像电流源作为T1和T2的有源负载;T3和T4信号从管的基极输入,从T2管的集电极输出,

为双端输入单端输出差分电路。 根据电路图得前级差分放大电路增益: 1 211)////(A be b l ce ce u r R R r r +-=β 若l R 远远小于21//r ce ce r ,则 1 1A be b l u r R R +-≈β 所以使用镜像电流源作为差分放大电路有源负载,可使单端输出电路的增益近似等于双端输出电容的增益。 2.第二级为共射放大电路,T7为放大管,恒流源作有源负载,以增大放大倍数。 3.第三级中的T8和T9管复合成PNP 型管,与NPN 型管T10构成准互补输出级。二极管D1和D2为输出级提供合适的偏置电压,可以消除交越失真。 4.引脚2为反相输入端,引脚3为同相输入端。电路由单电源供电。输出端(引脚5)应外接输出电容后再接负载,主要是用来滤去一些杂波。 5.电阻R7从输出端连接到T2的发射极,形成反馈通路,并与R5和R6构成反馈网络,从而引入了深度电压串联负反馈,能够起到稳定电压的作用,从而使整个电路具有稳定的电压增益。

实验三功率放大电路实验报告

集成功率放大电路 一. 实验目的 1.掌握功率放大电路的调试及输出功率、效率的测量方法; 2.了解集成功率放大器外围电路元件参数的选择和集成功 率放大器的使用方法。 二. 实验仪器设备 1.实验箱 2. 示波器 3. 万用表 4. 电流表 有关试验方法的说明: (1) 测量最大不失真功率:max O P 在放大器的输入端接入频率为1kHz 的正弦频率信号;Vi 置最小(Vi<20mV );在放大器的输出端街上示波器和毫伏表,逐渐增大Vi ,使示波器显示出最大不失真波形,用毫伏表测出电压有效值 mox O V ,则最大不失真输出功率为: 2max max O O L V P R = (2)测量功率放大器的效率 η: 在保持Vo 为最大不失真输出幅度的情况下,由电流表测量直流电源Vcc 的输出电流E I ,此时电源Vcc 提供的直流输出功率为: ×E E CC P I V = 注:此处Vcc 应为正负电源之差。

功率放大器的效率为: max = O E P P 集成功率放大器的实验电路 三. 实验内容及步骤 1、连接电路: 接入正负电源(+V CC 、-V EE ) 接入负载电阻R L 串入电流表 2、打开电源开关,记录电流表的读数,即为静态电流I E 3、将电流表换至较高档位,接入输入信号v i ,按后面要求进行测量。 负载电阻R L = 时, 按表分别用示波器测量输出电压峰值为2V 和4V 时的电流I E ,计算输出功率P O 、电源供给功率P E 和效率η; 逐渐增大输入电压,用示波器监视输出波形,记录最大不失真时的输出电压的峰值v omax 和电流I E ,并计算此时的输出功率P O ,电源供给功率P E 和效率η,填表。 峰值 I E P O P E η

功率放大电路的仿真测试实验报告

电子与信息工程系模电实验 实验日期: 2016.4.15 班级:2015级应用物理学实验名称:功率放大电路的仿真测试姓名: 实验成绩:学号: 一、实验目的 (1)了解OTL、OCL功率放大器的基本工作原理和参数测试。 (2)对比分析OTL功率放大器和OCL功率放大器的性能差异。 二、原理与说明 功率放大器根据功放管平均导通时间的长短(或集电极电流流通时间的长短或导通角的大小),分为以下4种工作状态。 (1)甲类工作状态:甲类工作状态下,在整个周期内晶体管的发射结都处于正向运用,集电极电流始终是流通的,即导通角A等于180°。 (2)乙类工作状态:乙类工作状态下,晶体管的发射结在输入信号的半周期内正向运用,在另外半个周期内反向运用,晶体管半周期导电半周期截止。集电极电流只在半周期内随信号变化,而在另半个周期截止,即导通角A等于90°。 (3)甲乙类工作状态:它是介于甲类和乙类之间的工作状态,即发射结处于正向运用的时间超过半个周期,但小于一个周期。即导通角A大于90°小于180°。 (4)丙类工作状态:丙类工作状态:丙类工作状态下,晶体管发射结处于正向运用的时间小于半个周期,集电极电流的时间不到半个周期,即导通角A小于90°。

图4.4.2 OCL功率放大器原理图 4.4.3为单电源供电互补推挽功率放大器。 三、实验内容 1.OCL功率放大器测量

1)按照图4.4.2所示输入自 己的OCL实验电路。并测量晶体管的静态工作,判断器件工作状态。 表格1.1.1 开关闭合开关断开 Q1 Q2 Q1 Q2 I B12.012pa 12.012pa 55.511na 1.691na I C1201ma 1.201ma 1.201ma 1.201mna U CE12v 12v 12v 12v 2)调节信号源输出为3V(峰 值),在开关J1闭合和断开条件下,用双踪示波器观察输入输出波形。 J1断开时: J1闭合时:

音频功率放大电路实验报告分析

实验报告 课程名称: 电路与模拟电子技术实验 指导老师: 成绩:__________________ 实验名称: 音频功率放大电路 实验类型: 研究探索型实验 同组学生姓名:__________ 一、实验目的和要求 1、理解音频功率放大电路的工作原理。 2、学习手工焊接和电路布局组装方法。 3、提高电子电路的综合调试能力。 4、通过myDAQ 来分析理论数据和实际数据之间的关系。 二、实验内容和原理(必填) 音频功率放大电路,也即音响系统放大器,用于对音频信号的处理和放大。按其构成可分为前置放大级、音调控制级和功率放大级三部分。 作为音响系统中的放大设备,它接受的信号源有多种形式,通常有话筒输出、唱机输出、录音输出和调谐器输出。它们的输出信号差异很大,因此,音频功放电路中设置前置放大级以适应不同信号源的输入。 为了满足听众对频响的要求和弥补设置了音调控制放大器,希望能对高音、低音部分的频率特性进行调节扬声器系统的频率响应不足,。 为了充分地推动扬声器,通常音响系统中的功率放大器能输出数十瓦以上功率,而高级音响系统的功放最大输出功率可达几百瓦以上。 扩音机的整机电路如下图所示,按其构成,可分为前置放大级,音调控制级和功率放大级三部分。 装 订 线

前置放大电路: 前置放大级输入阻抗较高,输出阻抗较低。前置放大级的性能对整个音频功放电路的影响很大,为了减小噪声,前置级通常要选用低噪声的运放。 由A1组成的前置放大电路是一个电压串联负反馈同相输入比例放大器。 理想闭环电压放大倍数为:23 1R R A vf + = 输入电阻:1R R if = 输出电阻:0of =R 功率放大级: 对于功率放大级,除了输出功率应满足技术指标外,还要求电路的效率高、非线性失真小、输出与音箱负载相匹配,否则将会影响放音效果。 集成功率放大器通常有OTL 和OCL 两种电路结构形式。OTL 功放的优点是只需单电源供电,缺点是输出要通过大电容与负载耦合,因此低频响应较差;OCL 功放的优点是输出与负载可直接耦合,频响特性较好,但需要用双电源供电。(实验室提供本功能模块) 本实验电路的功率放大级由集成功率器件TDA2030A 连成OCL 电路输出形式。 TDA2030A 功率集成电路具有转换速率高,失真小,输出功率大,外围电路简单等特点,采用5脚塑料封装结构。其中1脚为同相输入端;2脚为反相输入端;3脚为负电源;4脚为输出端; 5脚为正电源。 功放级电路中,电容C15、C16用作电源滤波。D1和D2为防止输出端的瞬时过电压损坏芯片的保护二极管。R11、C10为输出端校正网络以补偿感性负载,其作用是把扬声器的电感性负载补偿接近纯电阻性,避免自激和过电压。 图中通过R10、R9、C9引入了深度交直流电压串联负反馈。由于接入C9,直流反馈系数F ′=1。对于交流信号而言,

非线性丙类功率放大器--实验报告

南昌大学实验报告 学生姓名:付文平学号: 6102215151 专业班级:通信154班实验类型:■验证□综合□设计□创新实验日期: 2017.10.31 实验成绩:实验名称:非线性丙类功率放大器实验报告 一、实验目的 1、了解丙类功率放大器的基本工作原理,掌握丙类功率放大器的调谐特性以及负载变化时的动态特性。 2、了解激励信号变化对功率放大器工作状态的影响。 3、比较甲类功率放大器与丙类功率放大器的功率、效率与特点。 二、实验内容 1、观察高频功率放大器丙类工作状态的现象,并分析其特点。 2、测试丙类功放的调谐特性。 3、测试丙类功放的负载特性。 4、观察激励信号变化、负载变化对工作状态的影响。 三、实验仪器 1、信号源模块 1块 2、频率计模块 1块 3、8 号板 1块 4、双踪示波器 1台 四、实验原理 非线性丙类功率放大器的电流导通角θ<90〇效率可达到80%,通常作为发射机末级功放以获得较大的输出功率和较高的效率。特点:非线性丙类功率放大

器通常用来放大窄带高频信号(信号的通带宽度只有其中心频率的1%或更小),基极偏置为负值,电流导通角θ<90〇,为了不失真地放大信号,它的负载必须是LC谐振回路。 丙类功率放大器 丙类功率放大器的基极偏置电压V BE 是利用发射极电流的直流分量I EO (≈I CO ) 在射极电阻上产生的压降来提供的,故称为自给偏压电路。当放大器的输入信号为正弦波时,集电极的输出电流i C 为余弦脉冲波。利用谐振回路LC的选频作用 可输出基波谐振电压v c1,电流i c1 。下图画出了丙类功率放大器的基极与集电极间 的电流、电压波形关系。分析可得下列基本关系式: 式中,V c1m 为集电极输出的谐振电压及基波电压的振幅;I c1m 为集电极基波电流振 幅;R 为集电极回路的谐振阻抗 2 1 2 1 1 12 1 2 1 2 1 R V R I I V P m c m c m c m c C = = = 式中,P C 为集电极输出功率. 式中,P D 为电源V CC 供给的直流功率;I CO 为集电极电流脉冲i C 的直流分量。放大器的效率 1 1 R I V m c m c = CO m c CC m c I I V V 1 1 2 1 ? ? = η

非线性丙类功率放大器实验报告讲解

非线性丙类功率放大器实验报告 姓名: 学号: 班级: 日期: 37 38 非线性丙类功率放大器实验 一、实验目的 1. 了解丙类功率放大器的基本工作原理, 掌握丙类放大器的调谐特性以及负载改变时的动态特性。 2. 了解高频功率放大器丙类工作的物理过程以及当激励信号变化对功率放大器工作状态的影响。 3. 比较甲类功率放大器与丙类功率放大器的功率、效率与特点。 二、实验基本原理 非线性丙类功率放大器的电流导通角 o 90<θ, 效率可达到 80%,通常作为发射机末级功放以获得较大的输出功率和较高的效率。特点:非线性丙类功率放大器通常用来放大窄带高频信号 (信号的通带宽度只有其中心频率的 1%或更小 ,基极偏置为负值,电流导通角o 90<θ,为了不失真地放大信号,它的负载必须是 LC 谐振回路。 丙类功率放大器

丙类功率放大器的基极偏置电压 V BE 是利用发射极电流的直流分量 I EO (≈ I CO 在射极电阻上产生的压降来提供的,故称为自给偏压电路。当放大器的输入信号 ' i v 为正弦波时,集电极的输出电流 i C 为余弦脉冲波。利用谐振回路 LC 的选频作用可输出基波谐振电压 v c1, 电流 i c1。图 8-3画出了丙类功率放大器的基极与集电极间的电流、电压波形关系。分析可得下列基本关系式: 011R I V m c m c = 式中, m c V 1为集电极输出的谐振电压及基波电压的振幅; m c I 1为集电极基波电流振幅; 0R 为集电极回路的谐振阻抗。 2102111212121R V R I I V P m c m c m c m c C === 39 式中, P C 为集电极输出功率 CO CC D I V P = 式中, P D 为电源 V CC 供给的直流功率; I CO 为集电极电流脉冲 i C 的直流分量。 放大器的效率η为 CO m c CC m c I I V V 1121? ?

音频功率放大电路实验报告

实验报告 课程名称: 电路与模拟电子技术实验 指导老师: 成绩:__________________ 实验名称: 音频功率放大电路 实验类型: 研究探索型实验 同组学生姓名:__________ 一、实验目的和要求 1、理解音频功率放大电路的工作原理。 2、学习手工焊接和电路布局组装方法。 3、提高电子电路的综合调试能力。 4、通过myDAQ 来分析理论数据和实际数据之间的关系。 二、实验内容和原理(必填) 音频功率放大电路,也即音响系统放大器,用于对音频信号的处理和放大。按其构成可分为前置放大级、音调控制级和功率放大级三部分。 作为音响系统中的放大设备,它接受的信号源有多种形式,通常有话筒输出、唱机输出、录音输出和调谐器输出。它们的输出信号差异很大,因此,音频功放电路中设置前置放大级以适应不同信号源的输入。 为了满足听众对频响的要求和弥补设置了音调控制放大器,希望能对高音、低音部分的频率特性进行调节扬声器系统的频率响应不足,。 为了充分地推动扬声器,通常音响系统中的功率放大器能输出数十瓦以上功率,而高级音响系统的功放最大输出功率可达几百瓦以上。 扩音机的整机电路如下图所示,按其构成,可分为前置放大级,音调控制级和功率放大级三部分。 专业: 姓名: 学号: 日期: 地点: 桌号 装 订 线 点名册上的序号 前置 放大级 音调控制 放大级 功率 放大级

前置放大电路: 前置放大级输入阻抗较高,输出阻抗较低。前置放大级的性能对整个音频功放电路的影响很大,为了减小噪声,前置级通常要选用低噪声的运放。 由A1组成的前置放大电路是一个电压串联负反馈同相输入比例放大器。 理想闭环电压放大倍数为:23 1R R A vf + = 输入电阻:1R R if = 输出电阻:0of =R 功率放大级: 对于功率放大级,除了输出功率应满足技术指标外,还要求电路的效率高、非线性失真小、输出与音箱负载相匹配,否则将会影响放音效果。 集成功率放大器通常有OTL 和OCL 两种电路结构形式。OTL 功放的优点是只需单电源供电,缺点是输出要通过大电容与负载耦合,因此低频响应较差;OCL 功放的优点是输出与负载可直接耦合,频响特性较好,但需要用双电源供电。(实验室提供本功能模块) 本实验电路的功率放大级由集成功率器件TDA2030A 连成OCL 电路输出形式。 TDA2030A 功率集成电路具有转换速率高,失真小,输出功率大,外围电路简单等特点,采用5脚塑料封装结构。其中1脚为同相输入端;2脚为反相输入端;3脚为负电源;4脚为输出端;5脚为正电源。 功放级电路中,电容C15、C16用作电源滤波。D1和D2

最新集成运算放大器参数的测试标准实验报告

电子科技大学微电子与固体电子学院标准实验报告 课程名称集成电路原理与设计 电子科技大学教务处制表

电 子 科 技 大 学 实 验 报 告 学生姓名: 学 号: 指导教师: 实验地点:微固楼335 实验时间: 一、实验室名称: 微电子技术实验室 二、实验项目名称:集成运算放大器参数的测试 三、实验学时:4 四、实验原理: 运算放大器符号如图1所示,有两个输入端。一个是反相输入端用“-”表示,另一个是同相输入端用“+”表示。可以是单端输入,也可是双端输入。若把输入信号接在“-”输入端,而“+”端接地,或通过电阻接地,则输出信号与输入信号反相,反之则同相。若两个输入端同时输入信号电压为V - 和V + 时,其差动输入信号为V ID = V - - V + 。开环输出电压V 0=A VO V ID 。A VO 为开环电压放大倍数。 运算放大器在实际使用中,为了改善电路的性能,在输入端和输出端之间总是接有不同的反馈网络。通常是接在输出端和反相输入端之间。 图1 运算放大器符号 本实验的重点在于根据实验指导书要求,对开环电压增益、输入失调电压、共模抑制比、电压转换速率和脉冲响应时间等主要运放参数进行测量。

五、实验目的: 运算放大器是一种直接耦合的高增益放大器,在外接不同反馈网络后,就可具有不同的运算功能。运算放大器除了可对输入信号进行加、减、乘、除、微分、等数学运算外,还在自动控制、测量技术、仪器仪表等各个领域得到广泛应用。 为了更好地使用运算放大器,必须对它的各种参数有一个较为全面的了解。运算放大器结构十分复杂,参数很多,测试方法各异,需要分别进行测量。 本实验正是基于如上的技术应用背景和《集成电路原理》课程设置及其特点而设置,目的在于: (1)了解集成电路测试的常用仪器仪表使用方法及注意事项。 (2)学习集成运算放大器主要参数的测试原理,掌握这些主要参数的测试方法。 通过该实验,使学生了解运算放大器测试结构和方法,加深感性认识,增强学生的实验与综合分析能力,进而为今后从事科研、开发工作打下良好基础。 六、实验内容: 1 .开环电压增益测量。 2 .开环输出电阻测量。 3 .输入失调电压测量。 4 .共模抑制比测量。 5 .电压转换速率测量。 6 .脉冲响应时间测量。 七、实验器材: (1)直流稳压电源一台 (2)数字双踪示波器*一台 (3)信号发生器一台 (4)实验测试板及连接线一套 (5)常见通用运算放大器IC样品一块 八、实验步骤: 1、首先熟悉数字双踪示波器和信号源的使用,根据指导书要求搭建各参数的测试电路。 注意所选电阻、电容的值,不能确定时要用万用表测量;在测试板上连接测试电路

高频谐振功率放大器仿真实训报告书

高频功率放大器仿真实训作业 班级 姓名 教师 时间

一、实验目的 1、Multisim常用菜单的使用; 2、熟悉仿真电路的绘制及各种测量仪器设备的连接方法; 3、学会利用仿真仪器测量高频功率放大器的电路参数、性能指标; 4、熟悉谐振功率放大器的三种工作状态及调整方法。 二、实验内容及步骤 1、利用Multisim软件绘制高频谐振功率放大器如附图1所示的实验电路。 附图1 高频谐振功率放大器实验电路 2、谐振功率放大器的调谐与负载特性调整 (1)调节信号发生器,使输入信号f i=465KHz 、U im=290mV,用示波器观察集电极和R1上的电压波形,调节负载回路中的可变电容C1,得到波形如下:

此时,功率放大器工作在状态。 (2)维持输入信号的频率不变,逐步减小R2,使R1上的电压波形为最大的尖顶余弦脉冲,得到波形如下: 此时,功率放大器工作在状态。 3、集电极调制特性 输入信号维持不变、V1、R2均维持不变,将VCC由小变大: (1)将VCC设置为9V,按下仿真电源开关,双击示波器,即可得到波形如下:(2)将VCC设置为12V,按下仿真电源开关,双击示波器,即可得到波形如下: (3)将VCC设置为18V,按下仿真电源开关,双击示波器,即可得到波形如下: 总结:

4、基极调制特性 (1)输入信号维持不变、VCC、R2均维持不变,将V1由小变大: 1)将V1设置为350mV,按下仿真电源开关,双击示波器,即可得到如下波形: 2)将V1设置为400mV,按下仿真电源开关,双击示波器,即可得到如下波形: 3)将V1设置为415mV,按下仿真电源开关,双击示波器,即可得到如下波形: 总结: (2)V1、VCC、R2均维持不变,将输入信号由小变大: 1)将输入信号设置为280mv,按下仿真电源开关,双击示波器,即可得到如下波形: 2)将输入信号设置为290mV,按下仿真电源开关,双击示波器,即可得到如下波形: 3)将输入信号设置为300mV,按下仿真电源开关,双击示波器,即可得到如下波形:

音频功率放大器设计实验报告_需要的进啦!!!!要点

第一节实训目的 实训是通过对培训对象比较集中、系统的专业技能培训,使其具有一定的专业操作技能。对于电子信息工程专业的学生,实训的目的在于通过集中、系统的培训使学生了解和掌握电子元件的认外形、特征及一些常用电子元件的运用,了解和掌握常用操作工具(如电烙铁、万用表、吸锡器、斜口钳等)和常用实验仪器设备(如函数发生器、示波器等)的原理和使用。与此同时掌握电子元件检测、焊接技术和调试技术,使理论与实践相结合,进一步提升自己的专业知识,最后真正的掌握一门技术。 第二节TDA2030简介 TDA 2030A: TDA 2030 是一块性能十分优良的功率放大集成电路,其主要特点是上升速率高、瞬态互调失真小,在目前流行的数十种功率放大集成电路中,规定瞬态互调失真指标的仅有包括TDA 2030 在内的几种。我们知道,瞬态互调失真是决定放大器品质的重要因素,该集成功放

的一个重要优点。 TDA 2030 集成电路的另一特点是输出功率大,而保护性能以较完善。根据掌握的资料,在各国生产的单片集成电路中,输出功率最大的不过20W,而TDA 2030的输出功率却能达18W,若使用两块电路组成BTL电路,输出功率可增至35W。另一方面,大功率集成块由于所用电源电压高、输出电流大,在使用中稍有不慎往往致使损坏。然而在TDA 2030集成电路中,设计了较为完善的保护电路,一旦输出电流过大或管壳过热,集成块能自动地减流或截止,使自己得到保护(当然这保护是有条件的,我们决不能因为有保护功能而不适当地进行使用)。 TDA 2030 在电源电压±14V,负载电阻为4Ω时输出14瓦功率(失真度≤0.5%);在电源电压±16V,负载电阻为4Ω时输出18瓦功率(失真度≤0.5%)。该电路由于价廉质优,使用方便,并正在越来越广泛地应用于各种款式收录机和高保真立体声设备中。该电路可供低频课程设计选用。 TDA2030A主要参数: 工作电压:±6~22V 静态电流:<50mA 输出功率:18W,当V=±16V,RL=4Ω时 谐波失真:0.05%,当f=15kHz,RL=8Ω时 闭环增益:26dB,当f=1kHz时

OTL功率放大器实验报告

七OTL功率放大电路 一、实验目的 1.进一步理解OTL功率放大器的工作原理。 2.学会OTL电路的调试及主要性能指标的测试方法。 图7-1 OTL功率放大器实验电路 二、试验原理 图7-1所示为OTL低频功率放大器。其中由晶体三极管T1组成推动级,T2 ,T3是一对参数对称的NPN和PNP型晶体三极管,他们组成互补推挽OTL功放电路。由于每一个管子都接成射极输出器形式,因此具有输出电阻低,负载能力强等优点,适合于作功率输出级。T1管工作于甲类状态,它的集电极 电流I c1的一部分流经电位器R W2及二极管D,给T2.T3提供偏压。调节R W2,可以使T2.T3得到适合的静态电流而工作于甲.乙类状态,以克服交越失真。静态时要求输出端中点A的电位U A=1/2U CC,可以 通过调节R W1来实现,又由于R W1的一端接在A点,因此在电路中引入脚.直流电压并联负反馈,一方面能够稳定放大器的静态工作点,同时也改善了非线性失真。 当输入正弦交流信号U i时,经T1放大.倒相后同时作用于T2.T3的基极,U i的负半周使T2管导通(T3管截止),有电流通过负载R L,同时向电容C0充电,在U i的正半周,T3导通(T2截止),则已充好的电容器C0起着电源的作用,通过负载R L放电,这样在R L上就得到完整的正弦波. C2和R构成自举电路,用于提高输出电压正半周的幅度,以得到大的动态范围. OTL电路的主要性能指标

1.最大不失真输出功率P om 理想情况下,P om=U CC2/8R L,在实验中可通过测量RL两端的电压有效值,来求得实际的P OM=U O2/R L。 2.效率=P OM/P E 100% P E-直流电源供给的平均功率 理想情况下,功率M ax=78.5%.在实验中,可测量电源供给的平均电流I dc,从而求得P E=U CC I dc,负载上的交流功率已用上述方法求出,因而也就可以计算实际效率了。 3.频率响应 祥见实验二有关部分内容 4.输入灵敏度 输入灵敏度是指输出最大不失真功率时,输入信号U i之值。 三、实验设备与器件 1.+5v直流电源5。直流电压表 2.函数信号发生器6、直流毫安表 3.双踪示波器7、频率计 8.晶体三级管3DG6×1(9100×1)3DG12×1(9031×1) 3CG12×1(9012×1)晶体二极管2CP×1 8欧喇叭×1,电阻器、电容器若干 四,实验内容 在整个测试过程中,电路不应有自激现象。 1。按图7-1连接实验电路,电源进入中串人直流毫安表,电位器R W2置为最小值,R W1置中间位置。接通+5V电源,观察毫安表指示,同时要手触摸输出级管子,若电流过大,或管子温升显著,应立即断开电源检查原因(如R W2开路,电路自激,或管子性能不好等)。如无异常现象,可开始调试。 1.静态工作点的调试 1)调节输出端中点电位U A 调节电位器R W1,用直流电压表测量A点电位,使R A=1/2U CC。 2)调整输出极静态电流用测试各级静态工作点 调节R W2,使T2、T2管的I C2=I C3=5-10mA。从减小义越失真角度而言,应适当加大输出极静态电流,但该电流过大,会使效率降低,所以一般以5-10mA左右为宜。由于毫安表是串在电源进线中,因此测量得的是整个放大器的电流。但一般T1的集电极电流I C1较小,从而可以把测得的总电流近似当作示末级的静态电流。如要准确得到末级静态电流,则可以从总晾中减去I C1之值。 调整输出级静态电流的另一方法是动态调试法。先使R W2=0,在输入端接入F=1KHZ 的正弦信号U i。逐渐加大输入信号的幅值,此时,输出波形应出现较严重的交越失真(注意:没有饱和和载止失真),然后缓慢增大R W2,当交越失真刚好消失时,停止调节R W2,恢复U i=0,此时直流毫安表计数即为输出级静态电流。一般数值也应在5-10mA左右,如过大,则要检查电路。 输出级电流调好以后,测量各级静态工作点,记入表7-1。 表7-1I C2=I C3=mA U A=2.5V

相关主题
文本预览
相关文档 最新文档