当前位置:文档之家› 雷达--地物回波系统分析

雷达--地物回波系统分析

雷达--地物回波系统分析
雷达--地物回波系统分析

衰落速率的计算 计算多普勒频率是求衰减落速率(Fad ing rat e)最容易的方法。为了在一个特定的多普勒频移范围内计算回波信号的幅度,必须将所有具有这些频移的信号相加。这就需要了解散射面上的多普勒频移等值线(等值多普勒频移)。对于每一种特殊形状的几何体都必须建立起这种多普勒频移等值线。下面用一个沿地球表面水平运动的简单例子来说明。它是普通巡航飞行飞机的一个典型实例。 假定飞机沿y方向飞行,z 代表垂直方向,高度(固定)z = h 。于是有

v =1v v

h y x z y x 111R -+=

式中,1x ,1y ,1z 为单位矢量。因而

h y x vy R v r 222++==?R v

式中,v r 是相对速度。等相对速度曲线也就是等多普勒频移曲线。该曲线的方程为

0222222=+--h v v v y x r

r 这是双曲线方程。零相对速度的极限曲线是一条垂直于速度矢量的直线。图12.7示出这样一组等多普勒频移曲线。

只要把雷达式(12.1)略加整理就可用来计算衰落回波的频谱。这样,如果W r (f d )是频率f d 和f d+d f d之间接收到的功率,则雷达方程变为

?

π=积分区R A A G P f f W r t t d d r 402d )4(1d )(σ ????? ??-π=d r t t d

f A R A G P f d d )4(d 402σ (12.12)

图12.7 在地球平面做水平运动时的多普勒频移等值线 图12.8 计算复数衰落的几何关系图 (引自Ulaby,Moor e和Fun

g[21])

上式的积分区是频率f d和f d+d f d 间被雷达照射到的区域。在此积分式中,f d 和f d +df d 之间的面积元用沿着等值多普勒频移曲线的坐标和垂直于等值多普勒频移曲线的坐标来表示。对每一种特定情况都必须建立这两个坐标。

图12.8示出水平传播的几何形状。其中,坐标ξ 是等值多普勒频移曲线方向;η 是垂直方向。若采用这种坐标,则式(12.12)可表示为

ξσληd )4(d d 40232?

????????????π=积分带R G P f f W t d d r (12.13) 式中,积分式中的发射功率P t只有在照射到地面期间是非零的,其他时间为零。在脉冲雷达中,只有那些在特定时间内反射雷达回波的地面才被认为接收到有限的发射功率P t ,并且脉冲、天线和最大速度都限制了回波出现的频率范围。

图12.9示出另一个例子。它是一种窄波束窄脉冲雷达系统在很小的照射区域时的情况。在这种情况下线性近似不会有很大的误差。波束宽度为φ0的天线发射一个宽度为τ 的脉冲。为了简化说明,在此假定将脉冲直接照射水平飞行飞机的前方。此外,假定一个矩形照射区Rφ0×c τ/(sin θ )以使问题简化,并进一步忽略多普勒频移等值曲线的曲率。因此,可以认为所有最远点上和所有最近点上的多普勒频率都相同,即

θλm ax m ax sin 2v f d = θλ

m in m in sin 2v f d = 于是,多普勒频谱的总宽度为

)sin (sin 2m in m ax θθλ-=?v

f d

对于窄脉冲和偏离垂直入射的情况,总宽度则为

θθλ

cos 2?≈?v f d 若根据脉冲宽度计算,上式变为

θ

θλτsin cos 23h vc f d =? (12.14)

雷达试题

多普勒天气雷达集训考试题答案 一、 填空题(共30题,每空0.5分,总分40分) 1、新一代天气雷达主要由 雷达数据采集系统 RDA 、 雷达产品生成系统RPG 、 主用户终端子系统PUP 三部分组成。 2、多普勒天气雷达测量的三种基数据是基本反射率因子 、平均径向速度、谱宽 。 3、大气中折射的种类有 标准大气折射 、超折射 、 负折射 、 无折射 、 临界折射 。 4、雷达探测到的任意目标的空间位置可根据 仰角、方位角、斜距三个基本要素求得。 5、多普勒雷达除了具有探测云和降水的 位置 和 强度 的功能以外,它以 多普勒效应 为基础,根据返回信号的 频率 漂移,还可以获得目标物相对于雷达运动的径向速度 。 6、达气象方程为=t p ∑单位体积i r h PtG σπθ?λ2 222)2(ln 1024,其中G 表示天线增益 ,h 表示脉冲长度 ,σ表 示粒子的后向散射截面 。 7、反射率因子定义为单位体积中所有粒子直径的6次方之和。它的大小反映了气象目标内部降水粒子的 尺度 和 数密度 ,常用来表示气象目标的强度。 8、触发对流的抬升条件大多由中尺度系统提供,如锋面、干线、对流风暴的外流边界(阵风锋)、海(陆)风锋、重力波等, 9、雷达波束在降水中传播时能量的衰减是由降水粒子对雷达电磁波的散射 和 吸收 造成的。 10、当发生距离折叠时,雷达所显示的回波位置的 方位(或位置) 是正确的,但 距离 是错误的。 11、在雷达径向速度图上,暖平流时零值等风速线呈S 型,冷平流时呈 反S 型。 12、新一代雷达速度埸中,辐合或 辐散 在径向风场图像中表现为一个最大和最小的径向速度对,两个极值中心连线和雷达射线 一致 。 13、多普勒天气雷达与常规天气雷达的主要区别在于前者可以测量目标物沿雷达径向的速度 当目标物位于最大不模糊距离以外时,雷达错误地把它当作同一方向的最大不模糊距离以内的某个位置,称之为 距离折叠 。37 14、当45~55dBZ 的回波强度达到 -20 度层的高度时,最有可能产生冰雹。 15、降水回波的反射率因子一般在 15dBZ 以上。层状云降水回波的强度很少超过

激光雷达回波信号仿真模拟

激光雷达回波信号仿真模拟研究 摘要 关键字 第一章绪论 第一节引言 激光雷达(Lidar:Li ght D etection A nd R anging),是一种用激光器作为辐射源的雷达,是激光技术与雷达技术完美结合的产物。激光雷达的最基本的工作原理与我们常见的普通雷达基本一致,即由发射系统发射一个信号,信号到达作用目标后会产生一个回波信号,我们将回波信号经过收集处理后,就可以获得所需要的信息。与普通雷达不同的是,激光雷达的发射信号是激光而普通雷达发射的信号是无线电波,两者在波长上相比,激光信号要短的多。由于激光的高频单色光的特性,激光雷达具有了许多普通雷达无法比拟的特点,比如分辨率高,测量、追踪精度高,抗电子干扰能力强,能够获得目标的多种图像,等等。因此,利用激光雷达对大气进行监测,收集、分析数据,建立一个大气环境预测理论模型,这将会成为研究气候变化和寻求解决对策的一项重要武器。 第二节本文的选题意义 由于投入巨大,在研制激光雷达实物之前,我们需要进行模拟与仿真研究,预测即将研制的激光雷达的各性能指标,评价总体方案的可行性。激光雷达回拨信号仿真模拟就是利用现代仿真技术,逼真的复现雷达回波信号的动态过程,它是现代计算机技术、数字模拟技术和激光雷达技术相结合的产物。仿真模拟的对象是激光雷达的探测没标以及它所处的环境,模拟的手段是利用计算机和相关设备以及相关程序,模拟的方式是复现包含着激光雷达目标和目标环境信息的雷达信号。通过激光雷达回波信号的仿真模拟,进而产生回波信号,我们可以在实际雷达系统前端不具备条件的情况下,对激光雷达系统的后级设备进行调试。 第三节本文的研究思路和结构安排 本文主要研究面向气象服务应用的大气激光雷达。笔者在熟悉激光雷达的基本工作原理的前提下,学习和熟悉各种参数对大气回波能量的影响,进而学习和掌握matlab编程语言,并且根据给定的激光雷达系统参数、大气参数和光学参数,以激光雷达方程为基础,通过仿真模拟得到理想状态下的大气回波信号。但是,在实际测量工作中,由于大气中的各种干扰,我们获得的回波信号并不和理想状态下的大气回波信号一致,因此,在本文的后期工作中,笔者根据已有的大量激光雷达实测信号与模拟信号对比,既能验证仿真模拟结果的准确性,又能应用于激光雷达的性能指标等方面的分析上,具有比较高的实际应用价值。 第二章激光雷达的原理 第一节激光雷达系统 一个标准的激光雷达系统应该包含以下部件:激光器、发射系统、接收系统、光学系统、信号处理系统以及显示系统。它的工作原理图我们可以用下图表示:

多普勒天气雷达回波识别和分析之降水回波

多普勒天气雷达回波识别和分析之降水回波 1.层状云降水雷达回波特征——片状回波 层状云是水平尺度远远大于垂直尺度云团,由这种云团所产生的降水称之为稳定性层状云降水。降水区具有水平范围较大、持续时间较长、强度比较均匀和持续时间较长等特点。 ⑴回波强度特征:①在PPI上,层状云降水回波表现出范围比较大、呈片状、边缘零散不 规则、强度不大但分布均匀、无明显的强中心等特点。回波强度一般在20-30dBz,最强的为45dBz。②在RHI上,层状云降水回波顶部比较平整,没有明显的对流单体突起,底部及地,强度分布比较均匀,因此色彩差异比较小。一个明显的特征是经常可以看到在其内部有一条与地面大致平行的相对强的回波带。进一步的观测还发现这条亮带位于大气温度层结0度层以下几百米处。由于使用早起的模拟天气雷达探测时,回波较强则显示越亮,因此称之为零度层亮带。回波高度一般在8公里以下,当然会随着纬度,季节的不同有所变化。 ⑵回波径向速度特征:由于层状云降水范围较大,强度与气流相对比较均匀,因此相应其 径向速度分布范围也较大,径向速度等值线分布比较稀疏,切向梯度不大。在零径向速度型两侧常分布着范围不大的正、负径向速度中心,另外还常存在着流场辐合或辐散区。 ⑶零度层亮带:如前所述,在PPI仰角较高或者RHI扫面时,总能在零度层以下几百米处 看到一圈亮环或者亮带回波,亮带内的回波比上下两个层面都强。由于亮带回波总是伴随层状云降水出现,因此是层状云降水的一个重要特征。(零度层亮带形成的原因:冰晶、雪花下落的过程中,通过零度层时,表明开始融化,一方面介电常数增大,另一方面出现碰并聚合作用,使粒子尺寸增大,散射能力增强,所以回波强度增大。当冰晶雪花完全融化后,迅速变成球形雨滴,受雨滴破裂和降落速度的影响,回波强度减小。这样就存在一个强回波带,说明层状云降水中存在明显的冰水转换区,也表明层状云降水中气流稳定,无明显的对流活动。) 2.对流云降水雷达回波特征——块状回波 对流云往往对应着阵雨、雷雨、冰雹、大风、暴雨等天气。 ⑴回波强度特征:①在PPI上,对流云阵性降水回波通常由许多分散的回波单体所组成。 这些回波单体随着不同的天气过程排列成带状、条状、离散状或其它形状。回波单体结构

雷达--地物回波系统分析

衰落速率的计算 计算多普勒频率是求衰减落速率(Fading rate )最容易的方法。为了在一个特定的多普勒频移范围内计算回波信号的幅度,必须将所有具有这些频移的信号相加。这就需要了解散射面上的多普勒频移等值线(等值多普勒频移)。对于每一种特殊形状的几何体都必须建立起这种多普勒频移等值线。下面用一个沿地球表面水平运动的简单例子来说明。它是普通巡航飞行飞机的一个典型实例。 假定飞机沿y 方向飞行,z 代表垂直方向,高度(固定)z = h 。于是有 v =1v v h y x z y x 111R -+= 式中,1x ,1y ,1z 为单位矢量。因而 h y x vy R v r 222++==?R v 式中,v r 是相对速度。等相对速度曲线也就是等多普勒频移曲线。该曲线的方程为 0222222=+--h v v v y x r r 这是双曲线方程。零相对速度的极限曲线是一条垂直于速度矢量的直线。图12.7示出这样一组等多普勒频移曲线。 只要把雷达式(12.1)略加整理就可用来计算衰落回波的频谱。这样,如果W r (f d )是频率f d 和f d +d f d 之间接收到的功率,则雷达方程变为 ? π=积分区R A A G P f f W r t t d d r 402d )4(1d )(σ ????? ??-π=d r t t d f A R A G P f d d )4(d 402σ (12.12) 图12.7 在地球平面做水平运动时的多普勒频移等值线 图12.8 计算复数衰落的几何关系图 (引自Ulaby,Moore 和Fung [21]) 上式的积分区是频率f d 和f d +d f d 间被雷达照射到的区域。在此积分式中,f d 和f d +d f d 之间的面

天气雷达回波模拟系统的设计与实现

天气雷达回波模拟系统的设计与实现 摘要:天气雷达回波模拟系统能够成功模拟出具有真实天气目标特征的回波信号,利用这种回波信号可以实现在实验室环境中完成本需在外场试验条件下才可以进行的雷达性能测试。首先介绍了天气雷达回波模拟的原理,设计出回波模拟流程图,其次给出了回波模拟硬件平台的设计及模拟软件实现的思路,最后根据真实天气回波的特征等信息生成模拟回波图,并对模拟前后的回波图进行对比分析。 关键词:天气雷达;回波;信号模拟 0 引言 在现代地基主动气象遥感领域,多普勒天气雷达占据着重要的地位,特别是在对一些突发性、灾害性等中小尺度天气过程的捕获与跟踪时,其较高的时间与空间分辨能力就显得越来越重要[1]。随着多普勒天气雷达在气象探测业务运行中的广泛使用,在雷达的研发与维护过程中,对雷达的性能进行完整测试就显得非常重要[2]。由于实验条件及天气状况等因素的影响,要在完全真实的天气过程的环境中对雷达各个模块及系统进行测试将非常困难。国内现阶段对雷达接收机性能测试所采用的方法一般是给其提供一个不具有天气目标回波特征的单一频率的信号,这些信号能够通过测量系统通道的技术参数来验证系统硬件的性能。但由于这些测试信号不具有天气信号的时频特征,故测试结果仍与处理真实天气回波时的状态存在差异。而将实时天气目标回波作为接收机的测试信号的方法却有成本过高、测试过程复杂、所需时间长等缺点。除此之外,由于实时气象目标的参数是不可控的,所以这种方法不能实现对接收机性能参数的定量测试。如果能够模拟产生具有真实天气目标特征的雷达回波信号,就可以在实验室环境中模拟完成外场试验所需的测试,同时也可以降低测试成本,缩短研发周期,提高工作效率[3]。除此之外,对模拟回波的参数进行控制,可以实现定量测试,进而可对接收机及后端的信号处理算法进行验证。 1 天气回波信号模拟的原理 由于天气目标的径向移动会造成接收信号的频率相对于发射信号的频率存在一定的频移(多普勒频移),即天气雷达回波信号可以看成原始发射信号在时间上的延迟并且频谱进行搬移后的一个时间序列,这就是回波信号模拟的基本原理[4]。 ZRNIC D S[5]在总结了滤波器法与快速卷积法等模拟算法后,从天气雷达回波信号的功率谱的角度,提出了简单实用的基于谱模型的直接拟合法。气象回波的功率谱密度函数为Pn(f): 其中,pr为回波的功率,fd为多普勒频率,f为频率标准差,PRF为脉冲重复频率,N 为样本个数。 由气象雷达方程及相关理论可知:pr=CZ/r2,fd=2vr。其中,C为雷达常数,只与雷达系统的参数有关;Z为反射率因子;r为气象目标与雷达站的径向距离;vr、v分别为径向速度和速度谱宽;为雷达发射电磁波波长。 为了模拟出具有真实回波信号的频谱特性,需要在式(1)中加入噪声,然后进行随机化可得式(4): 式中,随机变量rnd在区间[0,1]上具有均匀分布,PN(f)为每秒钟噪声总功率,则PN(f)/PRF为噪声功率谱密度。 为了获取回波信号的复频谱特征,需要在Pn(f)中引入0~2π变化的随机相位谱?渍n(f)=rnd·2π/rndmax,即可以构成回波信号的复频谱,然后将其进行离散傅里叶逆变换(IDFT)得到对应的时间序列sn:

相关主题
文本预览
相关文档 最新文档