当前位置:文档之家› 三角函数习题及答案

三角函数习题及答案

三角函数习题及答案
三角函数习题及答案

三角函数经典例题

经典例题透析 类型一:锐角三角函数 本专题主要包括锐角三角函数的意义、锐角三角函数关系及锐角三角函数的增减性和特殊角三角函数值,都是中考中的热点.明确直角三角形中正弦、余弦、正切的意义,熟记30°、45°、60°角的三角函数值是基础,通过计算器计算知道正弦、正切随角度增大而增大,余弦随角度增大而减小. 1.在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,已知,BC=2,那 么( ) A.B.C.D. 思路点拨:由于∠ABC在Rt△ABC和Rt△BCD中,又已知AC和BC,故只要求出AB或CD即可. 解析: 解法1:利用三角形面积公式,先用勾股定理求出 ,∴. ∴. 解法2:直接利用勾股定理求出, 在Rt△ABC中,.答案:A 总结升华:求直角三角形中某一锐角三角函数值,利用定义,求出对应两边的比即可. 2.计算:(1)________; (2)锐角A满足,则∠A=________. 答案:(1);(2)75°. 解析:(1)把角转化为值.(2)把值转化为角即可. (1).

(2)由,得, ∴.∴A=75°. 总结升华: 已知角的三角函数,应先求出其值,把角的关系转化为数的关系,再按要求进行运算.已知一个三角函数值求角,先看看哪一个角的三角函数值为此值,在锐角范围内一个角只对应着一个函数值,从而求出此角. 3.已知为锐角,,求. 思路点拨:作一直角三角形,使为其一锐角,把角的关系转化为边的关系,借助勾 股定理,表示出第三边,再利用三角函数定义便可求出,或利用求出 ,再利用,使可求出. 解析: 解法1:如图所示,Rt△ABC中,∠C=90°,∠B=,由,可设,. 则, ∴. 解法2:由,得 , ∴. 总结升华:知道一锐角三角函数值,构造满足条件的直角三角形,根据比的性质用一不为0的数表示其两边,再根据勾股定理求出第三边,然后用定义求出要求的三角函数值.或 利用,来求.

三角函数典型例题

第9课时 三角函数的最值 典型例题 例1. 求下列函数的最值. ⑴ y = x x x cos 1sin 2sin -?;⑵ y =2 cos( 3 π +x)+2cosx ;⑶ x x y cos 3sin 1++= . 解:(1) y =x x x x x x cos 2cos 2cos 1sin cos sin 22 +=-??=2 1)21(cos 22-+ x ∴ 当cosx =2 1-时,y min =2 1-∵ cosx ≠1∴ 函数y 没有最大值。 (2) y =2cos(x +3 π )+2cosx=2cos x x x cos 2sin 3 sin 2cos 3 +-π π =3cosx - 3 sinx=2 3 cos(6 π + x ) ∴当cos(6 π +x )=-1时,y min =-3 2 当cos(6 π + x )=1时,y max =3 2 (3) 由x x y cos 3sin 1++= 得sinx -ycosx =3y -1∴ ) sin(12 ?++x y =3y -1 (tan ?=-y) ∵|sin(x +?)|≤1 ∴|3y -1|≤ 1 2 +y 解得0≤y≤4 3 故x x y cos 3sin 1++= 的值域为[0,43 ] 注:此题也可用其几何意义在求值域. 变式训练1:求下列函数的值域: (1)y= x x x cos 1sin 2sin -;(2)y=sinx+cosx+sinxcosx;(3)y=2cos ) 3 ( x +π +2cosx. 解 (1)y= x x x x cos 1sin cos sin 2-= x x x cos 1) cos 1(cos 22 --=2cos 2x+2cosx=22 ) 21(cos + x -2 1 . 于是当且仅当cosx=1时取得y max =4,但cosx≠1,∴y <4,且y min =-2 1,当且仅当cosx=-2 1 时取得. 故函数值域为? ? ? ???-4,21.(2)令t=sinx+cosx,则有t 2 =1+2sinxcosx,即sinxcosx= 2 12 -t . 有y=f(t)=t+2 12 -t = 1 )1(2 12 -+t .又t=sinx+cosx= 2 sin ) 4 (π + x ,∴- 2 ≤t≤ 2 . 故y=f(t)= 1 )1(2 12 -+t (- 2 ≤t≤2 ),从而知:f(-1)≤y≤f( 2 ),即-1≤y≤ 2 +2 1 .即函数的值域为?? ??? ?+ -212, 1. (3)y=2cos ) 3 ( x +π +2cosx=2cos 3 π cosx-2sin 3 π sinx+2cosx=3cosx- 3 sinx=23??? ? ??-x x sin 21cos 23=2 3 cos ) 6 (π + x . ∵ ) 6 cos(π +x ≤1∴该函数值域为[-2 3 ,2 3 ]. 例2. 试求函数y =sinx +cosx +2sinxcosx +2的最大值与最小值,又若] 2,0[π ∈x 呢? 解: 令t =sinx +cosx 则t ∈[- 2 , 2 ]又2sinx +cosx =(sinx +cosx)2-1=t 2-1 ∴y =t 2+t +1=(t +2 1 )2+4 3,显然y max =3+2 若x ∈[0, 2 π ] 则t ∈[1, 2 ] y =(t +2 1 )+4 3 在[1, 2 ]单调递增.当t =1即x =0或x = 2 π 时,y 取最小值3.当t =2 即x = 4 π 时,y 取 最大值3+ 2 . 变式训练2:求函数3()co s (sin co s ) , 44f x x x x x x ππ?? =-+∈-???? 的最大值和最小值.

三角函数经典题目(带答案)

三角函数经典题目练习 1.已知α123 1、已知角 2、P (x ,5则sin 1、已知2、函数(f 3、已知 象限1. 已知π2 2.设0≤α是 . sin αtan x 若<0___. 5 3 sin +-= m m θ,524cos +-=m m θ(πθπ<<2),则 =θ________. 1tan tan αα,是关于x 的方程2230x kx k -+-=的 个实根,且παπ2 7 3<<,则ααsin cos +的值 . 0)13(22=++-m x x 的两根为 ()πθθθ2,0,cos ,sin ∈,求(1)m =_______ (2)θθθθtan 1cos cot 1sin -+-=________. α )4 15 tan(325cos ππ-+= . θθθθcos sin cos sin -+=2,则sin(θ-5π)·sin ?? ? ??-θπ23= α终边上P (-4,3), ) 2 9sin()211cos() sin()2 cos(απαπαπαπ +---+= . 已知锐角α终边上一点P 的坐标是(2sin2,-2cos2),α= . sin163°·sin223°+sin253°·sin313°= . =-+θ θtan 1tan 1_________ tan 20tan 4020tan 40?+????= α∈(0, 2π),若sin α=5 3 ,则2cos(α+4π)= . 3 36 cos = ?? ? ??-απ,则?? ? ??+απ6 5cos =______,)6 5απ -- =_____..

【知二求多】 1、已知cos ??? ??-2βα= -54,sin ??? ? ? -2αβ=135,且 0<β<2π<α<π,则cos 2 βα+=____. 2已知tan α=43,cos(α+β)=-14 11 , α、β为锐角, 则cos β=______. 【方法套路】 1、设2 1sin sin =+βα,31 cos cos =+βα,则 )cos(βα-=___ . 2.已知ββαcos 5)2cos(8++=0,则 αβαtan )tan(+= . 3,41)sin(,31)sin(=-=+βαβα则___tan tan =βα 【给值求角】 1tan α=7 1 ,tan β=3 1,α,β均为锐角,则 α+2β= . 2、若sinA= 55,sinB=10 10,且A,B 均为钝角, 则A+B= . 【半角公式】 1α是第三象限,2524 sin - =α,则tan 2 α= . 2、已知01342 =+++a ax x (a >1)的两根为αtan , βtan ,且α,∈β ??-2 π,?? ? 2π, 则2 tan βα+=______ 3若 cos 22π2sin 4αα=- ? ?- ? ? ?,则cos sin αα+= . 4、若??????∈27,25ππα,则 ααsin 1sin 1-++= 5x 是第三象限角 x x x x x x x x cos sin 1cos sin 1cos sin 1cos sin 1-++++ ++-+=______ 【公式链】 1=+++οοοοΛ89sin 3sin 2sin 1sin 2222_______ 2sin10o sin30o sin50o sin70o=_______ 3(1+tan1o )(1+tan2o )…(1+tan45o )=_______ 六、给值求角 已知3 1 sin - =x ,写出满足下列关系x 取值集合 ] 3,5[)3()2(]2,0[)1(πππ--∈∈∈x R x x 七、函数性质 【定义域问题】 1. x x y sin 162+-=定义域为_________ 2、1)3 2tan(-- =π x y 定义域为_________ 【值域】 1、函数y =2sin ???? πx 6-π3(0≤x ≤9)的最大值与最小值之和为__________ 2、若函数g (x )=2a sin x +b 的最大值和最小值分别为6和2,则|a |+b 的值为________ 3、函数x x y sin 2sin 1+-= 的值域 4、函数x x y cos 1sin 21+-=的值域 5、函数x x y sin 2cos -=的值域 【解析式】 1、已知函数f (x )=3sin 2ωx -cos 2ωx 的图象关于直 线x =π 3 对称,其中ω∈????-12,52.函数f (x )的解析式为________. 2、已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π 2 ) 的图象在y 轴上的截距为1,在相邻两最值点(x 0, 2),??? ?x 0+32,-2(x 0>0)上f (x )分别取得最大值和最小值.则所得图像的函数解析式是________ 3.将函数sin y x =的图像上所有的点右移 10 π 个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是___________ 4、()()sin f x A x h ω?=++(0,0,)2A π ω?>>< 的图象 如图所示,求函数)(x f 的解析式;

三角函数经典解题方法与考点题型

三角函数经典解题方法与考点题型(教师) 1.最小正周期的确定。 例1 求函数y =s in (2co s|x |)的最小正周期。 【解】 首先,T =2π是函数的周期(事实上,因为co s(-x )=co s x ,所以cos |x |=co s x );其次,当且仅当x =k π+ 2 π 时,y =0(因为|2co s x |≤2<π), 所以若最小正周期为T 0,则T 0=mπ, m∈N +,又s in (2co s0)=s in 2≠s in (2co sπ),所以T 0=2π。 过手练习 1.下列函数中,周期为 2π 的是 ( ) A .sin 2x y = B .sin 2y x = C .cos 4 x y = D .cos 4y x = 2.()cos 6f x x πω?? =- ?? ? 的最小正周期为 5 π ,其中0ω>,则ω= 3.(04全国)函数|2 sin |x y =的最小正周期是( ). 4.(1)(04北京)函数x x x f cos sin )(=的最小正周期是 . (2)(04江苏)函数)(1cos 22R x x y ∈+=的最小正周期为( ). 5.(09年广东文)函数1)4 (cos 22 -- =π x y 是 ( ) A .最小正周期为π的奇函数 B. 最小正周期为π的偶函数 C. 最小正周期为 2 π的奇函数 D. 最小正周期为2π 的偶函数 6.(浙江卷2)函数的最小正周期是 . 2.三角最值问题。 例2 已知函数y =s inx +x 2cos 1+,求函数的最大值与最小值。 【解法一】 令s inx =??? ??≤≤=+ππ θθ4304 sin 2cos 1,cos 22 x , 则有y =).4 sin(2sin 2cos 2π θθθ+ =+ 因为 ππ 4304≤≤,所以ππ θπ≤+≤4 2, 所以)4 sin(0π θ+≤≤1, 所以当πθ43=,即x =2k π-2 π (k ∈Z )时,y m in =0, 当4 π θ= ,即x =2k π+ 2 π (k ∈Z )时,y m ax =2. 2 (sin cos )1y x x =++

三角函数与三角恒等变换-经典测试题-附答案

三角函数与三角恒等变换(A) 一、填空题(本大题共14小题,每题5分,共70分.不需写出解答过程,请把答案写在指定位置上) 1. 半径是r,圆心角是α(弧度)的扇形的面积为________. 2. 若 ,则tan(π+α)=________. 3. 若α是第四象限的角,则π-α是第________象限的角. 4. 适合 的实数m的取值范围是_________. 5. 若tanα=3,则cos2α+3sin2α=__________. 6. 函数 的图象的一个对称轴方程是___________.(答案不唯一) 7. 把函数 的图象向左平移 个单位,所得的图象对应的函数为偶函数,则 的最小正值为___________. 8. 若方程sin2x+cosx+k=0有解,则常数k的取值范围是__________.

9. 1-sin10°·sin 30°·sin 50°·sin 70°=__________. 10. 角α的终边过点(4,3),角β的终边过点(-7,1),则sin(α+β)=__________. 11. 函数 的递减区间是___________. 12. 已知函数f(x)是以4为周期的奇函数,且f(-1)=1,那么 __________. 13. 若函数y=sin(x+ )+cos(x+ )是偶函数,则满足条件的 为_______. 14. tan3、tan4、tan5的大小顺序是________. 二、解答题(本大题共6小题,共90分.解答后写出文字说明、证明过程或演算步骤) 15. (本小题满分14分)已知 ,求

的值. 16. (本小题满分14分)已知函数f(x)=2sinx(sinx+cosx). (1) 求函数f(x)的最小正周期和最大值; (2) 在给出的直角坐标系中,画出函数y=f(x)在区间 上的图象. 17. (本小题满分14分)求函数y=4sin2x+6cosx-6( )的值域. 18. (本小题满分16分)已知函数 的图象如图所示. (1) 求该函数的解析式; (2) 求该函数的单调递增区间. 19. (本小题满分16分)设函数

人教版初中数学锐角三角函数的经典测试题附答案

人教版初中数学锐角三角函数的经典测试题附答案 一、选择题 1.如图,在矩形ABCD 中,4,AB DE AC =⊥,垂足为E ,设ADE α∠=,且 3 cos 5 α= ,则AC 的长为( ) A .3 B . 163 C . 203 D . 165 【答案】C 【解析】 【分析】 根据同角的余角相等求出∠ADE=∠ACD ,再根据两直线平行,内错角相等可得∠BAC=∠ACD ,然后求出AC . 【详解】 解:∵DE ⊥AC , ∴∠ADE+∠CAD=90°, ∵∠ACD+∠CAD=90°, ∴∠ACD=∠ADE=α, ∵矩形ABCD 的对边AB ∥CD , ∴∠BAC=∠ACD , ∵cos α=3 5,35 AB AC ∴ =, ∴AC= 520433?=. 故选:C . 【点睛】 本题考查了矩形的性质,勾股定理,锐角三角函数的定义,同角的余角相等的性质,熟记各性质并求出BC 是解题的关键. 2.如图,4个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点,己知菱形的一个内角为60°,A 、B 、C 都是格点,则tan ABC ∠=( )

A . 39 B . 36 C . 33 D . 32 【答案】A 【解析】 【分析】 直接利用菱形的对角线平分每组对角,结合锐角三角函数关系得出EF,的长,进而利用 EC tan ABC BE ∠= 得出答案. 【详解】 解:连接DC ,交AB 于点E . 由题意可得:∠AFC=30°, DC ⊥AF, 设EC=x,则EF= x =3x tan 30? , ∴BF AF 2EF 23x === EC 3 tan ABC BE 23x 3x 33= === +∠, 故选:A 【点睛】 此题主要考查了菱形的性质以及解直角三角形,正确得出EF 的长是解题关键. 3.如图,为了加快开凿隧道的施工进度,要在小山的两端同时施工.在AC 上找一点 B ,取145ABD ∠=o ,500BD m =,55D ∠=o ,要使A , C ,E 成一直线,那么开挖 点E 离点D 的距离是( )

反三角函数典型例题

反三角函数典型例题 例1:在下列四个式子中,有意义的为__________: 解:(4)有意义。 (1)(2)arcsin 4 π ;(3)sin(arcsin 2);(4)arcsin(sin 2)。 点评:arcsin x ——x [1,1]∈-。 例2:求下列反正弦函数值 (1)= 解:3 π (2)arcsin0= 解:0 (3)1arcsin()2-= 解:6π- (4)arcsin1= 解:2 π 点评:熟练记忆:0,1 2 ±、,,1±的反正弦值。 思考:1sin(arcsin )24 π +该如何求? 例3:用反正弦函数值的形式表示下列各式中的x (1)sin x 5= ,x [,]22ππ ∈- 解:x =arcsin 5 变式:x [,]2 π ∈π? 解:x [,]2π ∈π时,π-x [0,]2 π∈,sin(π-x)=sinx =5 ∴π-x =,则x =π- 变式:x [0,]∈π? 解:x =或x =π- (2)1 sin x 4 =-,x [,]22ππ∈- 解:1x arcsin 4=- 变式:1 sin x 4=-,3x [,2]2π∈π 解:3x [,2]2π∈π时,2π-x [0,]2π∈,sin(2π-x)=-sinx =1 4 ∴2π-x =arcsin 14,则x =2π-arcsin 1 4 点评:当x [,]22ππ ∈-时,x arcsina =;而当x [,]22ππ?-,可以将角转化到区间[,]22 ππ-上,再用诱导公式 处理对应角之三角比值即可。 练习: (1)sin x = ,x [,]22ππ ∈- 解:x 3π= (2)sin x =,x [0,]∈π 解:x =x =π- (3)3sin x 5=-,3x [,]22ππ∈ 解:3 x arcsin 5 =π+

高三数学三角函数经典练习题及答案精析

1.将函数()2sin 2x f x =的图象向右移动象如右图所示,则?的值为( ) A 2.为了得到()sin 2g x x =的图象,则只需将()f x 的图象( ) A C 3 ,则sin cos αα=( ) A 1 D -1 4 ) A 5.记cos(80),tan 80k -?=?那么= ( ). A . C .21k k -- 6 .若sin a = -a ( ) (A )(B (C (D 7,则α2tan 的值为( )

A 8.已知函数)sin(cos )cos(sin )(x x x f +=,则下列结论正确的是( ) A .)(x f 的周期为π B .)(x f 在 C .)(x f 的最大值为.)(x f 的图象关于直线π=x 对称 9.如图是函数y=2sin (ωx+φ),φ A.ωφ B.ωφ C.ω =2,φ D.ω=2,10的图象,只需要将函数sin 4y x =的图象( ) A B C D 11.要得到12cos -=x y 的图象,只需将函数x y 2sin =的图象( ) A 个单位,再向上平移1个单位 B 个单位,再向下平移1个单位 C 个单位,再向上平移1个单位 D 个单位,再向下平移1个单位 12.将函数()cos f x x =向右平移个单位,得到函数()y g x =

于() A 13.同时具有性质①最小正周期是π; 增函数的一个函数为() A C 14则tanθ=() A.-2 D.2 15) A 16.已知tan(α﹣)=,则的值为() A. B.2 C.2 D.﹣2 17) A.1 D.2 18.已知角α的终边上一点的坐标为(,则角α值为 19) A 20) A..

高中三角函数公式大全及经典习题测验解答

用心辅导中心 高二数学 三角函数 知识点梳理: ⒈L 弧长=αR=nπR 180 S 扇=21L R=2 1R 2 α=3602R n ?π ⒉正弦定理: A a sin =B b sin =C c sin = 2R (R 为三角形外接圆半径) ⒊余弦定理:a 2=b 2+c 2-2bc A cos b 2=a 2+c 2-2ac B cos c 2 =a 2 +b 2 -2ab C cos bc a c b A 2cos 2 22-+= ⒋S ⊿=2 1a a h ?=2 1ab C sin =2 1bc A sin =2 1ac B sin =R abc 4=2R 2A sin B sin C sin =A C B a sin 2sin sin 2=B C A b sin 2sin sin 2=C B A c sin 2sin sin 2=pr =))()((c p b p a p p --- (其中)(2 1c b a p ++=, r 为三角形内切圆半径) ⒌同角关系: ⑴商的关系:①θtg =x y =θ θ cos sin =θθsec sin ? ②θθθ θ θcsc cos sin cos ?=== y x ctg ③θθθtg r y ?== cos sin ④θθθθcsc cos 1sec ?== =tg x r ⑤θθθctg r x ?== sin cos ⑥θθθθsec sin 1csc ?== =ctg y r ⑵倒数关系:1sec cos csc sin =?=?=?θθθθθθctg tg ⑶平方关系:1csc sec cos sin 222222=-=-=+θθθθθθctg tg ⑷)sin(cos sin 22?θθθ++= +b a b a (其中辅助角?与点(a,b ) 在同一象限,且a b tg =?) ⒍函数y=++?)sin(?ωx A k 的图象及性质:(0,0>>A ω) 振幅A ,周期T =ω π2, 频率f =T 1, 相位?ω+?x ,初相?

三角函数典型例题剖析与规律总结

三角函数典型例题剖析与规律总结 一:函数的定义域问题 1. 求函数1sin 2+=x y 的定义域。 分析:要求1sin 2+= y 的定义域,只需求满足01sin 2≥+x 的x 集合,即只需求出满足 2 1 sin -≥x 的x 值集合,由于正弦函数具有周期性,只需先根据问题要求,求出在一个周 期上的适合条件的区间,然后两边加上πk 2()Z k ∈即可。 解:由题意知需01sin 2≥+x ,也即需21sin - ≥x ①在一周期?? ????-23,2ππ上符合①的角为??????-67,6ππ,由此可得到函数的定义域为????? ? +-672,62ππππk k ()Z k ∈ 小结:确定三角函数的定义域的依据:(1)正、余弦函数、正切函数的定义域。(2)若函数 是分式函数,则分母不能为零。(3)若函数是偶函数,则被开方式不能为负。(4)若函数是形如()()1,0log ≠>= a a x f y a 的函数,则其定义域由()x f 确定。 (5)当函数是有实际问题确定时,其定义域不仅要使解析式有意义同时还要使实际问题有意义。 二.函数值域及最大值,最小值 (1)求函数的值域 例。求下列函数的值域 (1)x y 2sin 23-= (2)2sin 2cos 2 -+= x y x 分析:利用1cos ≤x 与1sin ≤x 进行求解。 解:(1) 12sin 1≤≤-x ∴[]5,151∈∴≤≤y y (2) ()[]. 0,4,1sin 11sin 1sin 2sin 2sin 22 22 cos -∈∴≤≤---=-+-=-+=y x x x x x x y 评注:一般函数的值域求法有:观察法,配方法判别式法,反比例函数法等,而三角函数是函数的特殊形式,其一般方法也适用,只不过要结合三角函数本身的性质罢了。 (2)函数的最大值与最小值。 例。求下列函数的最大值与最小值 (1)x y sin 211- = (2)??? ??≤≤-??? ? ? +=6662sin 2πππx x y (3)4sin 5cos 22 -+=x x y (4)?? ?? ??∈+-=32,31cos 4cos 32 ππx x x y

三角函数总结经典例题

第三章 三角函数 3.1任意角三角函数 一、知识导学 1.角:角可以看成由一条射线绕着端点从一个位置旋转到另一个位置所形成的几何图形.角的三要素是:顶点、始边、终边.角可以任意大小,按旋转的方向分类有正角、负角、零角. 2.弧度制:任一已知角α的弧度数的绝对值r l = α,其中l 是以α作为圆心角时所对圆弧的长,r 为圆的半径.规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.用“弧度”做单位来度量角的制度叫做弧度制. 3.弧度与角度的换算:rad π2360=ο ;rad 1745.01801≈=π ο ;1ο ο 30.57180≈?? ? ??=πrad .用弧度为单位表示角的 大小时,弧度(rad )可以省略不写.度()ο 不可省略. 4.弧长公式、扇形面积公式:,r l α= 2||2 1 21r lr S α= =扇形,其中l 为弧长,r 为圆的半径.圆的周长、面积公式是弧长公式和扇形面积公式中当πα2=时的情形. 5.任意角的三角函数定义:设α是一个任意大小的角,角α终边上任意一点P 的坐标是()y x ,,它与原点的距离是 )0(>r r ,那么角α的正弦、余弦、正切、余切、正割、余割分别是 y r x r y x x y r x r y ====== ααααααcsc ,sec ,cot ,tan ,cos ,sin .这六个函数统称为三角函数. 三角函数 定义域 x y sin = R x y cos = R x y tan = ? ?????∈+≠Z k k x x ,2π π x y cot = {}Z k k x x ∈≠,π x y sec = ? ?????∈+≠Z k k x x ,2π π x y csc = {}Z k k x x ∈≠,π 7.三角函数值的符号:各三角函数值在第个象限的符号如图所示(各象限注明的函数为正,其余为负值) 可以简记为“一全、二正、三切、四余”为正. 二、疑难知识导析

三角函数公式典型例题大全

高中三角函数公式大全以及典型例题 2009年07月12日 星期日 19:27 三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1 -cotAcotB + cot(A-B) =cotA cotB 1 cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3 π -a) 半角公式 sin( 2A )=2cos 1A - cos(2A )=2cos 1A + tan(2A )=A A cos 1cos 1+- cot(2A )=A A cos 1cos 1-+ tan( 2A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2b a - sina-sinb=2cos 2b a +sin 2b a - cosa+cosb = 2cos 2b a +cos 2b a - cosa-cosb = -2sin 2b a +sin 2 b a - tana+tanb=b a b a cos cos ) sin(+

高考数学三角函数典型例题

| 三角函数典型例题 1 .设锐角ABC ?的内角A B C ,,的对边分别为a b c ,,,2sin a b A =. (Ⅰ)求B 的大小; (Ⅱ)求cos sin A C +的取值范围. 【解析】:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1 sin 2 B = , 由ABC ?为锐角三角形得π6B = . (Ⅱ)cos sin cos sin A C A A π??+=+π- - ?6? ? cos sin 6A A π?? =++ ??? & 1cos cos 2A A A =++ 3A π? ?=+ ?? ?. 2 .在ABC ?中,角A . B .C 的对边分别为a 、b 、c,且满足(2a-c)cosB=bcos C . (Ⅰ)求角B 的大小; (Ⅱ)设()()()2411m sin A,cos A ,n k,k ,==>且m n ?的最大值是5,求k 的值. 【解析】:(I)∵(2a -c )cos B =b cos C , ∴(2sin A -sin C )cos B =sin B cos C . - 即2sin A cos B =sin B cos C +sin C cos B =sin(B +C ) ∵A +B +C =π,∴2sin A cos B =sinA . ∵0

九年级三角函数知识点、经典例题

九年级《三角函数》知识点、例题、中考真题 1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。 2 22c b a =+ 2、如下图,在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B): 3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。 4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值。 5、0°、30°、45°、60°、90°特殊角的三角函数值(重要) A 90B 90∠-?=∠? =∠+∠得由B A 对 边 邻边 A C A 90 B 90∠-?=∠? =∠+∠得由B A

6、正弦、余弦的增减性: 当0°≤α≤90°时,sinα随α的增大而增大,cosα随α的增大而减小。 7、正切、余切的增减性: 当0°<α<90°时,tanα随α的增大而增大,cotα随α的增大而减小。 8、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。 依据:①边的关系:2 2 2c b a= +;②角的关系:A+B=90°;③边角关系:三角函数的定义。(注意:尽量避免使用中间数据和除法) 9、应用举例: (1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。 仰角 铅垂线 水平线 视线 视线 俯角 (2)坡面的铅直高度h和水平宽度l的比叫做坡度(坡比)。用字母i表示,即 h i l =。坡度一般写成1:m的形式,如1:5 i= 等。 把坡面与水平面的夹角记作α(叫做坡角),那么tan h i l α ==。 10、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。如图3,OA、OB、OC、OD的方向角分别是:45°、135°、225°。 11、指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角。如图4,OA、OB、OC、OD的方向角分别是:北偏东30°(东北方向),南偏东45°(东南方向), 南偏西60°(西南方向),北偏西60°(西北方向)。 12、解斜三角形所根据的定理(在△ABC中) ①正弦定理: SinC c SinB b SinA a = ==2R. (R是△ABC外接圆半径). ②余弦定理:c2=a2+b2-2abCosC;b2=c2+a2-2ca CosB;a2=c2+b2-2cbCosA. ③互补的两个角的三角函数的关系: Sin(180 -A)= sinA,Cos(180 -A)= -cosA , tan(180 -A)=-cotA,cotA(180 -A)=-tanA. ④S△ABC= 2 1 absinC= 2 1 bcsinA= 2 1 casinB. : i h l = h l α

2018年高三一轮复习典型例题剖析:三角函数的恒等变换

三角函数的恒等变换 一、知识导学 1.两角和、差、倍、半公式 (1) 两角和与差的三角函数公式 βαβαβαc o s c o s s i n s i n )s i n (±=± βαβαβαs i n s i n c o s c o s )c o s ( =± β αβαβαt a n t a n 1t a n t a n )t a n ( ±=± (2) 二倍角公式 αααc o s s i n 22s i n = ααααα2222s i n 211c o s 2s i n c o s 2 c o s -=-=-= α αα2tan 1tan 22tan -= (3) 半角公式 2c o s 12s i n 2αα-= , 2c o s 12c o s 2αα+= , α ααc o s 1c o s 12t a n 2+-= αααααs i n c o s 1c o s 1s i n 2t a n -=+= 2.恒等变形主要是运用三角公式对式子进行等价变形,常见于化简求值和恒等式证明.恒等式证明就是利用公式消除等式两边的差异,有目的地化繁为简,使左右相等,常用方法为:(1)从一边开始证得它等于另一边,一般由繁到简;(2)证明左右两边都等于同一个式子(或数值). 二、疑难知识导析 1.两角和与差的三角函数公式的内涵是揭示同名不同角的三角函数的运算规律,常用于解决求值、化简和证明题. 2.倍角公式的内涵是揭示具有倍数关系的两个角的三角函数的运算规律.如 αααcos sin 22sin =成立的条件是“α是任意角,αα是2的2倍角”,精髓体现在角的“倍数”关系上. 3.公式使用过程中(1)要注意观察差异,寻找联系,实现转化,要熟悉公式的正用逆用和变形使用,也要注意公式成立的条件.例

高中三角函数典型例题(教用)

【典型例题】: 1、已知2tan =x ,求x x cos ,sin 的值. 解:因为2cos sin tan == x x x ,又1cos sin 22=+a a , 联立得? ??=+=,1cos sin cos 2sin 2 2x x x x 解这个方程组得. 55cos 55 2sin ,55cos 552sin ??? ????-=-=???????==x x x x 2、求) 330cos()150sin()690tan() 480sin()210cos()120tan( ----的值。 解:原式) 30360cos()150sin()30720tan() 120360sin()30180cos()180120tan(o --+---++-= .3330cos )150sin (30tan )120sin )(30cos (60tan -=---= 3、若 ,2cos sin cos sin =+-x x x x ,求x x cos sin 的值. 解:法一:因为 ,2cos sin cos sin =+-x x x x 所以)cos (sin 2cos sin x x x x +=- 得到x x cos 3sin -=,又1cos sin 22=+a a ,联立方程组,解得 ,,??? ??? ?=-=???????-==1010cos 10 103sin 1010cos 10103sin x x x x 所以?- =10 3 cos sin x x 法二:因为 ,2cos sin cos sin =+-x x x x 所以)cos (sin 2cos sin x x x x +=-, 所以22)cos (sin 4)cos (sin x x x x +=-,所以x x x x cos sin 84cos sin 21+=-,

三角函数公式典型例题大全

高中三角函数公式大全以及典型例题 20XX 年07月12日 星期日 19:27 三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3 π-a) 半角公式 sin(2A )=2cos 1A - cos(2A )=2 cos 1A + tan( 2A )=A A cos 1cos 1+- cot(2A )=A A cos 1cos 1-+ tan(2 A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2b a - sina-sinb=2cos 2b a +sin 2 b a - cosa+cosb = 2cos 2b a +cos 2b a - cosa-cosb = -2sin 2b a +sin 2 b a - tana+tanb=b a b a cos cos )sin(+

三角函数题型及解法

高中数学常见三角函数题型及解法 近几年高考已逐步抛弃了对复杂三角变换和特殊技巧的考查,而重点转移对三角函数的图象与性质的考查,对基础知识和基本技能的考查上来.在考查三角公式进行恒等变形的同时,也直接考查了三角函数的性质及图象的变换,降低了对三角函数恒等变形的要求,加强了对三角函数性质和图象的考查力度.三角函数的命题趋于稳定,会保持原有的考试风格,尽管命题的背景上有所变化,但仍属基础题、中档题、常规题.实施新课标后,新一轮基础教育的改革增添了与现代生活和科学技术发展相适应的许多全新的内容,它们会吸引命题者关注的目光. 三角函数试题可以归纳为以下几种典型题型。 1、三角函数的概念及同角关系式 此类题主要考查三角函数诱导公式及三角函数的符号规律.解此类题注意必要的分类讨论以及三角函数值符号的正确选取. 例1(10全I 卷理2)记cos(80)k -?=,那么tan100?= A.21k k - B.-21k k - C.21k - D.-21k - 解:Θ222sin801cos 801cos (80)1k =-=--=-o o o , ∴tan100tan80?=-o 2sin 801.cos80k k -=-=-o o 。故选B 评注:本小题主要考查诱导公式、同角三角函数关系式,并突出了弦切互化这一转化思想的应用.同时熟练掌握三角函数在各象限的符号. 例2(10全1卷文1)cos300?=(A)32-(B)-12(C)12 (D)32 解:()1cos300cos 36060cos602 ?=?-?=?= 评注:本小题主要考查诱导公式、特殊三角函数值等三角函数知识 2、三角函数的化简求值 这类题主要考查三角函数的变换.解此类题应根据考题的特点灵活地正用、逆用,变形运用和、差、倍角公式和诱导公式,进行化简、求值. 例3(10重文数15)如题(15)图,图中的实线是由三段圆弧连接而成的一条封闭曲线C ,各段弧所在的圆经过同一点P (点P 不在C 上)且半径相等.设第i 段弧所对的圆心角为(1,2,3)i i α=,则 23 23 1 1 cos cos sin sin 3333αααααα++-=____________ 解: 又Θ1232αααπ++=,∴123 1cos 32 ααα++=- 评注:本题以过同一点的三段圆弧为背景,考查了三角恒等变形中公式逆用的基本技 巧,将已知与求解合理转化,从而达到有效地求解目的. 例4(10全1理数14)已知α为第三象限的角,3cos 25α =-,则tan(2)4πα+=. 解:Θα为第三象限的角∴ππ+k 2<α<ππ2 32+k

高中数学三角函数经典例题及详解

高中数学三角函数专题复习 考试要求 三角函数是一类最典型的周期函数。本单元的学习,可以帮助学生在用锐角三角函数刻画直角三角形中边角关系的基础上,借助单位圆建立一般三角函数的概念,体会引入弧度制的必要性;用几何直观和代数运算的方法研究三角函数的周期性、奇偶性(对称性)、单调性和最大(小)值等性质;探索和研究三角函数之间的一些恒等关系;利用三角函数构建数学模型,解决实际问题。 内容包括:角与弧度、三角函数概念和性质、同角三角函数的基本关系式、三角恒等变换、三角函数应用。 (1)角与弧度 了解任意角的概念和弧度制,能进行弧度与角度的互化,体会引入弧度制的必要性。 (2)三角函数概念和性质 ①借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义,能画出这些三角函数的图象,了解三角函数的周期性、奇偶性、最大(小)值。借助单位圆的对称性,利用定义推导出诱导公式(α ±,α ±π的正弦、余弦、正切)。 ②借助图象理解正弦函数在、余弦函数上、正切函数在 上的性质。 ③结合具体实例,了解的实际意义;能借助图象理解参数ω,φ,A 的意义,了解参数的变化对函数图象的影响。 (3)同角三角函数的基本关系式 理解同角三角函数的基本关系式。 (4)三角恒等变换 ①经历推导两角差余弦公式的过程,知道两角差余弦公式的意义。 ②能从两角差的余弦公式推导出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式,了解它们的内在联系。 ③能运用上述公式进行简单的恒等变换(包括推导出积化和差、和差化积、半角公式,这三组公式不要求记忆)。 (5)三角函数应用 会用三角函数解决简单的实际问题,体会可以利用三角函数构建刻画事物周期变化的数学模 2 π[0,2]π(,)22ππ- sin()y A x ω?=+22sin sin cos 1, tan cos x x x x x +==

相关主题
文本预览
相关文档 最新文档