当前位置:文档之家› 2014全国大学生数学建模竞赛A题获奖论文

2014全国大学生数学建模竞赛A题获奖论文

2014全国大学生数学建模竞赛A题获奖论文
2014全国大学生数学建模竞赛A题获奖论文

承诺书

我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号是(从A/B/C/D中选择一项填写):

我们的报名参赛队号为(8位数字组成的编号):

所属学校(请填写完整的全名):

参赛队员(打印并签名) :1.

2.

3.

指导教师或指导教师组负责人(打印并签名):

(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。以上内容请仔细核对,提交后将不再允许做任何修改。如填写错误,论文可能被取消评奖资格。)

日期:年月日

赛区评阅编号(由赛区组委会评阅前进行编2014高教社杯全国大学生数学建模竞赛

编号专用页

赛区评阅编号(由赛区组委会评阅前进行编号):

全国统一编号(由赛区组委会送交全国前编号):

全国评阅编号(由全国组委会评阅前进行编号):

嫦娥三号软着陆轨道设计与控制策略

摘要

在进行载人登月或月面勘测时,需要使飞行器实现月面软着陆以保证人员或设备的安全,但关键问题是着陆轨道与控制策略的设计。本文通过物理中的力学知识以及协方差分析等方法,进行了合理的轨道设计及优化。

针对问题一,对嫦娥三号软着陆的轨道以及六个阶段进行分析,通过机械能守恒定律、开普勒三定律等力学知识,建立了动力学模型。因为嫦娥三号绕月球运行的轨道是偏心率很小的椭圆,所以可以近似看作圆周轨道运动,然后迅速减速进入椭圆轨道,由动能改变量等于重力势能改变量及开普勒第二定律,算出着陆器在近月点与远月点的速度大小分别是1.69km/s和1.633km/s,方向沿运行轨道切线方向。然后根据质点运动学知识求出近月点与着陆点水平距离,进而利用坐标正反算软件算出近月点的经纬度为18.63W,40.83N,进而由空间解析几何知识得出了远月点的坐标(1323.67,1216.08,627.037),并采用Matlab软件画出近月点和远月点在三维空间中的示意图。

针对问题二,嫦娥三号着陆轨道近月点和远月点的位置以及相应速度的大小与方向确定后,需要描述的是嫦娥三号软着陆过程中在不同阶段的运动状态,进而确定出嫦娥三号着陆轨道。由于轨道的设计要以燃料消耗最优为出发点,所以

可以在Matlab的平台上采用SFLA[]1优化方法,建立优化模型。将软着陆的动力

学方程做归一处理,经过将软着陆轨道离散化,从而将轨道优化问题转变为参数优化问题。通过仿真实验,作出嫦娥三号在软着陆过程中径向速度、推力控制角以及月心距的变化曲线,即设计出了最优软着陆轨道。

针对问题三,在一般的发射任务中,软着陆轨道修正都会选取将着陆器送到满足要求的目标轨道上(例如形成满足条件的环月轨道)的方式,而并非送到目标点上,这是因为后者需要选择合适的目标点使得轨道修正的能耗不会太大,且着陆器还需要在目标点进行变轨从而使得实际轨道与标称轨道重合。考虑到轨道参数的误差相对于轨道参数的标称值是小量,因此可以将轨道运动方程进行线性化,从而得到能够反映轨道参数偏差量的传播关系的误差方程。因此该问题采用协方差分析的方法,将着陆器发动机的一些技术指标的误差作为待考察的随机误差源,通过考虑嫦娥三号的运动轨迹进而评估位置误差和速度误差对飞行轨道的影响。最后,通过对变量F的敏感性分析,当F在1500N到6000N时,位移变化较小,运动轨迹影响较小,因此变量F对运动轨迹不敏感;当F在6000N到7500N时,位移变化较大,对运动轨迹影响较大,因此变量F对运动轨迹比较敏感。

通过仿真计算等验证,说明了建立的模型和计算结果都是可靠的。

关键词:动力学模型,轨道优化,混合蛙跳算法,协方差分析法

一、问题重述

嫦娥三号将在北京时间2013年12月14号在月球表面实施软着陆。嫦娥三号如何实现软着陆以及能否成功成为外界关注的焦点。目前,全球仅有美国、前苏联成功实施了13次无人月球表面软着陆。嫦娥三号的轨道和嫦娥二号一样,它从地球到月球的路程需要4~5天,到了月球以后,还不能直接登录月球,先得让月球“捕捉”嫦娥三号,使之成为月球的卫星,然后绕行。一开始沿着绕月球的大椭圆轨道运行,接着需要调整轨道,让它离月球越来越近,一直调整到降落轨道,再根据地面指令,在虹湾地区软着陆。

在月球上软着陆时不能用降落伞,因为月球是真空,降落伞毫无用处,探测器系统原来的初速度很大,加上月球的引力作用,下降的速度会越来越快,这时必须降低它的降落速度。在嫦娥三号的着陆器下方有一些发动机,可以产生向上的推力,减低它的下降速度。当它距月面100米高时,地球上的测控人员看不到现场的情况,因此要交给嫦娥三号自己去判断,从而选择相对平坦的地方降落。嫦娥三号从100米高的地方慢慢下降,落到距离月面4米高的地方关闭发动机,自由落体到月球表面,实现软着陆。其着陆轨道的基本要求是:着陆准备轨道为近月点15km,远月点100km的椭圆形轨道,着陆轨道为近月点至着陆点,其软着陆过程分为6个阶段(主减速段、快速调整段、粗避障段、精避障段、缓速下降段、自由落体段),尽量减少软着陆过程中的燃料消耗。本文尝试解决以下问题:

问题一:确定着陆轨道近月点和远月点的位置,以及嫦娥三号相应速度的大小与方向。

问题二:确定嫦娥三号着陆轨道和在6个阶段的最优控制策略。

问题三:对于设计的着陆轨道和控制策略做出相应的误差分析和敏感性分析。

二、问题分析

对嫦娥三号软着陆轨道的设计与控制为一个最优控制问题,要求保证准确地在月球预定区域内实现软着陆,根据软着陆过程中给定的6个阶段在关键点所处的状态设计嫦娥三号软着陆过程的运行轨道,并尽量减少燃料消耗。

(一) 问题一

要使嫦娥三号准确地在月球预定区域内实现软着陆,首先需要解决的是近月点位置的选择,根据附件2中嫦娥三号软着陆过程示意图及着陆过程中的主减速阶段和快速减速阶段计算出了着陆器着陆过程的水平位移,进而确定了近月点的位置,由空间解析几何知识得出远月点的位置,并采用Matlab软件画出示意图。考虑到嫦娥三号绕月球运行的轨道是偏心率很小的椭圆,所以可以近似看作圆周轨道运动,然后迅速减速进入椭圆轨道,又由机械能守恒定律及开普勒第二定律建立动力学模型算出在近月点与远月点的速度和方向。

(二) 问题二

嫦娥三号着陆轨道近月点和远月点的位置以及相应速度的大小与方向确定后,需要描述是嫦娥三号软着陆过程中在不同阶段的运动状态,进而确定出嫦娥三号着陆轨道。由于在整个着陆过程中力的方向和大小在不断的变化,如何确定

每个阶段的运行时间和位移以及相应阶段在关键点力的方向和大小,使每个阶段燃料消耗最少是这个问题的关键。我们将软着陆的动力学方程做归一处理,经过将软着陆轨道离散化,从而将轨道优化问题转变为参数优化问题,最后设计了蛙跳法作为优化方法。

(三) 问题三

本问题需要解决的是对于问题一、问题二轨道的设计进行误差分析和敏感性分析。由于前两个问题中的模型比较理想化,未考虑着陆器的质量随时间的变化,与实际情况中嫦娥三号的速度与位移存在较大的误差,为了减小误差,使它与实际轨道较为相符,采用协方差的方法,通过考虑嫦娥三号的运动轨迹继而评估位置误差和速度误差对飞行轨道的影响。推力为定值时,在不同数值的推力作用下,水平位移受其影响在不断变化,因此判断F对水平位移的敏感性。

三、模型假设

1.月球的偏心率为0;

2.由环月圆轨道进入椭圆轨道推力做的功较小,忽略不计;

3.忽略月球自转和倾斜角;

4.无穷远处万有引力势能为零;

5.月球半径取月球平均半径1737.013km;

6.地球对嫦娥三号的引力忽略不计;

7.月球表面无大气层;

四、符号说明

五、模型建立与求解

(一)问题一 1问题分析

嫦娥三号在进入椭圆轨道前在距月面100的环月轨道做匀速圆周运动,然后迅速减速进入近月点高度约15公里,远月点高度约为100公里的椭圆轨道,由于绕月球运行的轨道是偏心率很小的椭圆,可以近似看作圆周轨道运动,由能量守恒定律及开普勒第二定律,算出着陆器在近月点与远月点的速度,其方向沿运行轨道切线方向。对嫦娥三号软着陆过程进行分析,将嫦娥三号在软着陆过程中受到的推力分解为竖直方向与水平方向,大小视为恒定的平均值,通过质点运动学的公式算出主减速阶段的时间,代入到水平方向的运动方程中算出水平位移并利用坐标正反算软件算出近月点的经纬度,进而由空间解析几何知识得出了远月点的位置,并采用Matlab 软件画出近月点和远月点在三维空间中的示意图。 2动力学模型的建立与求解 模型一

在环圆轨道进入椭圆轨道时,运用能量守恒定律及开普勒第二定律可知:飞船在向心力的作用下沿轨道运行时,其掠面速度是恒定的,可列出两个方程:

R g m v m E v p ??-??=+??月近远2

22

1m 21 (1) 近远v r ?=?R v (2)

若取无穷远处为万有引力势能的零点,则嫦娥三号在椭圆轨道上运行的势能

为:

r

G M m

dr r GMm E P -==?∞r 2 (3) 又因

月月

g m R GM ?=2

m

(4) 故有r

R g E P 2

m 月

月??-= (5)

由此解得s km v /692.1=近,s km v /633.1=远,其方向分别与运行轨道相切。 在嫦娥三号卫星软着陆过程中,可以将主减速阶段看作类平抛运动,水平方向初速度为近月点速度,即s km v /692.1=近,竖直方向速度为=0竖v 0s m k ,完成主减速阶段后进入快速调整阶段,此时的速度57/m s 可近似看作为竖直方向的速度,故竖直方向的速度为s m v /571=竖,主减速阶段竖直方向距离变化量

m h 120001=?,对竖直方向进行分析,因为飞船的推力大小和方向随时间在不断变化,竖直方向的分力大小也在改变,为了方便计算,将嫦娥三号在软着陆过程

中受到的推力分解为竖直方向与水平方向,大小视为恒定的平均值,于是竖直方向的力大小恒定。由机械能守恒定律和牛顿第二定律,列出下式:

)(2

12

021111竖竖竖月v v m h F h mg -=??-? (6)

11-ma F mg =竖月 (7)

g h t 1

12?=

(8) 由式(6)、(7)、(8)得出s t s m a N F 421,/135.0,1.35951211===竖。

查阅相关资料知嫦娥三号着陆过程的快速调整阶段时间s t 202=。在水平阶段,推力的水平分力可以看作一平均值且大小恒定。在主减速阶段和快速调整阶段,水平方向可以近似看作匀减速直线运动,末速度s v /m 0=水。由运动学公式,得:

x a v v 22

22=-近水 (10)

求得km x s m a 8.372/84.322==,。

近月点投影在月球表面的点B 的经纬度即为近月点的经纬度。已知着陆点A 的经纬度,将其代入到坐标正反算和经纬度与XY 转化软件,结合余弦定理

2

2

222cos R

X R R ?-+=α (11) 得近月点B 点的经纬度为(18.63W,40.83N),故近月点的位置为距月球表面15公里处,经纬度为18.63W ,40.83N 。软件部分实现过程见如下图1、图2、图3。

图 1

图 2

图 3

以月球的球心为坐标原点,即球心O 坐标为(0,0,0),以赤道平面为XOY 平面,垂直赤道平面过球心的轴为Z 轴,建立空间直角坐标系,将着陆点所在的象限为第一象限,并由式(11)写出球面上各点对应点在空间直角坐标系下的坐标

θ

?θ?

θsin sin cos cos cos R Z R Y R X === (12)则有B(1167.34,1076.18,554.90),如图4,设远月点C 的坐标为(x ,y ,z)。

图4 近月点与着陆点位置

则由利用空间解析几何知识得方程组

k z

y x =-=-=-90.554018.1076034.11670 (13) 2222)90.554()18.1076()34.1167()013.173715100(-+-+-=++z y x (14) 解方程组求出远月点C 点的坐标为(1323.67,1216.08,627.037)。

(二) 问题二 1 问题分析

假设不考虑质量随时间的变化,对每个阶段进行分析:在第一阶段和第二阶段嫦娥三号做类平抛运动;第三阶段做匀减速运动,使速度减小为零;第四阶段做自由落体并通过其四周的发动机选择适宜方位;第五阶段打开主发动机,做匀减速运动;第六阶段自由落体到预定着陆点。

由于以上模型都是在假设条件下的理想化模型,不符合实际情况,应对着陆的运行轨道进行优化。在椭圆轨道的近月点制动发动机点火,以抵消登月器的初始动能和势能,从而使得着陆器在水平速度被基本抵消之后相对月面速度降为0,以垂直姿态降落到月面,实现所谓的软着陆。着陆器的大部分燃料消耗在制动发动上,所以月球软着陆轨道的优化控制应以燃耗最优性为出发点,同时要兼顾降落到月面时的安全性。 2 动态优化模型的建立 模型二

在模型一中已得出主减速阶段和快速调整阶段的水平位移x=372.8km ,时间

s t t t 44121=+=,快速调整后速度为s m v /7.592=。在粗避障阶段,嫦娥三号做

匀减速运动,初速度为s m v /7.592=,末速度为零,高度m h 2300

2=?,有 232

22h a v ?=,332t a v =,求解得出结果2330.77/,77.53a m s t s ==。

在精避障阶段,在竖直方向受到推力和重力合力作用下的自由落体运动,初速度为0m/s ,降落高度m h 703=?,水平方向周围小发动机调整位置,粗步避开大陨石坑。得

23

44544

12h a t v a t ?

?=??

?=? 求解方程组得s m v s t /12.15,26.954==。

缓速下降阶段,推力向上,做匀减速运动,末速度为零,高度m h 264=?。

2554552v a h v t t ?=??

?=??

求解方程组得算出s t s m a 45.3,/38.4525==

自由落体阶段,高度m h 45=?。有652

1

t g h 月=

?,得出s t 90.46=。 模型三、混合蛙跳模型

假设着陆轨道在纵向平面内,建立图5所示的平面极坐标系

图 5

其中,坐标原点在月心O ,y 轴指向初始轨道近月点,x 轴指向登月器开始运动方向。软着陆的动力学方程描述如式(15):

2

2sin cos 2F v r m r r v F v mr r F m I

????

??βμ?=-+?ω???=?

?

θ=ω?

?βω

?ω=--

?

?=-?

? (15) 月球软着陆轨道是一个服从两点边值约束条件问题,由于起点处于霍曼转移轨道

的近月点,故满足的初始条件为:

00/v m s =,01753r km =,00rad γ=,409.6510/rad s -ω=?,终端约束条件为软着陆,即需满足:0/f v m s =,f r R =,0/r rad s ω=,其中R=1737.013km 。

待优化变量为制动发动机的推力方向角()t β和终端时刻f t ,优化的性能指标

为在满足上述初始条件和终端约束条件的前提下,着陆过程中消耗的燃料最少,即:因为在发动机推力大小可调变的前提下得出的月球探测器软着陆最优制动方案,实际上是一个发动机推力大小恒定、推力与速度夹角变化的制动过程[]6,因此式(16)描述的性能指标也相当于令终端时刻f t 最短。

混合蛙跳算法模拟青蛙在寻找食物时,按族群分类进行思想传递的过程,将全局信息交换和局部深度搜索相结合,局部搜索使得思想在局部个体间传递,混合策略使得局部间的思想得到交换。通过这种全局信息交换和局部深度探索,算法能够跳出局部极值点,朝着全局最优的方向进行。

混合蛙跳算法的搜索优化过程如下:对于N 维组合优化问题,可将每只青蛙表示为()n x x x ,...,,flog 21=,其中i x 为第i 维的可能解;在进入迭优化之前,随机产生m 只青蛙组成初始种群,以后在每次进化迭代过程中,首先根据青蛙的适应值大小将所有青蛙按降序排列;然后再将重新排列后的青蛙分到n 个群体中,分配的方法为:第一只青蛙进入第一个蛙群,第二只青蛙进入第二个蛙群,第n 只青蛙进入第n 个群体,第n+1只青蛙进入到第一个蛙群,第n+2只青蛙进入到第二个蛙群,依此类推,只到所有青蛙分配完毕;当蛙群分好之后,针对每个种群中的最差青蛙,分别提高它们的适应值;最后将所有青蛙混合,进入下一次迭代循环。 3模型求解

将青蛙代入轨道动力学方程中解算得到终端时刻着陆器的状态,最后将末端状态代入式(16)

-

-

--

-

-

-

-+-+-+=f f f f f f f T r t r r r t v t v J J )())(())((22

2

1α??α (16)

其中,21,αα为惩罚因子。

计算性能指标,由于SFLA 的适应度取大值,而式(16)取小值为优,所以

最终需对式(16)的计算值取负号。在得到每个青蛙的适应度后就可以按照上述的SFLA []1优化迭代步骤进行迭代优化了。

本文在Matlab 平台上采用SFLA 优化月球软着陆轨道做了仿真实验,以验证和分析此方法的应用可行性和优化效果。为了更方便地看出优化效果,本文采用文献[2]仿真的着陆器参数为:推力F=1350N ,比冲I=300?9.8m/s,初始质量

0m =600kg 。轨道离散化段数取N=15,则待优化量为16个控制方向角i β和一个终

端时刻f t 共17维参数。

SFLA 的参数值设置为:青蛙总数m=260,蛙群数n=20,外循环次数0N =100,内循环次数10i =N ,每只青蛙由17维待优化参数组成。惩罚因子

()

02i/11max 1,10N -?=,21

1.8?=?,惩罚因子设计成时变的目的主要是在迭代后期

加强对不满足终端速度和终端位置的惩罚力度。拟合函数的阶数取n=4,求解微分

方程采用龙格—库塔4阶法,计算步长取为1s 。表1将本文的平均优化结果和

文献[2]的优化结果做了对比,然后给出了某次仿真的优化结果图:

表1 优化结果

图6 径向速度变化曲线

图7 推力控制角变化曲线

图8 月心距变化曲线

(三)问题三 1 问题三的分析

相比发射地球卫星而言,着陆器在地月空间飞行距离较大、飞行时间较长,由于力学模型和测控误差等的影响,实际转移轨道相对目标轨道会存在一些偏离,而且随着着陆器在轨运行,这些偏差还会被不同程度的放大。实际上,在一般的发射任务中,轨道修正都会选取将着陆器送到满足要求的目标轨道上(例如形成满足条件的环月轨道)的方式,而并非送到目标点上,这是因为后者需要选择合适的目标点使得轨道修正的能耗不会太大,且着陆器还需要在目标点进行变轨从而使得实际轨道在相空间中与标称轨道重合。考虑到轨道参数的误差之相对于轨道参数的标称值是小量,因此可以将轨道运动方程进行线性化,从而得到能够反映轨道参数偏差量的传播关系的误差方程。 2双二体模型建立[]3

误差分析:

反映轨道位置和速度误差的线性化方程如下

T r v g v r

r ?

?

→→→

→→→??=???????=??

??

(17) 其中→

??-=r R

g r g 3)(月, 且

2

22z y x r r r R ++= (18)

写成状态方程形式:

???

?? ?????????

?

?=?????

?

?

????→→→→?

?v r O I G r r 0 (19) 其中→

→??=

T

r

g

G 。

3模型求解 令

???

?

?

????=?

??

? ??=→→v r X I G F ,00 (20) 则式(18)变为

X F X ?=?

(21)

下面推导矩阵F 的表达式:

333333

()()()()()T T

x y z g u G r R r r g g g g r I r r r r r r r →

→→→?

???==-?????

??????---?-???????

?????月月月月 (22) 式中z y x r r r ,,是嫦娥三号在月心惯性坐标系里的轨道位置坐标。则

???

?

? ?

?

??-

-=→→2

333r r r I r g G T

月 (23)

()????

?

? ?

?=?????

??=→

→22

2z y

z x

z z y y

x

y z x y x x z y x z y x T

r r r r r r r r r r r r r r r r r r r r r r r (24)

将式(23),(24)代入(19),得:

0003-13300033-13000333-11

000

0100

0000100022

35

55

22

355

522

3

)()()(月月月月月

月月月月R

r R g R r r g R r r g R r r g R r R g v R r r g R r r g R r r g R r R g F z

z y z x z y y y x y

x y

x x ---=

对式(20)积分,得到:

)0()(X e t X t F ?=?

式中

222

2

()()()()2!3!4!!

()!F t

i N

i i F t F t F t F t e

I F t n t F i ?=????=+?++++

+

?=∑

取前6阶截断,即:

)!(6

i t F e

i

i i

t

F ?=∑=?

得到计算误差方程的迭代方程:

)()(i t F i t X e t t X ?=?+

t F e ?相当于P 阵,由于误差方程是时变方程,因此每一步迭代都需要重新计算P

阵需要利用标称轨道参数数据。进而得到协方差矩阵迭代方程:

T

i i i P C P C i 1=+

求出结果,并画出图像,如表2,图9,图10,然后进行分析。

向月飞行轨道的初始轨道位置和速度误差由嫦娥三号的发射入轨精度决定,若着陆器在飞行中进行轨道修正,则经过轨道修正以后的轨道位置误差将由导航误差决定,速度误差将由姿态误差和制导误差决定。上述误差决定了轨道误差协方差分析的计算初始条件,表2给出了在不进行中途轨道修正情况下,在地心惯性坐标系里,初始轨道位置误差和初始速度误差对轨道终点的位置和速度误差的影响。图9和图10给出了着陆器从近月轨道入轨点开始至进入月球轨道为止的相应轨道位置和速度的总误差的时间历程。

表2 初始轨道位置和速度误差对轨道终点误差的影响

图9 轨道位置总误差时间历程

图10 速度总误差时间历

灵敏度分析:

运动学公式:

t

a v x a a h t m F m g a 水水

水竖

竖2

1

m F 20+===

-=

求出位移,列表画图

由图像可知,推力为定值时,在不同数值的力推力作用下,水平位移在不断变化,F 在1500N 到6000N 时,位移变化较小,运动轨迹影响较小,因此变量F 对运动轨迹不敏感;当F 在6000N 到7500N 时,位移变化较大,对运动轨迹影响较大,因此变量F 对运动轨迹比较敏感。

六、模型评价

模型优缺点

混合蛙跳算法的优点是比较强的全局寻优能力和很高的优化精度,经SFLA 优化的轨道与传统方法优化的结果相差无几,某些指标甚至优于传统方法。同时

另一个优点是实现比较简单,没有其他智能算法的那样具有比较复杂的应用流程,也不需要设置太多的参数,因此它的应用操作上更加简单。双二体模型的具体一个优点是相对于其他智能传统算法,在应用上更加简单和易于操作。

七、参考文献

[1]郭景录,付平,登月软着陆轨道优化算法研究

[2]段佳佳,徐世杰,朱建丰,基于蚁群算法的月球软着陆轨迹优化[J],宇航学报,2008,29(2):476-481.

[3]孙宝,荣思远,向月飞行轨道误差分析,哈尔滨工业大学,哈尔滨,150001.

[4]王大轶,李铁寿,马兴瑞.月球最优软着陆两点边值问题的数值解法[J].航天控制,2000,(3):44-49.

[5]郗晓宁,等,月球探测器轨道设计[M].北京:国防工业出版社,2001.

附录

近月点与着陆点三维坐标系下的位置:

hold on;

a=1737.646;b=1735.843;

theta=0:0.1:2*pi;

phi=theta';

x=a*cos(phi)*cos(theta);

y=b*cos(phi)*sin(theta);

z=b*sin(phi)*ones(size(theta));

mesh(x,y,z);

shading interp

x=a*cos(19.51*1/180)*cos(44.12/180);

y=b*cos(19.51*1/180)*sin(44.12/180);

z=b*sin(19.51/180);

plot3(x,y,z,'*')

x1=(a+15)*cos(18.63*1/180)*cos(40.83/180);

y1=(b+15)*cos(18.63*1/180)*sin(40.83/180);

z1=(b+15)*sin(18.63/180);

plot3(x1,y1,z1,'b+')

推力与位移关系图:

x=[1500 3000 4500 6000 7500];

y=[230.99 268.25 331.86 464.69 1258.59];

plot(x,y,'b')

HIMCM 2014美国中学生数学建模竞赛试题

HIMCM 2014美国中学生数学建模竞赛试题 Problem A: Unloading Commuter Trains Trains arrive often at a central Station, the nexus for many commuter trains from suburbs of larger cities on a “commuter” line. Most trains are long (perhaps 10 or more cars long). The distance a passenger has to walk to exit the train area is quite long. Each train car has only two exits, one near each end so that the cars can carry as many people as possible. Each train car has a center aisle and there are two seats on one side and three seats on the other for each row of seats.To exit a typical station of interest, passengers must exit the car, and then make their way to a stairway to get to the next level to exit the station. Usually these trains are crowded so there is a “fan” of passengers from the train trying to get up the stairway. The stairway could accommodate two columns of people exiting to the top of the stairs.Most commuter train platforms have two tracks adjacent to the platform. In the worst case, if two fully occupied trains arrived at the same time, it might take a long time for all the passengers to get up to the main level of the station.Build a mathematical model to estimate the amount of time for a passenger to reach the street level of the station to exit the complex. Assume there are n cars to a train, each car has length d. The length of the platform is p, and the number of stairs in each staircase is q. Use your model to specifically optimize (minimize) the time traveled to reach street level to exit a station for the following: 问题一:通勤列车的负载问题 在中央车站,经常有许多的联系从大城市到郊区的通勤列车“通勤”线到达。大多数火车很长(也许10个或更多的汽车长)。乘客走到出口的距离也很长,有整个火车区域。每个火车车厢只有两个出口,一个靠近终端, 因此可以携带尽可能多的人。每个火车车厢有一个中心过道和过道两边的座椅,一边每排有两个座椅,另一边每排有三个座椅。走出这样一个典型车站,乘客必须先出火车车厢,然后走入楼梯再到下一个级别的出站口。通常情况下这些列车都非常拥挤,有大量的火车上的乘客试图挤向楼梯,而楼梯可以容纳两列人退出。大多数通勤列车站台有两个相邻的轨道平台。在最坏的情况下,如果两个满载的列车同时到达,所有的乘客可能需要很长时间才能到达主站台。建立一个数学模型来估计旅客退出这种复杂的状况到达出站口路上的时间。假设一列火车有n个汽车那么长,每个汽车的长度为d。站台的长度是p,每个楼梯间的楼梯数量是q。使用您的模型具体来优化(减少)前往主站台的时间,有如下要求: Requirement 1. One fully occupied train's passengers to exit the train, and ascend the stairs to reach the street access level of the station. 要求1.一个满载乘客的火车,所有乘客都要出火车。所有乘客都要出楼梯抵达出主站台的路上。 Requirement 2. Two fully occupied trains' passengers (all passengers exit onto a common platform) to exit the trains, and ascend the stairs to reach the street access level

数学建模练习试题

2011年数学建模集训小题目 1.求下列积分的数值解 ? +∞ +-?23 2 2 3x x x dx 2.已知)s i n ()()c o s (),(2h t h t h t e h t f h t ++++=+,dt h t f h g ?=10 ),()(,画出 ]10,10[-∈h 时,)(h g 的图形。 3.画出16)5(2 2=-+y x 绕x 轴一周所围成的图形,并求所产生的旋转体的体积。 4.画出下列曲面的图形 (1)旋转单叶双曲面 14 92 22=-+z y x ; (2)马鞍面xy z =; 5.画出隐函数1cos sin =+y x 的图形。 6.(1)求函数x x y -+=12 ln 的三阶导数; 法一:syms x y dy; >> y=log((x+2)/(1-x)); >> dy=diff(y,3) dy = (6/(1-x)^3+6*(x+2)/(1-x)^4)/(x+2)*(1-x)-2*(2/(1-x)^2+2*(x+2)/(1-x)^3)/(x+2)^2*(1-x)-2*(2/(1-x)^2+2*(x+2)/(1-x)^3)/(x+2)+2*(1/(1-x)+(x+2)/(1-x)^2)/(x+2)^3*(1-x)+2*(1/(1-x)+(x+2)/(1-x)^2)/(x+2)^2 (2)求向量]425.00[=a 的一阶向前差分。 7.求解非线性方程组 (1)?????=-+=-+060622x y y x (2)???=+=++5 ln 10tan 10cos sin y x y e y x 8.求函数186)(2 3-++=x x x x f 的极值点,并画出函数的图形。 9.某单位需要加工制作100套钢架,每套用长为2.9m ,2.1m 和1m 的圆钢各一根。已知原料长6.9m ,问应如何下料,使用的原材料最省。 10. 某部门在今后五年内考虑给下列项目投资,已知: 项目A ,从第一年到第四年每年年初需要投资,并于次年末回收本利115%; 项目B ,从第三年初需要投资,到第五年末能回收本利125%,但规定最大投资额不超过4万元;

西南大学2016年春《数学建模》作业及答案(已整理)(共5次)

西南大学2014年春《数学建模》作业及答案(已整理) 第一次作业 1:[填空题] 名词解释: 1.原型 2.模型 3.数学模型 4.机理分析 5.测试分析 6.理想方法 7.计算机模拟 8.蛛网模型 9.群体决策 10.直觉 11.灵感 12.想象力 13.洞察力 14.类比法 15.思维模型 16.符号模型 17.直观模型 18.物理模型19.2倍周期收敛20.灵敏度分析21.TSP问题22.随机存储策略23.随机模型24.概率模型25.混合整数规划26.灰色预测 参考答案: 1.原型:原型指人们在现实世界里关心、研究或者从事生产、管理的实际对象。2.模型:指为某个特定目的将原形的某一部分信息简缩、提炼而构造的原型替代物。3.数学模型:是由数字、字母或其它数字符号组成的,描述现实对象数量规律的数学公式、图形或算法。4.机理分析:根据对客观事物特性的认识,找出反映内部机理的数量规律,建立的模型常有明显的物理意义或现实意义。5.测试分析:将研究对象看作一个"黑箱”系统,通过对系统输入、输出数据的测量和统计分析,按照一定的准则找出与数据拟合得最好的模型。6.理想方法:是从观察和经验中通过想象和逻辑思维,把对象简化、纯化,使其升华到理状态,以其更本质地揭示对象的固有规律。7.计算机模拟:根据实际系统或过程的特性,按照一定的数学规律用计算机程序语言模拟实际运行情况,并依据大量模拟结构对系统或过程进行定量分析。8.蛛网模型:用需求曲线和供应曲线分析市场经济稳定性的图示法在经济学中称为蛛网模型。9.群体决策:根据若干人对某些对象的决策结果,综合出这个群体的决策结果的过程称为群体决策。10.直觉:直觉是人们对新事物本质的极敏锐的领悟、理解或推断。11.灵感:灵感是指在人有意识或下意识思考过程中迸发出来的猜测、思路或判断。12.想象力:指人们在原有知识基础上,将新感知的形象与记忆中的形象相互比较、重新组合、加工、处理,创造出新形象,是一种形象思维活动。13.洞察力:指人们在充分占有资料的基础上,经过初步分析能迅速抓住主要矛盾,舍弃次要因素,简化问题的层次,对可以用那些方法解决面临的问题,以及不同方法的优劣作出判断。14.类比法:类比法注意到研究对象与以熟悉的另一对象具有某些共性,比较二者相似之处以获得对研究对象的新认识。15.思维模型:指人们对原形的反复认识,将获取的知识以经验的形式直接储存于人脑中,从而可以根据思维或直觉作出相应的决策。16.符号模型:是在一定约束条件或假设下借助于专门的符号、线条等,按一定形式组合起来描述原型。17.直观模型:指那些供展览用的实物模型以及玩具、照片等,通常是把原型的尺寸按比例缩小或放大,主要追求外观上的逼真。18.物理模型:主要指科技工作者为一定的目的根据相似原理构造的模型,它不仅可以显示原型的外形或某些特征,而且可以用来进行模拟实验,间接地研究原型的某些规律。19.2倍周期收敛:在离散模型中,如果一个数列存在两个收敛子列就称为2倍周期收敛。20.灵敏度分析:系数的每个变化都会改变线性规划问题,随之也会影响原来求得的最优解。为制定一个应付各种偶然情况的全能方法,必须研究以求得的最优解是怎样随输入系数的变化而变化的。这叫灵敏性分析。21.TSP问题:在加权图中寻求最佳推销员回路的问题可以转化为在一个完备加权图中寻求最佳哈密顿圈的问题,称为TSP问题。22.随机存储策略:商店在订购货物时采用的一种简单的策略,是制定一个下界s和一个上界S,当周末存货不小于s时就不定货;当存货少于s 时就订货,且定货量使得下周初的存量达到S,这种策略称为随机存储策略。23.随机模型:如果随机因素对研究对象的影响必须考虑,就应该建立随机性的数学模型,简称为随机模型。24.概

数学建模作业

习 题 1 1. 请编写绘制以下图形的MA TLAB 命令,并展示绘得的图形. (1) 221x y +=、224x y +=分别是椭圆2241x y +=的内切圆和外切圆. (2) 指数函数x y e =和对数函数ln y x =的图像关于直线y=x 对称. (3) 黎曼函数 1, (0)(0,1) 0 , (0,1), 0,1 q x p q q x y x x x =>∈?=? ∈=?当为既约分数且当为无理数且或者 的图像(要求分母q 的最大值由键盘输入). 3. 两个人玩双骰子游戏,一个人掷骰子,另一个人打赌掷骰子者不能掷出所需点数,输赢的规则如下:如果第一次掷出3或11点,打赌者赢;如果第一次掷出2、7或12点,打赌者输;如果第一次掷出4、5、6、8、9或10点,记住这个点数,继续掷骰子,如果不能在掷出7点之前再次掷出该点数,则打赌者赢. 请模拟双骰子游戏,要求写出算法和程序,估计打赌者赢的概率. 你能从理论上计算出打赌者赢的精确概率吗?请问随着试验次数的增加,这些概率收敛吗?

4. 根据表1.14的数据,完成下列数据拟合问题: (1) 如果用指数增长模型0()0()e r t t x t x -=模拟美国人口从1790年至2000年的变化过程,请用MATLAB 统计工具箱的函数nlinfit 计算指数增长模型的以下三个数据拟合问题: (i) 取定0x =3.9,0t =1790,拟合待定参数r ; (ii) 取定0t =1790,拟合待定参数0x 和r ; (iii) 拟合待定参数0t 、0x 和r . 要求写出程序,给出拟合参数和误差平方和的计算结果,并展示误差平方和最小的拟合效果图. (2) 通过变量替换,可以将属于非线性模型的指数增长模型转化成线性模型,并用MA TLAB 函数polyfit 进行计算,请说明转化成线性模型的详细过程,然后写出程序,给出拟合参数和误差平方和的计算结果,并展示拟合效果图. (3) 请分析指数增长模型非线性拟合和线性化拟合的结果有何区别?原因是什么? (4) 如果用阻滞增长模型00 () 00()()e r t t Nx x t x N x --= +-模拟美国人口从1790年至2000年的变化过程,请用MA TLAB 统计工具箱的函数nlinfit 计算阻滞增长模型的以下三个数据拟合问题: (i) 取定0x =3.9,0t =1790,拟合待定参数r 和N ; (ii) 取定0t =1790,拟合待定参数0x 、r 和N ; (iii) 拟合待定参数0t 、0x 、r 和N . 要求写出程序,给出拟合参数和误差平方和的计算结果,并展示误差平方和最小的拟合效果图. 年份 1790 1800 1810 1820 1830 1840 1850 1860 1870 1880 1890

2014年美国数学建模大赛(MCM)试题译文

2014年美国数学建模大赛(MCM)试题译文 王景璟大连理工大学 问题A:超车之外靠右行原则 在一些开车必须靠右行驶的国家(比如:美国,中国,以及其他除了英国,澳大利亚,和一些前英国殖民地的国家),行驶在多车道高速路必须遵循一个规则,那就是要求驾驶员在超车之外的情况下,必须在最靠右的车道行驶,超车时,他们向左变道,超车,然后再回到之前行驶的车道。 构建一个数学模型来分析该规则在车流量很少和很大的时候的执行情况。你最好能考察车流量与安全的之间的相互关系,过低或是过量的速度限制的作用(速度设置过低或是过高),以及/或者其他在该问题陈述中没有明确提到的因素。该原则是否能有效促进更好的车流量?如果无效,请建议和分析其他更有助于提高车流量、安全、以及其他你认为重要的因素的其他方案(可以完全不包括该原则)。 在开车靠左行的国家,讨论一下你的方案在经过对方向的简单修改之后或是添加额外的要求之后是否也适用。 最后,以上原则取决于人们遵循交通规则的判断力。如果道路上的车流完全在智能系统(要么是道路体系的一部分,要么是包含在使用道路的所有车辆的设计之中)的控制之下,该改变在多大程度上会影响你先前分析的结果? 问题B: 大学教练联盟 《体育画报》,一本体育爱好者的杂志,正在寻找上世纪“最好的大学教练”,包括男性和女性。建立一个数学模型以从诸如大学曲棍球,曲棍球,橄榄球,棒球,垒球,篮球,或足球等运动的男性或女性教练中选出最好的一个教练或几个教练(过去的或现在的)。分析中使用的时间分界线是否有影响?即在1913执教和在2013年执教有不同吗?清晰地表达你们模型中的评判标准。讨论你们的模型如何能广泛地应用于两种性别及所有可能的体育运动。分别选出你模型中3种不同运动的前5位教练。 除了MCM格式及要求,准备一篇1-2页的文章给《体育画报》以解释你们的结论并包括一份能让体育迷们看懂的对你们数学模型的非技术性解释。 问题C:使用网络模型测量影响力

2014年下学期数学实验与数学建模作业习题8

2014年下学期数学实验与数学建模作业习题8 1.轮船的甲板成近似半椭圆面形为了得到甲板的面积。首先测量得到横向最大相间8.534米;然后等间距地测得纵向高度,自左向右分别为:0.914, 5.060, 7.772, 8.717, 9.083, 9.144, 9.083, 8.992, 8.687, 7.376, 2.073,计算甲板的面积。 【1】命令: x=0:0.711:8.534; y2=[0,0.914^2,5.060^2,7.772^2,8.717^2,9.083^2,9.144^2,9.083^2,8.992^2, 8.687^2,7.376^2,2.073^2,0]; %plot(x,y2,'*'); a=polyfit(x,y2,2) 【2】结果: a = -5.2832 46.5248 -16.7465 得y^2=-5.2832*x^2+46.5248*x-16.7465,即y^2/85.68+(x-4.4031)^2/16.2175=1 故面积=0.5*a*b*pi=58.56. 2.物体受水平方向外力作用,在水平直线上运动。测得位移与受力如表8.1 表8.1 X 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 F 20 21 21 20 19 18.5 18.0 13.5 9 4.5 0 求(a) 物体从位移为0到0.4所做的功; (b) 位移为0.4时的速度是多少? 【1】命令: x=0:0.1:1.0; f=[20,21,21,20,19,18.5,18.0,13.5,9,4.5,0]; plot(x,f,'*');hold on; a=polyfit(x,f,2) f2=-34.4988*x.*x+14.8625*x+19.5979; plot(x,f2); syms t y=-34.4988*t.*t+14.8625*t+19.5979; w=vpa(int(y,t,0,0.4),8) V=diff(y);t=2;v=eval(V)

2011年全国大学生数学建模竞赛测试试题

2011年全国大学生数学建模竞赛测试试题(A) 时量:180分钟满分:150分 院系:专业:学号:姓名: 一、选择题(2分/题×10题=20分) 1、Matlab程序设计中清除当前工作区的变量x,y的命令是( c ) A.clc x,y B.clear(x y) C.clear x y D.remove(x,y) 2、关于Matlab程序设计当中变量名和函数名的描述,下述说法正确的是( B ) A.都不区分大小写 B.都区分大小写 C.变量名区分,函数名不区分 D. 变量名区分,函数名不区分 3、MA TLAB软件中,把二维矩阵按一维方式寻址时的寻址访问是按(B)优先的。 A.行 B.列 C.对角线 D.左上角 4、关于矩阵上下拼接和左右拼接的方式中,下列描述是正确的是( D ) A.上下拼接的命令为C=[A, B],要求矩阵A, B的列数相同; B.左右拼接的命令为C=[A; B],要求矩阵A, B的行数相同; C.上下拼接的命令为C=[A; B],要求矩阵A, B的行数相同; D.左右拼接的命令为C=[A, B],要求矩阵A, B的行数相同。 5、Matlab命令a=[65 72 85 93 87 79 62 73 66 75 70];find(a>=70 & a<80)得到的结果为(C ) A.[72 79 73 75] B.[72 79 73 75 70] C.[2 6 8 10 11] D.[0 1 0 0 0 1 0 1 0 1 1] 6、矩阵(或向量)的范数是用来衡量矩阵(或向量)的(A)的一个量 A.维数大小 B.元素的值的绝对值大小 C.元素的值的整体差异程度 D.所有元素的和 7、计算非齐次线性方程组AX=b的解可转化为计算矩阵X=A-1b,可以用Matlab的命令(A)实现 A.左除命令x=A\b B.左除命令x=A/b C.右除命令x=A\b D.右除命令x=A/b 8、关于Matlab的矩阵命令与数组命令,下列说法正确的是(b) A.矩阵乘A*B是指对应位置元素相乘 B.矩阵乘A.*B是指对应位置元素相乘 C.数组乘A.*B是指对应位置元素相乘 D.数组乘A*B是指对应位置元素相乘 9、生成5行4列,并在区间[1:10]内服从均分布的随机矩阵的命令是(d) A.rand(5,4)*10 B.rand(5,4,1,10) C.rand(5,4)+10 D.rand(5,4)*9+1 10、关于Matlab的M文件的描述中,以下错误的是( d ) A、Matlab的M 文件有脚本M文件和函数M文件两种; B、Matlab的函数M文件中要求首行必须以function顶格开头;

网络学院数学建模作业题

网络学院数学建模作业题

数学建模作业题 注意事项: 作业共十题,每题十分,全部是比较简单的建模计算题,题目既是课本上的习题,在课本304~315有参考解答,又是在线题库的题目,在题库里有更详细的解答。学员应该先自己动脑筋解决,然后才参考一下课本及题库的解答。 评分高低主要是看完成作业的态度、独立程度和表达清晰程度。 上传的作业必须是包括全部作业的单独一份word文档,必须自己录入,不允许扫描,不允许直接插入题库答案中的图片。严重违反者,不及格。 请于有效期结束前两周提交上传作业,教师尽快批改,请学员有效期结束前一周查看成绩,不及格的学员可以在课程答疑栏目提出或者课程论坛提出重交申请,教师删除原作业后,这些学员可以在有效期结束前之前重交作业。每人只有一次重交机会。 作业题与考试相关(当然不会一模一样),认真完成作业的学员,必将在考试取得好成绩。 一、教材76页第1章习题1第7题(来自高中数学课本的数学探究问题,满分10分) 表1.17是某地一年中10天的白昼时间(单位:小时),请选择合适的函数模型,并进行数据拟合. 日期1月1日2月28日3月21日4月27日5月6日

白昼时间 5.59 10.23 12.38 16.39 17.26 日期 6月21日 8月14日 9月23日 10月25日 11月21日 白昼时间 19.40 16.34 12.01 8.48 6.13 解:根据地理常识,某地的白昼时间是以一年为周期而变化的,以日期在一年中序号为自变量x ,以白昼时间为因变量y ,则根据表1.17的数据可知在一年(一个周期)内,随着x 的增加,y 大约在6月21日(夏至)达到最大值,在12月21日(冬至)达到最小值,在3月21日(春分) 或9月21日(秋分)达到中间值。选择函数y=(b x A ++)3652sin(?π)作为函数值。根据表1.17的数据,推测A ,b 和?的值, 作非线性拟合得385.123712.13652sin(9022.6+-=x y π,预测该地12月21日的白昼时间为5.49小时。 二、教材100页第2章习题2第1题(满分10分) 继续考虑第2.2节“汽车刹车距离”案例,请问“两秒准则”和“一车长度准则”一样吗?“两秒准则”是否足够安全?对于安全车距,你有没有更好的建议? 解:“两秒准则”表明前后车距D 与车速v 成正比例关系v K D 2 =,其中s K 22 =,对于小型汽车,“一车长度准则”与“两秒准则”不一致。由)]([1 2 2 K K v K v D d --=-可以计算得到当D d h km K K K v <=-<时有/428.542 12 ,“两秒准则”足够安全,或者把刹车距离实测数据和“两秒准则”都画在同一幅图中,根据图形指出“两秒准则”足够安全的车速范围。用最大刹车距离除以车速,得到最大刹车距离所需的尾随时间,并以尾随时间为依据,提出更安全的准则,如“3秒准则”、“4

数学建模一周作业题目

对作业题目的说明 1. 本次数学建模周一共提供十五道题目供大家选择。每支队伍(2-3人/队)必须从以下题目中任意选取一题(只须选择一道),并完成一篇论文,对论文的具体要求参阅《论文格式规范》。 2. 题目标注为“A ”的为有一定难度的题目,指导老师会根据题目的难度对论文最后的评分进行调整。 (一)乒乓球赛问题 (A) A 、 B 两乒乓球队进行一场五局三胜制的乒乓球赛,两队各派3名选手上场,并各有3种选手的出场顺序(分别记为123,,ααα 和123,,βββ)。根据过去的比赛记录,可以预测出如果A 队以i α次序出场而B 队以j β次序出场,则打满5局A 队可胜 ij a 局。由此得矩阵()ij R a =如下: 12 3 1232 140345 3 1R βββααα?? = ? ? ??? (1) 根据矩阵R 能看出哪一队的实力较强吗? (2) 如果两队都采取稳妥的方案,比赛会出现什么结果? (3) 如果你是A 队的教练,你会采取何种出场顺序? (4) 比赛为五战三胜制,但矩阵R 中的元素却是在打满五局的情况下得到 的,这样的数据处理和预测方式有何优缺点? (二)野兔生长问题 在某地区野兔的数量在连续十年的统计数量(单位十万)如下: 分析该数据,得出野兔的生长规律。 并指出在哪些年内野兔的增长有异常现象,

预测T=10 时野兔的数量。 (三)停车场的设计问题 在New England的一个镇上,有一位于街角处面积100 200平方英尺的停车场,场主请你代为设计停车车位的安排方式,即设计在场地上划线的方案。 容易理解,如果将汽车按照与停车线构成直角的方向,一辆紧挨一辆地排列成行,则可以在停车场内塞进最大数量的汽车,但是对于那些缺乏经验的司机来说,按照这种方式停靠车辆是有困难的,它可能造成昂贵的保险费用支出。为了减少因停车造成意外损失的可能性,场主可能不得不雇佣一些技术熟练的司机专门停车;另一方面,如果从通道进入停车位有一个足够大的转弯半径,那么,看来大多数的司机都可以毫无困难地一次停车到位。当然通道越宽,场内所容纳的车辆数目也越少,这将使得场主减少收入。 请你通过建模的计算结果,来给出一个合理的设计方案。 (四)奖学金的评定(A) 背景 A Better Class (ABC)学院的一些院级管理人员被学生成绩的评定问题所困 ),这使得扰。平均来说,ABC的教员们一向打分较松(现在所给的平均分是A — 无法对好的和中等的学生加以区分。然而,某项十分丰厚的奖学金仅限于资助占总数10%的最优秀学生,因此,需要对学生排定名次。 教务长的想法是在每一课程中将每个学生与其他学生加以比较,运用由此得到的信息构造一个排名顺序。例如,某个学生在一门课程中成绩为A,而在同一课程中所有学生都得A,那么就此课而言这个学生仅仅属于“中等”。反之,如果一个学生得到了课程中唯一的A,那么,他显然处在“中等至上”水平。综合从几门不同课程所得到的信息,使得可以把所有学院的学生按照以10%划分等级顺序(最优秀的10%,其次的10%,等等)排序。 问题 , B+ ,…)这样的方式给出的,教务(1)假设学生成绩是按照(A+,A, A — 长的想法能否实现?

2015年数学建模作业题

数学模型课程期末大作业题 要求: 1)选题方式:共53题,每个同学做一题,你要做的题目编号是你的学号mod52所得的值+1。(例如:你的学号为119084157,则你要做的题为mod(119084157,52)+1=50)。 2)该类题目基本为优划问题,要求提交一篇完整格式的建模论文,文字使用小四号宋体,公式用word的公式编辑器编写,正文中不得出现程序以及程序冗长的输出结果,程序以附录形式附在论文的后面,若为规划求解必须用lingo 集合形式编程,其它可用Matlab或Mathmatica编写。 3)论文以纸质文档提交,同时要交一份文章和程序电子文档,由班长统一收上来,我要验证程序。 1、生产安排问题 某厂拥有4台磨床,2台立式钻床,3台卧式钻床,一台镗床和一台刨床,用以生产7种产品,记作p1至p7。工厂收益规定作产品售价减去原材料费用之余。每种产品单件的收益及所需各机床的加工工时(以小时计)列于下表(表1): 表 到6月底每种产品有存货50件。 工厂每周工作6天,每天2班,每班8小时。 不需要考虑排队等待加工的问题。 在工厂计划问题中,各台机床的停工维修不是规定了月份,而是选择最合

适的月份维修。除了磨床外,每月机床在这6个月中的一个月中必须停工维修;6个月中4台磨床只有2台需要维修。扩展工厂计划模型,以使可作上述灵活安排维修时间的决策。停工时间的这种灵活性价值若何? 注意,可假设每月仅有24个工作日。 5、生产计划 某厂有4台磨床,2台立钻,3台水平钻,1台镗床和1台刨床,用来生产7种产品,已知生产单位各种产品所需的有关设备台时以及它们的利润如表所示: 台镗床,4月—1台立钻,5月—1台磨床和1台立钻,6月—1台刨床和1台水平钻,被维修的设备在当月内不能安排生产。又知从1月到6月份市场对上述7种产品最大需求量如表所示: 量均不得超过100件。现在无库存,要求6月末各种产品各贮存50件。若该厂每月工作24天,每天两班,每班8小时,假定不考虑产品在各种设备上的加工顺序,要求: (a)该厂如何安排计划,使总利润最大; (b)在什么价格的条件下,该厂可考虑租用或购买有关的设备。 34、瓶颈机器上的任务排序 在工厂车间中,经常会出现整个车间的生产能力取决于一台机器的情况(例如,仅有一台的某型号机床,生产线上速度最慢的机器等)。这台机器就称为关键机器或瓶颈机器。此时很重要的一点就是尽可能地优化此机器将要处理的任务计划。

研究生赛E题【2014年研究生数学建模竞赛试题】

2014年全国研究生数学建模竞赛E题 乘用车物流运输计划问题 整车物流指的是按照客户订单对整车快速配送的全过程。随着我国汽车工业的高速发展,整车物流量,特别是乘用车的整车物流量迅速增长。图1、2、3就是乘用车整车物流实施过程中的画面。 乘用车生产厂家根据全国客户的购车订单,向物流公司下达运输乘用车到全国各地的任务,物流公司则根据下达的任务制定运输计划并配送这批乘用车。为此,物流公司首先要从他们当时可以调用的“轿运车”中选择出若干辆轿运车,进而给出其中每一辆轿运车上乘用车的装载方案和目的地,以保证运输任务的完成。“轿运车”是通过公路来运输乘用车整车的专用运输车,根据型号的不同有单层和双层两种类型,由于单层轿运车实际中很少使用,本题仅考虑双层轿运车。双层轿运车又分为三种子型:上下层各装载1列乘用车,故记为1-1型(图1);下、上层分别装载1、2列,记为1-2型(图2);上、下层各装载2列,记为2-2型(图3),每辆轿运车可以装载乘用车的最大数量在6到27辆之间。 在确保完成运输任务的前提下,物流公司追求降低运输成本。但由于轿运车、乘用车有多种规格等原因,当前很多物流公司在制定运输计划时主要依赖调度人员的经验,在面对复杂的运输任务时,往往效率低下,而且运输成本不尽理想。请你们为物流公司建立数学模型,给出通用算法和程序(评审时要查)。 1

装载具体要求如下:每种轿运车上、下层装载区域均可等价看成长方形,各列乘用车均纵向摆放,相邻乘用车之间纵向及横向的安全车距均至少为0.1米,下层力争装满,上层两列力求对称,以保证轿运车行驶平稳。受层高限制,高度超过1.7米的乘用车只能装在1-1、1-2型下层。轿运车、乘用车规格(第五问见附件)如下: 乘用车型号长度(米) 宽度(米) 高度(米) Ⅰ 4.61 1.7 1.51 Ⅱ 3.615 1.605 1.394 Ⅲ 4.63 1.785 1.77 轿运车类型上下层长度(米) 上层宽度(米) 下层宽度(米) 1-1 19 2.7 2.7 1-2 24.3 3.5 2.7 表2 轿运车规格 整车物流的运输成本计算较为繁杂,这里简化为:影响成本高低的首先是轿 运车使用数量;其次,在轿运车使用数量相同情况下,1-1型轿运车的使用成本 2

福建师范大学课程考试《数学建模》作业考核试题参考328

《数学建模》期末考试A卷 一、判断题(每题3分,共15分) 1、模型具有可转移性。 ------------------------------(√) 2、一个原型,为了不同的目的可以有多种不同的 模型。------(√) 3、一个理想的数学模型需满足模型的适用性和模 型的可靠性。 --------------------------------------------- (√) 4、力学中把质量、长度、时间的量纲作为基本量 纲。-------(√) 5、数学模型是原型的复制品。 -------------------- (×) 二、不定项选择题(每题3分,共15分) 1、下列说法正确的有 ACD 。A、评价模型优劣的唯一标准是实践检验。 B、模型误差是可以避免的。 C、生态模型属于按模型的应用领域分的模型。 D、白箱模型意味着人们对原型的内在机理了解不清楚。 2、建模能力包括 ABCD 。 A、理解实际问题的能力 B、抽象分析问题的能力 C、运用工具知识的能力 D、试验调试的能力 3、按照模型的应用领域分的模型有 CD 。 A、传染病模型 B、代数模型 C、几何模型 D、微分模型 E、生态模型 4、对黑箱系统一般采用的建模方法是 ABCD 。 A、机理分析法 B、几何法 C、系统辩识法 D、代数法 5、一个理想的数学模型需满足 AB 。 A、模型的适用性 B、模型的可靠性 C、模型的复杂性 D、模型的美观性 三、用框图说明数学建模的过程。(10分) 四、建模题(每题15分,共60分) 1、四条腿长度相等的椅子放在起伏不平的地面上,4条 腿能否同时着地? 一、模型假设 对椅子和地面都要作一些必要的假设: 1.椅子四条腿一样长,椅脚与地面接触可视为一 个点,四脚的连线呈正方形. 2.地面高度是连续变化的,沿任何方向都不会出 现间断(没有像台阶那样的情况),即地面可视为数学 1

最新历年全国数学建模试题及解法归纳

历年全国数学建模试题及解法归纳 赛题解法 93A非线性交调的频率设计拟合、规划 93B足球队排名图论、层次分析、整数规划 94A逢山开路图论、插值、动态规划 94B锁具装箱问题图论、组合数学 95A飞行管理问题非线性规划、线性规划 95B天车与冶炼炉的作业调度动态规划、排队论、图论 96A最优捕鱼策略微分方程、优化 96B节水洗衣机非线性规划 97A零件的参数设计非线性规划 97B截断切割的最优排列随机模拟、图论 98A一类投资组合问题多目标优化、非线性规划 98B灾情巡视的最佳路线图论、组合优化 99A自动化车床管理随机优化、计算机模拟 99B钻井布局0-1规划、图论 00A DNA序列分类模式识别、Fisher判别、人工 神经网络 00B钢管订购和运输组合优化、运输问题 01A血管三维重建曲线拟合、曲面重建 赛题解法 01B 公交车调度问题多目标规划 02A车灯线光源的优化非线性规划 02B彩票问题单目标决策 03A SARS的传播微分方程、差分方程 03B 露天矿生产的车辆安排整数规划、运输问题 04A奥运会临时超市网点设计统计分析、数据处理、优化 04B电力市场的输电阻塞管理数据拟合、优化 05A长江水质的评价和预测预测评价、数据处理 05B DVD在线租赁随机规划、整数规划 06A出版社书号问题整数规划、数据处理、优化 06B Hiv病毒问题线性规划、回归分析 07A 人口问题微分方程、数据处理、优化 07B 公交车问题多目标规划、动态规划、图 论、0-1规划 08A 照相机问题非线性方程组、优化 08B 大学学费问题数据收集和处理、统计分 析、回归分析 2009年A题制动器试验台的控制方法分析工程控制 2009年B题眼科病床的合理安排排队论,优化,仿真,综合评价2009年C题卫星监控几何问题,搜集数据 2009年D题会议筹备优化

2014 数学建模练习题

练习1 基础练习 一、矩阵及数组操作: 1.利用基本矩阵产生3×3和15×8的单位矩阵、全1矩阵、全0矩阵、均匀分布随机矩阵([-1,1]之间)、正态分布矩阵(均值为1,方差为4)。 2.利用fix及rand函数生成[0,10]上的均匀分布的10×10的整数随机矩阵a,然后统计a中大于等于5的元素个数。 3.在给定的矩阵中删除含有整行内容全为0的行,删除整列内容全为0的列。 二、绘图: 4.在同一图形窗口画出下列两条曲线图像: y1=2x+5;y2=x^2-3x+1, 并且用legend标注。 5.画出下列函数的曲面及等高线: z=x^2+y^2+sin(xy). 三、程序设计: 6.编写程序计算(x在[-3,3],间隔0.01) 7.有一列分数序列:

求前15项的和。 8.用至少三种方法编写函数实现求任意整数n的阶乘。 9.将任意大于6的偶数m写成两个素数p1、p2的和(试着写出所有的m=p1+p2的可能形式)。 10.是否任意3的倍数m可以写成两个素数p1、p2、p3的和(试着写出所有的m=p1+p2+p3 的可能形式)? 四、数据处理与拟合初步: 11.通过测量得到一组数据: 分别采用y=c1+c2e^(-t)和y=d1+d2te^(-t)进行拟合,并画出拟合曲线进行对比。 12.计算下列定积分: 13.微分方程组 当t=0时,x1(0)=1,x2(0)=-0.5,求微分方程t在[0,25]上的解,并

画出相空间轨道图像。 14.设通过测量得到时间t与变量y的数据: t=[0 0.3 0.8 1.1 1.6 2.3]; y=[0.5 0.82 1.14 1.25 1.35 1.41]; 分别采用多项式:y=a0+a1t+a2t2 和指数函数y=b0+b1e^t+b2te^t 进行拟合,并计算均方误差、画出拟合效果图进行比较。 15.观察函数:y=e^x-1.5cos(2*pi*x) 在区间[-1,1]上的函数图像,完成下列两题: (1)用函数fzero求解上述函数在[-1,1]的所有根,验证你的结果;(2)用函数fminbnd求解上述函数在[-1,1]上的极小、极大、最小和最大值,在函数图像 上标出你求得的最小值点作出验证。 注:可以用help fzero命令查看fzero的调用格式,fzero典型的调用方法是: fzero(@myfun,x0) %返回函数myfun在x0附近的根;fminbnd典型的调用方法是: fminbnd(@myfun,x1,x2) %返回函数myfun在区间[x1,x2]上的最小值。

数学建模数学模型作业题

一、对于6.4节蛛网模型讨论下列问题: (1)因为一个时段上市的商品不能立即售完,其数量也会影响到下一时段的价格,所以第1k +时段的价格1k y +由第1k +和k 时段的数量1k x +和k x 决定,如果设 1k x +仍只取决于k y ,给出稳定平衡的条件,并与6.4节的结果进行比较。 (2)若除了1k y +由1k x +和k x 决定之外, 1k x +也由前两个时段的价格k y 和1k y -确定,试分析稳定平衡的条件是否还会放宽。 解:(1)因为一个时段上市的商品不能立即售完,其数量也会影响到下一个时段的价格,所以第k+1时段的价格1+k y 由第k+1和第k 时段的数量1+k x 和k x 决定,设1k y +由1k x +和k x 的平均值决定,即二者平均值 2 1k k x x ++,模型为: 110 0100(),02(),0 k k k k k x x y y x x x y y ααββ++++? -=-->?? ?-=->? 由此可以得到 22022(1)k k k x x x x αβαβαβ++++=+, 其特征方程为 022=++αβαβλλ, 得出其特征根: 4 8--2 2,1αβ αβαβλ)(±= * 当8>αβ时,有: 4 -48---2 2αβ αβαβαβλ<=)( 由以上可算出: 2 2,1αβ λ= 即:2<αβ 所以与6.4节的结果相同,平衡点稳定的条件为2αβ<。 (2)设k x 也由k y 和1k y -的平均值决定,模型为: 1100110 0(),02 (),02 k k k k k k x x y y x y y x x y ααββ++-++? -=-->??? +?-=->??

数学建模选修大作业

中华女子学院 成绩2014 — 2015学年第二学期期末考试 (论文类) 论文题目数学建模算法之蒙特卡罗算法 课程代码 01 课程名称数学建模

学号 9 姓名陈可心 院系计算机系 专业计算机科学与技术 考试时间 2015年5月27日 一、数学建模十大算法 1、蒙特卡罗算法 该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法。接下来本文将着重介绍这一算法。 2、数据拟合、参数估计、插值等数据处理算法 比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具。 3、线性规划、整数规划、多元规划、二次规划等规划类问题 建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现。这个也是我们数学

建模选修课时主要介绍的问题,所以对这方面比较熟悉,也了解了Lindo、Lingo软件的基本用法。 4、图论算法 这类算法可以分为很多种,包括最短路、网络流、二分图等算法, 涉及到图论的问题可以用这些方法解决,上学期数据结构课程以及离散数学课程中都有介绍。它提供了对很多问题都很有效的一种简单而系统的建模方式。 5、动态规划、回溯搜索、分治算法、分支定界等计算机算法 这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法 这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。 7、网格算法和穷举法 网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。 8、一些连续离散化方法

数学建模试题及答案

数学专业(本科)《数学建模》 注意事项:1、本试卷共6页,满分100分,考试时间为120分钟。 2、答卷前将密封线内的项目填写清楚。 一、填空题(每题5分,共15分) 1.一个连通图能够一笔画出的充分必要条件是。2.设银行的年利率为0.2,则五年后的一百万元相当于现在的 万元. 3.在夏季博览会上,商人预测每天冰淇淋销量N将和下列因素有关: (1)参加展览会的人数n;(2)气温T超过10℃;(3)冰淇淋的售价由此建立的冰淇淋销量的比例模型应为。 二、简答题:(25分) 1、建立数学模型的基本方法有哪些?写出建模的一般步骤。(5分) 2、写出优化模型的一般形式和线性规划模型的标准形式。(10分) 2、数据拟合方法在数学建模过程中有什么意义?常见的数据拟合方法有哪些?(10分)

三、(每小题15分,共60分) 1、设某产品的供给函数)(p ?与需求函数)(p f 皆为线性函数: 9)(, 43)(+-=+=kp p f p p ? 其中p 为商品单价,试推导k 满足什么条件使市场稳定。 2、1968年,介壳虫偶然从澳大利亚传入美国,威胁着美国的柠檬生产。随后, 美国又从澳大利亚引入了介壳虫的天然捕食者——澳洲瓢虫。后来,DDT 被普通使用来消灭害虫,柠檬园主想利用DDT 进一步杀死介壳虫。谁料,DDT 同样杀死澳洲瓢虫。结果,介壳虫增加起来,澳洲瓢虫反倒减少了。试建立数学模型解释这个现象。 3、试建立人口Logistic(逻辑)模型,并说明模型中何参数为自然增长率,为什

么?4、建立捕鱼问题的模型,并通过求解微分方程的办法给出最大的捕捞量 数学建模参考答案

相关主题
文本预览
相关文档 最新文档