当前位置:文档之家› 等差数列、等比数列相关性质和公式以及数列的求和方法

等差数列、等比数列相关性质和公式以及数列的求和方法

等差数列、等比数列相关性质和公式以及数列的求和方法
等差数列、等比数列相关性质和公式以及数列的求和方法

等差、等比的公式性质以及数列的求和方法

第一节:等差数列的公式和相关性质

1、等差数列的定义:对于一个数列,如果它的后一项减去前一项的差为一个定值,则称这个数列为等差数列,记:d a a n n =--1(d 为公差)(2≥n ,*n N ∈)注:下面所有涉及n ,*n N ∈省略,你懂的。

2、等差数列通项公式:

1(1)n a a n d =+-,1a 为首项,d 为公差

推广公式:()n m a a n m d =+-

变形推广:m

n a a d m

n --= 3、等差中项

(1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:

2

b

a A +=

或b a A +=2

(2)等差中项:数列{}n a 是等差数列

)2(211-≥+=?+n a a a n n n 212+++=?n n n a a a

4、等差数列的前n 项和公式:

1()2n n n a a S +=

1(1)

2n n na d -=+ 211()2

2

d n a d n =+-2An Bn =+

(其中A 、B 是常数,所以当d ≠0时,S n 是关于n 的二次式且常数项为0)

特别地,当项数为奇数21n +时,1n a +是项数为2n+1的等差数列的中间项

()()()12121121212

n n n n a a S n a +++++=

=

+(项数为奇数的等差数列的各项

和等于项数乘以中间项)

5、等差数列的判定方法

(1) 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )? {}n a 是等差数列.

(2)等差中项:数列{}n a 是等差数列

)2(211-≥+=?+n a a a n n n 212+++=?n n n a a a

(3)数列{}n a 是等差数列?b kn a n +=(其中b k ,是常数)。

(4)数列{}n a 是等差数列?2n S An Bn =+,(其中A 、B 是常数)。 6、等差数列的证明方法

定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )? {}n a 是等差数列.

7、等差数列相关技巧:

(1)等差数列的通项公式及前n 和公式中,涉及到5个元素:1a 、

d

、n 、n a 及n S ,其中1a 、d 称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。

(2)设项技巧:

①一般可设通项1(1)n a a n d =+-

②奇数个数成等差,可设为…,2,,,,2a d a d a a d a d --++…(公差

为d );

③偶数个数成等差,可设为…,3,,,3a d a d a d a d --++,…(注意;公差为2d )

8、等差数列的性质:

(1)当公差0d ≠时,等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函数,且斜率为公差d ;前n 和

211(1)()222

n n n d d

S na d n a n -=+

=+-是关于n 的二次函数且常数项为0。

(2)若公差0d >,则为递增等差数列,若公差0d <,则为递减等差数列,若公差0d =,则为常数列。

(3)当m n p q +=+时,则有q p n m a a a a +=+,特别地,当2m n p +=时,则有2m n p a a a +=。(注:12132n n n a a a a a a --+=+=+=???,)当然扩充到3项、4项……都是可以的,但要保证等号两边项数相同,下标系

数之和相等。

(4){}n a 、{}n b 为等差数列,则{}{}12n n n a b a b λλλ++,都为等差数列 (5) 若{n a }是等差数列,则232,,n n n n n S S S S S -- ,…也成等差数列

(6) 数列{}n a 为等差数列,每隔k(k ∈*N )项取出一项(23,,,,m m k m k m k a a a a +++???)仍为等差数列

(7){}n a 、{}n b 的前n 和分别为n A 、n B ,则

21

21

n n n n a A b B --=

(8)等差数列{}n a 的前n 项和m S n =,前m 项和n S m =,则前m+n 项和()m n S m n +=-+,当然也有,n m a m a n ==,则0m n a +=

(9)求n S 的最值

法一:因等差数列前n 项和是关于n 的二次函数,故可转化为求二次函数的最值,但要注意数列的特殊性*n N ∈。

法二:(1)“首正”的递减等差数列中,前n 项和的最大值是所有非负项之和

即当,,001<>d a 由??

?≤≥+0

1n n a a 可得n S 达到最大值时的n 值.

(2) “首负”的递增等差数列中,前n 项和的最小值是所有非正项之和。

即 当,,001>

?≥≤+0

1n n a a 可得n S 达到最小值时的n 值.

或求{}n a 中正负分界项

法三:直接利用二次函数的对称性:由于等差数列前n 项和的图像是过原点的二次函数,故n 取离二次函数对称轴最近的整数时,n S 取最大值(或最小值)。若S p = S q 则其对称轴为2

p q

n +=

注意:1(2)n n n S S a n --=≥,对于任何数列都适用,但求通项时记住讨论当1n =的情况。

解决等差数列问题时,通常考虑两类方法:

①基本量法:即运用条件转化为关于1a 和d 的方程; ②巧妙运用等差数列的性质,一般地运用性质可以化繁为简,减少运算量。(以上加上蓝色的性质希望读者能够自己证明,不是很难,并能够学会运用)

第二节:等比数列的相关公式和性质

1、等比数列的定义:()()1

2n

n a q q n a -=≠≥0,q 为公比 2、通项公式:

11n n a a q -=,1a 为首项,q 为公比

推广公式:n m n m a a q -=, 从而得n m n

m

a q a -= 3、等比中项

(1)如果,,a A b 成等比数列,那么A 叫做a 与b 的等差中项.即:

2A ab =或A ab =±

注意:同号的两个数才有等比中项,并且它们的等比中项

有两个(两个等比中项互为相反数)

(2)数列{}n a 是等比数列?211n n n a a a -+=? 4、等比数列的前n 项和n S 公式: (1) 当1q =时, 1n S na = (2) 当1q ≠时,()11111n n n a q a a q

S q

q

--==-- 11''11n n n a a

q A A B A B A q q

=

-=-?=---(,,','A B A B 为常数) 5、等比数列的判定方法

(1)用定义:对任意的n,都有1

1(0)n n n n n

a a qa q q a a ++==≠或为常数,?{}n a 为等比数列

(2) 等比中项:211n n n a a a +-=(11n n a a +-≠0)?{}n a 为等比数列 (3) 通项公式:()0n n a A B A B =??≠?{}n a 为等比数列 (4) 前n 项和公式:

()'',,','n n n n S A A B S A B A A B A B =-?=-或为常数?{}n a 为等比数列

6、 等比数列的证明方法 依据定义:若

()()*1

2,n

n a q q n n N a -=≠≥∈0且或1n n a qa +=?{}n a 为等比数列 7、等比数列相关技巧:

(1)等比数列的通项公式及前n 和公式中,涉及到5个元素:1a 、

q 、n 、n a 及n S ,其中1a 、q 称作为基本元素。只要已知这

5个元素中

的任意3个,便可求出其余2个,即知3求2。

(2)为减少运算量,要注意设项的技巧,一般可设为通项:

11n n a a q -=

如奇数个数成等比,可设为…,

2

2

,,,,a a a aq aq q q

…(公比为q ,中间项用a 表示);注意隐含条件公比q 的正负 8、等比数列的性质: (1) 当1q ≠时

①等比数列通项公式()1110n n

n n a a a q q A B A B q

-==

=??≠是关于n 的带有系数的类指数函数,底数为公比q ②前n 项和()111111''1111n n n n n n a q a a q a a S q A A B A B A q

q q q

--=

=-=-?=-----,系

数和常数项是互为相反数的类指数函数,底数为公比q

(2) 对任何m,n ∈*N ,在等比数列{}n a 中,有n m n m a a q -=,特别的,当m=1时,便得到等比数列的通项公式。因此,此公式比等比数列的通项公式更具有一般性。

(3) 若m n s t +=+(,,,m n s t ∈*N ),则n m s t a a a a ?=?。特别的,当2m n k +=时,得2n m k a a a ?=

注:12132n n n a a a a a a --?=?=???

(4) 列{}n a ,{}n b 为等比数列,则数列{}n

k a ,{}n k a ?,{}k n a ,{}n n k a b ??{}n n

a b (k 为非零常数) 均为等比数列。

(5) 数列{}n a 为等比数列,每隔k(k ∈*N )项取出一项(23,,,,m m k m k m k a a a a +++???)仍为等比数列

(6) 如果{}n a 是各项均为正数的等比数列,则数列{log }a n a 是等差数列 (7) 若{}n a 为等比数列,则数列n S ,2n n S S -,32,n n S S -???,成等比数列 (8) 若{}n a 为等比数列,则数列12n a a a ??????,122n n n a a a ++??????,

21223n n n a a a ++???????成等比数列

(9) ①当1q >时, ②当1q <0<时,

110{}0{}{n n a a a a ><,则为递增数列

,则为递减数列, 110{}0{}{n n a a a a ><,则为递减数列,则为递增数列

③当q=1时,该数列为常数列(此时数列也为等差数列); ④当q<0时,该数列为摆动数列。

(10)在等比数列{}n a 中, 当项数为2n (n ∈*N )时,

1

S S q

=奇偶,。 (11)若{}n a 是公比为q 的等比数列,则n n m n m S S q S +=+?

注意:在含有参数的数列时,若是等比数列,一定要考虑到公比1q =的特殊情况。

解决等比数列问题时,通常考虑两类方法:

①基本量法:即运用条件转化为关于1a 和q 的方程; ②巧妙运用等比数列的性质,一般地运用性质可以化繁为简,减少运算量。

关于等差、等比两个引申:1n n a ka b -=+模式(其中,k b 为常数,

2n ≥);1n n n a pa p -=+模式(其中p 为常数,2n ≥)

在这里我们以具体的例子给出,使其更容易理解:

例1 已知数列{}n a ,有134n n a a -=+(2n ≥),则求该数列的通项公式

解题大致思路:先设13()n n a b a b -+=+,则对于134n n a a -=+?123(2)n n a a -+=+,那么我们就可以构造数列{}2n a +为等比数列,利用等比的相关性质去解决,注意:构造新数列的首项和公比分别是多少?还有你考虑到当1n =的这种情况了吗?

例2 已知数列{}n b ,有122n n n b b -=+(2n ≥),求该数列的通项公式 解题的大致思路:122n n n b b -=+(2n ≥)?

12122n n n n b b -=+?1

1

122n n n n b b --=+,相信你已经知道构造什么数列了吧,这两个模式考试中喜欢考,也比较基础,当然也希望通过这两个

模式能让你意识到求数列中的构造思想。

第三节:数列的求和方法(引用别人的,稍加改进)

一、教学目标:1、熟练掌握等差数列与等比数列的求和公式;

2、能运用倒序相加、错位相减、拆项相消等重要的数学方法进行求和运算;

3、熟记一些常用的数列的和的公式. 二、教学重点:特殊数列求和的方法.

三、教学过程:

(一)主要知识:

1、直接法:即直接用等差、等比数列的求和公式求和。

(1)等差数列的求和公式:d n n na a a n S n n 2

)

1(2)(11-+=+=

(2)等比数列的求和公式?????≠--==)

1(1)1()1(11q q

q a q na S n

n (切记:公比含参数时一定要讨论)

2、公式法:

2

2222

1

(1)(21)

1236

n

k n n n k

n =++

=++++=

∑ (证明利用立方差公式,

332(1)331n n n n +-=++,将1,2,3n n 用

替换,错位相消即可整体得出) 2

33333

1

(1)1232n

k n n k n =+??=++++=????∑ (证明利用4方差,原理同上) 3、错位相减法:比如{}{}.,,2211的和求等比等差n n n n b a b a b a b a +++ 4、裂项相消法:把数列的通项拆成两项之差、正负相消剩下首尾若干项。 常见拆项公式:

11

1)1(1+-=+n n n n ;

1111

()(2)22

n n n n =-++

)1

21

121(21)12)(12(1+--=+-n n n n !)!1(!n n n n -+=?

5、分组求和法:把数列的每一项分成若干项,使其转化为等差或等比数列,再求和。

6、合并求和法:如求2

2222212979899100-++-+- 的和。 7、倒序相加法:如求2222sin 1sin 2sin 3sin 89++++

的和。

8、其它求和法:如归纳猜想法,奇偶法等等 (二)主要方法:

1、求数列的和注意方法的选取:关键是看数列的通项公式;

2、求和过程中注意分类讨论思想的运用;

3、转化思想的运用; (三)例题分析:

例1.求和:①

n n S 111111111++++= ②22222)1

()1()1(n n n x

x x x x x S ++++++

= ③求数列1,3+4,5+6+7,7+8+9+10,…前n 项和n S 思路分析:通过分组,直接用公式求和。

解:①)110(9

110101011112-=++++==k

k

k k a

]

)101010[(9

1

)]110()110()110[(9122n S n n n -+++=-++-+-= 81

10910]9)110(10[911--=--=+n n n n ②)21()21()21(224422+++++++++

=n

n

n x x x x x x S n x

x x x x x n n 2)1

11()(242242++++++++=

(1)当1±≠x 时,n x x x x n x x x x x x S n n n n n n 2)

1()

1)(1(21)1(1)1(2

2222222222+-+-=+--+--=+--- (2)当n S x n 4,1=±=时 ③

k

k k k k k k k k k a k 2

3

252)]23()12[()]1()12[()12(2)12(2-=-+-=

-+-+++++-=

2

)

1(236)12)(1(25)21(23)21(2522221+-++?=+++-+++=

+++=n n n n n n n a a a S n n

)25)(1(6

1

-+=

n n n 总结:运用等比数列前n 项和公式时,要注意公比11≠=q q 或讨论。 2、错位相减法求和

例2.已知数列)0()12(,,5,3,11

2

≠--a a

n a a n ,求前n 项和。

思路分析:已知数列各项是等差数列1,3,5,…2n-1与等比数列1

2

,,,,-n a a a a 对应项

积,可用错位相减法求和。 解

()1)12(53112--++++=n n a n a a S

()2)12(5332n

n a n a a a aS -++++=

()()n n n a n a a a a S a )12(22221)1(:21132--+++++=---

n

n n n a a a S a a )12()

1()1(21)1(,12

1----+=-≠-时 2

1

)

1()12()12(1a a n a n a S n n n --++-+=+ 当2,1n S a n ==时

3、裂项相消法求和

例3.求和)

12)(12()2(5343122

22+-+

+?+?=n n n S n 思路分析:分式求和可用裂项相消法求和.

:

)1

21

121(211)12)(12(11)12)(12(11)2()12)(12()2(22+--+=+-+=+-+-=+-=k k k k k k k k k k a k

1

2)1(2)1211(21)]121121()5131()311[(2121++=

+-+=+--++-+-+=+++=n n n n n n n n a a a S n n 练习:求n n a n a a a S ++++= 32321 答案: ???

????≠----=+=)1()1()1()1()1(2

)

1(2a a a a n a a a n n S n n n

4、倒序相加法求和

例4求证:n n

n n n n n C n C C C 2)1()12(53210+=+++++ 思路分析:由m n n

m n C C -=可用倒序相加法求和。 证:令)1()12(53210n n

n n n n C n C C C S +++++=

则)2(35)12()12(0

121n

n n n n n n n C C C C n C n S ++++-++=- m

n n

m n C C -= n

n n n n n C n C n C n C n S )22()22()22()22(2:)2()1(210++++++++=+∴ 有 n n

n n n n n n C C C C n S 2)1(])[1(210?+=+++++=∴ 等式成立

5、其它求和方法

还可用归纳猜想法,奇偶法等方法求和。 例5.已知数列{}n n n n S n a a 求],)1([2,---=。

思路分析:n n n a )1(22---=,通过分组,对n 分奇偶讨论求和。

解:n

n n a )1(22-+-=,若∑=-+++++-===m

k k

m n m S S m n 21

2)

1(2

)2321(2,2 则

)1(2)12()2321(2+-=+-=++++-=n n m m m S n

)

12(22)12(])1(2[22)12(,1222212-++-=--++-=-==-=-m m m m m m a S S S m n m m m m n 则

22)1()1(224222---=-+++-=-+-=n n n n m m

???---+-=∴)

(2)()

1(2

为正奇数为正偶数n n n n n n S n 预备:已知n n n a a a a x a x a x a x f ,,,,)(321221且+++=成等差数列,n 为正偶数, 又n f n f =-=)1(,)1(2,试比较)2

1(f 与3的大小。

解:???=+-+-+-=-=++++=-n a a a a a f n a a a a f n n n 13212

321)1()1( ???==+∴??

???==+∴2222)(1

2

1d n a a n d n n n a a n n 1212

2)1(111-=∴=∴???==-++∴n a a d n

d n a a n n

n

n f x n x x x x f )2

1

)(12()21(5)21(321)21()12(53)(3232-++++=-++++=

可求得n n n f )2

1)(12()

21(3)21(2

---=-,∵n 为正偶数,3)2

1

(<∴f

(四)巩固练习:

1.求下列数列的前n 项和n S :

(1)5,55,555,5555,…,5(101)9n

-,…; (2)

1111,,,,,132435(2)

n n ???+ ; (3)1

1

n a n n =

++; (4)23,2,3,,,n a a a na ;

(5)13,24,35,,(2),n n ???+ ; (6)2222sin 1sin 2sin 3sin 89++++ .

解:(1)555555555n n S =++++ 个5(999999999)9

n =++++

235

[(101)(101)(101)(101)]9n =-+-+-++- 235505

[10101010](101)9819n n n n =++++-=-- . (2)∵

1111

()(2)22n n n n =-++, ∴11111111[(1)()()()]2324352n S n n =-+-+-++-

+ 1111

(1)2212

n n =+--++. (3)∵1111(1)(1)

n n n

a n n n n n n n n +-===+-+++++-

∴111

21321n S n n

=

+++

++++ (21)(32)(1)n n =-+-+++- 11n =+-.

(4)2323n n S a a a na =++++ ,

当1a =时,123n S =+++ (1)

2

n n n ++=,

当1a ≠时,2323n S a a a =+++…n na + ,

23423n aS a a a =+++…1n na ++,

两式相减得 2

3

(1)n a S a a a -=+++ (1)

1(1)1n n

n n a a a na

na a

++-+-=--,

∴212

(1)(1)

n n n na n a a

S a ++-++=-. (5)∵2(2)2n n n n +=+,

∴ 原式222(123=+++…2)2(123n ++?+++…)n +(1)(27)

6

n n n ++=.

(6)设2222sin 1sin 2sin 3sin 89S =++++ ,

又∵2222sin 89sin 88sin 87sin 1S =++++

, ∴ 289S =,892

S =

. 2.已知数列{}n a 的通项65()2

()

n n

n n a n -?=?

?为奇数为偶数,求其前n 项和n S .

解:奇数项组成以11a =为首项,公差为12的等差数列, 偶数项组成以24a =为首项,公比为4的等比数列; 当n 为奇数时,奇数项有

12n +项,偶数项有1

2

n -项, ∴1

121(165)

4(14)(1)(32)4(21)221423

n n n n n n n S --++--+--=+=+

-, 当n 为偶数时,奇数项和偶数项分别有2

n

项,

∴2(165)

4(14)(32)4(21)221423n n n n n n n S +----=+=+

-, 所以,1(1)(32)4(21)

()23

(32)4(21)()23n n n

n n n S n n n -?+--+??=?--?+??

为奇数为偶数.

四、小结:

1、掌握各种求和基本方法;

2、利用等比数列求和公式时注意分11≠=q q 或讨论。

其实学习数列并不难,只要能熟练掌握以上基本性质和公式灵活运用,多加练习,基本上能解决高中所有数列问题了。

等差、等比数列公式总结

一、等差数列 1.定义:)(1常数d a a n n =-+ 2.通项公式:d n a )1(a 1n -+= 3.变式:d m n a m n )(a -+= m n a a d m n --= 4.前n 项和:2 )(1n a a S n n += 或 d n n n a S n 2)1(1-+= 5.几何意义: ①d dn a d n a a n -+=-+=11)1(即q pn a n += 类似 q px y += ②n d a n d S n )2 (212-+= 即 Bn An S n +=2 类似 Bx Ax y +=2 6.}{n a 等差d a a a a a Bn An S q pn a n n n n n n n =-?+= ?+=?+=?++-11122 7.性质 ① q p n m +=+则 q p n m a a a a +=+ ② p n m 2=+ 则 p n m a a a 2=+ ③ =+=+=+--23121n n n a a a a a a ④ m S 、m -m 2S 、2m -m 3S 等差 ⑤ }{n a 等差,有12+n 项,则 n S S 1n +=偶奇 ⑥ 1212-= -n S a n n 二、等比数列 1.定义:常数)(a 1q a n n =+ 2.通项公式:11a -=n n q a 3.变式: m n m n q a -=a m n m n q a a -= 4. ?????≠--==)1( 1)1()1( 11q q q a q na S n n

前n 项和:n a S n 1= )1(=q 或 q q a S n n --=11() 1 )1(≠q 5.变式:m n m n q q S S --=11 )1(≠q 6.性质: ① r p n m +=+则 r p n m a a a a ?=? ② p n m 2=+ 则 2 p n m a a a =? ③ =?=?=?--23121n n n a a a a a a ④ m S 、m -m 2S 、2m -m 3S 等比 ⑤ }{n a 等比,有12+n 项 偶奇qS a a a a q a a a a S n n +=++++=++++=+1242112531)(a 三、等差与等比的类比 {}n a 等差 {}n b 等差 和 积 差 商 系数 指数 “0” “1” 四、数列求和 1.分组求和 本数列的和公式求和.进行拆分,分别利用基,则可或等比数列的和的形式数列,但通项是由等差通项虽不是等差或等比 项的和: 前如求n n n )}1({+ )2)(1(3 1 )1(21)12)(1(61 )321()321( ) ()22()11(] )1(22222222++=++++=++++++++=++++++=∴+=+n n n n n n n n n n n n S n n n n n 2.裂项相消法. ).11(11}{1 1 11+++-=??n n n n n n n a a d a a a n a a 为等差数列,项和,其中的前项为用于通 从而计算和的方法,适别裂开后,消去一部分把数列和式中的各项分

等差、等比数列以及数列求和专题(汇编)

§6.2 等差数列 一.课程目标 1.理解等差数列的概念; 2.掌握等差数列的通项公式与前n 项和公式; 3.能在具体的问题情境中识别数列的等差关系,并能用等差数列的有关知识解决相应的问题; 4.了解等差数列与一次函数的关系. 二.知识梳理 1.定义 如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示. 数学语言表达式:a n +1-a n =d (n ∈N *,d 为常数),或a n -a n -1=d (n ≥2,d 为常数). 2.通项公式 若等差数列{a n }的首项是a 1,公差是d ,则其通项公式为a n =a 1+(n -1)d . 3.前n 项和公式 等差数列的前n 项和公式:2 2111)() (n n a a n d n n na S +=-+=其中n ∈N *,a 1为首项,d 为公差,a n 为第n 项). 3.等差数列的常用性质 已知数列{a n }是等差数列,S n 是{a n }的前n 项和.

(1)通项公式的推广:*),()(N m n d m n a a m n ∈-+= (2)若m +n =p +q (m ,n ,p ,q ∈N *),则有q p n m a a a a +=+。特别的,当p n m 2=+时,p n m a a a 2=+ (3)等差数列{a n }的单调性:当d >0时,{a n }是递增数列;当d <0时,{a n }是递减数列;当d =0时,{a n }是常数列. (4)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列. (5)若}{},{n n b a 是等差数列,则}{n n qb pa +仍是等差数列. 4.与等差数列各项和相关的性质 (1)若}{n a 是等差数列,则}{n S n 也是等差数列, 其首项与}{n a 的首项相同,公差为}{n a 的公差的 2 1。 (2)数列m m m m m S S S S S 232--,,…也是等差数列. (3)关于非零等差数列奇数项与偶数项的性质。 a .若项数为n 2,则1 +==-n n a a S S nd S S 偶奇奇偶, 。 b .若项数为12-n ,则n a n n S )(1-=偶,n na S =奇,1 += =-n n S S a S S n 偶奇奇偶, 。 (4)若两个等差数列}{},{n n b a 的前n 项和分别为n n T S ,,则 1 21 2--=n n n n T S b a 5.等差数列的前n 项和公式与函数的关系: (1)n d a n d S )(2 212-+= ,数列{a n }是等差数列? S n =An 2+Bn (A ,B 为常数). (2)在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值.

等差数列的性质、求和知识点及训练

等差数列的性质、求和知识点及训练 重点:掌握等差数列的通项公式、求和公式以及等差中项的求法 难点:对等差数列的综合考察 一知识梳理 1.定义:d a a n n =--1(d 为常数)(2≥n ); 2.等差数列通项公式: * 11(1)()n a a n d dn a d n N =+-=+-∈ , 首项:1a ,公差:d ,末项:n a 推广: d m n a a m n )(-+=. 从而m n a a d m n --=; 3.等差中项 (1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2 b a A += 或b a A +=2 ( 2 ) 等 差 中 项 : 数 列 {} n a 是等差数列 )2(211-≥+=?+n a a a n n n 212+++=?n n n a a a 4.等差数列的前n 项和公式: 1()2n n n a a s += 1(1)2n n na d -=+211 ()22 d n a d n =+-2An Bn =+ (其中A 、B 是常数) (当d ≠0时,S n 是关于n 的二次式且常数项为0) 5.等差数列的判定方法 (1)定义法:若d a a n n =--1或d a a n n =-+1(常数* ∈N n )? {}n a 是等差数 列.

(2)等差中项:数列 {} n a 是等差数列 )2(211-≥+=?+n a a a n n n 212+++=?n n n a a a . (3)数列{}n a 是等差数列?b kn a n +=(其中b k ,是常数)。 (4)数列{}n a 是等差数列?2 n S An Bn =+,(其中A 、B 是常数)。 6.等差数列的证明方法 定义法:若d a a n n =--1或d a a n n =-+1(常数* ∈N n )? {}n a 是等差数列. 7.提醒:(1)等差数列的通项公式及前n 和公式中,涉及到5个元素:1a 、d 、 n 、n a 及n S ,其中1a 、d 称作为基本元素。只要已知这5个元素中的任意3个,便 可求出其余2个,即知3求2。 (2)通常把题中条件转化成只含1a 和d 的等式! 8.等差数列的性质: (1)若公差0d >,则为递增等差数列,若公差0d <,则为递减等差数列,若公差 0d =,则为常数列。 (2)当m n p q +=+时,则有q p n m a a a a +=+,特别地,当2m n p +=时,则有 2m n p a a a +=. (3) 若{n a }是等差数列,则232,,n n n n n S S S S S -- ,…也成等差数列 (公差为md ) 图示: m m m m m m S S S m m S S m m S m a a a a a a a a 323231221321-+-+++++++++++ (4)若等差数列{}n a 、{}n b 的前n 和分别为n A 、n B ,且()n n A f n B =, 则 21 21 (21)(21)(21)n n n n n n a n a A f n b n b B ---===--. (5)若{}n a 、{}n b 为等差数列,则{}n n a b ±为等差数列 (6)求n S 的最值 法一:直接利用二次函数的对称性:由于等差数列前n 项和的图像是过原点的二次函数,故n 取离二次函数对称轴最近的整数时,n S 取最大值(或最小值)。若S p = S q 则

等比数列的求和公式

等比数列的求和公式 一、 基本概念和公式 等比数列的求和公式: q q a n --1)1(1 (1≠q ) q q a a n --11(1≠q ) n S = 或 n S = 1na (q = 1) 即如果q 是否等于1不确定则需 要对q=1或1≠q 推导性质:如果等差数列由奇数项,则S 奇-S 偶=a 中 ;如果等差数列由奇数项,则S 偶-S 奇= d n 2 。 二、 例题精选: 例1:已知数列{n a }满足:43,911=+=+n n a a a ,求该数列的通项n a 。 例2:在等比数列{n a }中,36,463==S S ,则公比q = 。 - 例3:(1)等比数列{n a }中,91,762==S S ,则4S = ; (2)若126,128,66121===+-n n n S a a a a ,则n= 。

例4:正项的等比数列{n a }的前n 项和为80,其中数值最大的项为54,前2n 项的和为6560,求数列的首项1a 和公比q 。 例5:已知数列{n a }的前n 项和n S =1-n a ,(a 是不为0的常数),那么数列{n a }是? 例6:设等比数列{n a }的前n 项和为n S ,若9632S S S =+,求数列的公比q 。 例7:求和:)()3()2()1(32n a a a a n ----+-+-+-。 例8:在 n 1和n+1之间插入n 个正数,使这n+2个数成等比数列,求插入的n 个数的积。 例9:对于数列{n a },若----------,,,,,123121n n a a a a a a a 是首项为1,公比为31的等比数列,求:(1) n a ;(2) n a a a a +---+++321。

等差数列求和公式的

等差数列求和公式的 问题1:著名数学家高斯10岁时,曾解过一道题:1+2+3+…+100=?你们知道怎么解吗? 问题2:1+2+3+…+n=? 在探求中有学生问:n是偶数还是奇数?教师反问:能否避免奇偶讨论呢?并引导学生从问题1感悟问题的实质:大小搭配,以求平衡 设=1+2+3+…+n ,又有= + + +…+1 = + + +…+ ,得= 问题3:等差数列= ? 学生容易从问题2中获得方法(倒序相加法)。但遇到= = =…=呢?利用等差数列的定义容易理解这层等量关系,进一步的推广可得重要结论:m+n=p+q 问题4:还有新的方法吗? (引导学生利用问题2的结论),经过讨论有学生有解法:设等差数列的公差为d,则= +()+()+…+[ ] = = (这里应用了问题2的结论) 1 ————来源网络整理,仅供供参考

问题5:= = ? 学生容易从问题4中得到联想:= = 。显然,这又是一个等差数列的求和公式。 等差数列的求和对初学数列求和的离学生的现有发展水平较远,教师通过“弱化”的问题1和问题2将问题转化到学生的最近发展区内,由于学生的最近发展区是不断变化的,学生解决了问题2,就说明学生的潜在的发展水平已经转化为其新的现有发展水平,在新的现有发展水平基础上教师提出了问题3,学生解决了问题3,他们潜在的发展水平已经转化为其新的现有发展水平,在此基础上教师提出了问题4,这个案例的设计体现教师搭“脚手架”的作用不可低估,教师自始至终都应坚持“道而弗牵,强而弗抑,开而弗达”(《礼记·学记》),诱导学生自己探究数学结论, 处理好“放”与“扶”的关系。 ————来源网络整理,仅供供参考 2

第二讲:等差数列及求和公式(教师)

第二讲:等差数列、等比数列的通项公式 【知识结构】 1、等差数列的定义:一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数 d (与项数n无关),这个数列就叫做等差数列,这个常数就叫做等差数列的公差。 等差数列的递推公式为:即 a n a n 1 d,n 2,n N (d为常数)/a ni a n d,n N /,这就是一个恒等式,数列 中的恒等式一定要注意变量的范围,即项数n的范围。 a b 2、等差中项:如果a,A,b成等差数列,那么A叫做a与b的等差中项,且A - 2 3、等差数列的通项公式:a n a i (n 1)d dn 佝d)。当d 0时,从函数的角度 看,等差数列的通项公式是关于n的一次函数,它的图象是在一条直线的散点。 【典型例题】 例1、(1)已知等差数列{a n}中,a12,公差为3,则通项公式a n3n 1。 (2)已知等差数列{a n}中,a2 3,a4 7,则通项公式a n2n1。 (3)已知等差数列{a n}中,2a2 a31,a7 a8 20 ,a k15,则k 10。 (4)在等差数列a n中,若a1 a4a$ a12 a15 2 则2。 解:⑶设a1,公差d 3a1 4d 1 2耳13d 20,解得[c3 a n 2n d 2 5k 10 等差数列的通项公式的作用是把等差数列中的任意一项用首项和公差表示。练习:P7自主练习中的1,2,3(2)(3)(4),4 。 例2、 (1 ) a n 1a n2,n N*; (2 ) 满足2a n 1a n 2 a n, n N * ; (3 )a n 1a n n,n N * 满足条件(2),数列{a n}是等差数列。

学习等差数列求和公式的四个层次

学习等差数列求和公式的四个层次 黑龙江大庆实验中学(163311)毕明黎 等差数列前n 项和公式d n n na n a a S n n 2 )1(2 )(11-+ =+= ,是数列部分最重要公式之一,学习 公式并灵活运用公式可分如下四个层次: 1.直接套用公式 从公式d n n na n a a n a a S m n m n n 2 )1(2 )(2 )(111-+ =+= += +-中,我们可以看到公式中出现了五 个量,包括,,,,,1n n S n a d a 这些量中已知三个就可以求另外两个了.从基本量的观点认识公式、理解公式、掌握公式这是最低层次要求. 例1 设等差数列{}n a 的公差为d,如果它的前n 项和2 n S n -=,那么( ).(1992年三南高考试 题) (A)2,12-=-=d n a n (B)2,12=-=d n a n (C)2,12-=+=-d n a n (D)2,12=+-=d n a n 解法1 由于2n S n -=且1--=n n n S S a 知,,12)1(2 2+-=-+-=n n n a n ],1)1(2[121+---+-=-=-n n a a d n n ,2-=d 选(C). 解法2 ,2 ) 1(2 1n d n n na S n -=-+ = 对照系数易知,2-=d 此时由2 1)1(n n n na -=--知,11-=a 故,12+-=n a n 选(C). 例2 设n S 是等差数列{}n a 的前n 项和,已知33 1S 与 44 1S 的等比中项为 55 1S , 33 1S 与 44 1S 的等 差中项为1,求等差数列{}n a 的通项n a .(1997年全国高考文科) 解 设{}n a 的通项为,)1(1d n a a n -+=前n 项和为.2 )1(1d n n na S n -+= 由题意知?????=+=? 241 3 1)51(4131432 54 3S S S S S ,

等差、等比数列与数列求和

高考专题突破三 高考中的数列问题 第1课时 等差、等比数列与数列求和 题型一 等差数列、等比数列的交汇 例1 记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=-6. (1)求{a n }的通项公式; (2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列. 解 (1)设{a n }的公比为q . 由题设可得????? a 1(1+q )=2, a 1(1+q +q 2)=-6. 解得q =-2,a 1=-2. 故{a n }的通项公式为a n =(-2)n . (2)由(1)可得 S n =a 1(1-q n )1-q =-23+(-1)n 2n + 13. 由于S n +2+S n +1=-43+(-1)n 2n + 3-2n + 23 =2????-23+(-1)n 2n + 13=2S n , 故S n +1,S n ,S n +2成等差数列. 思维升华 等差与等比数列的基本量之间的关系,利用方程思想和通项公式、前n 项和公式求解.求解时,应“瞄准目标”,灵活应用数列的有关性质,简化运算过程. 跟踪训练1 (2019·鞍山模拟)已知公差不为0的等差数列{a n }的前n 项和为S n ,S 1+1,S 3,S 4成等差数列,且a 1,a 2,a 5成等比数列. (1)求数列{a n }的通项公式; (2)若S 4,S 6,S n 成等比数列,求n 及此等比数列的公比. 解 (1)设数列{a n }的公差为d 由题意可知???? ? 2S 3=S 1+1+S 4,a 22=a 1a 5, d ≠0, 整理得????? a 1=1,d =2a 1 ,即???? ? a 1=1,d =2, ∴a n =2n -1.

等比数列和等差数列公式

等比数列:是一种特殊数列。它的特点是:从第2项起,每一项与前一项的比都是一个常数。称为公比,符号为q。 公比公式 根据等比数列的定义可得: 通项公式 我们可以任意定义一个等比数列 这个等比数列从第一项起分别是,公比为q,则有: a2 = a1q, a3 = a2q = a1q2, a4 = a3q = a1q3, , 以此类推可得,等比数列的通项公式为: a n = a n ? 1q = a1q n ? 1, 求和公式 对于上面我们所定义的等比数列,即数列。我们将所有项进行累加。 于是把称为等比数列的和。记为: 如果该等比数列的公比为q,则有: (利用等比数列通项公式)(1) 先将两边同乘以公比q,有: (1)式减去该式,有: (q ? 1)S n = a1? a1q n (2) 然后进行一定的讨论 当时,

而当q = 1时,由(2)式无法解得通项公式。 但我们可以发现,此时: = na1 ?综上所述,等比数列的求和公式为: ?经过推导,可以得到另一个求和公式:当q≠1时 (更正:分母为1-q) 当时, 等比数列无限项之和 由于当及n 的值不断增加时,q n的值便会不断减少而且趋于0,因此无限项之和: (更正:分母为1-q)性质 如果数列是等比数列,那么有以下几个性质: ? 证明:当时, ?对于,若,则 证明: ∵ ∴

?等比中项:在等比数列中,从第二项起,每一项都是与它等距离的前后两项的等比中项。即等比数列中有三项,,,其中,则有 ?在原等比数列中,每隔k项取出一项,按原来顺序排列,所得的新数列仍为等比数列。 ?也成等比数列。 等差数列 等差数列是数列的一种。在等差数列中,任何相邻两项的差相等。该差值称为公差。例如数列 就是一个等差数列。在这个数列中,从第二项起,每项与其前一项之差都等于2,即公差为2。 通项公式 如果一个等差数列的首项标为,公差标为,那么该等差数列第项的表达式为: . 等差数列的任意两项之间存在关系: 等差中项 给定任一公差为的等差数列。从第二项开始,前一项加后一项的和的値为该项的两倍。例: 证明: 设, 则 ∵(矛盾) ∴ 证毕

等差数列(通项+求和+性质)

等差数列复习 1、数列的概念:数列是一个定义域为正整数集N*(或它的有限子集{1,2,3,…,n })的特殊函数,数列的通项公式也就是相应函数的解析式。 例1.根据数列前4项,写出它的通项公式: (1)1,3,5,7……; (2)2212-,2313-,2414-,2515 -; (3)11*2-,12*3,13*4-,14*5。 解析:(1)n a =21n -; (2)n a = 2(1)11n n +-+; (3)n a = (1)(1) n n n -+。 点评:每一项序号与这一项的对应关系可看成是一个序号到另一个数集的对应关系,这对考生的归纳推理能力有较高的要求。 如(1)已知*2()156n n a n N n = ∈+,则在数列{}n a 的最大项为__ ; (2)数列}{n a 的通项为1 +=bn an a n ,其中b a ,均为正数,则n a 与1+n a 的大小关系为___; (3)已知数列{}n a 中,2n a n n λ=+,且{}n a 是递增数列,求实数λ的取值范围; 2、等差数列的判断方法:定义法1(n n a a d d +-=为常数)或11(2)n n n n a a a a n +--=-≥。 例2.设S n 是数列{a n }的前n 项和,且S n =n 2,则{a n }是( ) A.等比数列,但不是等差数列 B.等差数列,但不是等比数列 C.等差数列,而且也是等比数列 D.既非等比数列又非等差数列 答案:B ; 解法一:a n =???≥-==????≥-=-)2( 12)1( 1) 2( )1( 11n n n a n S S n S n n n ∴a n =2n -1(n ∈N ) 又a n +1-a n =2为常数,1 2121-+=+n n a a n n ≠常数 ∴{a n }是等差数列,但不是等比数列. 解法二:如果一个数列的和是一个没有常数项的关于n 的二次函数,则这个数列一定是等差数列。 点评:本题主要考查等差数列、等比数列的概念和基本知识,以及灵活运用递推式a n =S n -S n -1的推理能力.但不要忽略a 1,解法一紧扣定义,解法二较为灵活。

初二数学等差数列求和公式

初二数学等差数列求和公式 各科成绩的提高是同学们提高总体学习成绩的重要途径,大家一定要在平时的练习中不断积累,小编为大家整理了八年级数学等差数列求和公式,希望同学们牢牢掌握,不断取得进步! 公式 Sn=(a1+an)n/2 (首项+末项)X项数2 Sn=na1+n(n-1)d/2; (d为公差) Sn=An2+Bn; A=d/2,B=a1-(d/2) Sn=[2a1+(n-1)d] n/2 和为 Sn 首项 a1 末项 an 公差d 项数n 等差数列公式an=a1+(n-1)d 前n项和公式为:Sn=(a1+an)n/2=na1+n(n-1)d/2 假设m+n=p+q那么:存在am+an=ap+aq 假设m+n=2p那么:am+an=2ap 以上n均为正整数 文字翻译 第n项的值an=首项+(项数-1)公差

前n项的和Sn=首项+末项项数(项数-1)公差/2 公差d=(an-a1)(n-1) 项数=(末项-首项)公差+1 数列为奇数项时,前n项的和=中间项项数 数列为偶数项,求首尾项相加,用它的和除以2 等差中项公式2an+1=an+an+2其中{an}是等差数列 通项 首项=2和项数-末项 末项=2和项数-首项 末项=首项+(项数-1)公差:a1+(n-1)d 项数=(末项-首项)/ 公差+1 :n=(an-a1)/d+1 公差= d=(an-a1)/(n-1) 如:1+3+5+7+99 公差就是3-1 将a1推广到am,那么为: d=(an-am)/(n-m) 性质: 假设 m、n、p、qN ①假设m+n=p+q,那么am+an=ap+aq ②假设m+n=2q,那么am+an=2aq(等差中项) 注意:上述公式中an表示等差数列的第n项。 本文就是查字典数学网为大家整理的八年级数学等差数列

等差数列和求和基础训练

等差数列及等差数列求和 学习目标: 1.理解等差数列的概念以及性质。 2掌握等差数列的通项公式和前n 项和公式。 3能运用等差中项的性质解题,并能灵活运用等差数列的求和公式解题。 4了解等差数列求和公式的函数特征,并能运用之求前n 项和的最值。 知识要点梳理: 1等差数列的定义:如果一个数列从第2项起,每一项与它的前一项的差等于 ,这个数列就叫 ,用式子可表示为 ,则数列{}n a 叫做等差数列。 2等差数列的单调性。 公差 时,数列为递增数列;公差 时,数列为递减数列;当公差 为 时,数列为常数列,等差数列不会为摆动数列。 3等差数列的通项公式和前n 项和公式: n a = 。或n a = n s = = 。 前n 项和公式是用 方法推导的。已知n m a a 为等差数列的任意两项, 公差为d ,则d= n m a a n m -- (公差的计算:d =1--n n a a ) 4等差数列的性质。若}{n a 为等差数列 (1)m,n,p,q ∈* N ,当m+n=p+q,则 。 ⑵若公差为d ,则}{2n a 是 ,公差为 。 ⑶若}{n b 为等差数列,则}{n n b a +是 。 (4),,2 a b A a A b += ?成等差数列则三个数成等差可设为 , 四个数成等差可设为 。 (5)若{}n a 的前n 项的和n s 则 仍是等差数列。 ()若,是等差数列,为前项和,则 ; 42121 a b S T n a b S T n n n n m m m m =-- {}()为等差数列(,为常数,是关于的常数项为 52 a S an bn a b n n n ?=+0的 二次函数。

经典等差数列性质练习题(含答案)

等差数列基础习题选(附有详细解答) 一.选择题(共26小题) 1.已知等差数列{a n}中,a3=9,a9=3,则公差d的值为() A.B.1C.D.﹣1 2.已知数列{a n}的通项公式是a n=2n+5,则此数列是() A.以7为首项,公差为2的等差数列B.以7为首项,公差为5的等差数列 C.以5为首项,公差为2的等差数列D.不是等差数列 3.在等差数列{a n}中,a1=13,a3=12,若a n=2,则n等于() A.23 B.24 C.25 D.26 4.等差数列{a n}的前n项和为S n,已知S3=6,a4=8,则公差d=() A.一1 B.2C.3D.一2 5.两个数1与5的等差中项是() A.1B.3C.2D. 6.一个首项为23,公差为整数的等差数列,如果前六项均为正数,第七项起为负数,则它的公差是()A.﹣2 B.﹣3 C.﹣4 D.﹣ 7.(2012?福建)等差数列{a n}中,a1+a5=10,a4=7,则数列{a n}的公差为() A.1B.2C.3D.4 8.数列的首项为3,为等差数列且,若,,则=()A.0B.8C.3D.11 9.已知两个等差数列5,8,11,…和3,7,11,…都有100项,则它们的公共项的个数为() A.25 B.24 C.20 D.19 10.设S n为等差数列{a n}的前n项和,若满足a n=a n﹣1+2(n≥2),且S3=9,则a1=() A.5B.3C.﹣1 D.1 11.(2005?黑龙江)如果数列{a n}是等差数列,则() A.a1+a8>a4+a5B.a1+a8=a4+a5C.a1+a8<a4+a5D.a1a8=a4a5 12.(2004?福建)设S n是等差数列{a n}的前n项和,若=() A.1B.﹣1 C.2D.

等比数列的前n项求和公式

自选课题:等比数列的前n项和 教学设计 1.教学内容解析 本节内容为现行人教A版《必修5》的第二章的核心内容,它在《普通高中数学课程标准(2017年版)》中,被纳入“选择性必修课程”的函数主题之中. 数列作为一类特殊的函数,既是高中函数知识体系中的重要内容,又是用来刻画现实世界中一类具有递推规律的数学模型.在现行教材的编排中,等比数列的前n项和处于等比数列的单元内容之中,是等比数列的概念与通项公式的后继学习内容,它在完善数列单元的知识结构体系,感受数列与函数的共性与差异,体会数学的整体性等方面都是不可或缺,在提升学生探究、应用和实践能力等方面,有着不可替代的作用和价值. 课标要求:学生经历等比数列前n项和公式的探索过程,掌握等比数列前n项和公式及推导方法,并能进行简单应用. 等比数列前n项和公式的知识内容之所以被列为掌握层次,主要是因为它与函数、等差数列的内在联系,尤其是它在数学史上的历史印迹,以及探索过程中所蕴含的丰富的数学思想(如特殊到一般、类比、基本量、分类讨论、函数与方程、转化与化归等),所需要的数学抽象、逻辑推理、数学建模和数学运算素养,都能充分发挥数学的育人功能。 基于以上分析,本节课的教学重点为:等比数列前n项和公式的导出及其应用。 2.学生学情分析 本节课的授课对象为宜昌市夷陵中学高一年级实验班,夷陵中学是湖北省重点中学、省级示范高中,学生有较好的数学学科基础.从学生的思维特点看,很容易把本节内容与等差数列前n项和从公式的发现、特点等方面进行类比,这是积极因素,可因势利导.然而,本节公式的推导与等差数列前n项和公式的推导有着本质的不同,对学生的思维能力提出很高的要求.另外,对于q = 1这一特殊情况,运用公式计算时学生往往容易忽视.教学对象刚进入高一不久,虽然逻辑思维能也初步形成,具有一定的分析问题和解决问题的能力,但由于年龄的原因,缺乏深刻的理性思考。 基于以上分析,本节课的教学难点为:等比数列前n项和公式的探究及其推导。 3. 教学目标设置 (1)学生通过课前自主查阅数学史料,课堂演绎历史短剧,了解等比数列前n项和公式的来龙去脉,感受前人严谨的治学精神,体验数学的魅力和数学文化的熏陶。 (2)学生通过研究性学习和小组合作探究的方式,掌握等比数列前n项和公式的不同推导方法,领悟公式的本质,并能运用公式解决简单问题。 (3)学生在经历等比数列前n项和公式的发生、发展、推导和证明的过程中,感悟特

等差数列与等比数列归纳

二轮专题复习:等差数列与等比数列 澄海实验高级中学 曦怀 一、教材分析: 数列知识是历年高考的重点容,是必考的热点。数列考查的重点是等差、等比数列的定义、通项公式、前几项和公式、等差(比)中项及等比等差数列的性质的灵活运用。这一部分主要考查学生的运算能力,逻辑思维能力以及分析问题和解决问题的能力,其中考查思维能力是支柱,运算能力是主体,应用是归宿.在选择题、填空题中突出了“小、巧、活”的三大特点,在解答题中以中等难度以上的综合题为主,涉及函数、方程、不等式等重要容,试题中往往体现了函数与方程,等价转化,分类讨论等重要的数学思想。 二、复习目的: 1.熟练掌握等差、等比数列的定义、通项公式、前n 项和公式、等差(比)中项及等差(比)数列的相关性质. 2. 灵活运用等差(比)数列的相关性质解决相应问题.在解决数列综合性问题时,灌输方程思想、化归思想及分类讨论思想。培养学生运算能力、逻辑思维能力、分析问题以及解决问题的能力. 三、复习重点、难点: 重点:等差、等比数列的定义、通项公式、前几项和公式、等差(比)中项及等差(比) 数列的相关性质. 难点:灵活运用差(比)数列的相关性质结合函数思想、方程思想探求解题思路,分析问 题、解决问题. 复习容: 四、复习过程: (一)知识要点回顾: 1、重要公式: (1)数列通项公式n a 与前n 项和公式n S 之间的关系:1n 1 n 1 S n 2 n n S a S -=?=?-≥?. (2)等差数列: ①定义:1{}(n n n a a a d +? -=为等差数列常数). ②通项公式:1(1)n a a n d =+- , ()n m a a n m d =+- . ③前n 项和公式:11()(1) 22 n n n a a n n S na d +-=+ = . ④等差中项:112n n n a a a -+=+ .

等差与等比数列和数列求和的基本方法和技巧

高考专题复习——等差与等比数列 一、知识结构与要点: 等差、等比数列的性质推广 定义n n n n n n a a a a d a a -=-→=-++++1121 N n ∈ 通项d n a a t n )1(1-= —等差中项 abc 成等差2 c a b += ? 基本概念 推广 d m n a a m n )(-+= 前n 项和nd n n a n a a S n )1(2 1 2)(121-+=+= 等差数列 当d>0(<0) 时{}n a 为递增(减)数列 当d=0时}{n a 为常数 基本性质 与首末两端等距离的项之和均相等 1121......+--+==+=+i n i n n a a c a a a a N i ∈ q p n m a a a a q p n m +=+?+=+ }{n a 中共k n n n .......21成等差则nk n n a a a ......,,21也成等

定义: n n n n n n a a a a q a a 1121+++-=→= N n ∈ 通项 →?=-11n n q a a 等比中项:a b c 成等比数列ac b =?2 基本概念 推广m n q -? 前n 项和=n S )1(11)1() 1(11 1≠--= --=q q q a a q q a q n a n n 等比数列 与首末两端等距离的两项之积相等 1121......+--?===i n i n n a a a a a a q p n m a a a a q p n m ?=??+=+ }{n a 成等比,若k n n n ,...,21 成等差 则nk n a a a ,...,21 成等比 基本性质 当 1 01>>q a 或 1001<<q a 时 {}n a 为递减数列 当 q<0时 {}n a 为摆动数列 当 q=1时 {}n a 为常数数列 二、典型例题 例1.在等差数列中20151296=+++a a a a 求20S 解法一 d n a a n )1(1-+=Θ 20 )192(2)14()11()8()5(11111151296=+=+++++++=+++∴d a d a d a d a d a a a a a ∴101921=+d a 那么100)192(102 ) (20120120=+=+= d a a a S 解法二:由q p n m a a a a q p n m +=+?+=+

等差数列、等比数列相关性质和公式以及数列的求和方法

等差、等比的公式性质以及数列的求和方法 第一节:等差数列的公式和相关性质 1、等差数列的定义:对于一个数列,如果它的后一项减去前一项的差为一个定值,则称这个数列为等差数列,记:d a a n n =--1(d 为公差)(2≥n ,*n N ∈)注:下面所有涉及n ,*n N ∈省略,你懂的。 2、等差数列通项公式: 1(1)n a a n d =+-,1a 为首项,d 为公差 推广公式:()n m a a n m d =+- 变形推广:m n a a d m n --= 3、等差中项 (1)如果a ,A ,b 成等差数列, 那么A 叫做a 与b 的等差中项.即:2b a A +=或 b a A +=2 (2)等差中项:数列{}n a 是等差数列 4、等差数列的前n 项和公式: (其中A 、B 是常数,所以当d ≠0时,S n 是关于n 的二次式且常数 项为0) 特别地,当项数为奇数21n +时,1n a +是项数为2n+1的等差数列的 中间项 ()()()12121121212n n n n a a S n a +++++==+(项数为奇数的等差数列的各项 和等于项数乘以中间项) 5、等差数列的判定方法 (1) 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )? {}n a 是 等差数列. (2)等差中项:数列{}n a 是等差数列 (3)数列{}n a 是等差数列?b kn a n +=(其中b k ,是常数)。

(4)数列{}n a 是等差数列?2n S An Bn =+,(其中A 、B 是常数)。 6、等差数列的证明方法 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )? {}n a 是等差 数列. 7、等差数列相关技巧: (1)等差数列的通项公式及前n 和公式中,涉及到5个元素:1a 、d 、n 、n a 及n S ,其中1a 、d 称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。 (2)设项技巧: ①一般可设通项1(1)n a a n d =+- ②奇数个数成等差,可设为…,2,,,,2a d a d a a d a d --++…(公差为d ); ③偶数个数成等差,可设为…,3,,,3a d a d a d a d --++,…(注意;公差为2d ) 8、等差数列的性质: (1)当公差0d ≠时,等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函数,且斜率为公差d ;前n 和211(1)()222 n n n d d S na d n a n -=+=+-是关于n 的二次函数且常数项为0。 (2)若公差0d >,则为递增等差数列,若公差0d <,则为递减等差数列,若公差0d =,则为常数列。 (3)当m n p q +=+时,则有q p n m a a a a +=+,特别地,当2m n p +=时,则有2m n p a a a +=。(注:12132n n n a a a a a a --+=+=+=???,)当然扩充到3项、4项……都是可以的,但要保证等号两边项数相同,下标系数之和相等。 (4){}n a 、{}n b 为等差数列,则{}{}12n n n a b a b λλλ++,都为等差数列 (5) 若{n a }是等差数列,则232,,n n n n n S S S S S -- ,…也成等差数 列

《等差数列求和公式》教案

等差数列求和公式 一、教材分析: 数列在生产实际中的应用范围很广,而且是培养学生发现、认识、分析、综合等能力的重要题材,同时也是学生进一步学习数学的必备的基础知识。 二、学生分析: 数列在对于我们的学生来说是难点,因为学生对于这部分仅有初中学的简单函数作为基础,所以新课的引入非常重要 三、教学目标: 1.与技能目标:掌握等差数列前n项和公式,能较熟练应用等差数列前n项和公式求和。 2.过程与方法目标:培养学生观察、归纳能力,应用数学公式的能力及渗透函数、方程的思想。 3.情感、态度与价值观目标:体验从特殊到一般,又到特殊的认识事物的规律,培养学生勇于创新的科学精神。 四、教学重点与难点: 等差数列前n项和公式是重点。 获得等差数列前n项和公式推导的思路是难点。 课堂系统部分: 五、教学过程 1.问题呈现 泰姬陵坐落于印度古都阿格,是十七世纪莫卧儿帝国皇帝沙杰罕为纪念其爱妃所建,她宏伟壮观,纯白大理石砌建而成的主体建筑叫人心醉神迷,成为世界七大奇迹之一。陵寝以宝石镶饰,图案之细致令人叫绝。 传说陵寝中有一个三角形图案,以相同大小的圆宝石镶饰而成,共有100层(见左图), 问题1:你知道这个图案一共花了多少宝石吗? 问题2:图案中,第1层到第21层一共有多少颗宝石? 在知道了高斯算法之后,同学们很容易把本题与高斯 算法联系起来,也就是联想到“首尾配对”摆出几何图形,引引导学生去思考,如何将图与高斯的逆序相加结合起来,让 他们借助几何图形,将两个三角形拼成平行四边形.

获得算法: 设计说明: ? 源于历史,富有人文气息. ? 图中算数,激发学习兴趣. 这一个问题旨在让学生初步形成数形结合的思想,这是在高中数学学习中非常重要的思想方法.借助图形理解逆序相加,也为后面公式的推导打下基础. 2.探究发现: 问题3: 由前面的例子,不难用逆序相加法推出 3.公式应用 例题1: 2008年北京奥运会的体育馆已初步建成,其中有一块地的方砖成扇形铺开,有人数了第一排的方砖个数为10个,最后一排的方砖个数为2008个,而且一共有36排,问这一块地的方砖有多少块? 本例提供了许多数据,学生可以从题目条件发现,只告知了首项、尾项和项数,于是从这一方向出发,可知使用公式1,达到学生熟悉公式的要素与结构的教学目的。 通过两种公式的比较,引导学生应该根据信息选择适当的公式,以便于计算。例题2: 2003年医护人员积极致力于研究人体内的非典病毒,已知一个患病初期的人人体内的病毒数排列成等差数列,且已知第一排的病毒数是2个,后面每一排比前一排多3个,一共有78排,问这个人体内的病毒数有多少个? 本例已知首项,公差和项数,引导学生使用公式2。 事实上,根据提供的条件再与公式对比, 便不难知道应选公式。 例题3: 甲从A地出发骑车去B地,前1分钟他骑了了400米,后来每一分钟都比前一分钟多骑5米,当他到达B地时的那一分钟内骑了500米,问A地和B地之间的距离?

最新等差数列求和及练习题(整理)

等差数列求和 引例:计算1+2+3+4+……+97+98+99+100 一、有关概念: 像1、2、3、4、5、6、7、8、9、……这样连起来的一串数称为数列;数列中每一个数叫这个数列的一项,排在第一个位置的叫首项,第二个叫第二项,第三个叫第三项,……,最后一项又叫末项;共有多少个数又叫项数;如果一个数列,从第二项开始,每一项与前一项之差都等于一个固定的数,我们就叫做等差数列。这个固定的数就叫做“公差”。 二、有关公式: 和=(首项+末项)×项数÷2 末项=首项+公差×(项数-1) 公差=(末项-首项)÷(项数-1) 项数=(末项-首项)÷公差+1 三、典型例题: 例1、聪明脑筋转转转: 判断下列数列是否是等差数列?是的请打“√”,并把等差数列的首项,末项、公差及项数写出来,如果不是请打“×”。 判断首项末项公差项数 (1)1、2、4、8、16、32. ()()()()()(2)42、49、56、63、70、77. ()()()()()(3)5、1、4、1、3、1、2、1. ()()()()()(4)44、55、66、77、88、99、110()()()()()

例2、已知等差数列1,8,15,…,78.共12项,和是多少?(博易P27例2)(看ppt,推出公式) 例3、计算1+3+5+7+……+35+37+39 练习2:计算下列各题 (1)6+10+14+18+22+26+30 (3)1+3+5+7+……+95+97+99 (2)3+15+27+39+51+63 (4)2+4+6+8+……+96+98+100 (3)已知一列数4,6,8,10,…,64,共有31个数,这个数列的和是多少? 例5、有一堆圆木堆成一堆,从上到下,上面一层有10根,每向下一层增加一根,共堆了10层。这堆圆木共有多少根?(博易P27例3)(看ppt)

相关主题
文本预览
相关文档 最新文档