当前位置:文档之家› 2014年高考数学总复习教案:第五章 数列第4课时 数列的求和

2014年高考数学总复习教案:第五章 数列第4课时 数列的求和

2014年高考数学总复习教案:第五章 数列第4课时 数列的求和
2014年高考数学总复习教案:第五章 数列第4课时 数列的求和

第五章 数列第4课时

数列的求和(对应学生用书(文)、(理)76~

78页)

1. 在数列{a n }中,若a 1=1,a n +1=a n +2(n ≥1),则该数列的通项a n =________. 答案:a n =2n -1

解析:由已知{a n }为等差数列,d =a n +1-a n =2, ∴ a n =2n -1.

2. 已知数列{a n }中,a 1=1,(n +1)a n +1=na n (n ∈N *),则该数列的通项公式a n =________. 答案:a n =1n

解析:a n a 1=a n a n -1×a n -1a n -2×…×a 2a 1=1n .

3. (必修5P 44习题2(2)改编) 20

n =?

(1+2 n )=________.

答案:441 解析:

20

n =?

(1+2n)=1+(1+2×1)+(1+2×2)+…+(1+2×20)=21+

2×20(1+20)

2

=441.

4. (必修5P 60复习题8(1)改编)数列{a n }的前n 项和为S n ,若a n =1

n (n +1)

,则S 4=

________.

答案:45

解析:a n =

1n (n +1)=1n -1n +1

,∴ S 4=1-12+12-13+13-14+14-15=4

5.

5. (必修5P 51例3改编) 数列112,214,318,41

16

,…的前n 项和是 __________.

答案:S n =

n (n +1)2+1-1

2

n 解析:S n =(1+2+3+…+n)+????12+122+…+12n =n (n +1)2+12????1-????12n 1-12=n (n +1)2

+1-12

n .

1. 当已知数列{a n }中,满足a n +1-a n =f(n),且f(1)+f(2)+…+f(n)可求,则可用累加法求数列的通项a n .

2. 当已知数列{a n }中,满足a n +1

a n

=f(n),且f(1)·f(2)·…·f(n)可求,则可用迭乘法求数列的通项a n .

3. (1) a n =?

????S 1,n =1,

S n -S n -1,n ≥2.

(2) 等差数列前n 项和S n =

n (a 1+a n )

2

,推导方法:倒序相加法. (3) 等比数列前n 项和S n =????na 1

,q =1,a 1-a n q 1-q =a 1(1-q n )1-q ,q ≠1.

推导方法:错位相减法.

4. 常见数列的前n 项和: (1) 1+2+3+…+n =n (n +1)

2;

(2) 2+4+6+…+2n =n(n +1); (3) 1+3+5+…+(2n -1)=n 2;

(4) 12+22+32+…+n 2=n (n +1)(2n +1)

6

5. (1) 分组求和:把一个数列分成几个可以直接求和的数列.

(2) 拆项相消:有时把一个数列的通项公式分成二项差的形式,相加过程消去中间项,只剩有限项再求和.

(3) 错位相减:适用于一个等差数列和一个等比数列对应项相乘构成的数列求和. (4) 倒序相加:例如,等差数列前n 项和公式的推导方法. 6. 常见的拆项公式有:

(1) 1n (n +1)=1n -1

n +1

(2) 1(2n -1)(2n +1)=12?

???1

2n -1-12n +1;

(3)

1n (n +1)(n +2)=1

2?

???1n (n +1)-1(n +1)(n +2);

(4)

1a +b =1

a -b

(a

-b).

题型1 求简单数列的通项公式 例1 求下列数列{a n }的通项公式: (1) a 1=1,a n +1=a n +2n +1; (2) a 1=1,a n +1=2n a n . 解:(1) a n =n 2

(2) a n =2

n (n -1)

2

变式训练

求下列数列{a n }的通项公式: (1) a 1=1,a n +1=2a n +1; (2) a 1=1,a n +1=2a n

2+a n ;

(3) a 1=2,a n +1=a 2n . 解:(1) a n =2n -1 (2) a n =2n +1

(3) a n =22n -

1 题型

2 分组转化求和

例2 求下面数列的前n 项和: 112,314,518,71

16

, … 解:S n =112+314+518+71

16+…+????(2n -1)+12n =[1+3+5+…+(2n -1)]+????12+14+18+…+12n =n[1+(2n -1)]2+12??

??

1-12n 1-12=n 2-12

n +1.

备选变式(教师专享)

已知a n =?????5n +1,n 为奇数,

2n 2,n 为偶数.

(1) 求数列{a n }的前10项和S 10;

(2) 求数列{a n }的前2k 项和S 2k .

解:(1) S 10=(6+16+26+36+46)+(2+22+23+24+25) =5(6+46)2+2(1-25)1-2

=192.

(2) 由题意知数列{a n }的前2k 项中,k 个奇数项组成首项为6,公差为10的等差数列,

k 个偶数项组成首项为2,公比为2的等比数列.∴ S 2k =[6+16+…+(10k -4)]+(2+22+…

+2k

)=k[6+(10k -4)]2+2(1-2k )1-2

=5k 2+k +2k +

1-2.

题型3 裂项相消求和

例3 求下面各数列的前n 项和: (1)

11×5,13×7,15×9,17×11

,… (2) 2222-1,4242-1,6262-1,82

82-1,…

解:(1) ∵ a n =

1(2n -1)(2n +3)=14(12n -1-1

2n +3

),

∴ S n =14(1-15+13-17+15-19+…+12n -3-12n +1+12n -1-12n +3)=14(1+13-1

2n +1-

1

2n +3)=n (4n +5)3(2n +1)(2n +3)

. (2) ∵ a n =(2n )2(2n -1)(2n +1)=1+1

(2n -1)(2n +1)

=1+12???

?1

2n -1-12n +1,

∴ S n =n +1

2????1-12n +1=2n (n +1)2n +1.

备选变式(教师专享) 求1+11+2+11+2+3+…+1

1+2+3+…+n .

解:∵a k =2????1k -1k +1,∴S n =2n n +1

.

题型4 倒序相加求和

例4 设f(x)=1

3x +3,求f(-12)+f(-11)+f(-10)+…+f(0)+…+f(11)+f(12)+f(13)

的值.

解:∵ f(x)+f(1-x)=

33,∴ 原式=133

3. 备选变式(教师专享)

一个等差数列前4项之和为26,最末4项之和为110,所有项之和为187,则它的项数为________.

答案:11

解析:∵a 1+a 2+a 3+a 4=26,a n +a n -1+a n -2+a n -3=110,∴a 1+a n =26+110

4=34.

又S n =

n (a 1+a n )

2

=187,∴n =11. 题型5 错位相减求和 例5 在各项均为正数的等比数列{a n }中,已知a 2=2a 1+3,且3a 2,a 4,5a 3成等差数列.

(1) 求数列{a n }的通项公式;

(2) 设b n =log 3a n ,求数列{a n b n }的前n 项和S n .

解:(1) 设{a n }公比为q ,由题意得q>0,

且?

????a 2=2a 1+3,3a 2+5a 3=2a 4,即?????a 1(q -2)=3,2q 2-5q -3=0, 解得?

????a 1=3,

q =3或?

??a 1=-6

5,q =-

12

(舍),

所以数列{a n }的通项公式为a n =3·3n -

1=3n ,n ∈N .

(2) 由(1)可得b n =log 3a n =n ,所以a n b n =n·3n . 所以S n =1·3+2·32+3·33+…+n·3n ,

所以3S n =1·32+2·33+3·34+…+n·3n +

1,

两式相减得,2S n =-3-(32+33+…+3n )+n·3n +1=-(3+32+33+…+3n )+n·3n +

1=-

3(1-3n )1-3

+n ·3n +1=3+(2n -1)·3n +

12,

所以数列{a n b n }的前n 项和S n =3+(2n -1)·3n +

1

4

.

备选变式(教师专享)

已知数列{a n }的前n 项和为S n =3n -1. (1) 求数列{a n }的通项公式;

(2) 若b n =log 13

(S n +1),求数列{b n a n }的前n 项和T n .

解:(1) 当n =1时,a 1=S 1=2,

当n ≥2时,a n =S n -S n -1=(3n -1)-(3n -1-1)=2×3n -

1,

综上所述,a n =2×3n -

1.

(2) b n =log 13

(S n +1)=log 13

3n =-n ,

所以b n a n =-2n ×3n -

1,

T n =-2×1-4×31-6×32-…-2n ×3n -

1,

3T n =-2×31-4×32-…-2(n -1)×3n -

1-2n ×3n , 相减,得

-2T n =-2×1-2×31-2×32-…-2×3n -

1+2n ×3n

=-2×(1+31+32+…+3n -

1)+2n ×3n , 所以T n =(1+31

+32

+…+3

n -1

)-n ×3n

=1-3n

1-3

-n ×3n

=-(2n -1)×3n +12

,n ∈N *.

1. 数列{a n }的首项为3,{b n }为等差数列且b n =a n +1-a n (n ∈N ).若b 3=-2,b 10=12,则a 8=________.

答案:3

解析:已知b n =2n -8,a n +1-a n =2n -8,由叠加法(a 2-a 1)+(a 3-a 2)+…+(a 8-a 7)=

-6-4-2+0+2+4+6=0a 8=a 1=3.

2. (2013·大纲)等差数列{a n }中,a 7=4,a 19=2a 9. (1) 求{a n }的通项公式;

(2) 设b n =

1

na n

,求数列{b n }的前n 项和S n . 解:(1) 设等差数列{a n }的公差为d ,则a n =a 1+(n -1)d ,

因为?????a 7=4,a 19=2a 9,所以?

????a 1+6d =4,a 1+18d =2(a 1+8d ).

解得a 1=1,d =12.

所以{a n }的通项公式为a n =

n +1

2

. (2) b n =1na n =2n (n +1)=2n -2

n +1,

所以S n =????21-22+???

?

22-23+…+???

?2n -2n +1 =

2n n +1

. 3. (2013·湖南)设S n 为数列{a n }的前n 项和,已知a 1≠0,2a n -a 1=S 1·S n ,n ∈N .

(1) 求a 1,a 2,并求数列{a n }的通项公式; (2) 求数列{na n }的前n 项和.

解:(1) ∵ S 1=a 1.∴ 当n =1时,2a 1-a 1=S 1·S 1a 1≠0,a 1=1. 当n>1时,a n =S n -S n -1=

2a n -a 1S 1-2a n -1-a 1

S 1

=2a n -2a n -1a n =2a n -1

{a n }是首项为a 1=1公比为q =2的等比数列,a n =2n -

1,n ∈N *.

(2) 设T n =1·a 1+2·a 2+3·a 3+…+n·a n qT n =1·qa 1+2·qa 2+3·qa 3+…+n·qa n qT n =1·a 2+2·a 3+3·a 4+…+n·a n +1, 上式左右错位相减:

(1-q)T n =a 1+a 2+a 3+…+a n -na n +1=a 11-q n

1-q -na n +1=2n -1-n·2n

T n =(n -1)·2n +1,n ∈N *.

4. 已知等差数列{a n }前三项之和为-3,前三项积为8. (1) 求等差数列{a n }的通项公式;

(2) 若a 2,a 3,a 1成等比数列,求数列{|a n |}的前n 项和.

解:(1) 设公差为d ,则?????3a 1+3d =-3,

a 1(a 1+d )(a 1+2d )=8,

解得?????a 1=2,d =-3或?

????a 1=-4,

d =3.

∴ a n =-3n +5或a n =3n -7.

(2) 当a n =-3n +5时,a 2,a 3,a 1分别为-1,-4,2不成等比数列;

当a n =3n -7时,a 2,a 3,a 1分别为-1,2,-4成等比数列,满足条件.

当|a n |=|3n -7|=?

????-3n +7,n =1,2,

3n -7,n ≥3.

n =1,S 1=4;n =2时,S 2=5;

当n ≥3时,S n =|a 1|+…+|a n |=32n 2-11

2n +10.

又n =2满足此式,

∴ S n =????

?4(n =1),32

n 2-112n +10(n >1).

1. 已知数列a n =?

????n -1,n 为奇数,

n ,n 为偶数,求a 1+a 2+a 3+a 4+…+a 99+a 100的值.

解:由题意得a 1+a 2+a 3+a 4+…+a 99+a 100=0+2+2+4+4+…+98+98+100=2(2+4+6+…+98)+100=2×

49×(2+98)

2

+100=5 000.

2. 已知各项均为正数的数列{a n }的前n 项的乘积T n =????14n 2

-6n (n ∈N *),b n =log 2 a n ,则数列{b n }的前n 项和S n 取最大时,n =________.

答案:3

解析:当n =1时,a 1=T 1=45

=210

,当n ≥2时,a n =T n T n -1=???

?14n 2

-6n -(n -1)2

+6(n -1)=???

?

142n -7

=214

-4n

,此式对n =1也成立,所以a n =214

-4n

,从而b n =log 2a n =14-4n ,可以判断数

列{b n }是首项为10,公差为-4的等差数列,因此S n =-2n 2+12n ,故当n =3时,S n 有最大值.

3. 已知数列{a n }的前n 项和为S n ,对一切正整数n ,点P n (n ,S n )都在函数f(x)=x 2+2x 的图象上,且在点P n (n ,S n )处的切线的斜率为k n .

(1) 求数列{a n }的通项公式;

(2) 若b n =2k n a n ,求数列{b n }的前n 项和T n .

解: (1) ∵ 点P n (n ,S n )在函数f(x)=x 2+2x 的图象上,

∴ S n =n 2+2n(n ∈N *),当n ≥2时,a n =S n -S n -1=2n +1,当n =1时,a 1=S 1=3满足上式,所以数列{a n }的通项公式为a n =2n +1.

(2) 由f(x)=x 2+2x ,求导得f′(x)=2x +2. ∵ 在点P n (n ,S n )处的切线的斜率为k n , ∴ k n =2n +2,∴ b n =2k n a n =4·(2n +1)·4n ,

∴ T n =4×3×4+4×5×42+4×7×43+…+4×(2n +1)×4n ,用错位相减法可求得T n =6n +19·4n +2-169

.

4. 已知等差数列{a n }是递增数列,且满足a 4·a 7=15,a 3+a 8=8.

(1) 求数列{a n }的通项公式; (2) 令b n =

1

9a n -1a n

(n ≥2),b 1=1

3,求数列{b n }的前n 项和S n .

解:(1) 根据题意:a 3+a 8=8=a 4+a 7,a 4·a 7=15,知:a 4,a 7是方程x 2-8x +15=0

的两根,且a 4

5,设数列{a n }的公差为d ,由a 7=a 4+(7-4)·d ,得d =2

3.故等差数列{a n }的通项公式为

a n =a 4+(n -4)·d =3+2

3(n -4)=2n +13

.

(2) 当n ≥2时,b n =19a n -1a n =1

9????23n -13????

23n +13

1(2n -1)(2n +1)=12?

???1

2n -1-12n +1.

又b 1=13=1

2????1-13, ∴ S n =b 1+b 2+…+b n

=12?

???1-13+13-1

5+…+12n -1-12n +1 =12????1-12n +1=n 2n +1.

1. a n 的两种常见变形

a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)(累加法) a n =a 1·a 2a 1·a 3a 2·…a n

a n -1

(累乘法)

2. 数列求和的方法技能

① 倒序相加 ② 错位相减 ③ 分组求和 ④ 拆项相消

3. 方程思想、函数思想、化归思想、整体思想、分类讨论等数学思想在数列中均得到广泛应用,尤其是运用化归的思想将问题转化为等差、等比数列问题来研究是解决数列综合问题的最基本思维方法.

请使用课时训练(B )第4课时(见活页).

[备课札记]

等比数列求和教案

课题:等比数列的前n项和(一课时) 教材:浙江省职业学校文化课教材《数学》下册 (人民教育出版社) 一、教材分析 ●教学内容 《等比数列的前n项和》是中职数学人教版(基础模块)(下)第六章《数列》第四节的内容。是数列这一章中的一个重要内容, 就知识的应用价值上看,它是从大量数学问题和现实问题中抽象出来的一个模型,在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等,另外公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养.就内容的人文价值来看,等比数列的前n项和公式的探究与推导需要学生观察、归纳、猜想、证明,这有助于培养学生的创新思维和探索精神,同时也是培养学生应用意识和数学能力的良好载体. 二、学情分析 ●知识基础:前几节课学生已学习了等差数列求和,等比数列的定义及通项公式等内容,这为过渡到本节的学习起着铺垫作用. ●认知水平与能力:高二学生具有自主探究的能力,能在教师的引导下独立、合作地解决一些问题,但从学生的思维特点看,很容易把本节内容与等差数列前n项和公式的形成、特点等方面进行类比,这是积极因素,应因势利导.不利因素是:本节公式的推导与等差数列前n项和公式的推导有所不同,这对学生 q 这一特殊情况,学生也往往容易忽略,尤的思维是一个突破,另外,对于1 其是在后面使用的过程中容易出错. 三、目标分析 依据教学大纲的教学要求,渗透新课标理念,并结合以上学情分析,我制定了如下教学目标: 1.教学目标

●知识与技能目标 理解用错位相减法推导等比数列前n项和公式的过程,掌握公式的特点,并在此基础上能初步应用公式解决与之有关的问题. ●过程与方法目标 通过对公式的研究过程,提高学生的建模意识及探究问题、培养学生观察、 分析的能力和协作、竞争意识。 ●情感、态度与价值目标 通过学生自主对公式的探索,激发学生的求知欲,鼓励学生大胆尝试、勇于 探索、敢于创新,磨练思维品质,培养学生主动探索的求知精神和团结协作精神, 感受数学的美。 2.教学重点、难点 ●重点:等比数列前n项和公式的推导及公式的简单应用. ●难点:错位相减法的生成和等比数列前n项和公式的运用. 突破难点的手段:“抓两点,破难点”,即一抓学生情感和思维的兴奋点, 激发他们的兴趣,鼓励学生大胆猜想、积极探索,并及时给予肯定;二抓知识的 切入点,从学生原有的认知水平和所需的知识特点入手,教师在学生主体下给予 适当的提示和指导. 四、教学模式与教法、学法 根据学生的认知特点,本着学生为主体教师为主导的原则采用多元教学法,让学生至于情景中。学生动手操作实践分组讨论探究,而教师重在启发,引导。基于教学平台和数学软件让学生可观,可感,可交流的环境中轻松的学习。 五、教学过程

高考数学题型全归纳:数列求和的若干常用方法含答案

数列求和的若干常用方法 数列求和是数列的重要内容之一,也是高考数学的重点考查对象。除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧.如某些特殊数列的求和可采用分部求和法转化为等差数列或等比数列的和或用裂项求和法、错位相减法、逆序相加法、组合化归法,递推法等。本文就此总结如下,供参考。 一、分组求和法 所谓分组法求和就是:对一类既不是等差数列,也不是等比数列的数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并。 例1.数列{a n }的前n 项和12-=n n a S ,数列{b n }满)(,311* +∈+==N n b a b b n n n .(Ⅰ)证明数列{a n }为等比数列;(Ⅱ)求数列{b n }的前n 项和T n。 解析:(Ⅰ)由12,,1211-=∴∈-=++*n n n n a S N n a S , 两式相减得:,2211n n n a a a -=++01.,211≠=∈=∴*+n n n a a N n a a 知同, ,21=∴+n n a a 同定义知}{n a 是首项为1,公比为2的等比数列.(Ⅱ),22,211111-+-+-=-+==n n n n n n n n b b b b a ,2,2,2234123012=-=-=-b b b b b b ,221--=-n n n b b 等式左、右两边分别相加得: ,222 121322211 2101+=--+=++++=---n n n n b b n T n n n 2)2222()22()22()22()22(12101210+++++=++++++++=∴-- =.12222 121-+=+--n n n n 例2.已知等差数列{}n a 的首项为1,前10项的和为145,求:. 242n a a a +++ 解析:首先由31452 91010110=?=??+=d d a S 则:6223221)21(232)222(32 2323)1(1224221--?=---=-+++=+++∴-?=?-=-+=+n n n a a a a n d n a a n n n n n n n 二、裂项求和法

2019年高考数学高频考点专题43数列数列的求和4分组求和倒序相加法 文数(含解析)

专题43 数列 数列的求和4 ( 分组求和、倒序相加法) 【考点讲解】 一、具本目标:1.掌握等差、等比数列的求和方法; 2. 掌握等非差、等比数列求和的几种常见方法. 考纲解读:会用公式法、倒序相加法、错位相减法、裂项相消法、分组转化法求解不同类型数列的和,非等差、等比数列的求和是高考的热点,特别是错位相减法和裂项相消法求和. 二、知识概述: 求数列前n 项和的基本方法 (1)直接用等差、等比数列的求和公式求和; 等差:; 等比: 公比是字母时需要讨论. (理)无穷递缩等比数列时,q a S -= 11 (2)掌握一些常见的数列的前n 项和公式: ; ; ; ; (3)倒序相加法求和:如果一个数列 {}n a ,与首末两端等“距离”的两项的和相等或等于同一个常数, 那么求这个数列的前n 项和即可用倒序相加法. (4)错位相减法求和:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么

这个数列的前n 项和即可用此法来求.q 倍错位相减法:若数列{}n c 的通项公式n n n c a b =?,其中{}n a 、 {}n b 中一个是等差数列,另一个是等比数列,求和时一般可在已知和式的两边都乘以组成这个数列的等比数列的公比,然后再将所得新和式与原和式相减,转化为同倍数的等比数列求和.这种方法叫q 倍错位相减法. 温馨提示:1.两个特殊数列等差与等比的乘积或商的组合. 2.关注相减的项数及没有参与相减的项的保留. (5)分组求和:有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,把数列的每一项分成若干项,使其转化为等差或等比数列,先分别求和,再合并.通项公式为a n = 的数列,其中数列{b n },{c n }是等比数列或等差数列,可采用分组求和法求和. 形如: n n b a +其中, (6)并项求和法 一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如类 型,可采用两项合并求解. 合并求和:如求 的和. (7)裂项相消法求和:把数列的通项拆成两项之差,正负相消剩下首尾若干项. 常见拆项: ; . 【真题分析】

等差数列求和教案

等差数列求和 教学目标 1.掌握等差数列前项和的公式,并能运用公式解决简单的问题. (1)了解等差数列前项和的定义,了解逆项相加的原理,理解等差数列前项和公式推导的过程,记忆公式的两种形式; (2)用方程思想认识等差数列前项和的公式,利用公式求;等差数列通项公式与前项和的公式两套公式涉及五个字母,已知其中三个量求另两个值; (3)会利用等差数列通项公式与前项和的公式研究的最值. 2.通过公式的推导和公式的运用,使学生体会从特殊到一般,再从一般到特殊的思维规律,初步形成认识问题,解决问题的一般思路和方法. 3.通过公式推导的过程教学,对学生进行思维灵活性与广阔性的训练,发展学生的思维水平. 4.通过公式的推导过程,展现数学中的对称美;通过有关内容在实际生活中的应用,使学生再一次感受数学源于生活,又服务于生活的实用性,引导学生要善于观察生活,从生活中发现问题,并数学地解决问题. 教学建议 (1)知识结构 本节内容是等差数列前项和公式的推导和应用,首先通过具体的例子给出了求等差数列前项和的思路,而后导出了一般的公式,并加以应用;再与等差数列通项公式组成方程组,共同运用,解决有关问题. (2)重点、难点分析 教学重点是等差数列前项和公式的推导和应用,难点是公式推导的思路. 推导过程的展示体现了人类解决问题的一般思路,即从特殊问题的解决中提炼一般方法,再试图运用这一方法解决一般情况,所以推导公式的过程中所蕴含的思想方法比公式本身更为重

要.等差数列前项和公式有两种形式,应根据条件选择适当的形式进行计算;另外反用公式、变用公式、前项和公式与通项公式的综合运用体现了方程(组)思想. 高斯算法表现了大数学家的智慧和巧思,对一般学生来说有很大难度,但大多数学生都听说过这个故事,所以难点在于一般等差数列求和的思路上. (3)教法建议 ①本节内容分为两课时,一节为公式推导及简单应用,一节侧重于通项公式与前项和公式综合运用. ②前项和公式的推导,建议由具体问题引入,使学生体会问题源于生活. ③强调从特殊到一般,再从一般到特殊的思考方法与研究方法. ④补充等差数列前项和的最大值、最小值问题. ⑤用梯形面积公式记忆等差数列前项和公式. 等差数列的前项和公式教学设计示例 教学目标 1.通过教学使学生理解等差数列的前项和公式的推导过程,并能用公式解决简单的问题. 2.通过公式推导的教学使学生进一步体会从特殊到一般,再从一般到特殊的思想方法,通过公式的运用体会方程的思想. 教学重点,难点 教学重点是等差数列的前项和公式的推导和应用,难点是获得推导公式的思路. 教学用具 实物投影仪,多媒体软件,电脑. 教学方法 讲授法.

高考理科数学复习题解析 数列求和

高考数学复习 第四节 数列求和 [考纲传真] 1.掌握等差、等比数列的前n 项和公式.2.掌握特殊的非等差、等比数列的几种常见的求和方法. 1.公式法 (1)等差数列的前n 项和公式: S n =n a 1+a n 2 =na 1+n n -12 d ; (2)等比数列的前n 项和公式: 2.分组转化法 把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. 3.裂项相消法 把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和. 4.错位相减法 如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,这个数列的前n 项和可用错位相减法求解. 5.倒序相加法 如果一个数列{a n }的前n 项中与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解. 6.并项求和法 一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解. 例如,S n =1002 -992 +982 -972 +…+22 -12 =(100+99)+(98+97)+…+(2+1)=5 050. [常用结论] 1.一些常见的数列前n 项和公式:

(1)1+2+3+4+…+n = n n +1 2 ; (2)1+3+5+7+…+2n -1=n 2 ; (3)2+4+6+8+…+2n =n 2 +n . 2.常用的裂项公式 (1) 1n n +k =1k ? ?? ??1 n -1n +k ; (2)1 4n 2-1=1 2n -1 2n +1=12? ?? ??1 2n -1-12n +1; (3) 1 n +n +1 =n +1-n ; (4)log a ? ?? ??1+1n =log a (n +1)-log a n . [基础自测] 1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +1 1-q .( ) (2)当n ≥2时, 1n 2-1=12? ?? ??1 n -1-1n +1.( ) (3)求S n =a +2a 2 +3a 3 +…+na n 之和时只要把上式等号两边同时乘以a 即可根据错位相减法求得.( ) (4)推导等差数列求和公式的方法叫做倒序求和法,利用此法可求得sin 2 1°+sin 2 2°+sin 2 3°+…+sin 2 88°+sin 2 89°=44.5.( ) [答案] (1)√ (2)√ (3)× (4)√ 2.(教材改编)数列{a n }的前n 项和为S n ,若a n =1 n n +1 ,则S 5等于( ) A .1 B.56 C.16 D. 1 30 B [∵a n = 1n n +1=1n -1 n +1 , ∴S 5=a 1+a 2+…+a 5=1-12+12-13+…-16=5 6.] 3.若S n =1-2+3-4+5-6+…+(-1) n -1 ·n ,则S 50=________. -25 [S 50=(1-2)+(3-4)+…+(49-50)=-25.] 4.数列112,314,518,7116,…,(2n -1)+1 2 n ,…的前n 项和S n 的值等于________.

数列求和公开课教案(1)

《数列求和复习》教学设计 开课时间:2016/12/22 开课人:洪来春一、学情分析: 学生在前一阶段的学习中已经基本掌握了等差、等比数列这两类最基本的数列的定义、通项公式、求和公式,同时也掌握了与等差、等比数列相关的综合问题的一般解决方法。本节课作为一节复习课,将会根据已知数列的特点选择适当的方法求出数列的前n项和,从而培养学生观察、分析、归纳、猜想的能力、逻辑思维能力以及演绎推理的能力。 二、教法设计: 本节课设计的指导思想是:讲究效率,加强变式训练、合作学习。采用以具体题目为切入点,引导学生进行探索、讨论,注重分析、启发、反馈。先引出相应的知识点,然后剖析需要解决的问题,在例题中巩固相应方法,再从讨论、反馈中深化对问题和方法的理解,从而较好地完成知识的建构,更好地锻炼学生探索和解决问题的能力。 在教学过程中采取如下方法: (1)诱导思维法:使学生对知识进行主动建构,有利于调动学生的主动性和积极性,发挥其创造性; (2)讲练结合法:可以及时巩固所学内容,抓住重点,突破难点。 三、教学设计: 1、教材的地位与作用: 对数列求和的考查是近几年高考的热点内容之一,属于高考命题中常考的内容;另一个面,数学思想方法的考查在高考中逐年加大了它的份量。化归与转化思想是本课时的重点数学思想方法,化归思想就是把不熟悉的问题转化成熟悉问题的数学思想,即把数学中待解决或未解决的问题,通过观察、分析、联想、类比等思维过程,选择恰当的方法进行变换、转化,归结到某个或某些已经解决或比较容易解决的问题上,最终解决原问题的一种数学思想方法;化归思想是解决数学问题的基本思想,解题的过程实际上就是转化的过程。 2、教学重点、难点: 教学重点:根据数列通项求数列的前n项,本节课重点复习分组求和与裂项法求和。 教学难点:解题过程中方法的正确选择。 3、教学目标: (1)知识与技能: 会根据通项公式选择求和的方法,并能运用分组求和与裂项法求数列的前n项。 (2)过程与方法: ①培养学生观察、分析、归纳、猜想的能力、逻辑思维能力以及演绎推理的能力; ②通过阶梯性练习和分层能力培养练习,提高学生分析问题和解决问题的能力,使不同层次的学生的能力都能得到提高。

2020届高考数学一轮复习通用版讲义数列求和

第四节数列求和 一、基础知识批注——理解深一点 1.公式法 (1)等差数列{a n }的前n 项和S n =n (a 1+a n )2=na 1+n (n -1)d 2 . 推导方法:倒序相加法. (2)等比数列{a n }的前n 项和S n =????? na 1 ,q =1,a 1(1-q n )1-q ,q ≠1. 推导方法:乘公比,错位相减法. (3)一些常见的数列的前n 项和: ①1+2+3+…+n = n (n +1) 2 ; ②2+4+6+…+2n =n (n +1); ③1+3+5+…+2n -1=n 2. 2.几种数列求和的常用方法 (1)分组转化求和法:一个数列的通项公式是由若干个等差或等比或可求和的数列组成的,则求和时可用分组求和法,分别求和后相加减. (2)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前n 项和. (3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n (4)倒序相加法:如果一个数列{a n }与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解. 二、基础小题强化——功底牢一点 (一)判一判(对的打“√”,错的打“×”) (1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +1 1-q .( ) (2)当n ≥2时, 1n 2 -1=12? ???1 n -1-1n +1.( ) (3)求S n =a +2a 2+3a 2+…+na n 之和时,只要把上式等号两边同时乘以a 即可根据错位相减法求得.( )

高三数学高考数列求和(裂项及错位)

考点十二 数列求和(裂项及错位) [真题1] (2009山东卷)等比数列{n a }的前n 项和为n S ,已知对任意的n N +∈,点(,)n n S 均在函数(0x y b r b =+>且1,,b b r ≠均为常数)的图像上. (1)求r 的值; (11)当b=2时,记1()4n n n b n N a + += ∈,求数列{}n b 的前n 项和n T . [命题探究] 创新是高考命题的要求,《考试大纲》提出命题要“创设比较新颖的问题情境”,同时,“在知识的交汇点处设计命题”是近年来高考命题的一种趋势。本题将数列的递推关系式以点在函数图像上的方式给出,体现了这种命题理念,也渗透了数列是定义在正整数集上的函数观念。第(2)问中对b 的赋值,旨在使问题变得简捷,也使设置的数列求和问题降低难度,达成“不求在细节上人为地设置障碍,而是在大方向上考查考生的数学能力”的命题指导思想。 [命题探源] 本题在设置等比数列的递推关系时,以点(,)n n S 在函数(0x y b r b =+>的图像上的方式给出,这种命题方式与2008年福建一道文科有相似之处:“已知{a n }是正数组成的数列,a 1=1 1n a +)(n ∈N *)在函数y =x 2+1的图象上.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)若列数{b n }满足b 1=1,b n +1=b n +2n a ,求证:b n ·b n +2<b 2 n +1.”本题中增加了对参数r 的求解,因此,如何正确求出r 的值,成为本题的解题思考点,这恰好需要对递推 关系式{ 11,(1) ,(2) n n n S n a S S n -==-≥的正确理解(理角题目的条件:数列{n a }是等比数列,则11S a =满足数列递推式)。第(2)问求数列{}n b 的前n 项和n T , 所用的方法是错位相减法,也是课本中推导等比数列前n 项和公式时所用的方法。高考复习历来提倡回归课本,理解教材,例题的求解方法、公式的推导方法,都需要我们在回归课本中积累知识,提炼方法,形成能力。 [知识链接] 数列求和的几种常见题型与求解方法 (1)裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和.常用裂项形式有: ① 111(1)1n n n n =-++; ②1111()()n n k k n n k =-++; ③ )(1 )0(1 n k n k k k n n -+= >++ **④ 2 1 1 1 1 1 1 1 1(1)(1)1k k k k k k k k k - = < < = - ++--. (2)错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法(这也是等比数列前n 和公式的推导方法). 设{a n }是等差数列,且公差为d,{b n }是等比数列,且公比为q,记S n =a 1b 1+a 2b 2+…+a n b n n n n n n n n b a b a b a b a b a b a S ++++++=----1122332211... ① =n qS 1112233221...+-----++++++n n n n n n n n b a b a b a b a b a b a ② =-n S q )1(+11b a 11232)...(+---+++++n n n n n b a b b b b b d (3)分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公式法求和. (4)倒序相加法:若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是等差数列前n 和公式的推导方法). 《规范解答》 广东省汕头市高三数学复习系列 等差数列、等比数列的性质及应用 新人教A 版 一.课题:等差数列、等比数列的性质及应用 二.教学目标:熟练掌握等差(比)数列的基本公式和一些重要性质,并能灵活运用性质解决有关的问题,培养对知识的转化和应用能力. 三.教学重点:等差(比)数列的性质的应用. 四.教学过程: (一)主要知识:

(完整)数列求和教案高三

?????≠--=时当时当1,1)1(1,a a a a a n n n n n ? ?? ??-++2112)1(《数列求和》教案 一、高考要求 等差数列与等比数列的有限项求和总是有公式可求的,其它的数列的求和不总是可求的,但某些特殊数列的求和可采用分组求和法转化为等差数列或等比数列的和或用裂项求和法、错位相减法、逆序相加法、并项求和法、变换通项法等 . 二、知识点归纳 1、公式法 2、分组求和法 3、错位相减法 4、裂项求和法 5、倒序求和法 6、变换通项法 7、关于正整数的求和公式: 三、热身练习 1、求和:1+4+7+……+97= 1617 2、求和:n n a a a a s ++++=Λ32= 3、求和:=-++-+-100994321Λ -50 4、求和:??? ??+++++=n n n s 21813412211 Λ= 四、题型讲解 例1:(2005年湖北第19题)设数列}{n a 的前n 项和为S n =2n 2,}{n b 为等比数列,且.)(,112211b a a b b a =-= (Ⅰ)求数列}{n a 和}{n b 的通项公式; (Ⅱ)设n n n b a c =,求数列}{n c 的前n 项和T n 本小题主要考查等差数列、等比数列基本知识和数列求和的基本方法以及运算能力. 解:(1):当;2,111===S a n 时 ,24)1(22,2221-=--=-=≥-n n n S S a n n n n 时当 故{a n }的通项公式为4,2}{,241==-=d a a n a n n 公差是即的等差数列. (1) 122n n n ++++=L 222(1)(21) 126n n n n +++++=L 3332(1)12[]2 n n n ++++=L

高中数学 数列求和常见的7种方法

数列求和的基本方法和技巧 一、总论:数列求和7种方法: 利用等差、等比数列求和公式 错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和 分段求和法(合并法求和) 利用数列通项法求和 二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法, 三、逆序相加法、错位相减法是数列求和的二个基本方法。 数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧. 一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= 2、等比数列求和公式:?????≠--=--==) 1(11)1()1(111 q q q a a q q a q na S n n n 3、 )1(211+==∑=n n k S n k n 4、)12)(1(611 2 ++==∑=n n n k S n k n 5、 21 3)]1(21[+== ∑=n n k S n k n [例1] 已知3 log 1log 23-= x ,求???++???+++n x x x x 32的前n 项和. 解:由2 1 2log log 3log 1log 3323=?-=?-= x x x

由等比数列求和公式得 n n x x x x S +???+++=32 (利用常用公式) =x x x n --1)1(= 2 11)211(21--n =1-n 21 资料来源QQ 群697373867 关注微信公众号:高中“数学教研室”回复任意内容获取资料 [例2] 设S n =1+2+3+…+n ,n ∈N *,求1 )32()(++= n n S n S n f 的最大值. 解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(2 1 ++=n n S n (利用常用公式) ∴ 1)32()(++= n n S n S n f =64 342++n n n = n n 64341+ += 50 )8(12+- n n 50 1≤ ∴ 当 8 8- n ,即n =8时,501)(max =n f 二、错位相减法求和 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. [例3] 求和:1 32)12(7531--+???++++=n n x n x x x S ………………………① 解:由题可知,{1 )12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1 -n x }的通项之积 设n n x n x x x x xS )12(7531432-+???++++=………………………. ② (设制错位) ①-②得 n n n x n x x x x x S x )12(222221)1(1432--+???+++++=-- (错位相减) 再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1 ----? +=-- ∴ 2 1)1() 1()12()12(x x x n x n S n n n -+++--=+ [例4] 求数列 ??????,2 2,,26,24,2232n n 前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 2 1 }的通项之积

高中数学必修5《等差数列求和公式》教学设计

《等差数列求和公式》教学设计 知识与技能目标:掌握等差数列前n 项和公式,能较熟练应用等差数列前n 项和公式求和。 过程与方法目标:培养学生观察、归纳能力,应用数学公式的能力及渗透函数、方程的思想。 情感、态度与价值观目标:体验从特殊到一般,又到特殊的认识事物的规律,培养学生勇于创新的科学精神。教学重点与难点:等差数列前n 项和公式是重点。获得等差数列前n 项和公式推导的思路是难点。 教学策略:用游戏的方法调动学生的积极性教学用具:flash ,ppt课堂系统部分:整节课分为三个阶段: 问题呈现阶段探究发现阶段公式应用阶段 问题呈现1:有10袋金币,在这10袋中有一袋金币是假的,已知,真金币的重量是2两/个, 而假币的重量是1两/个。 问:只给一个电子秤,而且只能秤一次,找出哪一袋金币是假的? S = 10 + 9 + + 2 + 1 2S =11+11+ +11+11问题1:1+2+ +8+9+10=? S =1+2+ +9+102S =11?10=110110S ==552动画演示: 由刚刚的计算我们已经知道,从10袋里面拿出 的金币数共55个,如果这10袋都是真币,那么 电子秤显示的数据应该是: (两) 55?2= 110 而实际显示的的数字是:102(两) 可见比全是真币时少了8两 又因为,每个假币比真币轻1两 所以,可知在电子秤上有8个假币 那么,第8袋全是假币。 设计说明:

这道题的设计新颖之处在于摆脱了以往以高斯算法引出的模式,用一道智力题,激发学生的学习兴趣。 动画的演示更能较直观地表现出本题的思维方式 承上启下,探讨高斯算法. 问题呈现2: 泰姬陵坐落于印度古都阿格,是十七世纪莫卧儿帝国 皇帝沙杰罕为纪念其爱妃所建,她宏伟壮观,纯白大 理石砌建而成的主体建筑叫人心醉神迷,成为世界七 大奇迹之一。陵寝以宝石镶饰,图案之细致令人叫绝。 传说陵寝中有一个三角形图案,以相同大小的圆宝 石镶饰而成,共有100层(见左图),奢靡之程度, 可见一斑。 你知道这个图案一共花了多少宝石吗? 2:图案中,第1层到第21层一共有多少颗宝石? 也就是联想到“首尾配对”摆出几何图形, , 如何将图与高斯的逆序相加结合起来, 让 , 将两个三角形拼成平行四边形. (1+21) ?21s = 212 设计说明: ?源于历史,富有人文气息. ?图中算数,激发学习兴趣. 这一个问题旨在让学生初步形成数形结合的思想, 这是在高中数学学习中非常重要的思想方法. 借助图形理解逆序相加, 也为后面公式的推导打下基础. 探究发现: 问题3:如何求等差数列{a n }的前n 项和S n ?

高考数学数列的求和测试

专题考案(2)数列板块 第3课 数列的求和 (时间:90分钟 满分:100分) 题型示例 已知y =f (x )是一次函数,且f (2),f (5),f (4)成等比数列,f (8)=15,求S n =f (1)+f (2)+…+f (n )(n ∈N x)的表达式. 分析 要求和,关键要先求出f (n ). 解 由y =f (x )是一次函数可设f (x )=ax +b ,则f (2)=2a +b ,f (5)=5a +b ,f (4)=4a +b , ∵f (2),f (5),f (4)成等比数列,∴(5a +b )2=(2a +b )(4a +b ). ∴17a 2+4ab =0,又∵a ≠0. ∴a =- 17 4b ① 又∵f(8)=15,∴8a +b =15 ② 联立方程①、②解得a =4,b =-17,∴f (x )=4x -17. ∴f (1),f (2),…,f (n )可看作是首项为-13,公差为4的等差数列. 由等差数列前n 项和公式可求得S n =-13n +2)1(-n n ×4=2n 2-15n . 点评 此题渗透了函数思想,解题时要注意知识的横向与纵向之间的联系. 一、选择题(9×3′=27′) 1.数列{a n }是等差数列的一个充要条件是 ( ) A.S n =an +b B.S n =an 2+bn +c C.S n =an 2+bn (a ≠0) D.S n =an 2+bn 2.设m =1×2+2×3+3×4+…+(n -1)·n ,则m 等于 ( ) A.3)1(2-n n B.21n (n +4) C.21n (n +5) D.2 1n (n +7) 3.若S n =1-2+3-4+…+(-1)n -1·n ,则S 17+S 33+S50等于 ( ) A.1 B.-1 C.0 D.2 4.阅读下列文字,然后回答问题:对于任意实数x ,符号[x ]表示x 的整数部分,即[x ]是不超过x 的最大整数.函数[x ]叫做“取整函数”,也叫高斯函数.它具有以下性质:x -1<[x ]≤x <[x +1].请回答:[log 21]+[log 22]+[log 23]+…+[log 21024]的值是( ) A.1024 B.8202 C.8204 D.9216 5.设{a n }为等比数列,{b n }为等差数列,且b 1=0,c n =a n +b n ,若数列{c n }是1,1,2,…,则{c n }的前10项和为 ( ) A.978 B.557 C.467 D.979 6.1002-992+982-972+…+22-12的值是 ( ) A.5000 B.5050 C.10100 D.20200 7.若等比数列{a n }的前n 项和S n =2n +r ,则r 的值是 ( ) A.2 B.1 C.0 D.-1 8.已知S =1+ΛΛ++++22213121n ,那么S 的范围是 ( ) A.(1,23) B.(2 3,2) C.(2,5) D.(5,+∞)

高考数学 数列求和 专题

高考数学 数列求和 专题 时间:45分钟 分值:100分 一、选择题(每小题5分,共30分) 1.设数列{a n }的前n 项和为S n ,且a n =-2n +1,则数列{S n n }的前11项和为 ( ) A .-45 B .-50 C .-55 D .-66 解析:S n =n [-1+(-2n +1)]2=-n 2,即S n n =-n ,则数列{S n n }的前11项和为-1-2-3 -4-…-11=-66. 答案:D 2.若S n =1-2+3-4+…+(-1)n - 1n ,则S 17+S 33+S 50等于 ( ) A .1 B .-1 C .0 D .2 解析:S 2n =-n ,S 2n +1=S 2n +a 2n +1=-n +2n +1=n +1, ∴S 17+S 33+S 50=9+17-25=1. 答案:A 3.数列1,1+2,1+2+4,…,1+2+22+…+2n - 1,…的前n 项和S n >1020,那么n 的最小值是 ( ) A .7 B .8 C .9 D .10 解析:a n =1+2+22+…+2n -1=2n -1, ∴S n =(21+22+…+2n )-n = 2(2n -1) 2-1 -n =2n +1-2-n . S n >1020 即2n +1-2-n >1020. ∵210=1024,1024-2-9=1013<1020. 故n min =10. 答案:D 4.已知数列{2 (n +1)2-1 }的前n 项和为S n ,则lim n →∞S n 等于 ( ) A .0 B .1 C.3 2 D .2 解析:∵2(n +1)2-1=2n (n +2)=1n -1 n +2 ∴S n =(11-13)+(12-14)+(13-15)+…+(1n -2-1n )+(1n -1-1n +1)+(1n -1 n +2) =1+12-1n +1-1 n +2 .

高考数学专题复习数列求和

第4讲数列求和 一、选择题 1.设数列{(-1)n}的前n项和为S n,则对任意正整数n,S n=( ) A.n[1n-1] 2 B. 1n-1+1 2 C.1n+1 2 D. 1n-1 2 解析∵数列{(-1)n}是首项与公比均为-1的等比数列, ∴S n=11n1 11 = 1n-1 2 . 答案 D 2.已知数列{a n}的前n项和S n=n2-4n+2,则|a1|+|a2|+…+|a10|=( ) A.66 B.65 C.61 D.56 解析当n=1时,a1=S1=-1,当n≥2时,a n=S n-S n-1=n2-4n+2-[(n -1)2-4(n -1)+2]=2n-5.∴a2=-1,a3=1,a4=3,…,a10=15,∴|a1| +|a2|+…+|a10|=1+1+81+15 2 =2+64=66. 答案 A 3.在数列{a n}中,a n= 1 n n +1 ,若{a n}的前n项和为 2 013 2 014 ,则项数n为( ). A.2 011 B.2 012 C.2 013 D.2 014 解析∵a n=1 n n +1= 1 n - 1 n+1 ,∴S n=1- 1 n+1 = n n+1 = 2 013 2 014 ,解得n=2 013. 答案 C 4.数列{a n}满足a n+1+(-1)n a n=2n-1,则{a n}的前60项和为( ).A.3 690 B.3 660 C.1 845 D.1 830 解析当n=2k时,a2k+1+a2k=4k-1, 当n=2k-1时,a2k-a2k-1=4k-3,

∴a 2k +1+a 2k -1=2,∴a 2k +1+a 2k +3=2, ∴a 2k -1=a 2k +3,∴a 1=a 5=…=a 61. ∴a 1+a 2+a 3+…+a 60=(a 2+a 3)+(a 4+a 5)+…+(a 60+a 61)=3+7+11+…+(4×30-1)=30 3+119 2 =30×61=1 830. 答案 D 5.若把能表示为两个连续偶数的平方差的正整数称为“和平数”,则 1~100 这100个数中,能称为“和平数”的所有数的和是( ) A .130 B .325 C .676 D .1 300 解析 设两个连续偶数为2k +2和2k (k ∈N +),则(2k +2)2-(2k )2=4(2k +1),故和平数 是4的倍数,但不是8的倍数,故在1~100之间,能称为和平数的有4×1,4×3,4×5,4×7,…,4×25,共计13个,其和为4×1+252 ×13=676. 答案 C 6.数列{a n }满足a n +a n +1=1 2(n ∈N *),且a 1=1,S n 是数列{a n }的前n 项和,则S 21 = ( ). A.21 2 B .6 C .10 D .11 解析 依题意得a n +a n +1=a n +1+a n +2=1 2,则a n +2=a n ,即数列{a n }中的奇数项、 偶数项分别相等,则a 21=a 1=1,S 21=(a 1+a 2)+(a 3+a 4)+…+(a 19+a 20)+a 21=10(a 1+a 2)+a 21=10×1 2+1=6,故选B. 答案 B 二、填空题 7.在等比数列{a n }中,若a 1=1 2,a 4=-4,则公比q =________;|a 1|+|a 2|+… +|a n |=________. 解析 设等比数列{a n }的公比为q ,则a 4=a 1q 3,代入数据解得q 3=-8,所以

数列求和的七种方法|数列求和教案

数列求和是知识掌握的重点,下面是为大家带来的数列求和教案,希望能帮助到大家! 数列求和教案篇一 汉滨高中李安锋 教学目标: 知识目标 ①复习等差和等比数列的前n项和公式、回忆公式推导过程所用倒序想加和错位相减的思想方法,及用数列求和公式求和时,应弄清基本量中各基本量的值,特别是用等比数列求和公式求和时,应关注公比q是否为1; ②记住一些常见结论便于用公式法对数列求和; ③学会分析通项的结构并且对通项进行分拆;能运用拆并项求和思想方法解决非特殊数列求和问题。

能力目标 培养学生用联系和变化的观点,结合转化的思想来分析问题和解决问题的能力。 情感目标 培养学生用数学的观点看问题,从而帮助他们用科学的态度认识世界. 教学重点与难点 教学重点等差等比数列求和及特殊数列求和的常用方法 教学难点分析具体数列的求和方法及实际求解过程. 教学方法、手段 通过设问、启发、当堂训练的教学程序,采用启发式讲解、互动式讨论、反馈式评价的授课方式,培养学生的自学能力和分析与解决问题的能力,借助幻灯片辅助教学,达到增加课堂容量、提高课堂效率的目的,营造生动活泼的课堂教学氛围. 学法指导 为了发挥学生的主观能动性,提高学生的综合能力,确定了三种学法

(1)自主性学习法,(2)探究性学习法,(3)巩固反馈法, 教学过程 (一)情景导入 复习回顾:等差数列和等比数列的前n项和公式? n(a1?an)n(n?1)?na1?d 等差数列求和公式Sn?22 (q?1)?na1? 等比数列求和公式Sna1(1?qn)a1?anq ?(q?1)?1?q?1?q 教师引导学生回忆数列几种常见的求和方法? ①公式法②分组求和法③裂项相消法④错位相减法 (充分发挥学生学习的能动性,以学生为主体,展开课堂教学) (二)自学指导 若已知一个数列的通项,如何对其前n项求和?

高考数学复习数列的求和

高考数学复习数列的求和

数列求和的常用方法8.26 1. 公式法 :①等差数列求和公式; ②等比数列求和公式, 特别声明:运用等比数列求和公式,务必 检查其公比与1的关系,必要时需分类讨论.; ③常用公式:1123(1)2 n n n ++++=+, 222112(1)(21) 6 n n n n ++ +=++, 33332 (1)123[] 2 n n n +++++=. 例1 、已知3 log 1log 23-= x ,求? ??++???+++n x x x x 32 的前n 项和. 解 :由2 1 2log log 3log 1log 3323 =?-=?-= x x x 由等比数列求和公式得 n n x x x x S +???+++=32 (利用常用公式) =x x x n --1) 1(=2 11)2 1 1(21--n =1-n 21 练一练:等比数列{}n a 的前n 项和S n=2n -1,则2232221n a a a a ++++ =_____ ; 2.分组求和法:在直接运用公式法求和有困难时,常将“和 式”中“同类项”先合并在一起,再运用公式法求和. 例2、 求数列的前n 项和:2 31, ,71,41,111 2 -+???+++-n a a a n ,… 解 :设) 231 ()71()41()11(12-++???++++++=-n a a a S n n

将其每一项拆开再重新组合得 )23741()1 111(12-+???+++++???+++ =-n a a a S n n (分组) 当a =1时, 2 )13(n n n S n -+ == 2 )13(n n + (分组求和) 当1≠a 时, 2)13(1111n n a a S n n -+-- == 2 )13(11n n a a a n -+--- 练一练:求和:1357(1)(21)n n S n =-+-+-+-- 3.倒序相加法:若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是等差数列前n 和公式的推导方法). 例3、求 89sin 88sin 3sin 2sin 1sin 2 2 2 2 2++???+++的值 解 :设 89sin 88sin 3sin 2sin 1sin 22222 ++???+++=S …………. ① 将①式右边反序得 1sin 2sin 3sin 88sin 89sin 22222+++???++=S ………….. ② (反序) 又因为 1 cos sin ),90cos(sin 22=+-=x x x x ① + ② 得 (反序相加) ) 89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++???++++=S =89

相关主题
文本预览
相关文档 最新文档