当前位置:文档之家› 通过碳正离子的重排反应

通过碳正离子的重排反应

通过碳正离子的重排反应
通过碳正离子的重排反应

碳正离子重排规律

有机化学中重排反应 有机化学中重排反应很早就被人们发现,研究并加以利用。第一次被Wohler发现的,由无 机化合物合成有机化合物,从而掀开有机化学神秘面纱的反应一加热氰酸铵而得到尿素,今 天也被化学家归入重排反应的范畴。一般地,在进攻试剂作用或者介质的影响下,有机分 子发生原子或原子团的转移和电子云密度重新分布,或者重键位置改变,环的扩大或缩小,碳架发生了改变,等等,这样的反应称为是重排反应。 按照反应的机理,重排反应通常可分为亲核反应、亲电反应、自由基反应和周环反应四大类。 也有按照不同的标准,分成分子内重排和分子间重排,光学活性改变和不改变的重排反应,一、亲核重排 重排反应中以亲核重排为最多,而亲核重排中又以1,2重排为最常见。 (一)亲核1, 2重排的一般规律 1?亲核1,2重排的三个步骤:离去基团离去,1, 2基团迁移,亲核试剂进攻2?发生亲核1,2重排的条件 (1 )转变成更稳定的正离子(在非环系统中,有时也从较稳定的离子重排成较不稳定的离子) (2)转变成稳定的中性化合物 (3 )减小基团间的拥挤程度,减小环的张力等立体因素。 (4)进行重排的立体化学条件:带正电荷碳的空 p轨道和相邻的C—Z键以及a碳和B碳应共平面或接近共平面 (5)重排产物在产物中所占的比例不仅和正电荷的结果有关,而且和反应介质中存在的亲核试剂的亲核能力有关 3?迁移基团的迁移能力 (1)多由试验方法来确定基团的固有迁移能力 (2 )与迁移后正离子的稳定性有关 (3)邻位协助作用 (4 )立体因素 4?亲核1, 2重排的立体化学: (1 )迁移基:构象基本保持,没有发现过构型反转,有时有部分消旋 (2)迁移终点:取决于离去及离去和迁移基进行迁移的相对时机 5?记忆效应:后一次重排好像和第一次重排有关,中间体似乎记住了前一次重排过程 (二)亲核重排主要包括基团向碳正离子迁移,基团向羰基碳原子迁移,基团向碳烯碳原子 迁移,基团向缺电子氮原子转移,基团向缺电氧原子的迁移,芳香族亲核重排,下面就这六种迁移作简要介绍: 1.基团向碳正离子迁移: (1)Wagner-Meerwein重排:烃基或氢的1, 2移位,于是醇重排成烯 (2)片那醇重排:邻二醇在酸催化下会重排成醛和酮

碳负离子的重排

一.碳负离子迁移特点 重排也叫迁移。在迁移中显然[1,2]迁移是最容易的。碳负离子的重排远不如碳正离子那样常见,原因是碳正离子的[1,2]迁移是轨道对称允许的,而碳负离子的[1,2]迁移受到轨道对称守恒规则的限制。这一点,简单说可用如下方法理解: C 1C R Π3Π34 system 即碳正离子迁移的过渡态是一个比较稳定的芳香体系,而碳负离子迁移的过渡态则是一个不稳定的反芳香体系。一般说来,过渡态具有芳香性的反应加热下就能进行,比如[4+2]环加成和[3,3]-σ迁移都比较容易进行,但[2+2]环加成加热下就不能进行。当然严格地从轨道对称守恒原理看,应按下图理解: — 碳负离子的[1,2]、[1,6] 迁移等都是对称性禁阻的,这是指同面迁移禁阻, 异面迁移则是对称性允许的。[1,2]迁移时采用异面迁移几乎不可能,但[1,6]迁移由于空间够大,采用异面迁移是可能的。下面两个化合物中,1在35℃就发生[1,6]迁移,但2加热到150℃也没有重排发生,只能在光照下发生[1,6]迁移,因为2无法发生异面迁移。而3发生的是[1,8] 迁移,对称性允许,故低温也能进行。

二.重排机理 1.加成-消除机理 饱和的烃基负离子基本不发生[1,2]迁移,但是不饱和的烃基负离子可以发生[1,2]迁移,如下面的高烯丙基负离子重排。由于轨道对称性的限制,这种迁移不可能是协同反应,实验表明这种迁移遵循加成-消除机理。例如:(符号的表示) ; 芳基也能在碳负离子中发生[1,2]迁移,不过比乙烯基困难一些。在格氏试剂中不能迁移,在锂试剂中可以缓慢重排,在钾和铯试剂中可以迅速发生[1,2]迁移,但一般要求在迁移源要留下至少一个芳基来稳定得到的负离子。 &

高等有机化学 第02节:碳负离子的重排

碳负离子的重排 一.碳负离子迁移特点 重排也叫迁移。在迁移中显然[1,2]迁移是最容易的。碳负离子的重排远不如碳正离子那样常见,原因是碳正离子的[1,2]迁移是轨道对称允许的,而碳负离子的[1,2]迁移受到轨道对称守恒规则的限制。这一点,简单说可用如下方法理解: C 1 C R C 1C R Π32Π3 4system system 即碳正离子迁移的过渡态是一个比较稳定的芳香体系,而碳负离子迁移的过渡态则是一个不稳定的反芳香体系。一般说来,过渡态具有芳香性的反应加热下就能进行,比如[4+2]环加成和[3,3]-σ迁移都比较容易进行,但[2+2]环加成加热下就不能进行。当然严格地从轨道对称守恒原理看,应按下图理解: 碳负离子的[1,2]、[1,6] 迁移等都是对称性禁阻的,这是指同面迁移禁阻,异面迁移则是对称性允许的。[1,2]迁移时采用异面迁移几乎不可能,但[1,6]迁移由于空间够大,采用异面迁移是可能的。下面两个化合物中,1在35℃就发生[1,6]迁移,但2加热到150℃也没有重排发生,只能在光照下发生[1,6]迁移,因为2无法发生异面迁移。而3发生的是[1,8]迁移,对称性允许,故低温也能进行。

二.重排机理 1.加成-消除机理 饱和的烃基负离子基本不发生[1,2]迁移,但是不饱和的烃基负离子可以发生[1,2]迁移,如下面的高烯丙基负离子重排。由于轨道对称性的限制,这种迁移不可能是协同反应,实验表明这种迁移遵循加成-消除机理。例如:(符号的表示)

芳基也能在碳负离子中发生[1,2]迁移,不过比乙烯基困难一些。在格氏试剂中不能迁移,在锂试剂中可以缓慢重排,在钾和铯试剂中可以迅速发生[1,2]迁移,但一般要求在迁移源要留下至少一个芳基来稳定得到的负离子。 多个芳基基团竞争重排时,能使中间体负离子更加离域的芳基优先迁移,例如下例中对二苯基的迁移绝对优先于间二苯基。 当然,如果重排的中间体是自由基而不是碳负离子,那么对二苯基的重排照

碳正离子

第一节碳正离子 含有带有正电荷的三价碳原子的基团,是有机化学反应中常见的活性中间体。很多离子型的反应是通过生成碳正离子活性中间体进行的,同时碳正离子也是研究得最早、最深入的活性中间体,很多研究反应历程的基本概念和方法都起始于碳正离子的研究,因此,有人认为碳正离子的研究是理论有机化学的基础。 一.碳正离子的生成 碳正离子可以通过不同方法产生,主要有下面三种: 1.中性化合物异裂,直接离子化 化合物在离解过程中,与碳原子连接的基团带着一对电子离去,发生共价键的异裂,而产生碳正离子,这是生成碳正离子的通常途径。 明显的实例如: 在这样的过程中,极性溶剂的溶剂化作用是生成碳正碳离子的重要条件。反应生成难溶解的沉淀也可影响平衡,使反应向右进行,而有利于碳正离子的生成,例如Ag+可以起到催化碳正离子生成的作用。 R-Br + Ag → AgBr↓ + R+ SbF5作为Lewis酸,又可生成稳定的SbF6-,也有利于碳正离子的生成。 R-F + SbF5 → R+ + SbF6- 在酸或Lewis酸的催化下,醇、醚、酰卤也可以离解为碳正离子,例如: 利用酸性特强的超酸甚至可以从非极性化合物如烷烃中,夺取负氢离子,而生成碳正离子。 由于碳正离子在超酸溶液中特殊的稳定性,很多碳正离子结构和性质的研究是在超酸中进行的,利用超酸可以制备许多不同碳正离子的稳定溶液。 2.正离子对中性分子加成,间接离子化

质子或带电荷的基团在不饱和键上的加成也可生成碳正离子。 如烯键与卤化氢的加成,第一步生成碳正离子。 羰基酸催化的亲核加成,首先质子化形成碳正离子,更有利于亲核试剂进攻。 芳环上的亲电取代反应,如硝化是由+NO2正离子进攻,形成σ络合物,这是离域化的碳正离子。 3.由其他正离子生成 碳正离子可以由其他正离子转变得到,例如重氮基正离子就很容易脱氮而生成芳基正离子。 也可以通过一些较易获得的正离子而制备更稳定但难于获得的碳正离子,例如用三苯甲 基正离子可以夺取环庚三烯的负氢离子而获得离子。 二.碳正离子的结构 碳正离子带有正电荷,中心碳原子为三价,价电子层仅有六个电子,其构型有两种 可能:一种是中心碳原子处于杂化状态所形成的角锥形构型,一种是的杂化状 态所形成的平面构型。不论还是,中心碳原子都是以三个杂化轨道,与三个成键原子或基相连构成三个σ键,都余下一个空轨道。不同的是前者的空轨道是杂化轨道,而后者空着的是未杂化的轨道。

碳正离子机理

第五讲与酸和亲电试剂有关的反应 —、 碳正离子 酸性介质中的反应可能涉及到碳正离子。碳正离子 的稳 定性为: 3。> 2° > 1。> + CH3 1.碳正离子的形成 (1) 离解 a.醇发生质子化后,碳氧单键发生异裂,得到碳正离子。 例如: CH 3 H 3C —C —OH + H I CH 3 (3)羰基的质子化 :0 + H^OSOH (4) 羰基化合物与Lewis 酸的反应 AICI 3 + CH —c —ci ―? 例如,Friedel-Crafts 酰基化反应 该反应的机理是: O CH + H 3C —C —OH I CH —般仅限制于生成稳定的碳正离子 间体为碳正离子)。 b.极性介质中,反应物分子中又存在好的离去基团,不需要 酸的催 化,也会发生键的异裂,生成碳正离子。 _ O HO — MeO CH^O —AOCF 3 :热?MeO CH 2 + CF 3SO 3- O — ⑵亲电试剂对双键的加成 (SN1或E1反应的中 CH 3 H 3C — C + CH 3 Q OSOH + 'OSOH + 「OSOH

QkAICI 3 CH 3 一 C —Cl -O AICI 3 H^Jci O CH - H + +0 AICI 3 -O AICI 3 * CH — L CI - CI AICI 3 2.碳正离子的重排 碳正离子重排的驱动力是:生成更稳定的碳正离子。重 排通常涉及到碳正离子中心原子的a -C 上的烷基、苯基或 H 的迁移。 (1) -H 的迁移 OH ?/ + H 2SQ Br - Br H O 反应: 机理: + 严一性2 (2)烷基的迁移 下列反应涉及到烷基的迁移,为它提出一个合理的机理。 比0\ 机理 实例1: 二烯酮-酚的重排反应

第14章 碳负离子的反应

第14章碳负离子的反应 ——β-二羰基化合物§14.1 α-H的酸性和互变异构 14.1.1 α-H的酸性 1、α-H的酸性 在有机化学中,与官能团直接相连的碳原子均称为α-C;α-C上的氢原子均称为α-H。 α-H以质子形式解离下来的能力,即为α-H的活性或α-H的酸性。因此烃也可叫做氢碳酸。 表14-1-1 常见化合物α-H的p K a值 羧酸衍生物中的α-H的活性一般比醛酮为弱,但酰氯中由于氯原子与羰基的共轭程度差且吸电子效应强,反而使其α-H的酸性增强。 酸性大小:酰氯>醛、酮>酯>酰胺 Cl:吸电子诱导>给电子共轭 O:给电子共轭>吸电子诱导 2、影响α-H的酸性的因素 1)α-C所连接的官能团及其官能团的吸电子能力。总的吸电子能力越强,α-H的酸性就越大; 2)取决于氢解离后生成的碳负离子(carbanion)结构的稳定性。负离子上电子的离域范围越大越稳定; ? 3)分子的几何形状、介质的介电常数、溶剂等都有关系。 3、β-二羰基化合物α-H的活性分析 乙酰乙酸乙酯是一个典型的1,3-二羰基化合物,由于受两个羰基的吸电子作用,亚甲基上的H 特别活泼,和碱作用形成稳定的负离子。负离子特别稳定是因为负离子可以同时和两个羰基发生共轭作用,具有比较广泛的离域范围。 烯醇负离子 其他1,3-二羰基化合物情况相似,其他的吸电子基团如硝基、氰基等与羰基作用相同在含有

(氢 )的化合物。 β-二酮 β-羰基酸酯 丙二酸酯 氰乙酸酯 硝基乙酸酯 活泼氢化合物的双重反应性能: 碳负离子 烯醇负离子 氧负离子 一般情况下,这些物质在反应时可以看作是碳负离子对其它官能团的亲核加成反应。 14.1.2 酮式和烯醇式的互变异构 可以看作是活泼H 可以在α-C 和羰基O 之间来回移动。 1、酸碱对互变平衡的影响 痕量的酸、碱甚至是玻璃仪器都能促使平衡的快速建立。 (1)酸催化过程 在酸催异构化过程中,酸首先与羰基氧原子作用形成 盐,其共轭碱——水再夺取α-H 形成烯醇。 (2)碱催化过程 碳可以直接和α-H 结合,同时形成一个碳负离子。通过电子对的转移,碳上的负电荷转移到氧上,形成烯醇负离子。 2、化合物的结构对互变平衡的影响 通常,单羰基化合物中的烯醇式异构体含量很少。 β-二羰基结构的化合物,在平衡状态下其烯醇式的含量较高。通常以平衡混合物的形式存在。 两个羰基被一个碳原子隔开的化合物;当同一碳原子上连有两个吸电子基团时,这样的化合物其酸性则明显增强。 酮式中碳氧π键比烯醇式 中碳碳π键更稳定!

1碳正离子的稳定性顺序为

项目七 练习题 一、填空 1.碳正离子的稳定性顺序为 > > > 。 2.活性自由基的稳定性顺序为 > > > 。 3.马尔科夫尼科夫规则是指当卤化氢与不对称烯烃加成时,卤化氢中的氢原原子加到 ,卤原子加到 。 4.用碘作碘化试剂与芳烃作用时,由于生成的碘化氢具有 ,必须将其除去,除去的方法有 、 、 。 5.醇的碘取代反应一般用 或 作碘化试剂。 二、判断题 1.氯、溴与烯烃的加成不但易于发生,而且在很多情况下是定量进行的。 ( ) 2.碘的活性较低,通常它是不能与烯烃发生加成反应的。 ( ) 3.卤化氢与烯烃的加成反应是离子型机理还是自由基机理,只要根据反应条件来判断就可以了。 ( ) 4.卤化氢与烯烃的离子型加成机理产物是反马氏规则的。 ( ) 5.和烯烃相比,炔烃与卤素的加成是较容易的。 ( ) 6.苯胺的卤代若用卤素作卤化试剂,则主要得到三卤化苯胺。 ( ) 7.卤化亚砜(SOCl2)特别适用于伯醇的卤取代反应。 ( ) 8.氟代芳烃也可以用直接的方法来制备。 ( ) 9.在光和过氧化物存在下,不对称炔烃与溴化氢的加成也是自由基加成反应,得到的是反马氏规则的产物。 ( ) 10.在侧链的取代卤化反应中,工业上采用衬玻璃、衬搪瓷或衬铅的反应设备。( ) 三、完成下列反应式 1. 2. 3. 4. 5. CH 3O COCH 3Br 2/AcOH CH 3O COCH 3Fe ,Br 2CH 2CHCOOCH 3+Br H CH 3O CH 2(CH 2)2CH 2COC 6H 5NBS ,光照CCl 42,光照

参考答案: 一、填空题 1.叔碳正离子、仲碳正离子、伯碳正离子、甲基正离子 2.叔碳自由基、仲碳自由基、伯碳自由基、甲基自由基 3.含氢较多的不饱和碳上,含氢较少的不饱和碳上 4. 还原性、加入氧化剂、加碱、加入能与碘化氢形成难溶于水的碘化物的金属氧化物 5.碘化钾加磷酸、碘加红磷 二、判断题 1.√ 2.√ 3.√ 4.× 5.× 6.√ 7.√ 8.× 9.√ 10.√ 三、完成下列反应式 CH3O COCH2Br 1. 2.CH O COCH3 3 Br 3.CH3CHBrCOOCH3 4.CH3O CH(CH2)2CH2COC6H5 Cl

邢其毅《基础有机化学》笔记和课后习题(含考研真题)详解(碳负离子 缩合反应)

第15章碳负离子缩合反应 15.1 复习笔记 一、氢碳酸的概念和α氢的酸性 氢碳酸的酸性强弱可用碳上的氢以正离子解离下来的能力表示,用pK a值来表示,值越小,酸性越强。 烷烃的酸性很弱。烯丙位和苯甲位碳上的氢的酸性比烷烃强。末端炔烃的酸性更强一些,环戊二烯亚甲基上的氢相对更活泼一些。 1.α氢的酸性 与官能团直接相连的碳称为α碳,α碳上的氢称为α氢。α氢以正离子解离下来的能力即为α氢的活性(酸性)。 通过测定α氢的pK a值或其与重氢的交换速率可以确定α氢的酸性强弱。 (1)α氢的酸性强弱取决于与α碳相连的官能团及其它基团的吸电子能力。总的吸电子能力越强,α氢的酸性就越强。 一些常见基团的吸电子能力强弱次序排列如下: (2)α氢的酸性还取决于氢解离后的碳负离子(carbanion)结构的稳定性。碳负离子的离域范围越大越稳定。 (3)分子的几何形状会影响α氢的酸性。

(4)与α氢的解离和介质的介电常数及溶剂化有关。 2.羰基化合物α氢的活性分析 羰基的吸电子能力很强,因此羰基化合物的α氢都很活泼。 例如在NaOD—D20中,2-甲基环己酮的α氢均可被氘取代。 (1)羰基使α碳原子上的氢具有活泼性,是因为: ①羰基的吸电子诱导效应; ②羰基α碳上的碳氢键与羰基有超共轭作用。 (2)羰基旁所连的基团的不同导致了它们的α氢的活性也有差异。可以从这些化合物本身的结构以及它们形成烯醇式后的结构来认识: 含羰基化合物的α氢的酸性从大到小顺序:酰氯>醛>酮>酯>酰胺 ①在酰氯中,氯的存在增强了羰基对α碳的吸电子能力,从而也增强了α氢的活性。同时氯的吸电子效应也使形成的烯醇负离子因负电荷分散而趋于稳定。 ②在酯和酰胺中,烷氧基氧的孤电子对和氨基氮的孤电子对均可与羰基共轭而使体系变得稳定。 ③酰胺氮上的孤电子对碱性较强,使共轭体系更加稳定,要解离α氢,形成烯醇负离子需要的能量更多,故酸性比酯还弱。 ④当醛基中的氢被烷基代替后,由于烷基的空阻比氢大,从某种程度上讲阻碍了碱和氢

碳负离子的重排

一.碳负离子迁移特点 重排也叫迁移。在迁移中显然[1,2]迁移是最容易的。碳负离子的重排远不如碳正离子那样常见,原因是碳正离子的[1,2]迁移是轨道对称允许的,而碳负离子的[1,2]迁移受到轨道对称守恒规则的限制。这一点,简单说可用如下方法理解: C 1 C 2 R C 1C 2 R Π32Π3 4system system 即碳正离子迁移的过渡态是一个比较稳定的芳香体系,而碳负离子迁移的过渡态则是一个不稳定的反芳香体系。一般说来,过渡态具有芳香性的反应加热下就能进行,比如[4+2]环加成和[3,3]-σ迁移都比较容易进行,但[2+2]环加成加热下就不能进行。当然严格地从轨道对称守恒原理看,应按下图理解: 碳负离子的[1,2]、[1,6] 迁移等都是对称性禁阻的,这是指同面迁移禁阻,异面迁移则是对称性允许的。[1,2]迁移时采用异面迁移几乎不可能,但[1,6]迁移由于空间够大,采用异面迁移是可能的。下面两个化合物中,1在35℃就发生[1,6]迁移,但2加热到150℃也没有重排发生,只能在光照下发生[1,6]迁移,因为2无法发生异面迁移。而3发生的是[1,8] 迁移,对称性允许,故低温也能进行。 二.重排机理

1.加成-消除机理 饱和的烃基负离子基本不发生[1,2]迁移,但是不饱和的烃基负离子可以发生[1,2]迁移,如下面的高烯丙基负离子重排。由于轨道对称性的限制,这种迁移不可能是协同反应,实验表明这种迁移遵循加成-消除机理。例如:(符号的表示) 芳基也能在碳负离子中发生[1,2]迁移,不过比乙烯基困难一些。在格氏试剂中不能迁移,在锂试剂中可以缓慢重排,在钾和铯试剂中可以迅速发生[1,2]迁移,但一般要求在迁移源要留下至少一个芳基来稳定得到的负离子。 多个芳基基团竞争重排时,能使中间体负离子更加离域的芳基优先迁移,例如下例中对二苯基的迁移绝对优先于间二苯基。

1碳正离子的稳定性顺序为.

项目七练习题 一、 填空 1. 碳正离子的稳定性顺序为 2. 活性自由基的稳定性顺序为 ______________ > __________ > _____________ > 3. 马尔科夫尼科夫规则是指当卤化氢与不对称烯烃加成时,卤化氢中的氢原原子加 到 ________________________ ,卤原子加到 ________________ 4?用碘作碘化试剂与芳烃作用时,由于生成的碘化氢具有 除去的方法有 、 5 ?醇的碘取代反应一般用 二、 判断题 1 .氯、溴与烯烃的加成不但易于发生, 而且在很多情况下是定量进行的。 2.碘的活性较低,通常它是不能与烯烃发生加成反应的。 3 ?卤化氢与烯烃的加成反应是离子型机理还是自由基机理,只要根据反应条件来判断 就可以了。 4. 卤化氢与烯烃的离子型加成机理产物是反马氏规则的。 5. 和烯烃相比,炔烃与卤素的加成是较容易的。 6. 苯胺的卤代若用卤素作卤化试剂, 则主要得到三卤化苯胺。 7?卤化亚砜(SOC12)特别适用于伯醇的卤取代反应。 &氟代芳烃也可以用直接的方法来制备。 o 作碘化试 剂。 ,必须将其除去, ( ( ( ( ( ( ) ) ) ) ) ) 9?在光和过氧化物存在下,不对称炔烃与溴化氢的加成也是自由基加成反应,得到的 是反马氏规则的产物。 ( 10.在侧链的取代卤化反应中, 工业上采用衬玻璃、 衬搪瓷或衬铅的反应设备。( 三、 完成下列反应式 1. 3. 4. 5. CH 3O COCH 3 CH 3O COCH 3 Br 2 /AcOH Fe Br 2 CH 2=CHCOOCH 3+ HBr CH 2(CH 2)2CH 2COC 6H 5 NBS ,光照 = CCl 4 [XI Cl 2,光照

碳正离子机理

第五讲 与酸和亲电试剂有关的反应 一、 碳正离子 酸性介质中的反应可能涉及到碳正离子。碳正离子的稳定性为: 3o > 2o > 1o > +CH3 1. 碳正离子的形成 (1) 离解 a. 醇发生质子化后,碳氧单键发生异裂,得到碳正离子。 例如: C CH 3 3 H 3C OH + H + C CH 33 H 3C OH 2 +C CH 33 H 3C + 一般仅限制于生成稳定的碳正离子(SN1或E1反应的中间体为碳正离子)。 b. 极性介质中,反应物分子中又存在好的离去基团,不需要酸的催化,也会发生键的异裂,生成碳正离子。 MeO CH 2O S O OCF 3H O CF 3SO 3 -+MeO CH 2+ (2) 亲电试剂对双键的加成 3H + - OSO 3H (3) 羰基的质子化 3H + - OSO 3H (4) 羰基化合物与Lewis 酸的反应 + C O Cl CH 3 O 3 例如,Friedel-Crafts 酰基化反应 该反应的机理是:

C CH 3 CH 3O 3Cl CH 33-C Cl CH 3 AlCl 3O + -AlCl 333 +- H + CH 3 O 2.碳正离子的重排 碳正离子重排的驱动力是:生成更稳定的碳正离子。重 排通常涉及到碳正离子中心原子的α-C 上的烷基、苯基或 – H 的迁移。 (1)– H 的迁移 Br OH + H 2SO 4 2 (2)烷基的迁移 下列反应涉及到烷基的迁移,为它提出一个合理的机理。 O H 3O + H 机理 O H 3O + O H 实例1:二烯酮-酚的重排反应 反应: O H 3O + 机理:

4.碳正离子与碳负离子

有机化学基本理论 主讲人:史达清 4. 碳正离子与碳负离子 碳正离子、碳负离子是有机化学中非常重要的两类活性中间体,我们有必要掌握这两类活性中间体的结构、生成方法及影响稳定性的因素。 (1)碳正离子 碳正离子是指碳原子带有正电荷的三价化合物,对碳正离子的研究是最早且最深入的,被称为物理有机化学的基础,许多有机反应历程的研究概念和方法都起始于碳正离子的研究工作。 (a)碳正离子的结构 碳正离子的中心碳原子是sp2 杂化的平面型结构,正电荷在p 轨道中: 例外:下面的几个实例是例外,这是由于它们都不能形成空的p 轨道形式,如乙烯正离子,乙炔正离子是线型结构,有一个空的sp 杂化轨道,苯基正离子C6H5+则有一个空的sp2杂化轨道,但它们都很难生成,因为空轨道与π 体系相互垂直,正电荷得不到分散。(b)碳正离子的生成方法 离解是形成碳正离子的一个主要方法,离解时,与碳原子相连的基团带着一对对子离去。 苯磺酸根离子和卤离子是常用的较好的离去基团。卤代物中的卤离子还可以在Ag+ 或Lewis 酸存在下脱去而生成碳正离子。例如: 醇一般是在酸作用下,将不容易离去的羟基转变成易离去的水离去,可以形成碳正离子:

伯胺一般先用亚硝酸重氮化得到重氮盐,再脱氮得到碳正离子: 如果生成的碳正离子具有芳香性,那么这些碳正离子就比较容易生成。例如: 另一类产生碳正离子的方法是质子或其它带正电荷的原子团或Lewis 酸对不饱和体系的加成。例如: (c)碳正离子的稳定性 凡是能够使碳正离子的正电荷得到分散的,则碳正离子比较稳定;相反,如果使碳正离子的正电荷集中,则碳正离子更不稳定。其影响因素主要有: (i) 诱导效应 给电子的诱导效应(+I)使碳正离子稳定;而吸引电子的诱导效应(-I),使碳正离子不稳定。例如: (ii) 共轭效应 给电子的共轭效应(+C)使碳正离子稳定;而吸电子的共轭效应(-C)使碳正离子不稳定。例如: (iii) 空间效应 由于碳正离子是平面型结构,如果正电荷在桥头碳原子上,由于桥的刚性结构,难以形成平面型,所以该碳正离子的稳定性比较差,例如:1-氯双环[2.2.1]庚烷的乙醇解速度比叔丁基氯慢1013倍。

碳正离子

有机活性中间体——碳正离子的研究 一、碳正离子的生成 在有机化学反应中碳正离子可以通过不同的方法产生,主要有以下三种。 1、直接离子化[1] 在化合物的离解过程中,以共价键的异裂方式产生碳正离子。最常见的为卤代烃的异裂,在离解过程中,与碳原子相连的卤原子带着一对电子离去,产生碳正离子。 R —X →R + +X - 在这个反应中,极性溶剂的溶剂化作用是生成碳正离子的重要条件。反应是可逆的,反应生成难溶物或用SbF 5作为Lewis 酸生成稳定SbF 6一, 会使反应向右进行,有利于碳正离子的生成。R —Br+ Ag +→R ++ AgBr ; R —F+SbF5→R ++SbF 6-。但是醇、醚、酰卤在酸或Lewis 酸的催化下也可以离解为碳正离子。 R 一0H → R +-OH 2→R ++H 20 ; CH 3COF+BF 3-→CH 3CO ++BF 4- 利用超强酸可以从非极性化合物如烷烃中,夺取负氢离子而生成碳正离子。 (CH 3)3CH + SbF 5·FSO 3H →(CH 3)3C ++ SbF 5·FSO 3-+H 2 2、间接离子化[2] 主要由其它正离子对中性分子加成而产生的碳正离子,最常见的为烯烃的亲电加成反应和芳环上的亲电取代反应。 C C H ; + NO2 2 3、其它生成的途径 由其它较容易获得的碳正离子转换成较稳定的难以获得的碳正离子。常见的有重氮基正离子脱N 2而生成碳正离子。 RN R +N2 ; N 2+N2 二、碳正离子的结构 碳正离子带有正电荷,其结构是由其本身所决定的,碳正离子的中心碳原子为三价,价电子层仅有六个电子,根据杂化轨道理论,其构型有两种可能:一种是中心碳原子处于sp 3 杂化状态下的角锥构型,另一种是中心碳原子处于sp 2杂化状态下的平面构型(见下图)。

碳正离子、碳负离子、自由基参与的化学反应 王竹青 29号 应化09-2

碳正离子、碳负离子、自由基参与的化学反应 应用化学09-2班 王竹青 29号 一 碳正离子参加的反应 含有一个外层只有 6 个电子的碳原子作为中心碳原子 的正离子。常见的碳正离子如下: (一)碳正离子的形成 一般有三种方法产生碳正离子。 1 .由反应物直接生成 :R X R X 与碳原子直接相连的原子或原子团带着一对成键电子裂解,产生碳正离子。极性溶剂、Lewis 酸常有促进效果。 1.1 X=H 。烃很少自动失去氢负离子,只有在强亲电试剂如Lewis 酸或其它稳定正离子的因素存在下才能发生 这 一 反应。 C H CH 3 CH 3 H 3C 3 C CH 3 CH 3 H 3C + HAlCl 3 1.2 X=F 、Cl 、Br 或I 。这是SN1异裂反应。Lewis 酸可 加速这 种电离作用。 C Cl CH 3 CH 3 H 3C AlCl 3 C CH 3 CH 3 H 3C + HAlCl 4 CH 3CH 3CH 2(CH 3)3C

1.3 X=OTs 酯类衍生物。OTs 是一个很好的离去基团, 这类酯很易 解离。 1.4 X=OCOZ ,其中Z= Cl 、Br 或I ,其推动力是由于形成二氧化碳。 氯亚磺酸酯,X=OSOCl 也属于这一类。其推动力是由于排除SO2。 C OSOCl R R R 3 C R R R + Cl + SO 2 1.5 X=H2O 或ROH 。断裂是由醚ROR 中氧原子的质子化引起的。 1.6 X= N 2。亚硝酸和伯胺的反应生成的重氮离子很容易分解成碳正离子,推动力是由于生成了氮气。 1.7 X=CO 。当相应的正离子稳定的时候,某些羧酸先质子化,然后脱去羰基。 C CH 3 CH 3 H 3C AlCl 3 C CH 3 CH 3 H 3C + OTs - +C OCOCl R R R C R R R + Cl -CO 2 +O R' R H O R' R R + R'OH + N 2 H + N 2+

碳正离子

碳正离子 碳正离子是一种带正电的极不稳定的碳氢化合物。分析这种物质对发现能廉价制造几十种当代必需的化工产品是至关重要的。欧拉教授发现了利用超强酸使碳正离子保持稳定的方法,能够配制高浓度的碳正离子和仔细研究它。他的发现已用于提高炼油的效率、生产无铅汽油和研制新药物。碳正离子与自由基一样,是一个活泼的中间体。碳正离子有一个正电荷,最外层有6个电子。带正电荷的碳原子以SP2杂化轨道与3个原子(或原子团)结合,形成3个σ键,与碳原子处于同一个平面。碳原子剩余的P轨道与这个平面垂直。碳正离子是平面结构。1963年有报道,直接观察到简单的碳正离子,证明了它的平面结构,为它的存在及其结构提供了实验依据。根据带正电荷的碳原子的位置,可分为一级碳正离子,二级碳正离子和三级碳正离子。碳正离子的结构与稳定性直接受到与之相连接的基团的影响。它们稳定性的一般规律如下:(1)苄基型或烯丙型一般较稳定;(2)其它碳正离子是:3°>2°>1°;碳正离子越稳定,能量越低,形成越容易,加成速度也越快,可见碳正离子的稳定性决定烯烃加成的取向。碳正离子根据结构特点不同可分为:经典碳正离子和非经典碳正离子 碳负离子 (Carbanion)指的是含有一个连有三个基团,并且带有一对孤对电子的碳的活性中间体。碳负离子带有一个单位负电荷,通常是四面体构型,其中孤对电子占一个sp3 杂化轨道。通过比较相应酸的酸性大小,可以大致判断碳负离子的稳定性大小。一般地,具有能稳定负电荷的基团的碳负离子具有较高的稳定性。这些基团可以是苯基、电负性较强的杂原子(如O,N,基团如-NO2、-C(=O)-、-CO2R、-SO2-、-CN和-CONR2等)或末端炔烃(也可看作电负性的缘故),例如,三苯甲烷、三氰基甲烷、硝基甲烷和1,3-二羰基化合物具有较强的酸性。除此之外,不同于缩酮,缩硫酮的α氢也具有较强的酸性。这可以用硫的3d轨道与C-S键σ*轨道的超共轭效应来解释。硫代硝基苯基甲烷的去质子化表明,硫的可极化性起主要作用。有机金属化合物,如Grignard试剂和有机锂试剂也可看作是碳负离子源。叶立德,如磷叶立德和硫叶立德等,都含有具有碳负离子结构的共振杂化体。碳负离子可进行SN2反应。 实验事实表明碳正离子和碳自由基具有平面结构,而碳负离子则呈角锥状,因此杂化轨道理论指出在碳正离子和碳自由基中,碳原子都采用sp2杂化方式,并使用3个sp2杂化轨道形成3个σ键,形成一个平面的分子。不同的是,在碳正离子中,2p轨道上没有电子,而在碳自由基中,2p轨道上有一个单电子。

碳负离子

碳正离子与碳负离子的对比 李文峰 学号2013301040145 化基五班 摘要:碳负离子和碳负离子都是有机化学中重要的活性中间体,但两者的形成和反应机理都不尽相同。本文大体依据《有机化学》,结合相关文献。对二者进行两相对比增益于化学的学习。 关键词:碳正离子 碳负离子 重排 一、碳正离子 碳正离子的产生 碳正离子可以认为是通过C-C 单键中一对电子的异裂形成的,式中X 代表卤素。 碳正离子中带正电荷的碳原子是sp 2 杂化,三个杂化轨道呈平面排列与其他原子或基团成键,键角约为120o ,有一个垂直于此平面的空p 轨道,这个空的P 轨道与化学性质密切相关。 B 碳正离子很不稳定,需要电子来完成八隅体构型,因此任何给电子的因素都能使正电荷分散而稳定,任何吸电子的因素均能使正电荷集中而更不稳定。故而R 的共轭效应,诱导效应和立体效应,以及烷基的超共轭效应都能对碳正离子起稳定作用。 碳正离子的稳定性 烷基有给电子的诱导效应故带正电荷上的碳烷基越多,给电子的诱导效应越大,使正电荷越分散而稳定。还有超共轭效应,也使得碳正离子更稳定。P-π共轭也能使正电荷分散而稳定,一般是碳正离子与不饱和的烯或是芳基相连时,共轭体系越多,正碳离子越稳定。 (CH 3)3C +>(CH 3)2C +H>CH 3C +H 2>C +H 3 (CH 2=CH)3C +>(CH 2=CH)2C +H>CH 2=CHC +H 2 由于碳正离子中带正电荷的碳原子是sp 2 杂化,桥头碳原子由于桥的刚性结构,不形成具有平面三角形的SP 2轨道的碳正离子,即使能形成也很不稳定。 碳正离子的反应 1、与与亲核试剂结合 R ++Nu —一 R —Nu 2、消除邻位碳上的一个质子而形成烯烃 R X R 3C + X R'' o C + 3 C +2 H C +H 2 > >

论述碳正离子重排1

一、亲核重排 重排反应中以亲核重排为最多,而亲核重排中又以1,2重排为最常见。 (一)亲核1,2重排的一般规律 1.亲核1,2重排的三个步骤:离去基团离去,1,2基团迁移,亲核试剂进攻 2.发生亲核1,2重排的条件 (1)转变成更稳定的正离子(在非环系统中,有时也从较稳定的离子重排成较不稳定的离子) (2)转变成稳定的中性化合物 (3)减小基团间的拥挤程度,减小环的张力等立体因素。 (4)进行重排的立体化学条件:带正电荷碳的空p轨道和相邻的C-Z键以及α碳和β碳应共平面或接近共平面 (5)重排产物在产物中所占的比例不仅和正电荷的结果有关,而且和反应介质中存在的亲核试剂的亲核能力有关 3.迁移基团的迁移能力 (1)多由试验方法来确定基团的固有迁移能力 (2)与迁移后正离子的稳定性有关 (3)邻位协助作用 (4)立体因素 4.亲核1,2重排的立体化学: (1)迁移基:构象基本保持,没有发现过构型反转,有时有部分消旋 (2)迁移终点:取决于离去及离去和迁移基进行迁移的相对时机 5.记忆效应:后一次重排好像和第一次重排有关,中间体似乎记住了前一次重排过程 (二) 亲核重排主要包括基团向碳正离子迁移,基团向羰基碳原子迁移,基团向碳烯碳原子迁移,基团向缺电子氮原子转移,基团向缺电氧原子的迁移,芳香族亲核重排,下面就这六种迁移作简要介绍: 1.基团向碳正离子迁移: (1)Wagner-Meerwein重排:烃基或氢的1,2移位,于是醇重排成烯 (2)片那醇重排:邻二醇在酸催化下会重排成醛和酮 (3)Demyanov重排,Tiffeneau-Demyanov扩环以及有关反应 (4)二烯酮-酚重排:4,4-二取代环己二烯酮经酸处理重排成3,4-二取代酚的反应 (5)醛酮同系物的合成:醛或酮和重氮甲烷作用生成高一级的同系物 (6)烯丙基重排:烯丙基系统中双键发生位移的反应 2.基团向羰基碳原子迁移: (1) Benzil-Benzilic Acid重排:α-二酮经强碱处理会发生重排,生成α-羟基乙酸盐 (2) 酸催化下醛酮的重排:在烃基的交换后,醛重排成酮,酮则重排成另一种酮

碳正离子机理

第五讲与酸和亲电试剂有关的反应 一、碳正离子 酸性介质中的反应可能涉及到碳正离子。碳正离子的稳定性为: 3o > 2o > 1o > +CH3 1.碳正离子的形成 (1)离解 a.醇发生质子化后,碳氧单键发生异裂,得到碳正离子。 例如: 一般仅限制于生成稳定的碳正离子(SN1或E1反应的中间体为碳正离子)。 b.极性介质中,反应物分子中又存在好的离去基团,不需要酸的催化,也会发生键的异裂,生成碳正离子。 (2)亲电试剂对双键的加成 (3)羰基的质子化 (4)羰基化合物与Lewis酸的反应 例如,Friedel-Crafts 酰基化反应 该反应的机理是: 2.碳正离子的重排 碳正离子重排的驱动力是:生成更稳定的碳正离子。重排通常涉及到碳正离子中心原子的α-C上的烷基、苯基或–H 的迁移。 (1)–H 的迁移 (2)烷基的迁移 下列反应涉及到烷基的迁移,为它提出一个合理的机理。 机理O H3O+ H

实例1:二烯酮-酚的重排反应 反应:O H 3O + 机理: 实例2: 片呐醇重排 反应 机理: 3. 涉及缺电子氮的正离子重排 下列反应为Beckmann 重排: 机理: Ph Ph N O P Cl Cl Cl Cl PCl 5的作用是增大底物分子中氮氧键的极性,帮助其异裂。迁移基团处于离去基团的对面。最后一步可以看成是酮式与烯醇式的互变异构。 二、 亲电加成 亲电加成是脂肪族π键的典型反应,这类加成涉及到两步:亲电试剂对亲核双键的加成得到碳正离子中间体;碳正离子与亲核试剂结合。 典型的亲电试剂有:Br 2 、Cl 2、 H + (HCl 、HBr 、HI 、 H 2SO 4、H 3PO 4)、Lewis 酸和碳正离子。 第二步的亲核试剂常常是与亲电试剂相连的阴离子,例如Cl —、B r —、I — 等,或者是象水和乙酸这样的亲核性溶剂。在第一步可能产生稳定性不一样的碳正离子,因而有着区域 选择性。 例如: + HI I 机理: I + H + + I - 三、 酸催化的羰基化合物的反应

碳正离子和缺电子重排

姓名:李广申学号:250967 碳正离子和缺电子重排 碳正离子通常被分为具有定域电荷的经典碳正离子及具有离域电荷的非经典碳正离子。经典碳正离子可以被一个“Lewis结构”代表,仅包括两电子二中心键。其中带正电荷的碳原子的价电子层有六个电子,形成三个共价键,这就是通常所指的碳正离子。如CH3+,CH2=CHCH2+ 等。非经典碳正离子不能被一个“Lewis结构”所代表,带正电荷的碳原子外面有八个电子,其中一对电子为三中心键。如降冰片正离子。 1 23 4 5 6 7 这里主要对经典碳正离子的形成及其性质进行一下讨论。 一、碳正离子的形成 1、中性分子的异裂 使中性分子发生异裂是生成碳正离子最常用的方法。和碳原子直接相连的原子或原子团带着一对成键电子离去。R—X R+ +X-,如: (CH3)3C—Cl(CH3)3C+ +Cl- 一般叔碳正离子或其他较稳定的碳正子(苯甲型、烯丙型,二苯甲基碳正离子、三苯甲基碳正离子),较容易通过直接离解形成,而且介质的极性愈大,离解时所需的能量愈小。例如:氯代叔丁烷再空气中离解成碳正离子,所需能量为628.5KJ/mol,而在水溶液中形成碳正离子,离解所需能量仅为83.74KJ/mol. 离去基团愈容易离去,也愈有利于碳正离子的形成。有时离去基团较难离去时,可加路易士酸予与帮助。 R—Br +AlBr3R+ +AlBr4-(芳烃的傅—克烷基化反应) R—X + Ag+R+ +AgX (卤代烃与AGNO3的醇溶液反应)CH3COF +BF3 CH3—C+=O +BF4-

(CH 3)CF +SbF 5 (CH3)C + +SbF 6- 利用超酸溶剂可以制备碳正离子的稳定溶液。例:用100% H 2SO 4制备三苯甲基碳正离子。 (C 6H 5)3COH + 2H 2SO 4 (C 6H 5)3+ +H 3O + + 2H 2SO 4 2. 质子或其他带电荷的原子团与不饱和体系加成 最常见的正离子是H +离子。烯烃酸化水合生成醇就包括着H+与C=C 双键的 加成。例如: C H 3C CH 3+ C CH 3C CH 3 C CH 3C CH 3 + OH 2 C CH 3 3C CH 3 OH 这个反应是可逆的。逆反应是醇酸催化脱水生成烯烃。 质子也可以发生在 C=O 双键的氧原子上。如: R 2C=O +H 2SO 4 R 2C=OH +HSO 4- 应用正离子转移试剂也可以生成碳正离子。例如CH 3Cl 和ALCl 3可以把CH 3+转移到六甲苯上,生成七甲基环己二烯基正离子 CH 3 CH 3CH 3 H 3C H 3C CH 3 CH 3 CH 3CH 3 H 3C H 3C CH 3 +CH 3Cl +AlCl 3 +AlCl 4 七甲基环己二烯基正离子是个共振(或共轭)碳正离子: H 3C CH 3 CH 3CH 3 CH 3 H 3C H 3C H 3C CH 3CH 3CH 3 CH 3 H 3C H 3C H 3C CH 3 CH 3CH 3 CH 3 3C 3C H 3C CH 3 CH 3CH 3 CH 3 H 3C H 3C 3、从其他正离子生成 碳正离子也可以从其他正离子的离解得到。翁离子(onium ion )的分解就是 生成碳正离子的一类重要反应。例如:

碳正离子的构型与稳定性

碳正离子的构型与稳定性 学院: 食品工程与生物技术学院 学号: 14144107 姓名: 田永明 碳正离子的构型与稳定性 食品工程与生物技术学院 14144107 田永明摘要:在自然界中存在着许多有机化合物,它们每时每刻都在发生着变化,而许多的反应都是多步完成的。在这些过程中存在着一个或多个活性中间体。论证这些活性中间体存在及它们的结构是研究有机反应机理的重要环节。由于有机化合物发生的反应不同,化学键断裂方式也不同,它们的活性中间体也不同,其中最多的活性中间体有碳正离子、碳负离子、自由基、碳烯、苯炔等。碳正离子是有机化学反应过程中产生的活性中间体,它的稳定性及立体构型甚至直接决定着化学反应产物的产生速度和产率。然而活性中间体碳正离子的寿命是极其短暂的,一个反应机制的主要内容就是说明一个中间体的形成和消灭的过程,活性中间体的形成和消灭的过程也就是一个反应的反应机制,因而得到这些活性中间体的证据及碳正离子稳定性理论,成为研究有机反应机制的一个重要重要成果。对于碳正离子的存在和结构确定碳正离子的生成、碳正离子的稳定性及对反应的影响很有意义。可以更加深化碳正离子存在的反应的机理,就有利于碳正离子的稳定性的原理的应用及指导有机合成路线的选择和设计。 关键词:碳正离子;稳定性;碳正离子的反应类型; 一、碳正离子 1、碳正离子是带有正电荷的含碳离子,是一类重要的活性中间体,可用R3C+表示(R为烷基)。碳正离子及其反应于20世纪20年代由C(K(英戈尔德等提出的。碳正离子可以认为是通过共价C-C单键中一对电子的异裂反应而产生。

2、碳正离子的结构 碳正离子带有正电荷,其结构是由其本身所决定的,碳正离子的中心碳原子为三价,价电子层仅有六个电子,根据杂化轨道理论,其构型有两种可能:一种是中心碳原子处于sp3杂化状态下的角锥构型,另一种是中心碳原子处于sp2杂化状态下的平面构型(见下图) 在这两种构型中,以平面构型比较稳定,这一方面是由于平面构型中与碳原子相连的三个基团相距最远,空间位阻最小;另一方面是sp-杂化的s成份较多,电子更靠近于原子核,也更为稳定;再一方面空的p轨道伸展于平面两侧,便于溶剂化。因此,一般碳正离子是sp2杂化的平面构型,正电荷集中在未参加杂化的且垂直于该平面的P轨道上。这也通过红外光谱,Raman光谱和核磁共振谱得到证实。但也有一些例外,如三苯甲基碳正离子,由于三个苯基的空间作用,不处在同一平面,苯环之间彼此互为54?角,呈螺旋桨形结构;苯正离子和炔正离子的正电荷不可能处在p轨道上,而是分别处在sp2和sp杂化轨道上。二、碳正离子的类型碳正离子作为一种有机化学反应活性中间体有很多,根据不同的分类标准,可以得到不同的归类。 1(按碳正离子所连接的基团及所处的位置分类 (1)链状碳正离子(链状碳正离子又分为以下两种) A、非共轭型碳正离子:其正电荷集中于中心碳原子上,最常见的为烷基碳正离子。如:-CH3+ B、共轭型碳正离子:由于中心碳原子的P轨道与不饱和键上的π键发生共轭,使正电荷不再集中于中心碳原子上,而是离域到整个共轭体系,如: (2)环状碳正离子,如: 2(据中心碳原子所连基团的多少分为伯、仲、叔碳正离子。 3(除上述经典的碳正离子外,还有一种非经典碳正离子。这种碳正离子一般由经典碳正离子转化而成。

相关主题
文本预览
相关文档 最新文档