高考函数重点:函数单调性的几个重点常用结论
- 格式:docx
- 大小:433.80 KB
- 文档页数:2
三、函数的单调性。
(1)确定函数的单调性或单调区间的常用方法: ①在解答题中常用:定义法(取值――作差――变形――定号)、导数法(在区间(,)a b 内,若总有()0f x '>,则()f x 为增函数;反之,若()f x 在区间(,)a b 内为增函数,则()0f x '≥,请注意两者的区别所在。
如已知函数3()f x x ax =-在区间[1,)+∞上是增函数,则a 的取值范围是____(答:(0,3]));②在选择填空题中还可用数形结合法、特殊值法等等,特别要注意(0by ax a x=+>0)b >型函数的图象和单调性在解题中的运用:增区间为(,)-∞+∞,减区间为[.如(1)若函数2)1(2)(2+-+=x a x x f 在区间(-∞,4] 上是减函数,那么实数a 的取值范围是______(答:3-≤a ));(2)已知函数1()2ax f x x +=+在区间()2,-+∞上为增函数,则实数a 的取值范围_____(答:1(,)2+∞);(3)若函数()()log 40,1a a f x x a a x ⎛⎫=+->≠ ⎪⎝⎭且的值域为R ,则实数a 的取值范围是______(答:04a <≤且1a ≠));③复合函数法:复合函数单调性的特点是同增异减,如函数()212log 2y x x =-+的单调递增区间是________(答:(1,2))。
(2)特别提醒:求单调区间时,一是勿忘定义域,如若函数2()log (3)a f x x ax =-+在区间(,]2a -∞上为减函数,求a 的取值范围(答:(1);二是在多个单调区间之间不一定能添加符号“ ”和“或”;三是单调区间应该用区间表示,不能用集合或不等式表示.(3)你注意到函数单调性与奇偶性的逆用了吗?(①比较大小;②解不等式;③求参数范围).如已知奇函数)(x f 是定义在)2,2(-上的减函数,若0)12()1(>-+-m f m f ,求实数m 的取值范围。
2.3 函数的单调性学习目标:1.理解函数的单调性、最大值、最小值及其几何意义.2.会用定义判断函数的单调性,会求函数的单调区间及会用单调性求函数的最值.重点难点:函数单调性的应用一、知识点梳理1.函数单调性定义:对于给定区间D 上的函数f(x),若对于任意x 1,x 2∈D,当x 1<x 2时,都有f(x 1) <f(x 2),则称f(x)是区间D 上的增函数,D 叫f(x)单调递增区间.当x 1<x 2时,都有f(x 1)> f(x 2),则称f(x)是区间D 上的减函数,D 叫f(x)单调递减区间.2.函数单调性的判断方法:(1)定义法.步骤是:①任取x 1,x 2∈D ,且x 1<x 2②作差f(x 1)- f(x 2)或作商()()()()0112≠x f x f x f ,并变形, ③判定f(x 1)- f(x 2)的符号,或比较()()12x f x f 与1的大小, ④根据定义作出结论.(2)图象法;借助图象直观判断.(3)复合函数单调性判断方法:设()()[][],,,,,y f u u g x x a b u m n ==∈∈若内外两函数的单调性相同,则()y f g x =⎡⎤⎣⎦在x 的区间D 内单调递增,若内外两函数的单调性相反时,则()y f g x =⎡⎤⎣⎦在x 的区间D 内单调递减.3.常见结论若f(x)为减函数,则-f(x)为增函数 ;若f(x)>0(或<0)且为增函数,则函数)(1x f 在其定义域内为减函数.二、例题精讲题型1:单调性的判断1.写出下列函数的单调区间(1),b kx y += (2)x k y =, (3)c bx ax y ++=2. 2.求函数22||3y x x =-++的单调区间.3.判断函数f (x )=1x 2-4x 的增减情况. 题型2:用定义法证明单调性1.证明函数y=2x+5的单调性5.判断函数f (x )=xx 1+在(1,2)上的增减情况. 题型3:单调性的应用:1.已知2()(34)21f x k k x k =-+++-在R 上是增函数,则k 的取值范围 .2.函数2()(1)2f x x m x =+-+在(,4]-∞上是减函数,则求m 的取值范围 .3.已知函数[]2()22,5,5f x x ax x =++∈-上是单调函数,a 的取值范围是 . 4.函数f (x )是R 上的减函数,求f (a 2-a +1)与f (34)的大小关系 . 题型4:抽象函数的单调性及其应用:1.已知y=f(x)是定义在(-2,2)上的增函数,若f(m-1)<f(1-2m),则m 的取值范围是 .2.设f (x )定义在R +上,对于任意a 、b ∈R +,有f (ab )=f (a )+f (b )求证:(1)f (1)=0;(2)f ( 1x)=-f (x ); (3)若x ∈(1,+∞)时,f (x )<0,则f (x )在(1,+∞)上是减函数.三、巩固练习1.函数2y x=-的单调递_____区间是______________________. 2.函数221y x x =+-的单调递增区间为_______________________.3.已知()(21)f x k x b =++在R 上是增函数,则k 的取值范围是______________.4.下列说法中,正确命题的个数是______________.①函数2y x =在R 上为增函数; ②函数1y x=-在定义域内为增函数; ③若()f x 为R 上的增函数且12()()f x f x >,则12x x >; ④函数1y x=的单调减区间为(,0)(0,)-∞⋃+∞. 5.函数()1f x x =+的增区间为 .6.函数1()1f x x =+的单调减区间为 . 7.函数14)(2+-=mx x x f 在]2,(--∞上递减,在),2[+∞-上递增,则实数m = .8.已知函数)y f x =(在R 上是增函数,且f (m 2)>f (-m ),则m 的取值范围是: __________.9.函数2()28f x x x =--+的单调减区间 .10.若函数2()45f x x mx m =-+-在[2,)-+∞上是增函数,则实数m 的取值范为 ;11.函数1||22+-=x x y 的单调增区间为 .12.求证函数1()f x x x =-在()0,+∞是单调增函数.。
高考数学总复习之函数的单调性一、知识梳理1.增函数、减函数的定义一般地,对于给定区间上的函数f (x ),如果对于属于这个区间的任意两个自变量的值x 1、x 2,当x 1<x 2时,都有f (x 1)<f (x 2)〔或都有f (x 1)>f (x 2)〕,那么就说f (x )在这个区间上是增函数(或减函数).如果函数y =f (x )在某个区间上是增函数(或减函数),就说f (x )在这一区间上具有(严格的)单调性,这一区间叫做f (x )的单调区间.如函数是增函数则称区间为增区间,如函数为减函数则称区间为减区间. 2.函数单调性可以从三个方面理解(1)图形刻画:对于给定区间上的函数f (x ),函数图象如从左向右连续上升,则称函数在该区间上单调递增,函数图象如从左向右连续下降,则称函数在该区间上单调递减.(2)定性刻画:对于给定区间上的函数f (x ),如函数值随自变量的增大而增大,则称函数在该区间上单调递增,如函数值随自变量的增大而减小,则称函数在该区间上单调递减.(3)定量刻画,即定义.上述三方面是我们研究函数单调性的基本途径. 3. 函数单调性的判定方法:(1)定义法;设元→作差→变形→判断符号→给出结论; (2)图象法;(3)利用已知函数的单调性;①增(或减)函数)(x f 的倒数)(1x f 是减(或增)函数; ②增(或减)函数)(x f 的相反数)(x f -是减(或增)函数;③增(或减)函数)(x f 、)(x g 的和是)()(x g x f +是增(或减)函数;④增(或减)函数)(x f 与减(或增)函数)(x g 的差)()(x g x f -是增(或减)函数; ⑤若0>c ,则增(或减)函数)(x f 与c 的积)(x cf 是增(或减)函数; 若0<c ,则增(或减)函数)(x f 与c 的积)(x cf 是减(或增)函数;; (4)复合函数的单调性:即“同增异减”法。
函数的单调性知识点及例题解析知识点一:基本概念(增减函数、增减区间、最大最小值)知识点二:函数单调性的判定方法(常用的)(1) 定义法(基本法);①取值:任取D x x ∈21,,且21x x <;②作差:()()21x f x f -;③变形:通常是因式分解或配方;④定号:即判断差()()21x f x f -的正负;⑤下结论:即指出函数()x f 在给定区间D 上的单调性.(2) 利用已知函数的单调性;(现所知道的一次函数,一元二次函数,反比例函数,能够画出图像的函数)(3) 利用函数的图像;x y =,2-=x y ,212-+=x y . (4) 依据一些常用结论及复合函数单调性的判定方法;①两个增(减)函数的和仍为增(减)函数;②一个增(减)函数与一个减(增)函数的差是增(减)函数; 如果)()(x g u u f y ==和单调性相同,那么)]([x g f y =是增函数;如果)()(x g u u f y ==和单调性相反,那么)]([x g f y =是减函数.对于复合函数的单调性,列出下表以助记忆.上述规律可概括为“同增,异减”知识点三:函数单调性的应用利用函数的单调性可以比较函数值的大小;利用函数的单调性求参数的取值范围;附加:①()0≠+=a b ax y 的单调性:0>a 增函数,0<a 减函数;②()0≠=k xk y 的单调性:0>k 减区间()()+∞∞-,0,0,;0<k 增区间()()+∞∞-,0,0,; ③()02≠++=a c bx ax y 的单调性:0>a ,减区间⎥⎦⎤ ⎝⎛-∞-a b 2,,增区间⎪⎭⎫⎢⎣⎡+∞-,2a b ; 0<a ,增区间⎥⎦⎤ ⎝⎛-∞-a b 2,,减区间⎪⎭⎫⎢⎣⎡+∞-,2a b ; ④()x f 在区间A 上是增(减)函数,则0>k 时,()x kf 在A 上是增(减)函数;0<k 时则相反; ⑤若()x f 、()x g 是区间A 上的增(减)函数,则()()x g x f +在区间A 上是增(减)函数;⑥若()0>x f 且在区间A 上是增(减)函数,则()x f 1在A 上是减(增)函数,()x f 在A 上是增(减)函数;1.函数y=x2+4x﹣1的递增区间是什么?分析:根据二次函数的开口方向和对称轴可判断出在对称轴右侧单调递增解:∵函数y=x2+4x﹣1的图象开口向上,对称轴为x=﹣2,∴y=x2+4x﹣1在(﹣∞,﹣2)上单调递减,在(﹣2,+∞)上单调递增.故答案为(﹣2,+∞).2.函数y=x2﹣6x+5在区间(0,5)上是()A递增函数B递减函数C先递减后递增D先递增后递减分析:本题考察函数单调性的判断与证明,根据二次函数的图象与性质直接进行求解即可解:∵y=x2﹣6x+5⇒y=(x﹣3)2﹣4,∴对称轴为x=3,根据函数y=x2﹣6x+5可知a=1>0,抛物线开口朝上,∴函数图象在(﹣∞,3]上单调递减,在(3,+∞)上单调递增,∴在函数在(0,5)上先递减后递增,故选C3.如图,已知函数y=f(x),y=g(x)的图象(包括端点),根据图象说出函数的单调区间,以及在每一个区间上,函数是增函数还是减函数.分析:本题考察函数单调性的性质,根据函数单调性和图象之间的关系进行求解即可解:(1)由图象知函数在[﹣2,﹣1],[0,1]上为减函数,则[-1,0],[1,2]上为增函数,即函数的单调递增区间为[-1,0],[1,2],函数单调递减区间为[-2,-1],[0,1]2)由图象知函数在[-3,-1.5],[1.5,3]上为减函数,则[﹣1.5,1.5]上为增函数,即函数的单调递增区间为[-3,-1.5],[1.5,3],函数单调递减区间为[﹣1.5,1.5]4.已知函数f(x)=x2﹣2ax+1在(-∞,1〕上是减函数,求实数a的取值范围分析:如图,先求出对称轴方程,利用开口向上的二次函数在对称轴右边递增,左边递减,比较区间端点和对称轴的大小即可解:因为开口向上的二次函数在对称轴右边递增,左边递减;而其对称轴为x=a,又在(-∞,1〕上是减函数,故须a≥15.已知函数f(x)=x2+4(1﹣a)x+1在[1,+∞)上是增函数,求a的取值范围分析:通过二次函数的解析式观察开口方向,再求出其对称轴,根据单调性建立不等关系,求出a的范围即可解:函数f(x)=x2+4(1﹣a)x+1是开口向上的二次函数,其对称轴为x=2(a﹣1),根据二次函数的性质可知在对称轴右侧为单调增函数,所以2(a﹣1)≤1,解得a≤1.56.若函数y=x2+2(a﹣1)x+2在区间(﹣∞,6)上递减,求a的取值范围分析:由f(x)在区间(﹣∞,6]上递减知:(﹣∞,6]为f(x)减区间的子集,由此得不等式,解出即可.解:f(x)的单调减区间为:(﹣∞,1﹣a],又f(x)在区间(﹣∞,6]上递减,所以(﹣∞,6]⊆(﹣∞,1﹣a],则1﹣a≥6,解得a≤﹣5,所以a的取值范围是(﹣∞,﹣5]7.如图,分析函数y=|x+1|的单调性,并指出单调区间分析:去掉绝对值,根据基本初等函数的图象与性质,即可得出函数y的单调性与单调区间.解:∵函数y=|x+1|=;∴当x>﹣1时,y=x+1,是单调增函数,单调增区间是(0,+∞);当x<﹣1时,y=﹣x﹣1,是单调减函数,单调减区间是(﹣∞,0)8.求函数f (x )=x 4﹣2x 2+5在区间[﹣2,2]上的最大值与最小值分析:本题考察二次函数在闭区间上的最值,菁令t=x 2,可得0≤t ≤4,根据二次函数g (t )=f (x )=x 4﹣2x 2+5=(t ﹣1)2+4 的对称轴为t=1,再利用二次函数的性质求得函数g (t ) 在区间[0,4]上的最值.解:令t=x 2,由﹣2≤x ≤2,可得0≤t ≤4,由于二次函数g (t )=f (x )=x 4﹣2x 2+5=t 2﹣2t+5=(t ﹣1)2+4 的对称轴为t=1,则函数g (t ) 在区间[0,4]上的最大值是g (4)=13,最小值为 g (1)=4,故答案为 13,4.9.证明函数在[﹣2,+∞)上是增函数分析:本题考查的是函数单调性的判断与证明,在解答时要根据函数单调性的定义,先在所给的区间上任设两个数并规定大小,然后通过作差法即可分析获得两数对应函数值之间的大小关系,结合定义即可获得问题的解答 证明:任取x 1,x 2∈[﹣2,+∞),且x 1<x 2,则f (x 1)-f (x 2)=21+x -22+x =22)22)(22(212121+++++++-+x x x x x x =222121+++-x x x x ,因为x 1-x 2<0,21+x +22+x >0,得f (x 1)<f (x 2)所以函数在[﹣2,+∞)上是增函数. 10.函数f (x )=,①用定义证明函数的单调性并写出单调区间;②求f (x )在[3,5]上最大值和最小值分析:①分离常数得到f (x )=,根据反比例函数的单调性便可看出f (x )的单调递增区间为(﹣∞,﹣1),(﹣1,+∞),根据单调性的定义证明:设任意的x 1,x 2≠﹣1,且x 1<x 2,然后作差,通分,说明x 1,x 2∈(﹣∞,﹣1),或x 1,x 2∈(﹣1,+∞)上时都有f (x 1)<f (x 2),这样即可得出f (x )的单调区间; ②根据f (x )的单调性便知f (x )在[3,5]上单调递增,从而可以求出f (x )的值域,从而可以得出f (x )在[3,5]上的最大、最小值.解:①f (x )=112++x x =11)1(2+-+x x =2-11+x ; 该函数的定义域为{x|x ≠﹣1},设x 1,x 2∈{x|x ≠﹣1}, 且x 1<x 2,则:f (x 1)- f (x 2)=112+x -111+x =)1)(1(2121++-x x x x ; ∵x 1<x 2;∴x 1﹣x 2<0;∴x 1,x 2∈(﹣∞,﹣1)时,x 1+1<0,x 2+1<0;x 1,x 2∈(﹣1,+∞)时,x 1+1>0,x 2+1>0;∴(x 1+1)(x 2+1)>0;∴f (x 1)<f (x 2);∴f (x )在(﹣∞,﹣1),(﹣1,+∞)上单调递增,即f (x )的单调增区间为(﹣∞,﹣1),(﹣1,+∞); ②由上面知f (x )在[3,5]上单调递增;∴f (3)≤f (x )≤f (5);∴7/4≤f (x )≤11/6;∴f (x )在[3,5]上的最大值为11/6,最小值为7/411.已知f (x )+2f (x1)=3x .(1)求f (x )的解析式及定义域;(2)指出f (x )的单调区间并加以证明 解:(1)由 f(x)+2f(x 1)=3x ①,用x 1代替x ,得 f(x 1)+2f(x)=x 3 ②;②×2-①,得 3f(x)=x6-3x ,所以 f(x)=x2-x (x ≠0) (2)由(1),f(x)=x 2-x (x ≠0)其递减区间为(-∞,0)和(0,+∞),无增区间. 事实上,任取x 1,x 2∈(-∞,0)且x 1<x 2,则f(x 1)-f(x 2)=12x -x 1-22x +x 2=2121)(2x x x x --(x 1-x 2)=(x 2-x 1)• 21212x x x x +, ∵x 1<x 2<0∴x 2-x 1>0,x 1x 2>0,2+x 1x 2>0,所以 (x 2-x 1)• 21212x x xx +>0,即f (x 1)>f (x 2)故f (x )在(-∞,0)上递减. 同理可证其在(0,+∞)上也递减 12.证明:f (x )=x+21-x 在(3,+∞)上是增函数,在(2,3]上是减函数 分析:利用函数单调性的定义证明.证明:设任意的x 1,x 2∈(3,+∞),且x 1<x 2,则f (x 1)﹣f (x 2)=(x 1+211-x )-(x 2+212-x )=(x 1﹣x 2)•)2)(2(1)2)(2(2121-----x x x x , ∵x 1,x 2∈(3,+∞),且x 1<x 2,∴x 1﹣x 2<0,x 1﹣2>1,x 2﹣2>1,(x 1﹣2)(x 2﹣2)>1,∴(x 1﹣x 2)•)2)(2(1)2)(2(2121-----x x x x <0,∴f (x 1)﹣f (x 2)<0,即f (x 1)<f (x 2), ∴f (x )=x+21-x 在(3,+∞)上是增函数. 同理可证,f (x )=x+21-x 在(2,3]上是减函数 【例6】讨论函数=+的单调性,并画出它的大致图像.f(x)x 1x 解 定义域为(-∞,0)∪(0,+∞),任取定义域内两个值x 1、x 2,且x 1<x 2. ∵-=-,又-<,f(x )f(x )(x x )x x x x 012121112x x 221-∴当0<x 1<x 2≤1或-1≤x 1<x 2<0时,有x 1x 2-1<0,x 1x 2>0,f(x 1)>f(x 2) ∴f(x)在(0,1],[-1,0)上为减函数.当1≤x 1<x 2或x 1<x 2≤-1时,有x 1x 2-1>0,x 1x 2>0,f(x 1)>f(x 2), ∴f(x)在(-∞,-1],[1,+∞)上为增函数.根据上面讨论的单调区间的结果,又x >0时,f(x)min =f(1)=2, 当x <0时,f(x)max =f(-1)=-2.由上述的单调区间及最值可大致画出图像。
专题2.2 函数的单调性与最值(重难点突破)(理科)一、考纲要求1.理解函数的单调性、最大(小)值及其几何意义.2.会运用基本初等函数的图象分析函数的性质.3.培养学生数学抽象、逻辑推理、直观想象能力。
二、考情分析三、考点梳理【基础知识梳理】1、函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是减函数图象描述1/ 112 / 11自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间. 2、函数的最值前提设函数()y f x =的定义域为I ,如果存在实数M 满足 条件(1)对于任意的x I ∈,都有()f x M ≤;(2)存在0x I ∈,使得()0f x M =(3)对于任意的x I ∈,都有()f x M ≥;(4)存在0x I ∈,使得()0f x M =结论 M 为最大值 M 为最小值注意:(1)函数的值域一定存在,而函数的最值不一定存在;(2)若函数的最值存在,则一定是值域中的元素;若函数的值域是开区间,则函数无最值,若函数的值域是闭区间,则闭区间的端点值就是函数的最值. 【知识拓展】1、函数单调性的常用结论(1)若()(),f x g x 均为区间A 上的增(减)函数,则()()f x g x +也是区间A 上的增(减)函数; (2)若0k >,则()kf x 与()f x 的单调性相同;若0k <,则()kf x 与()f x 的单调性相反; (3)函数()()()0y f x f x =>在公共定义域内与()y f x =-,1()y f x =的单调性相反; (4)函数()()()0y f x f x =≥在公共定义域内与()y f x =(5)奇函数在其关于原点对称的区间上单调性相同,偶函数在其关于原点对称的区间上单调性相反; (6)一些重要函数的单调性: ①1y x x =+的单调性:在(],1-∞-和[)1,+∞上单调递增,在()1,0-和()0,1上单调递减; ②b y ax x=+(0a >,0b >)的单调性:在,b a ⎛-∞-⎝和,b a ⎫+∞⎪⎪⎭上单调递增,在,0b a ⎛⎫ ⎪ ⎪⎝⎭和b a ⎛ ⎝3 / 11上单调递减.四、题型分析(一) 判断函数的单调性 1.判断函数单调性的方法:(1)定义法,步骤为:取值,作差,变形,定号,判断.利用此方法证明抽象函数的单调性时,应根据所给抽象关系式的特点,对1x 或2x 进行适当变形,进而比较出()1f x 与()2f x 的大小.(2)利用复合函数关系,若两个简单函数的单调性相同,则这两个函数的复合函数为增函数;若两个简单函数的单调性相反,则这两个函数的复合函数为减函数,简称“同增异减”.(3)图象法:从左往右看,图象逐渐上升,则单调递增;图象逐渐下降,则单调递减. (4)导数法:利用导函数的正负判断函数的单调性.(5)利用已知函数的单调性,即转化为已知函数的和、差或复合函数,判断函数的单调性.2.在利用函数的单调性写出函数的单调区间时,首先应注意函数的单调区间应是函数定义域的子集或真子集,求函数的单调区间必须先确定函数的定义域;其次需掌握一次函数、二次函数等基本初等函数的单调区间.例1.(2020·安徽省池州一中模拟)下列四个函数中,在x ∈(0,+∞)上为增函数的是( )A .f (x )=3-xB .f (x )=x 2-3xC .f (x )=-1x +1D .f (x )=-|x |【答案】C【解析】当x >0时,f (x )=3-x 为减函数;当x ∈⎝⎛⎭⎫0,32时,f (x )=x 2-3x 为减函数, 当x ∈⎝⎛⎭⎫32,+∞时,f (x )=x 2-3x 为增函数;当x ∈(0,+∞)时,f (x )=-1x +1为增函数; 当x ∈(0,+∞)时,f (x )=-|x |为减函数.【变式训练1】.(2020届陕西省咸阳市高三第一次模拟)函数cos 4y x ππ⎛⎫=-⎪⎝⎭的单调递增区间是( )A .132,244k k ⎡⎤-+⎢⎥⎣⎦()k ∈Z B .372,244k k ⎡⎤++⎢⎥⎣⎦()k ∈Z C .312,244k k ⎡⎤-+⎢⎥⎣⎦()k ∈Z D .152,244k k ⎡⎤++⎢⎥⎣⎦()k ∈Z4 / 11【答案】C【解析】令()224k x k k Z πππππ-≤-≤∈,解得()312244k x k k Z -≤≤+∈, 因此,函数cos 4y x ππ⎛⎫=-⎪⎝⎭的单调递增区间是()312,244k k k Z ⎡⎤-+∈⎢⎥⎣⎦,故选C 。
函数单调性的判断及应用江苏 李洪洋函数的单调性在函数的诸多性质当中,占有最重要的地位,而函数在每年高考中,是占有较大比重的,所以说,函数的单调性是高考的重中之重,一点不为过.近些年,高考中考查函数的题型在不断翻新,并且考得比较“隐蔽”,经常与其它知识进行交融考查,因此,只有在平时不断加强多题型的训练,才能在高考中立于不败之地.一、对函数单调性的理解1.单调函数的定义(1)增函数:对任意)()(],,[,212121x f x f x x b a x x <⇒<∈则)(x f 为],[b a 的增函数(2)减函数:对任意)()(],,[,212121x f x f x x b a x x >⇒<∈,则)(x f 为],[b a 的减函数.2.函数单调性的判断及单调区间的确定方法(1)定义探索法判断函数的单调性,可根据单调函数的定义,即在的定义域内任取21x x <,来考察)()(21x f x f -的符号.根据定义探索,是判断函数的单调性及确定函数单调区间的常用方法.用定义法,其步骤为:①任取M x x ∈21,,且21x x <;②论证)()(21x f x f <或)()(21x f x f >;③根据定义,得出结论.例1判断函数)0(1)(2≠-=a x ax x f 在区间)1,1(-上的单调性. 解:设1121<<<-x x ,则)1)(1())(1()()(2221122121---+=-x x x x x x a x f x f . ∵0)1)(1())(1(22211221>---+x x x x x x , ∴0>a 时,函数)(x f 在)1,1(-上递减;0<a 时,函数)(x f 在)1,1(-上递增.(2)参照图象法例2画出函数322++-=x x y解:当x ≥0时,4)1(3222+--=++-=x x x y ;当0<x 时,4)1(3222++-=+--=x x x y . 如图所示,在]1,(--∞和]1,0[上,函数是增函数;在]0,1[-和),1[+∞上,函数是减函数.(3)利用已知函数单调性的函数性质 例3判断函数xx x y 4)2(22++=在),1(+∞上的单调性. 解:4)2(412-++=x y ,而当1>x 时,4)2(2-+=x u 为增函数, ∴4)2(42-+x 递减,故原函数在),1(+∞上为减函数. 评注:将函数变形,转化成讨论一些基本函数的单调性问题是讨论函数单调性的一种常用方法.(4)复合函数法对于复合函数)]([x g f y =,若)(x g t =在区间),(b a 上是单调增(减)函数,且)(t f y =在区间))(),((b g a g 或者))(),((a g b g 上是单调函数,那么函数)]([x g f y =在区间),(b a 上的单调性如下表格所示,实施该法则时首先应考虑函数的定义域.(5)最值猜想法由单调函数的图象可知,不少函数单调区间与其最值点有关.因此,可以通过求函数的最值来猜想函数的单调区间.3.常用结论:(1)单调函数)(x f y -=与函数)(x f y =的单调性相反;(2)当)(x f 恒为正或恒为负时,函数)(1x f y =与)(x f y =的单调性相反;(3)在公共区间内,增函数+增函数=增函数,增函数-减函数=增函数等;(4)函数)(1x f y -=与函数)(x f y =具有相同单调性.4.函数单调性的应用(1)用于求参数的取值范围分离参数是求解参数范围问题的有效措施,函数单调性的应用使问题的解决更简单易行.(2)用于解决定义与值域共存问题解决定义域与值域共存问题时,不要盲目进行分类讨论,而应从条件出发,分析、探讨出解决问题的实质途径:确定函数的单调性,从而使问题得以简单解决.例4已知二次函数2()(0)f x a x b x c a =++≠满足条件(5)(3)f x f x -+=-,(2)0f =,且方程()f x x =有等根.问是否存在实数,()m n m n <,使得()f x 当定义域为[],m n 时,值域为[]3,3m n ,如果存在,求出,m n 的值;如不存在,请说明理由.分析:遇到定义域与值域共存问题,思维要清晰有条理,即利用已知条件判断已知函数在定义域上的单调性,这也是函数单调性在此类问题中的隐性应用.解: ∵(5)(3)f x f x -+=-,∴()f x 的图象的对称轴为直线1x =. ∴12b a-= ① ∵(2)0f =,420a b c ++= ②又方程()f x x =有等根,即2(1)0ax b x c +-+=有等根,∴2(1)40b ac --= ③将①代入②得0c =.由③得1b =.∴12a =-. ∴221111()(1)≤2222f x x x x =-+=--+. ∴113≤,≤26n n ∴()f x 在[],m n 上单调增.假设存在满足条件的,m n ,则()3()3f m m f n n =⎧⎨=⎩即22132132m m m n n n ⎧-+=⎪⎪⎨⎪-+=⎪⎩ 解得0或40或4m n =-⎧⎨=-⎩∵1≤6m n < ∴4,0m n =-=.即存在4,0m n =-=满足条件.评注:借“数”解“形”,以“形”助“数”是解题的双刃剑.合理应用数形结合思想,可使抽象问题具体化,复杂问题简单化、隐性问题显性化.正是数形结合的有效应用,使得结论()3()3f m m f n n=⎧⎨=⎩得以直接判断得出,避开了分类讨论带来的麻烦和思维的一些误区.(3)结合反证法应用例5设)(x f y =在R 上为单调函数,试证方程0)(=x f 在R 上至多有一个实数根. 证明:假设方程0)(=x f 至少有两个实数根)(,βαβα<,则0)()(==βαf f ①又函数)(x f y =在R 上为单调函数,不妨设为增函数,于是由βα<得)()(βαf f <,这与①矛盾,故原命题得证.(4)用于解决实际问题函数的单调性除一些理论上的应用外,它还可以灵活有效地解决现实生活中与之相关的实际问题.例6甲、乙两地相距s km ,汽车从甲地匀速行驶到乙地,速度不得超过c km/h ,已知汽车每小时的运输成本(以元为单位),由可变部分和固定部分组成;可变部分与速度v (km/h)的平方成正比,比例系数为b ,固定部分为a 元.(1)把全程运输成本y (元)表示为v (km/h)的函数,并指出这个函数的定义域.(2)为了使全程运输成本最小,汽车应以多大的速度行驶.分析:要计算全程的运输成本s bv va bv a v s y )()(2+=+=(v <0≤c ),而已知每小时的运输成本,只需计算全程的时间,由题意不难得到全程运输成本s bv v a bv a v s y )()(2+=+=(v <0≤c ),所要解决的问题是求bv va +何时取最小值,显然要对c 的大小进行讨论,讨论的标准也就是c 与ba 的大小. 解:(1)依题意知:汽车从甲地匀速行驶到乙地所用时间为vS ,因此全程运输成本为s bv va bv a v s y ⋅+=+⋅=)()(2,又据题意v <0≤c ,故所求函数及其定义域分别为: )(bv va s y +⋅=,],0(c v ∈.(2)设bv va v f u +==)(, 22211221))(()()(v v v bv a v v v f v f --=-. ①若b a ≤c ,当210v v <<≤ba 时,012>-v v ,021>v v ,021>-v bv a ,故)()(21v f v f >; 当ba ≤21v v <≤c 时,021>-v bv a ,∴)()(21v f v f <. ∴u 在],0(b a 上是减函数,在],[c a b 上是增函数时,∴b a v =运输成本y 最小. ②若c ba >,当210v v <<≤c 时,012>-v v ,021>v v ,0221>->-bc a v bv a . ∴)()(21v f v f >,故函数在],0(c 上单调递减,所以当c v =时,全程运输成本最小. 评注:解应用题时,首先要训练读题能力,成功地完成对数学文字语言、符号语言、图形语言的理解、接受和转换,继而对题中各元素的数量关系进行加工和提炼,分清主次,并建立数学模型解决实际问题.(5)用于解决抽象函数问题抽象函数一直是学生理解和接受的难点,以其思维的灵活性和其特有的抽象性成为学生学习抽象函数的障碍,但究其特点:抽象函数的单调性都是解决问题的关键,函数的单调性可以使抽象问题具体化,陌生问题熟悉化,因此正确求解抽象函数的单调性是化解抽象函数难点的重要切入口.例7已知函数)(x f 对于任何正实数x ,y 都有)()()(y f x f xy f ⋅=,且当1>x 时,1)(<x f ;试判断)(x f 在),0(+∞上的单调性并说明理由.分析:条件中给出当1>x 时,1)(<x f 的形式特征,可引发我们构造出大于1的式子.而从此思维出发可轻松得解.解:任设210x x <<,则112>x x , 因为1>x 时,1)(<x f , 所以112<⎪⎪⎭⎫⎝⎛x x f所以)()()()()(11121122x f x f x x f x x x f x f <=⋅= 即)(x f 在),0(+∞上为单调递减函数.评注:抽象函数问题的给出有些模糊,所以可采用转化思想尽量使问题具体化、清晰化,这是解抽象函数问题的一项重要措施.而利用转化思想要联系前因后果,使得转化有方向性、高效性.此题中,条件:当1>x 时,1)(<x f 的给出,为解题指明了方向,即当210x x <<时,采用转化思想,可得112>x x ,也正是此转化的非常效果,才使得条件被淋漓尽致地应用,问题被简捷、高效地解出.5.对函数单调性理解中的注意点(1)函数的单调性是对于函数定义域内的某个子区间而言的.有些函数在整个定义域内可能是单调的,如一次函数;有些函数在定义域内的部分区间上是增函数,而在另一部分区间上可能是减函数,如二次函数;还有的函数是非单调的,如常数函数c y =,又如分段函数⎩⎨⎧<≥=1,01,1x x y . (2)函数)(x f 在给定区间上的单调性,反映了函数)(x f 在区间上函数值的变化趋势,是函数在区间上的整体性质.因此,若要证明)(x f 在],[b a 上是递增的,就必须证明对于区间],[b a 上任意的两个自变量的值21,x x ,当21x x <时都有不等式)()(21x f x f <成立.若要证明)(x f 在],[b a 上不是单调递增的,只须举出反例就足够了.即只要找到两个特殊的21,x x ,若a ≤21x x <≤b ,有)(1x f ≥)(2x f 即可.(3)关于单调区间的书写.函数在其定义域内某一点处的函数值是确定的,讨论函数在某点处的单调性没有意义.书写函数的单调区间时,区间端点的开或闭没有严格规定,习惯上若函数在区间端点处没有定义,则必须写成开区间.(4)21,x x 的三个特征一定要予以重视.函数单调性定义中的21,x x ,有三个特征:一是任意性,即“任意取21,x x ”,“任意”二字绝不能丢掉.证明单调性时更不可随意以两个特殊值替换;二是有大小,通常规定21x x <;三是同属一个单调区间.三者缺一不可.(5)若函数)(x f 在其定义域内的两个区间A 、B 上都是增(减)函数,一般不能简单认为)(x f 在B A 上是增(减)函数.如xx f 1)(=在)0,(-∞上是减函数,在),0(+∞上也是减函数,但不能说它在定义域),0()0,(+∞-∞ 上是减函数.(6)函数增减性(单调性)的几何意义:反映在图象上,若)(x f 是区间D 上的增(减)函数,则图象在D 上的部分从左到右是上升(下降)的.。
考点10 函数的单调性【命题解读】考查函数的基本性质,如奇偶性、单调性与最值、函数与方程(零点)、不等式的解法等,考查数学式子变形的能力、运算求解能力、等价转化思想和数形结合思想.其中函数与方程考查频率较高.涉及函数性质的考查;【基础知识回顾】1. 函数单调性的定义(1)一般地,对于给定区间上的函数f(x),如果对于属于这个区间的任意两个自变量x 1、x 2,当x 1<x 2时,都有f(x 1)<f(x 2)(或都有f(x 1)>f(x 2),那么就说f(x)在这个区间上是增函数(或减函数).(2)如果函数y =f(x)在某个区间上是增函数(或减函数),那么就说f(x)在这个区间上具有(严格的)单调性,这个区间叫做f(x)的单调区间;若函数是增函数则称该区间为增区间,若函数为减函数则称该区间为减区间.2. 函数单调性的图像特征对于给定区间上的函数f(x),若函数图像从左向右连续上升,则称函数在该区间上单调递增;若函数图像从左向右连续下降,则称函数在该区间上单调递减.3. 复合函数的单调性对于函数y =f(u)和u =g(x),如果当x ∈(a ,b)时,u ∈(m ,n),且u =g(x)在区间(a ,b)上和y =f(u)在区间(m ,n)上同时具有单调性,则复合函数y =f(g(x))在区间(a ,b)上具有单调性,并且具有这样的规律:增增(或减减)则增,增减(或减增)则减.4. 函数单调性的常用结论(1)对∀x 1,x 2∈D(x 1≠x 2),f (x 1)-f (x 2)x 1-x 2>0⇔f(x)在D 上是增函数; f ()x 1-f ()x 2x 1-x 2<0⇔f(x)在D 上是减函数.(2)对勾函数y =x +ax (a>0)的增区间为(-∞,-a]和[a ,+∞),减区间为(-a ,0)和(0,a). (3)在区间D 上,两个增函数的和是增函数,两个减函数的和是减函数.(4)函数f(g(x))的单调性与函数y =f(u)和u =g(x)的单调性的关系是“同增异减”5.常用结论1.若函数f (x ),g (x )在区间I 上具有单调性,则在区间I 上具有以下性质: (1)当f (x ),g (x )都是增(减)函数时,f (x )+g (x )是增(减)函数;(2)若k >0,则kf (x )与f (x )单调性相同;若k <0,则kf (x )与f (x )单调性相反; (3)函数y =f (x )(f (x )>0)在公共定义域内与y =-f (x ),y =1f (x )的单调性相反; (4)复合函数y =f [g (x )]的单调性与y =f (u )和u =g (x )的单调性有关.简记:“同增异减”. 2.增函数与减函数形式的等价变形:∀x 1,x 2∈[a ,b ]且x 1≠x 2,则(x 1-x 2)[f (x 1)-f (x 2)]>0⇔f (x 1)-f (x 2)x 1-x 2>0⇔f (x )在[a ,b ]上是增函数; (x 1-x 2)[f (x 1)-f (x 2)]<0⇔f (x 1)-f (x 2)x 1-x 2<0⇔f (x )在[a ,b ]上是减函数.1、函数y =x 2-5x -6在区间[2,4]上是( )A .递减函数B .递增函数C .先递减再递增函数D .先递增再递减函数【答案】C【解析】作出函数y =x 2-5x -6的图象(图略)知开口向上,且对称轴为x =52,在[2,4]上先减后增.故选C.2、函数y =1x -1在[2,3]上的最小值为( )A .2 B.12 C.13 D .-12【答案】B【解析】 因为y =1x -1在[2,3]上单调递减,所以y min =13-1=12. 故选B.3、已知函数f (x )是定义在区间[0,+∞)上的函数,且在该区间上单调递增,则满足f (2x -1)<f ⎝⎛⎭⎫13的x的取值范围是( )A.⎝⎛⎭⎫13,23B.⎣⎡⎭⎫13,23C.⎝⎛⎭⎫12,23D.⎣⎡⎭⎫12,23【答案】D【解析】因为函数f (x )是定义在区间[0,+∞)上的增函数,满足f (2x -1)<f ⎝⎛⎭⎫13.所以0≤2x -1<13, 解得12≤x <23.故选D.4、设函数f(x)在R 上为增函数,则下列结论一定正确的是(D )A. y =1f (x )在R 上为减函数 B. y =|f (x )|在R 上为增函数C. y =-1f (x )在R 上为增函数 D. y =-f (x )在R 上为减函数 【答案】D.【解析】 如f (x )=x 3,则y =1f (x )的定义域为(-∞,0)∪(0,+∞),在x =0时无意义,A 、C 错;y =|f (x )|是偶函数,在R 上无单调性,B 错.故选D.5、对数函数log (0a y x a =>且1)a ≠与二次函数2(1)y a x x =--在同一坐标系内的图象不可能是( )A .B .C .D .【答案】BD .【解析】:若1a >,则对数函数log a y x =在(0,)+∞上单调递增,二次函数2(1)y a x x =--开口向上,对称轴102(1)x a =>-,经过原点,可能为A ,不可能为B .若01a <<,则对数函数log a y x =在(0,)+∞上单调递减,二次函数2(1)y a x x =--开口向下,对称轴102(1)x a =<-,经过原点,可能为C ,不可能为D .故选:BD .6、函数y =|-x 2+2x +1|;单调递减区间是 . 【答案】(1-2,1),(1+2,+∞);(,(1,1+2).【解析】作出函数y =|-x 2+2x +1|的图像如图所示.由图像可知,函数y =|-x 2+2x +1|的单调增区间为(1-2,1),(1+2,+∞);单调递减区间是(-∞,1-2),(1,1+2).故应分别考向一函数单调性的证明与判断例1、判断函数f(x)=x1+x 2在区间[1,+∞)上的单调性并证明你的结论.【解析】 函数f (x )=21xx +在区间[1,+∞)上是单调减函数,证明如下: 设x 1、x 2∈[1,+∞),且x 1<x 2,则f (x 1)-f (x 2)=1211x x +-2221x x +=2212212212(1)(1)1)(1)x x x x x x +-+++(=11122212()(1)1)(1)x x x x x x -++(.∵x 1、x 2∈[1,+∞),且x 1<x 2,∴ x 1-x 2<0,1-x 1x 2<0. 又(1+x 21)(1+x 22)>0,∴ f (x 1)-f (x 2)>0, 即f (x 1)>f (x 2).∴ f (x )=21xx +在[1,+∞)上为减函数. 变式1、试讨论函数f (x )=x +kx (k >0)的单调性.【解析】.法一:由解析式可知,函数的定义域是(-∞,0)∪(0,+∞).在(0,+∞)内任取x 1,x 2,令x 1<x 2,那么f (x 2)-f (x 1)=⎝⎛⎭⎫x 2+k x 2-⎝⎛⎭⎫x 1+k x 1=(x 2-x 1)+k ⎝⎛⎭⎫1x 2-1x 1=(x 2-x 1)x 1x 2-k x 1x 2.因为0<x 1<x 2,所以x 2-x 1>0,x 1x 2>0. 故当x 1,x 2∈(k ,+∞)时,f (x 1)<f (x 2), 即函数在(k ,+∞)上单调递增. 当x 1,x 2∈(0,k )时,f (x 1)>f (x 2), 即函数在(0,k )上单调递减.考虑到函数f (x )=x +kx (k >0)是奇函数,在关于原点对称的区间上具有相同的单调性,故在(-∞,-k )上单调递增,在(-k ,0)上单调递减.综上,函数f (x )在(-∞,-k )和(k ,+∞)上单调递增,在(-k ,0)和(0,k )上单调递减. 法二:由解析式可知,函数的定义域是(-∞,0)∪(0,+∞). f ′(x )=1-kx 2.令f ′(x )>0得x 2>k ,即x ∈(-∞,-k )或x ∈(k ,+∞),故函数的单调增区间为(-∞,-k )和(k ,+∞).令f ′(x )<0得x 2<k ,即x ∈(-k ,0)或x ∈(0,k ),故函数的单调减区间为(-k ,0)和(0,k ). 故函数f (x )在(-∞,-k )和(k ,+∞)上单调递增,在(-k ,0)和(0,k )上单调递减. 变式2、试讨论函数f(x)=axx 2+1(a >0)在(0,+∞)上的单调性,并证明你的结论.【解析】 (方法1)设x 1,x 2∈(0,+∞)且x 1<x 2,则f(x 1)-f(x 2)=ax 1x 21+1-ax 2x 22+1=ax 1(x 22+1)-ax 2(x 21+1)(x 21+1)(x 22+1)=a[x 1x 22+x 1-x 2x 21-x 2](x 21+1)(x 22+1)=a (x 2-x 1)(x 1x 2-1)(x 21+1)(x 22+1). ∵x 1<x 2,x 2-x 1>0,又a>0,(x 21+1)(x 22+1)>0. ∴当x 1,x 2∈(0,1)时,x 1x 2-1<0,从而a (x 2-x 1)(x 1x 2-1)(x 21+1)(x 22+1)<0,即f(x 1)-f(x 2)<0⇒f(x 1)<f(x 2),此时f(x)=axx 2+1 (a >0)单调递增; 当x 1,x 2∈(1,+∞)时,x 1x 2-1>0,从而a (x 2-x 1)(x 1x 2-1)(x 21+1)(x 22+1)>0,即f(x 1)-f(x 2)>0⇒f(x 1)>f(x 2),此时f(x)=axx 2+1 (a >0)单调递减. ∴函数f(x)在(0,1)上为增函数,在(1,+∞)上为减函数.方法总结: 1. 判断函数的单调性,通常的方法有:(1)定义法;(2)图像法;(3)利用常见函数的单调性;(4)导数法.而要证明一个函数的单调性,基本方法是利用单调性定义或导数法.2. 应用函数单调性的定义证明函数的单调性,其基本步骤如下:取值→作差→变形→确定符号→得出结论其中,变形是十分重要的一步,其目的是使得变形后的式子易于判断符号,常用的方法是(1)分解因式;(2)配方;(3)通分约分等.考向二 函数的单调区间例1、求下列函数的单调区间(1)y =-x 2+2|x|+1;(2)、.函数y =|x |(1-x )的单调递增区间是________.【解析】(1)由2221,0-x 21,0x x x x x ⎧-++⎪⎨-+⎪⎩≥,<,即22(1)2,0-1)2,0.x x y x x ⎧--+⎪=⎨++⎪⎩≥(<画出函数图像如图所示,单调增区间为(-∞,-1],[0,1],单调减区间为[-1,0],[1,+∞).(2)y =|x |(1-x )=⎩⎨⎧x (1-x ),x ≥0,-x (1-x ),x <0 =⎩⎨⎧-x 2+x ,x ≥0,x 2-x ,x<0,函数的大致图象如图所示.由图易知函数的单调递增区间是⎣⎢⎡⎦⎥⎤0,12.变式1、(2019·河北石家庄二中模拟)函数f (x )=|x 2-3x +2|的单调递增区间是( )A.⎣⎡⎭⎫32,+∞ B.⎣⎡⎦⎤1,32和[2,+∞)C .(-∞,1]和⎣⎡⎦⎤32,2D.⎝⎛⎦⎤-∞,32和[2,+∞)【答案】B【解析】y =|x 2-3x +2|=⎩⎪⎨⎪⎧x 2-3x +2,x ≤1或x ≥2,-x 2-3x +2,1<x <2.如图所示,函数的单调递增区间是⎣⎡⎦⎤1,32和[2,+∞).变式2、 函数f(x)=x +12x +1的单调减区间为________________.【答案】 ⎝⎛⎭⎫-∞,-12,⎝⎛⎭⎫-12,+∞【解析】 因为f(x)=x +12x +1=x +12+122x +1=12+14⎝⎛⎭⎫x +12,且定义域为⎩⎨⎧⎭⎬⎫x|x ≠-12,所以函数f(x)的单调减区间为(-∞,-12),(-12,+∞).方法总结:求函数的单调区间的常用方法与判断函数的单调性的方法类似,有定义法、图像法、利用常见函数的单调性、导数法等.值得引起高度重视的是:(1)函数的单调区间是函数定义域的子区间,所以求单调区间,必须先求出定义域; (2)对于基本初等函数的单调区间,可以直接利用已知结论求解考向三 复合函数的单调区间 例3、求下列函数的单调区间(1)f(x)=x 2-2x -3;(2)212log (32)y x x =-+ 【解析】(2)f(x)=x 2-2x -3的定义域为(-∞,-1]∪[3,+∞).令t =x 2-2x -3,∵t =x 2-12x -3在x ∈(-∞,-1]上是减函数,在x ∈[3,+∞)为增函数,又y =t 在t ∈(0,+∞)上是增函数,∴函数f(x)=x 2-2x -3的单调减区间是(-∞,-1],单调递增区间是[3,+∞).(2)令u =x 2-3x +2,则原函数可以看成12log y u =与u =x 2-3x +2的复合函数.由x 2-3x +2>0,解得x <1或x >2.∴函数的定义域为(-∞,1)∪(2,+∞). 又u =x 2-3x +2的对称轴x =32,且开口向上.∴u =x 2-3x +2在(-∞,1)上是减函数,在(2,+∞)上是增函数.而12log y u =在(0,+∞)上是减函数,∴的单调减区间为(2,+∞),单调增区间为(-∞,1).变式1、函数f (x )=log 12(x 2-4)的单调递增区间为( )A .(),0-∞B .()2,+∞C .()0,+∞D .(),2-∞- 【答案】 D【解析】 根据复合函数的单调性判断.因为y =log 12t 在定义域上是减函数,所以求原函数的单调递增区间,即求函数t =x 2-4的单调递减区间,结合函数的定义域,可知所求区间为(-∞,-2). 变式2、函数f (x )=2x -x 2的单调递增区间为( )A.⎝ ⎛⎦⎥⎤-∞,12B.⎣⎢⎡⎦⎥⎤0,12 C.⎣⎢⎡⎭⎪⎫12,+∞D.⎣⎢⎡⎦⎥⎤12,1【答案】B【解析】令t =x -x 2,由x -x 2≥0,得0≤x ≤1,故函数的定义域为[0,1].因为g (t )=2t 是增函数,所以f (x )的单调递增区间即t =x -x 2的单调递增区间.利用二次函数的性质,得t =x -x 2的单调递增区间为⎣⎢⎡⎦⎥⎤0,12,即原函数的单调递增区间为⎣⎢⎡⎦⎥⎤0,12.故选B.方法总结:求复合函数的单调性,首先要注意复合函数的定义域,其次要确定函数是有哪些基本函数复合而成,根据同增异减的性质确定复合函数的单调性。
【热点聚焦】单调性是函数的一个重要性质,对函数作图起到决定性的作用,而导数是分析函数单调区间的一个便利工具.在高考导数的综合题中,所给函数往往是一个含参数的函数,且导函数含有参数,在分析函数单调性时面临分类讨论.从高考命题看,对函数单调性的考查主要有:利用导数求函数的单调区间、判断单调性、已知单调性,求参数等.【重点知识回眸】(一)函数的单调性与导数的关系 条件 结论函数y =f (x )在区间(a ,b )上可导f ′(x )>0 f (x )在(a ,b )内单调递增 f ′(x )<0 f (x )在(a ,b )内单调递减 f ′(x )=0f (x )在(a ,b )内是常数函数优先”原则. (二)常用结论1.在某区间内f ′(x )>0(f ′(x )<0)是函数f (x )在此区间上为增(减)函数的充分不必要条件. 2.可导函数f (x )在(a ,b )上是增(减)函数的充要条件是对∀x ∈(a ,b ),都有f ′(x )≥0(f ′(x )≤0)且f ′(x )在(a ,b )上的任何子区间内都不恒为零. (三)常见问题解题方法1.导数求单调区间的步骤:利用导数求函数单调区间的方法,大致步骤可应用到解含参函数的单调区间.即确定定义域→求出导函数→令()'0f x >解不等式→得到递增区间后取定义域的补集(减区间)→单调性列出表格.2.求含参函数单调区间的实质——解含参不等式,而定义域对x 的限制有时会简化含参不等式的求解3.求单调区间首先确定定义域,并根据定义域将导数不等式中恒正恒负的项处理掉,以简化讨论的不等式4.含参数问题分类讨论的时机分类时机:并不是所有含参问题均需要分类讨论,当参数的不同取值对下一步的结果影响不相同时,就是分类讨论开始的时机.【典型考题解析】热点一 不含参数的函数的单调性【典例1】(2023·全国·高三专题练习)函数21()ln 2f x x x =-的单调递减区间为( ) A .(1,1)- B .(0,1)C .(1,)+∞D .(0,2)【答案】B【分析】求导,解不等式()0f x '<可得. 【详解】()f x 的定义域为(0,)+∞ 解不等式1(1)(1)()0x x f x x x x-+'=-=<,可得01x <<, 故函数21()ln 2f x x x =-的递减区间为(0,1). 故选:B .【典例2】(广东·高考真题(文))函数的单调递增区间是 ( )A .B .(0,3)C .(1,4)D .【答案】D 【解析】 【详解】试题分析:由题意得,()()(3)(3)(2)x x x f x x e x e x e '=-+-=-'',令()0f x '>,解得2x >,所以函数()f x 的单调递增区间为,故选D .【典例3】(2023·全国·高三专题练习)已知定义在区间(0,π)上的函数f (x )=x +2cos x ,则f (x )的单调递增区间为________. 【答案】(0,)6π,5(,)6ππ【分析】对()f x 求导,令f ′(x )=0,得x =6π或x =56π,求出()0f x '> 的解即可求出答案. 【详解】f ′(x )=1-2sin x ,x ∈(0,π).令f ′(x )=0,得x =6π或x =56π, 当0<x <6π时,f ′(x )>0, 当6π<x <56π时,f ′(x )<0,当56π<x <π时,f ′(x )>0, ∴f (x )在(0,)6π和5(,)6ππ上单调递增,在5(,)66ππ上单调递减.故答案为:(0,)6π,5(,)6ππ.【典例4】(2023·全国·高三专题练习)已知函数211,0()2,0x f x x x x ⎧⎛⎫-≤⎪ ⎪=⎨⎝⎭⎪-+>⎩,则函数12()log g x f x ⎛⎫= ⎪⎝⎭的单调递增区间为__. 【答案】20,2⎛⎫ ⎪ ⎪⎝⎭,[1,)+∞ 【分析】先根据题意求出()g x 的解析式,然后在每一段上求出函数的增区间即可 【详解】由12log 0x ≤,得1≥x ,由12log 0x >,得01x <<,所以当1≥x 时,12log 1()112xg x x ⎛⎫=-=- ⎪⎝⎭,则()g x 在[1,)+∞上递增,当01x <<时,21122()loglog g x x x =-+,则121212log 11()2log 111lnlnln222x g x x x x x -'=-⋅+=,由()0g x '>,得1212log 0x -<,解得202x <<, 所以()g x 在20,2⎛⎫ ⎪ ⎪⎝⎭上递增, 综上得函数()g x 的单调递增区间为20,2⎛⎫⎪ ⎪⎝⎭,[1,)+∞. 故答案为:20,2⎛⎫⎪ ⎪⎝⎭,[1,)+∞. (1)函数的一阶导数可以用来研究函数图象的上升与下降,函数的二阶导数可以用来研究函数图象的陡峭及平缓程度,也可用来研究导函数图象的上升与下降. (2)求函数的单调区间时,一定要先确定函数的定义域,否则极易出错. 热点二 含参数的函数的单调性【典例5】(2021·全国·高考真题(文))设函数22()3ln 1f x a x ax x =+-+,其中0a >. (1)讨论()f x 的单调性;(2)若()y f x =的图象与x 轴没有公共点,求a 的取值范围.【答案】(1)()f x 的减区间为10,a ⎛⎫ ⎪⎝⎭,增区间为1,+a ⎛⎫∞ ⎪⎝⎭;(2)1a e >.【解析】 【分析】(1)求出函数的导数,讨论其符号后可得函数的单调性.(2)根据()10f >及(1)的单调性性可得()min 0f x >,从而可求a 的取值范围. 【详解】(1)函数的定义域为()0,∞+, 又()23(1)()ax ax f x x+-'=,因为0,0a x >>,故230ax +>, 当10x a<<时,()0f x '<;当1x a >时,()0f x '>;所以()f x 的减区间为10,a ⎛⎫ ⎪⎝⎭,增区间为1,+a ⎛⎫∞ ⎪⎝⎭.(2)因为()2110f a a =++>且()y f x =的图与x 轴没有公共点,所以()y f x =的图象在x 轴的上方,由(1)中函数的单调性可得()min 1133ln 33ln f x f a a a ⎛⎫==-=+ ⎪⎝⎭,故33ln 0a +>即1a e>.【典例6】(2023·全国·高三专题练习)已知函数()ln R kf x x k k x=--∈,,讨论函数()f x 在区间(1,e)内的单调性. 【答案】见解析 【分析】先求出2()x kf x x +'=-,然后分k -与(1,e)的关系进行分类讨论,从而得出答案. 【详解】由()ln kf x x k k R x=--∈,,(1,e)x ∈ 221()k x k f x x x x+'∴=--=- ①当1k -≤,即1k ≥-时,10x k x +≥->, ()0f x '∴< ,()f x ∴在(1,e)单调递减;②当e k -≥,即e k ≤-时,e 0x k x +≤-<, ()0f x '∴> ,()f x ∴在(1,e)单调递增;③当1e k <-<,即e 1k -<<-时,当1x k <<-时,()0f x '>,()f x 单调递增; 当e k x -<<时,()0f x '<,()f x 单调递减; 综上所述,当1k ≥-时,()f x 在(1,e)单调递减 当e k ≤-时,()f x 在(1,e)单调递增当e 1k -<<-时,()f x 在(1,)k -单调递增,在(,e)k -单调递减.【方法总结】解决含参数的函数的单调性问题应注意两点(1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论. (2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为0的点和函数的间断点.热点三 已知函数的单调性求参数的取值范围【典例7】(全国·高考真题(文))若函数()ln f x kx x =-在区间()1,+∞上单调递增,则实数k 的取值范围是( ) A .(],2-∞- B .(],1-∞- C .[)2,+∞ D .[)1,+∞【答案】D 【解析】 【详解】 试题分析:,∵函数()ln f x kx x =-在区间()1,+∞单调递增,∴在区间()1,+∞上恒成立.∴,而在区间()1,+∞上单调递减,∴.∴的取值范围是[)1,+∞.故选D .【典例8】(全国·高考真题(理))若函数()cos 2sin f x x a x =+在区间(,)62ππ内是减函数,则实数a 的取值范围是_______. 【答案】2a ≤ 【解析】 【详解】试题分析:()()2sin 2cos 4sin cos cos cos 4sin .,62f x x a x x x a x x x a x ππ⎛⎫=-+=-+=-+∈ ⎪⎝'⎭时,()f x 是减函数,又cos 0x >,∴由()0f x '≤得4sin 0,4sin x a a x -+≤∴≤在,62ππ⎛⎫⎪⎝⎭上恒成立,()min 4sin ,,262a x x a ππ⎛⎫⎛⎫∴≤∈∴≤ ⎪ ⎪⎝⎭⎝⎭.【典例9】(2019·北京·高考真题(理))设函数f (x )=e x +a e −x (a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是___________. 【答案】 -1; (],0-∞. 【解析】 【分析】首先由奇函数的定义得到关于a 的恒等式,据此可得a 的值,然后利用导函数的解析式可得a 的取值范围. 【详解】若函数()x xf x e ae -=+为奇函数,则()()(),x x x x f x f x e ae e ae ---=-+=-+,()()1 0x x a e e -++=对任意的x 恒成立.若函数()x x f x e ae -=+是R 上的增函数,则()' 0x xf x e ae -=-≥恒成立,2,0x a e a ≤≤.即实数a 的取值范围是(],0-∞ 【规律方法】由函数的单调性求参数的取值范围的方法(1)可导函数在区间D 上单调,实际上就是在该区间上f ′(x )≥0(或f ′(x )≤0)恒成立,从而构建不等式,求出参数的取值范围,要注意“=”是否可以取到.(2)可导函数在区间D 上存在单调区间,实际上就是f ′(x )>0(或f ′(x )<0)在该区间上存在解集,即f ′(x )max >0(或f ′(x )min <0)在该区间上有解,从而转化为不等式问题,求出参数的取值范围.(3)若已知f (x )在区间D 上的单调性,区间端点含有参数时,可先求出f (x )的单调区间,令D 是其单调区间的子集,从而求出参数的取值范围. 热点四 函数单调性与函数图像【典例10】(2018·全国·高考真题(文))函数()2e e x xf x x --=的图像大致为 ( )A .B .C .D .【答案】B 【解析】 【详解】分析:通过研究函数奇偶性以及单调性,确定函数图像.详解:20,()()()x xe e xf x f x f x x --≠-==-∴为奇函数,舍去A,1(1)0f e e -=->∴舍去D;243()()2(2)(2)()2,()0x x x x x xe e x e e x x e x ef x x f x x x ---+---++=='∴>'>,所以舍去C ;因此选B.【典例11】(2023·全国·高三专题练习)函数y=f (x )的导函数()y f x '=的图象如图所示,则函数y=f (x )的图象可能是( )A .B .C .D .【答案】D【分析】根据导函数的图象判断原函数的单调性,即可判断选项.【详解】原函数先减再增,再减再增,且0x =位于增区间内.符合条件的只有D. 故选:D【典例12】(2021·浙江·高考真题)已知函数21(),()sin 4f x xg x x =+=,则图象为如图的函数可能是( )A .1()()4y f x g x =+-B .1()()4y f x g x =--C .()()y f x g x =D .()()g x y f x =【答案】D 【解析】 【分析】由函数的奇偶性可排除A 、B ,结合导数判断函数的单调性可判断C ,即可得解. 【详解】对于A ,()()21sin 4y f x g x x x =+-=+,该函数为非奇非偶函数,与函数图象不符,排除A ; 对于B ,()()21sin 4y f x g x x x =--=-,该函数为非奇非偶函数,与函数图象不符,排除B ; 对于C ,()()21sin 4y f x g x x x ⎛⎫==+ ⎪⎝⎭,则212sin cos 4y x x x x ⎛⎫'=++ ⎪⎝⎭,当4x π=时,221202164y ππ⎛⎫'=+> ⎪⎝⎭,与图象不符,排除C. 故选:D. 【规律方法】有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复. 热点五 函数单调性与比较大小、解不等式 【典例13】(2022·全国·高考真题(理))已知3111,cos ,4sin 3244a b c ===,则( ) A .c b a >> B .b a c >>C .a b c >>D .a c b >>【答案】A 【解析】 【分析】由14tan 4c b =结合三角函数的性质可得c b >;构造函数21()cos 1,(0,)2f x x x x =+-∈+∞,利用导数可得b a >,即可得解. 【详解】 因为14tan 4c b =,因为当π0,,sin tan 2x x x x ⎛⎫∈<< ⎪⎝⎭ 所以11tan44>,即1cb >,所以c b >;设21()cos 1,(0,)2f x x x x =+-∈+∞, ()sin 0f x x x '=-+>,所以()f x 在(0,)+∞单调递增,则1(0)=04f f ⎛⎫> ⎪⎝⎭,所以131cos 0432->, 所以b a >,所以c b a >>, 故选:A【典例14】(2022·全国·高考真题)设0.110.1e ,ln 0.99a b c ===-,,则( )A .a b c <<B .c b a <<C .c a b <<D .a c b <<【答案】C 【解析】 【分析】构造函数()ln(1)f x x x =+-, 导数判断其单调性,由此确定,,a b c 的大小. 【详解】设()ln(1)(1)f x x x x =+->-,因为1()111x f x x x'=-=-++, 当(1,0)x ∈-时,()0f x '>,当,()0x ∈+∞时()0f x '<,所以函数()ln(1)f x x x =+-在(0,)+∞单调递减,在(1,0)-上单调递增, 所以1()(0)09f f <=,所以101ln 099-<,故110ln ln 0.999>=-,即b c >,所以1()(0)010f f -<=,所以91ln +01010<,故1109e 10-<,所以11011e 109<,故a b <,设()e ln(1)(01)xg x x x x =+-<<,则()()21e 11()+1e 11x xx g x x x x -+'=+=--, 令2()e (1)+1x h x x =-,2()e (21)x h x x x '=+-,当021x <<时,()0h x '<,函数2()e (1)+1x h x x =-单调递减,211x <<时,()0h x '>,函数2()e (1)+1x h x x =-单调递增, 又(0)0h =,所以当021x <<时,()0h x <,所以当021x <<时,()0g x '>,函数()e ln(1)x g x x x =+-单调递增, 所以(0.1)(0)0g g >=,即0.10.1e ln 0.9>-,所以a c > 故选:C.【典例15】(2022·重庆南开中学高三阶段练习)已知函数()()3log 912xf x x =+-+,则不等式()()21f x f x -<的解集为( ) A .()1,3 B .(),1-∞ C .[)1,+∞D .1,13⎛⎫⎪⎝⎭【答案】D【分析】根据导数判断出函数的单调性,根据解析式可判断函数为偶函数,从而可求不等式的解.【详解】函数的定义域为R ,()()()9ln 92991119191ln 391x x x x x x f x ⋅-'=-=-=+++,当0x <时,0f x ;当0x >时,0f x ,故()f x 在(),0-∞上为减函数,在()0,+∞上为增函数. 又()()3391log 912log 29x xx f x x x -+-=+++=++()()3log 9122x x x f x =+-++=,故()f x 为R 上的偶函数,故()()21f x f x -<等价于()()21f x f x -<, 即21x x -<,两边平方得23410x x -+<,故1,13x ⎛⎫∈ ⎪⎝⎭.故选:D.'()f x 当0x >时,'()()0xf x f x -<,则使得()0f x >成立的x 的取值范围是( ) A .(,1)(0,1)-∞- B .(1,0)(1,)C .(,1)(1,0)-∞--D .(0,1)(1,)⋃+∞【答案】A 【解析】 【详解】构造新函数()()f x g x x=,()()()2'xf x f x g x x -=',当0x >时()'0g x <. 所以在()0,∞+上()()f xg x x=单减,又()10f =,即()10g =. 所以()()0f x g x x=>可得01x <<,此时()0f x >, 又()f x 为奇函数,所以()0f x >在()(),00,-∞⋃+∞上的解集为:()(),10,1-∞-⋃. 故选A.【典例17】(2021·山东·临沂市兰山区教学研究室高三开学考试)已知奇函数()f x 是定义在R 上的可导函数,其导函数为()f x ',当0x >时,有()()20f x x xf '+>,则不等式()()()220212021420x f x f +++-<的解集为( )A .()2019,+∞B .()2021,2019--C .(),2019-∞-D .()2019,0-【答案】C【分析】根据已知条件构造函数2()()g x x f x =,可得()g x 在(0,)+∞上为增函数,且()g x 为奇函数,然后将()()()220212021420x f x f +++-<可转化为(2021)(2)g x g +<,从而可求出不等式的解集.【详解】令2()()g x x f x =,则2()2()()[2()()]g x xf x x f x x f x xf x '=+''=+, 因为当0x >时,有()()20f x x xf '+>, 所以当0x >时,()0g x '>, 所以()g x 在(0,)+∞上为增函数,因为()f x 为奇函数,所以()()f x f x -=-, 所以22()()()()()g x x f x x f x g x -=--=-=-, 所以()g x 为R 上的奇函数, 所以()g x 在R 上为增函数,由()()()220212021420x f x f +++-<,得()()()22021202142x f x f ++<--, ()()()2220212021(2)2x f x f ++<---,所以(2021)(2)g x g +<--,因为()g x 为奇函数,所以(2021)(2)g x g +<, 所以20212x +<,得2019x <-,所以不等式的解集为(),2019-∞-, 故选:C【典例18】(2022·湖北·襄阳五中高三阶段练习)设11166,2ln sin cos ,ln 5101055a b c ⎛⎫==+= ⎪⎝⎭,则,,a b c 的大小关系是___________. 【答案】.b a c <<【分析】利用导数研究函数()sin f x x x =-,()ln(1)g x x x =-+,6()ln(1)5h x x x =-+在(0,1)上的单调性,利用函数的单调性可比较,,a b c 的大小.【详解】由已知可得2111112ln sin cos ln sin cos ln(1sin )101010105b ⎛⎫⎛⎫=+=+=+ ⎪ ⎪⎝⎭⎝⎭,设()sin f x x x =-,(0,1)x ∈,则()1cos 0f x x '=->, 所以()sin f x x x =-在(0,1)上单调递增,所以1(0)05f f ⎛⎫>= ⎪⎝⎭,即11sin 55>,所以11ln 1sin ln 155b ⎛⎫⎛⎫=+<+ ⎪ ⎪⎝⎭⎝⎭,设()ln(1)g x x x =-+,(0,1)x ∈,则1()1011x g x x x '=-=>++, 所以()ln(1)g x x x =-+在(0,1)上单调递增,所以1(0)05g g ⎛⎫>= ⎪⎝⎭,即111ln 1ln 1sin 555⎛⎫⎛⎫>+>+ ⎪ ⎪⎝⎭⎝⎭,所以a b >,设6()ln(1)5h x x x =-+,(0,1)x ∈,则651()1551x h x x x -'=-=++,当105x ⎛⎫∈ ⎪⎝⎭,时,()0h x '<,当1,15x ⎛⎫∈ ⎪⎝⎭时,()0h x '>,所以6()ln(1)5h x x x =-+在105⎛⎫⎪⎝⎭,上单调递减,在1,15⎛⎫ ⎪⎝⎭上单调递增,所以1(0)05h h ⎛⎫<= ⎪⎝⎭,即16166ln 1ln 55555⎛⎫<+= ⎪⎝⎭,所以a c <,所以.b a c << 故答案为:.b a c <<. 构造函数解不等式或比较大小一般地,在不等式中若同时含有f (x )与f ′(x ),常需要通过构造含f (x )与另一函数的和、差、积、商的新函数,再借助导数探索新函数的性质,进而求出结果. 常见构造的辅助函数形式有: (1)f (x )>g (x )→F (x )=f (x )-g (x );(2)xf ′(x )+f (x )→[xf (x )]′; (3)xf ′(x )-f (x )→()[]'f x x; (4)f ′(x )+f (x )→[e x f (x )]′;(5)f ′(x )-f (x )→()[]'x f x e′.(6)()()f x f x '<→()()x f x g x e = (7)()()xf x f x '<→()()f x g x x=(8)()()0xf x f x '+<→()()g x xf x =.【精选精练】一、单选题1.(2022·全国·高三专题练习)函数()y f x =在定义域3,32⎛⎫- ⎪⎝⎭内可导,图像如图所示,记()y f x =的导函数为()y f x '=,则不等式()0f x '≥的解集为( )A .[)1,12,33⎡⎤-⎢⎥⎣⎦B .1481,,233⎡⎤⎡⎤-⋃⎢⎥⎢⎥⎣⎦⎣⎦C .[]31,1,223⎛⎤--⋃ ⎥⎝⎦D .3148,,2333⎛⎤⎡⎤--⋃ ⎥⎢⎥⎝⎦⎣⎦【答案】C【分析】()0f x '≥的解集即为()y f x =单调递增区间,结合图像理解判断. 【详解】()0f x '≥的解集即为()y f x =单调递增区间 结合图像可得()y f x =单调递增区间为[]31,,1,223⎛⎤-- ⎥⎝⎦则()0f x '≥的解集为[]31,1,223⎛⎤--⋃ ⎥⎝⎦故选:C .2.(2023·全国·高三专题练习)已知函数()f x 的导函数()f x '的图像如图所示,则下列判断正确的是( )A .在区间()1,1-上,()f x 是增函数B .在区间()3,2--上,()f x 是减函数C .2-为()f x 的极小值点D .2为()f x 的极大值点【答案】D【分析】利用函数与导函数的关系及其极值的定义即可求解. 【详解】由导函数()f x '的图像可知,在区间()1,0-上为单调递减,在区间()0,1上为单调递增,则选项A 不正确; 在区间()3,2--上,()0f x '>,则()f x 是增函数,则选项B 不正确;由图像可知()20f '-=,且()3,2--为单调递增区间,()2,0-为单调递减区间,则2-为()f x 的极大值点,则选项C 不正确;由图像可知()20f '=,且()1,2为单调递增区间,()2,3为单调递减区间,则2为()f x 的极大值点,则选项D 正确; 故选:D.3.(2023·全国·高三专题练习)函数()3221343f x x ax a x =---在()3,+∞上是增函数,则实数a 的取值范围是( ) A .0a ≥ B .1a ≥ C .3a ≤-或1a ≥ D .31a -≤≤【答案】D【分析】结合函数单调性得到()22230f x x ax a -'=-≥在()3,+∞上恒成立,分0a =,0a >和0a <三种情况,数形结合列出不等式,求出实数a 的取值范围. 【详解】∵函数()3221343f x x ax a x =---在()3,+∞上是增函数,∴()22230f x x ax a -'=-≥在()3,+∞上恒成立, ∵()()()22233f x x ax a x a x a =--=-+',∴当0a =时,()20f x x '=≥恒成立,满足题意;当0a >时,()0f x '>在()(),3,a a ∞∞--⋃+上恒成立,()0f x '<在(),3a a -上恒成立,故只需33a ≤,解得:1a ≤,故可得:(]0,1a ∈ 当0a <时,()0f x '>在()(),3,a a ∞∞-⋃-+上恒成立,()0f x '<在()3,a a -上恒成立,故只需3a -≤,解得:3a ≥-,故可得:[)3,0a ∈- 综上可得:实数a 的取值范围是[]3,1-, 故选:D .4.(2022·全国·长垣市第一中学高三开学考试(理))已知函数()12ln f x x x x=+-,则不等式()()211f x f x -<-的解集为( ) A .20,3⎛⎫ ⎪⎝⎭B .2,13⎛⎫ ⎪⎝⎭C .1,12⎛⎫ ⎪⎝⎭D .12,23⎛⎫ ⎪⎝⎭【答案】B【分析】利用导数说明函数的单调性,再根据函数的单调性及定义域将函数不等式转化为自变量的不等式,解得即可.【详解】解:由题意可知,函数()12ln f x x x x=+-的定义域为()0,∞+. 因为()22211110f x x x x ⎛⎫'=--=--≤ ⎪⎝⎭恒成立,所以()f x 在()0,∞+上单调递减.则由()()211f x f x -<-可得21010211x x x x->⎧⎪->⎨⎪->-⎩,解得213x <<,即原不等式的解集为2,13⎛⎫⎪⎝⎭.故选:B.a A .ln ln ab a b -<-e e B .ln ln b a a b < C .e a b ba-> D .sin sin 1a ba b-<-【答案】D【分析】由题设有0a b >>,分别构造e ln x y x =-、ln xy x=、e x y x =、sin y x x =-,利用导数研究在,()0x ∈+∞上的单调性,进而判断各项的正误. 【详解】由221a b >>,即0a b >>,A :若e ln x y x =-且,()0x ∈+∞,则1e x y x'=-,故12|e 20x y ='=-<,1|e 10x y ='=->,即y '在1(,1)2上存在零点且y '在(0,)+∞上递增,所以y 在(0,)+∞上不单调,则e ln e ln a b a b -<-不一定成立,排除; B :若ln x y x =且,()0x ∈+∞,则21ln xy x -'=, 所以(0,e)上0y '>,y 递增;(e,)+∞上0y '<,y 递减; 故y 在(0,)+∞上不单调,则ln ln a ba b<不一定成立,排除; C :若e x y x =且,()0x ∈+∞,则e (1)0x y x '=+>,即y 在(0,)+∞上递增, 所以e e a b a b >,即e a b ba-<,排除; D :若sin y x x =-且,()0x ∈+∞,则1cos 0y x '=-≥,即y 在(0,)+∞上递增, 所以sin sin a a b b ->-,即sin sin 1a ba b-<-,正确.故选:D6.(2022·四川成都·高三期末(理))若函数()在区间()上单调递增,则实数k 的取值范围是( ) A .[)1,+∞ B .[)2,+∞ C .(]0,1 D .(]0,2【答案】B【分析】根据已知条件等价为()20f x k x =-≥'在()1,+∞上恒成立,即2k x≥在()1,+∞上恒成立,求解()()21g x x x=>的取值情况即可得出结果. 【详解】()2ln f x kx x =-由题意,已知条件等价为()20f x k x=-≥'在()1,+∞上恒成立, 即2k x≥在()1,+∞上恒成立, 令()()21g x x x=>, ()g x 在()1,+∞上单调递减,()2g x ∴<,2k ∴≥,k ∴的取值范围是[)2,+∞.故选:B.7.(2023·全国·高三专题练习)已知函数()3ln 3f x x x ax =--在()2,+∞上单调递增,则实数a 的取值范围为( )A .72a >-B .72a ≥-C .72a <D .72a ≤【答案】D【分析】由已知可得()210f x x a x '=--≥在()2,+∞恒成立,从而进行参变分离求最值即可.【详解】解:()210f x x a x'=--≥,因为函数()31ln 3f x x x ax =--在()2,+∞上单调递增,所以()210f x x a x '=--≥在()2,+∞恒成立,即21a x x≤-在()2,+∞恒成立,令()()212g x x x x =->,则()2120g x x x '=+>在()2,+∞恒成立, 故()g x 在()2,+∞单调递增,所以()()722g x g >=, 故a 的取值范围是72⎛⎤-∞ ⎥⎝⎦,,故选:D .8.(2023·全国·高三专题练习)已知R α∈,则函数()ex x f x =的图象不可能是( )A .B .C .D .【答案】C【分析】令12α=、2α=、1α=-,结合导数研究()f x 的单调性及值域判断可能的图象,即可得答案.【详解】当12α=时,()e x xf x =且0x ≥,则12()e x x f x x-'=,所以1(0,)2上 ()0f x '>,()f x 递增;1(,)2+∞上 ()0f x '<,()f x 递减,且(0)0f =,所以A 图象可能;当2α=时,2()0ex x f x =≥且R x ∈,则(2)()e x x x f x '-=,所以(,0)-∞上()0f x '<,()f x 递减,(0,2)上 ()0f x '>,()f x 递增,(2,)+∞上 ()0f x '<,()f x 递减,所以B 图象可能; 当1α=-时,1()e x f x x =且0x ≠,则21()e xxf x x +'=-,所以(,1)-∞-上()0f x '>,()f x 递增,(1,0)-上 ()0f x '<,()f x 递减,(0,)+∞上 ()0f x '>,()f x 递增,又0x <时()0f x <,而0x >时()0f x >, 所以D 图象可能; 综上,排除A 、B 、D. 故选:C3232b b =,03c <<且33c c =,则( )A .a b c <<B .c b a <<C .b a c <<D .a c b <<【答案】A【分析】构造函数()ln xf x x=,求导,根据函数的单调性比大小即可. 【详解】由88a a =,两边同时以e 为底取对数得ln ln 88a a =, 同理可得ln ln 3232b b =,ln ln33c c =, 设()ln xf x x=,0x >,则()()8f a f =,()()32f b f =,()()3f c f =, ()21ln xf x x -'=,令()0f x '=,解得e x =,当()0,e x ∈时,()0f x '>,函数()f x 单调递增, 当()e,x ∈+∞时,()0f x '<,函数()f x 单调递减, 则(),,0,e a b c ∈,且()()()3832f f f >>, 所以()()()f c f a f b >>, 故c a b >>, 故选:A.10.(2022·江苏·扬中市第二高级中学高三开学考试)已知()f x '是函数()f x 的导数,且()()f x f x -=,当0x ≥时,()3f x x '>,则不等式3()(1)32f x f x x --<-的解集是( ) A .1(,0)2-B .1(,)2-∞-C .1(,)2+∞D .1(,)2-∞【答案】D【分析】构造函数23()()2g x f x x =-,根据导数判断单调性,再利用奇偶性求出解集.【详解】设23()()2g x f x x =-,则()()3g x f x x '='-,因为当0x ≥时,()3f x x '>,所以当0x ≥时,()0g x '>, 即()g x 在[0,)+∞上单调递增,因为()()f x f x -=,所以()f x 为偶函数,则()g x 也是偶函数,所以()g x 在(,0]-∞上单调递减. 因为3()(1)32f x f x x --<-,所以2233()(1)(1)22f x x f x x -<---, 即()(1)g x g x <-, 则1x x <-,解得12x <, 故选:D.b a b =下列正确的是( ) A .1ab >B .1(1)b a a b +<+C .11a b a b a a b b ++->-D .52+>a b 【答案】B【分析】利用指对数互化及对数的运算性质可得1b a =,进而可得1121a b b<=<<+,然后构造函数,利用函数的单调性即得. 【详解】由log b a a b =,可得1log log log b a b a b a==,所以log 1b a =,或log 1b a =-, ∴b a =(舍去),或1b a=,即1ab =,故A 错误; 又02b a b <<<,故120a a a<<<, ∴12a <<,对于函数()112y x x x=+<<, 则2221110x y x x-'=-=>,函数()112y x x x =+<<单调递增,∴1322,2a b a a ⎛⎫+=+∈ ⎪ ⎪⎝⎭,故D 错误; ∵02b a b <<<,112a b<=<, ∴1212a b b <<<+<, 令()()ln 12x g x x x=<<,则()21ln 0xg x x -'=>,∴函数()()ln 12xg x x x=<<单调递增, ∴()ln 1ln 1b a a b +<+,即()()1ln ln 1b a a b +<+, ∴()1ln ln 1ab a b +<+,即1(1)b a a b +<+,故B 正确; ∵011b a b <<<<+,∴函数,x x y a y b ==-单调递增,故函数x x y a b =-单调递增, ∴11a a b b a b a b ++-<-,即11a b a b a a b b ++-<-,故C 错误. 故选:B. 12.(2023·全国·高三专题练习)已知0a <,函数322()2f x x ax a x =+-+的单调递减区间是________ . 【答案】,3a a ⎛⎫- ⎪⎝⎭【分析】求出函数导数,由()0f x '<即可求出单调递减区间. 【详解】22()32(3)()f x x ax a x a x a '=+-=-+,令()0f x '<,解得3ax a <<- , 所以()f x 的单调递减区间为,3a a ⎛⎫- ⎪⎝⎭.故答案为:,3a a ⎛⎫- ⎪⎝⎭.13.(2021·河南宋基信阳实验中学高三开学考试(文))若函数4y x x=+在()0,a 上为单调减函数,则实数a 的取值范围是_________. 【答案】(]0,2【分析】由题可得函数4y x x=+在区间(0,2]上是减函数,结合条件即得. 【详解】对于函数4y x x=+,0x >, ∴()()222222441x x x y x x x+--'=-==,0x >, 由0y '<,可得02x <<, 因为函数4y x x=+在()0,a 上为单调减函数, 所以02a <≤,即实数a 的取值范围是(]0,2. 故答案为:(]0,2.14.(2022·江苏·扬中市第二高级中学高三开学考试)函数()2x x f x =的单调递增区间为__________. 【答案】2(0,)ln 2【分析】先求得导函数,并令'0f x ,再判断导函数的符号,由此可得函数的单调递增区间.【详解】函数2()2x xf x =,则()()()2'22ln 2ln 222222x x xxx fx x x x -⋅-⋅⋅⋅==,令()0f x '=解得20,ln 2x x ==, 当(),0x ∈-∞时,()0f x '<,函数()f x 单调递减,当20,ln 2x ⎛⎫∈ ⎪⎝⎭时,()0f x '>,函数()f x 单调递增,当2,ln 2x ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '<,函数()f x 单调递减, 故答案为:2(0,)ln 2. 15.(2023·全国·高三专题练习)()3211232f x x x ax =-++,若()f x 在,3⎛⎫+∞ ⎪⎝⎭上存在单调递增区间,则a 的取值范围是_______【答案】1,9⎛⎫-+∞ ⎪⎝⎭【分析】分析可知,2,+3x ⎛⎫∃∈∞ ⎪⎝⎭,使得()212a x x >-,求出函数()212y x x =-在2,3⎛⎫+∞ ⎪⎝⎭上的值域,可得出实数a 的取值范围.【详解】因为()3211232f x x x ax =-++,则()22f x x x a '=-++,有已知条件可得:2,+3x ⎛⎫∃∈∞ ⎪⎝⎭,使得()0f x '>,即()212a x x >-,当()221122122339y x x ⎡⎤⎛⎫=->-=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,所以19a >-.故答案为:1,9⎛⎫-+∞ ⎪⎝⎭.16.(2022·重庆巴蜀中学高三阶段练习)已知奇函数()的定义域为R ,当0x >讨,()()20f x f x '+>,且()20f =,则不等式()0f x >的解集为___________.【答案】()(2,02,)-⋃+∞【分析】构造函数2()e ()=x g x f x ,利用导函数判断出当x >0时, ()g x 单调递增,得到当x >2时()0g x >,从而()0f x >;当02x <<时,()0g x <,从而()0f x <.由()f x 为奇函数得到不等式()0f x >的解集.【详解】构造函数2()e ()=x g x f x ,则当0x >时,[]2()e 2()()0xg x f x f x ''=+>,所以当x >0时()g x 单调递增.因为f (2)=0,所以()()42e 20g f ==,所以当x >2时()0g x >,从而()0f x >.当02x <<时,()0g x <,从而()0f x <.又奇函数()f x 的图像关于原点中心对称,所以()0f x >的解集为()(2,02,)-⋃+∞. 故答案为: ()(2,02,)-⋃+∞. 三、解答题17.(2022·四川成都·高三期末(理))设函数()()321113f x x x a x =-++--,其中a ∈R .若函数()f x 的图象在0x =处的切线与x 轴平行. (1)求a 的值;(2)求函数()f x 的单调区间. 【答案】(1)1a =(2)单调递增区间为()0,2;单调递减区间为(),0∞-,()2,+∞【分析】(1)根据导数的几何意义求解即可;(2)由(1)得()32113f x x x =-+-,再求导分析函数的单调区间即可(1)()221f x x x a '=-++-.∵函数()f x 的图象在0x =处的切线与x 轴平行,∴()010f a =-=',解得1a =.此时()010f =-≠,满足题意.∴1a =. (2)由(1)得()32113f x x x =-+-,故()()222f x x x x x '=-+=--.令()0f x '=,解得0x =或2x =.当x 变化时,()f x ',()f x 的变化情况如下表:x(),0∞-0 ()0,22 ()2,+∞()f x ' - 0 +0 -()f x单调递减1- 单调递增13单调递减∴函数()的单调递增区间为();单调递减区间为(),().18.(2023·全国·高三专题练习)已知函数()22ln x f x x a =-(a ∈R 且0a ≠).(1)2a =,求函数()f x 在()()22f ,处的切线方程. (2)讨论函数()f x 的单调性; 【答案】(1)2ln 2y x =- (2)答案见解析【分析】(1)求得函数的导数,根据导数的几何意义即可求得切线方程;(2)求出函数的导数,分类讨论a 的取值,判断导数的正负,从而确定函数的单调性. (1)当2a =时,()22ln 2x f x x =-,所以()22n2l 2f =-,()2f x x x'=-,所以()22212f '=-=,所以函数()f x 在()()22f ,处的切线方程为()22ln 22y x --=-,即2ln 2y x =-. (2)()f x 的定义域为(0)+∞,, 22()x f x a x'=-,当0a <时, ()0f x '<恒成立,所以()f x 在(0)+∞,上单调递减; 当0a > 时, ()()222()x f x x a x a a x ax'=-=+-,在()0,a 上,()0f x '<,所以()f x 单调递减;在(),a +∞上,()0f x '>,所以()f x 单调递增.。
函数的单调性、奇偶性、对称性、周期性10大题型命题趋势函数的性质是函数学习中非常重要的内容,对于选择题和填空题部分,重点考查基本初等函数的单调性,利用性质判断函数单调性及求最值、解不等式、求参数范围等,难度较小,属于基础题;对于解答题部分,一般与导数结合,考查难度较大。
满分技巧一、单调性定义的等价形式: 1、函数()x f 在区间[]b a ,上是增函数:⇔任取[]b a x x ,,21∈,且21x x <,都有()()021<−x f x f ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121>−−x x x f x f ;⇔任取[]b a x x ,,21∈,且21x x ≠,()()()[]02121>−−x f x f x x ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121>−−x f x f x x .2、函数()x f 在区间[]b a ,上是减函数:⇔任取[]b a x x ,,21∈,且21x x <,都有()()021>−x f x f ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121<−−x x x f x f ;⇔任取[]b a x x ,,21∈,且21x x ≠,()()()[]02121<−−x f x f x x ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121<−−x f x f x x .二、判断函数奇偶性的常用方法1、定义法:若函数的定义域不是关于原点对称,则立即可判断该函数既不是奇函数也不是偶函数;若函数的定义域是关于原点对称的,再判断()f x −与()f x ±之一是否相等.2、验证法:在判断()f x −与()f x 的关系时,只需验证()f x −()f x ±=0及()1()f x f x −=±是否成立. 3、图象法:奇(偶)函数等价于它的图象关于原点(y 轴)对称.4、性质法:两个奇函数的和仍为奇函数;两个偶函数的和仍为偶函数;两个奇函数的积是偶函数;两个偶函数的积是偶函数;一个奇函数与一个偶函数的积是奇函数.5、分段函数奇偶性的判断判断分段函数的奇偶性时,通常利用定义法判断.分段函数不是几个函数,而是一个函数.因此其判断方法也是先考查函数的定义域是否关于原点对称,然后判断()f x −与()f x 的关系.首先要特别注意x 与x −的范围,然后将它代入相应段的函数表达式中,()f x 与()f x −对应不同的表达式,而它们的结果按奇偶函数的定义进行比较. 三、常见奇、偶函数的类型1、()x x f x a a −=+(00a a >≠且)为偶函数;2、()x x f x a a −=−(00a a >≠且)为奇函数;3、()2211x x x x x xa a a f x a a a −−−−==++(00a a >≠且)为奇函数; 4、()log ab xf x b x−=+(00,0a a b >≠≠且)为奇函数;5、())log a f x x =±(00a a >≠且)为奇函数;6、()f x ax b ax b ++−为偶函数;7、()f x ax b ax b +−−为奇函数; 四、函数的周期性与对称性常用结论1、函数的周期性的常用结论(a 是不为0的常数)(1)若()()+=f x a f x ,则=T a ; (2)若()()+=−f x a f x a ,则2=T a ; (3)若()()+=−f x a f x ,则2=T a ; (4)若()()1+=f x a f x ,则2=T a ; (5)若()()1+=−f x a f x ,则2=T a ; (6)若()()+=+f x a f x b ,则=−T a b (≠a b ); 2、函数对称性的常用结论(1)若()()+=−f a x f a x ,则函数图象关于=x a 对称;(2)若()()2=−f x f a x ,则函数图象关于=x a 对称; (3)若()()+=−f a x f b x ,则函数图象关于2+=a bx 对称; (4)若()()22−=−f a x b f x ,则函数图象关于(),a b 对称; 3、函数的奇偶性与函数的对称性的关系(1)若函数()f x 满足()()+=−f a x f a x ,则其函数图象关于直线=x a 对称,当0=a 时可以得出()()=−f x f x ,函数为偶函数,即偶函数为特殊的线对称函数; (2)若函数()f x 满足()()22−=−f a x b f x ,则其函数图象关于点(),a b 对称,当0=a ,0=b 时可以得出()()−=−f x f x ,函数为奇函数,即奇函数为特殊的点对称函数; 4、函数对称性与周期性的关系(1)若函数()f x 关于直线=x a 与直线=x b 对称,那么函数的周期是2−b a ; (2)若函数()f x 关于点(),0a 对称,又关于点(),0b 对称,那么函数的周期是2−b a ; (3)若函数()f x 关于直线=x a ,又关于点(),0b 对称,那么函数的周期是4−b a . 5、函数的奇偶性、周期性、对称性的关系(1)①函数()f x 是偶函数;②函数图象关于直线=x a 对称;③函数的周期为2a . (2)①函数()f x 是奇函数;②函数图象关于点(),0a 对称;③函数的周期为2a . (3)①函数()f x 是奇函数;②函数图象关于直线=x a 对称;③函数的周期为4a . (4)①函数()f x 是偶函数;②函数图象关于点(),0a 对称;③函数的周期为4a .其中0≠a ,上面每组三个结论中的任意两个能够推出第三个。
考向05 函数的单调性与最值1. (2022年浙江卷第7题)已知825,log 3ab ==,则34a b -=( )A. 25 B. 5 C.259D.53【答案】C【解析】因为25a =,821log 3log 33b ==,即323b =,所以()()22323232452544392a aa b b b -====.故选:C.2. (2022年 新高考1卷第7题)设0.110.1e ,ln 0.99a b c ===-,,则( )A.a b c << B. c b a<< C. c a b<< D. a c b<<【答案】C【解析】设()ln(1)(1)f x x x x =+->-,因为1()111x f x x x'=-=-++,当(1,0)x ∈-时,()0f x '>,当,()0∈+∞时()0f x '<,所以函数()ln(1)f x x x =+-在(0,)+∞单调递减,在(1,0)-上单调递增,所以1((0)09f f <=,所以101ln099-<,故110ln ln 0.999>=-,即b c >,所以1()(0)010f f -<=,所以91ln+01010<,故1109e 10-<,所以11011e 109<,故a b <,设()e ln(1)(01)xg x x x x =+-<<,则()()21e 11()+1e 11xx x g x x x x -+'=+=--,令2()e (1)+1x h x x =-,2()e (21)x h x x x '=+-,当01x <<时,()0h x '<,函数2()e (1)+1x h xx =-单调递减,11x <<时,()0h x '>,函数2()e (1)+1x h x x =-单调递增,又(0)0h =,所以当01x <<-时,()0h x <,所以当01x <<-时,()0g x '>,函数()e ln(1)xg x x x =+-单调递增,所以(0.1)(0)0g g >=,即0.10.1e ln 0.9>-,所以a c >故选:C.3. (2022年北京卷第14题)设函数()()21,,2,.ax x a f x x x a -+<⎧⎪=⎨-≥⎪⎩若()f x 存在最小值,则a 的一个取值为________;a 的最大值为___________.【答案】①. 0(答案不唯一)②. 1【解析】若0a =时,21,0(){(2),0x f x x x <=-≥,∴min ()0f x =;若0a <时,当x a <时,()1f x ax =-+单调递增,当x →-∞时,()f x →-∞,故()f x 没有最小值,不符合题目要求;若0a >时,当x a <时,()1f x ax =-+单调递减,2()()1f x f a a >=-+,当x a >时,min 20(02)(){(2)(2)a f x a a <<=-≥∴210a -+≥或2212a a -+≥-(),解得01a <≤,综上可得01a ≤≤;故答案为:0(答案不唯一),1【易错点1】求函数的单调区间,应先确定函数的定义域,忽略定义域研究函数的单调性是常见的错误.【易错点2】有多个单调区间应分开写,不能用符号“∪”联结,也不能用“或”联结,只能用“逗号”或“和”联结.1.下列函数中,定义域是R 且为增函数的是A .xy e -= B .3y x =C .ln y x =D .y x=【答案】B【解析】四个函数的图象如下显然B 成立.【名师点睛】本题考查函数的定义域以及单调性的判定,涉及指数、对数、幂函数的性质,属于基础题.根据题意,依次分析选项中函数的定义域以及单调性,即可得答案.2.函数()22312x x f x --⎛⎫=⎪⎝⎭的单调递减区间是A .(),-∞+∞ B .(),1-∞C .()3,+∞D .()1,+∞【答案】D【解析】设t =x 2﹣2x ﹣3,则函数在(﹣∞,1]上单调递减,在[1,+∞)上单调递增.因为函数12xy ⎛⎫= ⎪⎝⎭在定义域上为减函数,所以由复合函数的单调性性质可知,此函数的单调递减区间是(1,+∞).故选D .【名师点睛】本题主要考查了复合函数的单调性以及单调区间的求法.复合函数的单调性,一要先确定函数的定义域,二要利用复合函数与内层函数和外层函数单调性之间的关系进行判断,判断的依据是“同增异减”.解答本题时,利用复合函数的单调性确定函数f (x )的单调递减区间.3.已知函数1()x f x e=,()0.52a f =,()0.20.3b f =,()0.3log 2c f =,则a ,b ,c 的大小关系为( )A .c b a << B .a b c << C .b c a << D .c a b<<【答案】B【解析】函数1()xf x e=,()0.52a f =,()0.20.3b f =,()0.3log 2c f =根据指数函数和对数函数的单调性可得:0.50221>=,0.2000.30.31<<=,0.30.3log 2log 01<<,因为函数1()xf x e=在R 上单调递减,且0.50.20.3log 20.23<<,所以0.20.053.(log 2)(0.23)()f f f >>,即a b c <<.故选:B 【点睛】对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确.4.已知函数()22cos()(1)sin(),()233x f x x a x a g x x ππ=+-+=-,若()[]0f g x ≤对[]0,1x ∈恒成立,则实数a 的取值范围是( )A .(1]-∞-B .(,0]-∞C .1]-D .(,1-∞-【答案】A【解析】在同一坐标系内画出2231,2,2x y x y y x =+==+的图象,由图象可知,在[]0,1上,223122xx x +≤<+恒成立,即23122x x ≤-<,当且仅当0x =或1x =时等号成立,()312g x ∴≤<,设()g x t =,则()(31,02t f g x ⎤≤<≤⎦等价于()0f t ≤,即()2cos1sin 033t a t a ππ+-+≤,31,,2332t t πππ⎡⎫≤<∴∈⎪⎢⎣⎭Q ,再设sin 13tm m π=≤<,原不等式可化为()212sin 1sin 033t a t a ππ-+-+≤,即()22211210,211m m m a m n a m m +--+-+≤≤=-+,1211m -≤-<,1a ∴≤-,故选:A.【点睛】关键点点睛:本题考查恒成立问题,考查三角函数的图象和性质,解决本题的关键点是设()g x t =,则原不等式等价于()0f t ≤,再设sin3tm π=,并参变分离求出最值解出实数a 的取值范围,考查了数形结合的解题思想方法,考查学生计算能力,属于中档题.5.设函数()f x 的定义域为R ,满足(1)2()f x f x +=,且当(]0,1x ∈时,()(1)f x x x =-.若对任意(],x m ∈-∞,都有8()9f x -≥,则m 的取值范围是( )A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦【答案】B【解析】∵(0,1]x ∈时,,,∴()2(1)f x f x =-,即右移1个单位,图像变为原来的2倍.如图所示:当23x <≤时,,令,整理得:,∴()()37380x x --=(舍),∴173x =,283x =,∴(,]x m ∈-∞时,()=(1)f x x x -(+1)= ()f x 2f x ()f x ()=4(2)=4(2)(3)f x f x x x ---84(2)(3)9x x --=-2945560x x -+=8()9f x -≥成立,即73m ≤,∴7,3m ⎛⎤∈-∞ ⎥⎝⎦,故选B .一、单选题1.(2022·青海·海东市第一中学模拟预测(文))下列函数中是减函数的为( )A .2()log f x x =B .()13x f x =-C .()f x =D .2()1f x x =-+【答案】B【解析】选项A :由21>,可得2()log f x x =为增函数.判断错误;选项B :由31>,可得3x y =为增函数,则()13x f x =-是减函数.判断正确;选项C :由102-<,可得12y x -=是减函数,则()f x =为增函数.判断错误;选项D :2()1f x x =-+在(),0∞-上单调递增. 判断错误.故选:B2.(2023·河南·洛宁县第一高级中学一模(理))已知函数33,0()e 1,0xx x f x x --+<⎧=⎨+≥⎩,则不等式()(31)<-f a f a 的解集为( )A .10,2⎛⎫⎪⎝⎭B .1,02⎛⎫- ⎪⎝⎭C .1,2⎛⎫-∞ ⎪⎝⎭D .1,2⎛⎫-∞- ⎪⎝⎭【答案】C【解析】因为33,0()e 1,0xx x f x x --+<⎧=⎨+≥⎩,当0x <时()33f x x =-+函数单调递减,且()3033f x >-⨯+=,当0x ≥时()e 1x f x -=+函数单调递减,且()00e 123f =+=<,所以函数()f x 在(,)-∞+∞上是单调递减,所以不等式()(31)<-f a f a 等价于31a a >-,解得12a <.即不等式的解集为1,2⎛⎫-∞ ⎪⎝⎭;故选:C3.(2022·辽宁·大连二十四中模拟预测)已知函数()y f x =,若()0f x >且()()0f x xf x '+>,则有( )A .()f x 可能是奇函数,也可能是偶函数B .()()11f f ->C .42x ππ<<时,cos22s (os )(in c )x f ef x x <D .(0)(1)f <【答案】D【解析】若()f x 是奇函数,则()()f x f x -=-,又因为()0f x >,与()()f x f x -=-矛盾,所有函数()y f x =不可能时奇函数,故A 错误;令()()22e x g xf x =,则()()()()()()222222eeex x x g x x f x f x xf x f x '''=+=+,因为22e0x >,()()0f x xf x '+>,所以()0g x '>,所以函数()g x 为增函数,所以()()11g g -<,即()()1122e 1e 1f f -<,所以()()11f f -<,故B 错误;因为42x ππ<<,所以0cos x <<sin 1x <<,所以sin cos x x >,故()()sin cos g x g x >,即()()22sin cos 22e sin ecos xx f x f x >,所以()()()22cos sin cos222sin ecos ecos x xx f x f x f x ->=,故C 错误;有()()01g g <,即()()01f <,故D 正确.故选:D.4.(2022·江苏无锡·模拟预测)已知13e ,(93ln 3)e a b c --===-,则a ,b ,c 的大小为( )A .a b c <<B .a c b<<C .c a b<<D .b c a<<【答案】C【解析】令函数ln ()(e)x f x x x=≥,当e x >时,求导得:()21ln 0xf x x '-=<,则函数()f x 在[e,)+∞上单调递减,又ln 3(3)3a f ==,ln e (e)eb f ==,3333e ln3(3ln 3)e 3()e e 33c f -===,显然3e e 33<<,则有3e ()(3)(e)3f f f <<,所以c a b <<.故选:C5.(2022·青海·模拟预测(理))若01a b <<<,则( )A .e e ln ln b a b a -<-B .e e ln ln b a b a -≥-C .e e a b b a ≤D .e e a bb a >【答案】D【解析】对于A,B,令()e ln x f x x =- ,则1()e xf x x '=-,当01x <<时,1()e xf x x'=-单调递增,且2132123(e 20,(e 0232f f ''=-<=-=>>故存在012(,)23x ∈ ,使得0()0f x '=,则当0(0,)x x ∈时,()e ln x f x x =-递减,当0(,1)x x ∈时,()e ln x f x x =-递增,由于01a b <<<,此时()e ln ,()e ln a b f a a f b b =-=-大小关系不确定,故A,B 均不正确;对于C,D,设e g()=x x x ,则e (1)g ()=x x x x -',当01x <<时,()0g x '<,故e g()=xx x 单调递减,所以当01a b <<<时,()()g a g b > ,即e e a ba b > ,即e e a b b a >,故C 错误,D 正确,故选:D6.(2022·全国·高三专题练习)已知定义在R 上的函数()f x 满足()11f =,对于1x ∀,2R x ∈,当12x x <时,都有()()()12122f x f x x x -<-,则不等式()222log 1log f x x +<的解集为( )A .(),2-∞B .()0,2C .()1,2D .()2,+∞【答案】B【解析】由题设12x x <时1122()2()2f x x f x x -<-,即()()2h x f x x =-在R 上递增,又(1)(1)21h f =-=-,而()222log 1log f x x +<等价于()22log 2log 1f x x -<-,所以2(log )(1)h x h <,即2log 1x <,可得02x <<.故不等式解集为()0,2.故选:B 二、多选题7.(2022·江苏无锡·模拟预测)定义:在区间I 上,若函数()y f x =是减函数,且()y xf x =是增函数,则称()y f x =在区间I 上是“弱减函数”.根据定义可得( )A .()1f x x=在()0,∞+上是“弱减函数”B .()e xxf x =在()1,2上是“弱减函数”C .若()ln xf x x=在(),m +∞上是“弱减函数”,则e m ≥D .若()2cos f x x kx =+在0,2π⎛⎫ ⎪⎝⎭上是“弱减函数”,则213k ππ≤≤【答案】BCD【解析】对于A ,1y x=在()0,+∞上单调递减,()1y xf x ==不单调,故A 错误;对于B ,()e x xf x =,()1ex x f x -'=在()1,2上()0f x ¢<,函数()f x 单调递减,()2e x x y xf x ==,220e x x x y -'==>,∴y 在()1,2单调递增,故B 正确;对于C ,若()ln xf x x =在(),m +∞单调递减,由()21ln 0x f x x -'==,得e x =,∴e m ≥,()ln y xf x x ==在()0,+∞单调递增,故C 正确;对于D ,()2cos f x x kx =+在0,2π⎛⎫ ⎪⎝⎭上单调递减,()sin 20f x x kx '=-+≤在0,2x π⎛⎫∈ ⎪⎝⎭上恒成立min sin 2x k x ⎛⎫⇒≤ ⎪⎝⎭,令()sin xh x x =,()2cos sin x x x h x x -'=,令()cos sin x x x x ϕ=-,()cos sin cos sin 0x x x x x x x ϕ'=--=-<,∴()ϕx 在0,2π⎛⎫⎪⎝⎭上单调递减,()()00x ϕϕ<=,∴()0h x '<,∴()h x 在0,2π⎛⎫ ⎪⎝⎭上单调递减,()22h x h ππ⎛⎫>= ⎪⎝⎭,∴212k k ππ≤⇒≤,()()3cos g x xf x x x kx ==+在0,2π⎛⎫⎪⎝⎭上单调递增,()2cos sin 30g x x x x kx =+'-≥在0,2x π⎛⎫∈ ⎪⎝⎭上恒成立,∴2maxsin cos 3x x x k x -⎛⎫≥ ⎪⎝⎭,令()2sin cos x x x F x x -=,()23cos 2cos 0x x xF x x +'=>,∴()F x 在0,2π⎛⎫ ⎪⎝⎭上单调递增,()22F x F ππ⎛⎫<= ⎪⎝⎭,∴2233k k ππ≥⇒≥,综上:213k ππ≤≤,故D 正确.故选:BCD.8.(2022·江苏省木渎高级中学模拟预测)当121x x <<时,不等式1221e e 0x xx x -<成立.若e e a b >>,则( )A .e 1e e b b -> B .e e e aa b b +< C .e ln b a b a < D .e ln a ab b>【答案】AD【解析】当121x x <<时,不等式12122112e e e e 0x x x x x x x x -<⇔<,令e (),1xf x x x=>,则()f x 在(1,)+∞上单调递增,因e>1b >,则ee 1e e ()(e)e e e b bf b f b b->⇔>⇔>,A 正确;因e a b >>1,则e e e e ()(e )e e eaa b aa b a f b f b b +>⇔>⇔>,B 不正确;由e e a>知,1a >,有()()e 1e 1e aa f a f a a>⇔>>⇔>,则ln ln 1a a a a >⇔<,由选项A 知,e 1b b>,即e ln e ln b b aa b a b a >⇔>,C 不正确;由e e ab >>得,ln 1b a >>,则ln e e (ln )()e ln ln b aa fb f a ab b b a>⇔>⇔>,D 正确.故选:AD 三、填空题9.(2022·上海长宁·二模)已知函数()f x 满足:()(),01,0xx f x x f x x ⎧≥⎪=+⎨⎪--<⎩,则不等式()102f x +≥的解集为____.【答案】[)1,-+∞【解析】根据题意可得(),01,01xx x f x x x x ⎧≥⎪⎪+=⎨⎪<⎪-⎩,且()f x 为奇函数当0x ≥时,()11011xf x x x ==-≥++,则()f x 在[)0,∞+上单调递增∴()f x 在R 上单调递增则()12f x =-,即112x x =--,解得1x =-∴()102f x +≥即()12f x ≥-的解集为1x ≥-故答案为:[)1,-+∞.10.(2022·河南·新乡县高中模拟预测(理))在人工智能领域的神经网络中,常用到在定义域I 内单调递增且有界的函数()f x ,即0M ∃>,x I ∀∈,()f x M ≤.则下列函数中,所有符合上述条件的序号是______.①()f x =②()21x f x x =+;③()e e e e x xx x f x ---=+;④()11e x f x -=+.【答案】③④【解析】对于①,()f x =对于②,()2111x f x x x x==++不单调,不符合题意;对于③,()22222e e e 1e 1221e e e 1e 11e x x x x x x x x x f x ----+-===-++++=单调递增,且()()1,1f x ∈-,则()1f x <,符合题意;对于④,()11e xf x -=+单调递增,且()()0,1f x ∈,则()1f x <,符合题意.故答案为:③④1.(2021年全国高考甲卷数学(文)试题)下列函数中是增函数的为( )A .()f x x =-B .()23xf x ⎛⎫= ⎪⎝⎭C .()2f x x=D .()f x =【答案】D【解析】对于A ,()f x x =-为R 上的减函数,不合题意,舍.对于B ,()23xf x ⎛⎫= ⎪⎝⎭为R 上的减函数,不合题意,舍.对于C ,()2f x x =在(),0-∞为减函数,不合题意,舍.对于D ,()f x =为R 上的增函数,符合题意,故选:D.2.(2018·陕西高考真题(理))下列函数中,满足“()()()f x y f x f y +=”的单调递增函数是A .()12f x x = B .()3f x x = C .()12xf x ⎛⎫= ⎪⎝⎭D .()3xf x =【答案】D 【解析】试题分析:由于x r x r a a a +⋅=,所以指数函数()x f x a =满足()()()f x y f x f y +=+,且当1a >时单调递增,01x <<时单调递减,所以()3xf x =满足题意,故选D .考点:幂函数、指数函数的单调性.3.(2019·陕西高考真题(理))下列函数中,既是奇函数又是增函数的为A .1y x =+B .2y x =-C .1y x=D .y x x=【答案】D【解析】A 是增函数,不是奇函数;B 和C 都不是定义域内的增函数,排除,只有D 正确,因此选D.4.(2017·浙江高考真题)若函数()2f x =x ax b ++在区间[0,1]上的最大值是M,最小值是m,则M m -的值A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关【答案】B【解析】因为最值在2(0),(1)1,()24a a fb f a b f b ==++-=-中取,所以最值之差一定与b 无关,选B .【名师点睛】对于二次函数的最值或值域问题,通常先判断函数图象对称轴与所给自变量闭区间的关系,结合图象,当函数图象开口向上时,若对称轴在区间的左边,则函数在所给区间内单调递增;若对称轴在区间的右边,则函数在所给区间内单调递减;若对称轴在区间内,则函数图象顶点的纵坐标为最小值,区间端点距离对称轴较远的一端取得函数的最大值.5.(2020年高考数学课标Ⅱ卷理科)设函数()ln |21|ln |21|f x x x =+--,则f (x )( )A .是偶函数,且在1(,)2+∞单调递增B .是奇函数,且在11(,22-单调递减C .是偶函数,且在1(,2-∞-单调递增D .是奇函数,且在1(,)2-∞-单调递减【答案】D【解析】由()ln 21ln 21f x x x =+--得()f x 定义域为12x x ⎧⎫≠±⎨⎬⎩⎭,关于坐标原点对称,又()()ln 12ln 21ln 21ln 21f x x x x x f x -=----=--+=-,()f x ∴为定义域上的奇函数,可排除AC ;当11,22x ⎛⎫∈-⎪⎝⎭时,()()()ln 21ln 12f x x x =+--,()ln 21y x =+Q 在11,22⎛⎫- ⎪⎝⎭上单调递增,()ln 12y x =-在11,22⎛⎫- ⎪⎝⎭上单调递减,()f x ∴在11,22⎛⎫- ⎪⎝⎭上单调递增,排除B ;当1,2x ⎛⎫∈-∞-⎪⎝⎭时,()()()212ln 21ln 12ln ln 12121x f x x x x x +⎛⎫=----==+ ⎪--⎝⎭,2121x μ=+- 在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,()ln f μμ=在定义域内单调递增,根据复合函数单调性可知:()f x 在1,2⎛⎫-∞-⎪⎝⎭上单调递减,D 正确.【名师点睛】本题考查函数奇偶性和单调性的判断;判断奇偶性的方法是在定义域关于原点对称的前提下,根据()f x -与()f x 的关系得到结论;判断单调性的关键是能够根据自变量的范围化简函数,根据单调性的性质和复合函数“同增异减”性得到结论.6.(2021·浙江高考真题)已知函数21(),()sin 4f x xg x x =+=,则图象为如图的函数可能是( )A .1()()4y f x g x =+-B .1()()4y f x g x =--C .()()y f x g x =D .()()g x y f x =【答案】D【解析】对于A ,()()21sin 4y f x g x x x =+-=+,该函数为非奇非偶函数,与函数图象不符,排除A ;对于B ,()()21sin 4y f x g x x x =--=-,该函数为非奇非偶函数,与函数图象不符,排除B ;对于C ,()()21sin 4y f x g x x x ⎛⎫==+⎪⎝⎭,则212sin cos 4y x x x x ⎛⎫'=++ ⎪⎝⎭,当4x π=时,2102164y ππ⎛⎫'=+> ⎪⎝⎭,与图象不符,排除C.故选:D.7.(2018北京卷)能说明“若()(0)f x f >对任意的(0,2]x ∈都成立,则()f x 在[0,2]上是增函数”为假命题的一个函数是__________.【答案】sin y x =(不答案不唯一)【解析】这是一道开放性试题,答案不唯一,只要满足()(0)f x f >对任意的(0,2]x ∈都成立,且函数()f x 在[0,2]上不是增函数即可,如,()sin f x x =,答案不唯一.。