当前位置:文档之家› 材力实验讲义B_---少学时和工程力学,2014-3-7

材力实验讲义B_---少学时和工程力学,2014-3-7

材力实验讲义B_---少学时和工程力学,2014-3-7
材力实验讲义B_---少学时和工程力学,2014-3-7

实验一材料在轴向拉伸、压缩和扭转时的

力学性能

预习要求:

1、预习教材中有关材料在拉伸、压缩、扭转时力学性能的内容;

2、预习本实验内容及微控电子万能试验机的原理和使用方法;

一、实验目的

σ,强1、观察低碳钢在拉伸时的各种现象,并测定低碳钢在拉伸时的屈服极限

s σ,延伸率δ和断面收缩率ψ;

度极限

b

2、观察铸铁在轴向拉伸时的各种现象;

3、观察低碳钢和铸铁在轴向压缩过程中的各种现象;

4、观察低碳钢和铸铁在扭转时的各种现象;

5、掌握微控电子万能试验机的操作方法。

二、实验设备与仪器

1、微控电子万能试验机;

2、扭转试验机;

3、50T微控电液伺服万能试验机;

4、游标卡尺。

三、试件

试验表明,试件的尺寸和形状对试验结果有影响。为了便于比较各种材料的机械性能,国家标准中对试件的尺寸和形状有统一规定。根据国家标准(GB6397—86),将金属拉伸比例试件的尺寸列表如下:

d0=10mm,标距l0=100mm.。

本实验的压缩试件采用国家标准(GB7314-87)中规定的圆柱形试件h/d0=2,

d 0=15mm, h =30mm (图二)。

本实验的扭转试件按国家标准(GB6397-86)制做。

四、实验原理和方法

(一)低碳钢的拉伸试验

实验时,首先将试件安装在试验机的上、下夹头内,并在实验段的标记处安装引伸仪,以测量试验段的变形。然后开动试验机,缓慢加载,同时,与试验机相联的微机会自动绘制出载荷—变形曲线(F —?l 曲线,见图三)或应力—应变曲线(σ—ε曲线,见图四)。随着载荷的逐渐增大,材料呈现出不同的力学性能:

1、线性阶段

在拉伸的初始阶段,σ—ε

曲线为一直线,说明应力σ与应变ε成正比,即满足胡克定律。线性段的最高点称为材料的比例极限(σp ),线性段的直线斜率即为材料的弹性模量E 。

若在此阶段卸载,应力应变曲线会沿原曲线返回,载荷卸到零时,变形也完全消失。卸载后变形能完全消失的应力最大点称为材料的弹性极限(σe )。一般对于钢等许多材料,其弹性极限与比例极限非常接近。

2、屈服阶段

超过比例极限之后,应力与应变不再成正比,当载荷增加到一定值时,应力几乎不变,只是在某一微小范围内上下波动,而应变却急剧增长,这种现象称为屈服。使材料发生屈服的应力称为屈服应力或屈服极限(σs )。

图二

图一 ?l

F

图三

σ σσσ图四

实验曲线在屈服阶段有两个特征点,上屈服点B和下屈服点B’(见图五),上屈服点对应于实验曲线上应力波动的起始点,下屈服点对应于实验曲线上应力完成首次波动之后的最低点。上屈服点受加载速率以及试件形状等的影响较大,而下屈服点B’则比较稳定,故工程上以B’点对应的应力作为材料的屈服极限σs。

当材料屈服时,如果用砂纸将试件表面打磨,会发现试件表面呈现出与轴线成45o的斜纹。这是由于试件的45o斜截面上作用有最大切应力,这些斜纹是由于材料沿最大切应力作用面产生滑移所造成的,故称为滑移线。

3、硬化阶段

经过屈服阶段后,应力应变曲线呈现曲线上升趋势,这说明材料的抗变形能力又增强了,这种现象称为应变硬化。

若在此阶段卸载,则卸载过程的应力应变曲线为一条斜线,其斜率与比例阶段的直线段斜率大致相等。当载荷卸到零时,变形并未完全消失,应力减小至零时残留的应变称为塑性应变或残余应变,相应地应力减小至零时消失的应变称为弹性应变。卸载完之后,立即再加载,则加载时的应力应变关系基本上沿卸载时的直线变化。因此,如果将卸载后已有塑性变形的试样重新进行拉伸试验,其比例极限或弹性极限将得到提高,这一现象称为冷作硬化。

在硬化阶段应力应变曲线存在一最高点,该最高点对应的应力称为材料的强度极限(σb)。强度极限所对应的载荷为试件所能承受的最大载荷P b。

4、缩颈阶段

试样拉伸达到强度极限σb之前,在标距范围内的变形是均匀的。当应力增大至强度极限σb之后,试样出现局部显著收缩,这一现象称为缩颈。缩颈出现后,

使试件继续变形所需载荷减小,故应力应变曲线呈现下降趋势,直至最后在E 点断裂。试样的断裂位置处于缩颈处,断口形状呈杯状,这说明引起试样破坏的原因不仅有拉应力,还有切应力,这是由于缩颈处附近试件截面形状的改变使横截面上各点的应力状态发生了变化。

(二)铸铁的拉伸试验

铸铁的拉伸实验方法与低碳钢的拉伸实验相同,但是铸铁在拉伸时的力学性能明显不同于低碳钢,其应力——应变曲线如图五所示。铸铁从开始受力直至断裂,变形始终很小,既不存在屈服阶段,也无颈缩现象。断口垂直于试样轴线,这说明引起试样破坏的原因是最大

σ

拉应力。

(三)低碳钢和铸铁的压缩实验

实验时,首先将试件放置于试验机的平台上,然后开动试验机,缓慢加载,同时,与试验机相联的数据采集系统会自动绘制出载荷—变形曲线(F —?l 曲线)或应力—应变曲线(σ—ε曲线),低碳钢和铸铁受压缩时的应力应变曲线分别见图六和图七。

低碳钢试件在压缩过程中,在加载开始段,从应力应变曲线可以看出,应力与应变成正比,即满足虎克定律。当载荷达到一定程度时,低碳钢试件发生明显的屈服现象。过了屈服阶段后,试件越压越扁,最终被压成腰鼓形,而不会发生断裂破坏。

铸铁试件在压缩过程中,没有明显的线性阶段,也没有明显的屈服阶段。铸铁的压缩强度极限约为拉伸强度极限的3~4倍。铸铁试件断裂时断口方向与试件轴线约成55o 。一般认为是由于切应力与摩擦力共同作用的结果。

(四)低碳钢和铸铁的扭转实验

实验时,首先将试件安装在试验机的左、右夹头内,并在试件实验段表面沿轴线方向划一条直线,以观察试验段的变形。然后开动试验机,缓慢加载,同时,自动绘图装置绘制出扭矩—转角曲线(T —?曲线)。

低碳钢试件受扭时,在加载开始段,从T —?曲线可以看出,扭矩与转角成正比,即满足扭转虎克定律。当载荷达到一定程度时,低碳钢试件发生明显的屈服现象,即扭矩不增加,而转角不断增大。过了屈服阶段后,试件抵抗变形的能力又有所加强,到最后试件被连续扭转几圈后才沿着与轴线方向垂直的截面被剪断,这说明,导致低碳钢试件破坏的原因是扭转切应力。

铸铁试件受扭时,整个过程变形不明显,启动扭转试验机后不久,试件就发生断裂破坏,断口为沿着与轴线成45o 方向的螺旋面,这说明导致铸铁试件扭转破坏的原因是拉应力。

图七

σ

图六

σ σσ

五、实验步骤(低碳钢拉伸实验)

1.试件准备

用划线机在标距l 0范围内每隔10毫米刻划一根圆周线,将标距分成十等分。 2.测量试件尺寸

用游标卡尺测量标距两端及中间三个横截面处的直径,每一横截面分别沿两个互垂方向各测一次取平均值。取所测得三个横截面直径中的最小值作为实验值。

3.试验机准备

根据低碳钢强度极限бb 的估计值和横截面面积A 0估算实验的最大载荷。以此来选择合适的测力量程。 4.安装试件 5.安装引伸仪 6.检查及试车

检查以上步骤的完成情况后,开动试验机,预加少量载荷(应力不应超过材料的比例极限)然后卸载至零点,以检查试验机工作是否正常。 7.进行试验

① 开动试验机使之缓慢匀速加载。注意观察应力—应变曲线,以了解材料在

拉伸时不同阶段的力学性能。

② 在比例极限以下卸载,观察试件的弹性变形情况。 ③ 继续加载,在屈服阶段观察试件表面的滑移线。

④ 进入强化阶段后。卸载至零,再加载,观察冷作硬化现象。 ⑤ 继续加载,当达到强度极限后,观察缩颈现象。 ⑥ 加载直至试件断裂。

⑦ 取下试件,用游标卡尺测量断裂后的标距l 1,测量断口(颈缩)处的直径d 1。 8.整理各种仪器设备,结束实验。

六、实验结果处理(低碳钢拉伸实验)

1. 比例极限、屈服极限和强度极限可由实验报表自动给出。 0

A P A P A P b

p s

s p p =

=

=

σσσ 2. 测量试件断裂后的标距长度和最小横截面直径,以计算延伸率δ和断面收 缩率Ψ。

%10000

1?-=

l l l δ %1000

1

0?-=

A A A ψ 断裂后,试件的最小横截面即位于缩颈处,将断裂试件的两段对齐并尽量挤 紧,用游标卡尺测量断口处直径。

若断口到最邻近标距端点的距离大于1/3 l 0,则直接测量标距端点的距离l 1,若小于或等于1/3 l 0,则需按下述方法进行断口移中测定l 1:

在长段上从断口o 处取基本等于短段的格数得B 点,若所余格数为偶数(图8-1)则取其一半得C 点。此时:

l 1= AB + 2BC

若所余格数为奇数(图8-2),则分别取所余格数减一的1/2得C 点和所余格数加一的1/2得C ˊ点。此时

l 1= AB + BC + B C ’ 若断口在标距以外时,则此次实验结果无效。

七、思考题

1.根据不同的断口形状说明材料的两种基本断裂形式,并说明破坏原因。

2.用材料和直径相同而标距长度分别为5d 0和10d 0两种试件测定延伸率δ,试验结果有何差别?为什么?

3. 在低碳钢的拉伸σ—ε曲线(图四)中,标出试件的弹性变形与塑性变形。

图8-1

图8-2

实验二 材料弹性常数E 、μ的测定

——电测法测定弹性模量

E 和泊松比μ

预习要求:

1、预习电测法的基本原理(见本节实验讲义后所附内容);

2、设计本实验的组桥方案;

3、拟定本实验的加载方案;

4、设计本实验所需数据记录表格。

一、实验目的

1. 测量金属材料的弹性模量E 和泊松比μ;

2. 验证单向受力胡克定律;

3. 学习电测法的基本原理和电阻应变仪的基本操作。

二、实验仪器和设备

1. 微机控制电子万能试验机;

2. 电阻应变仪;

3. 游标卡尺。

三、试件

65Mn 钢矩形截面试件,中间实验段的名义尺寸为: b ?t = (16?6)mm 2。

材料的屈服极限MPa s 780=σ。

四、实验原理和方法

1、实验原理

材料在比例极限内服从虎克定律,在单向受力状态下,应力与应变成正比:

εσE = (1)

图一 实验试件

上式中的比例系数E 称为材料的弹性模量。

由以上关系,可以得到:

P

E A σεε

=

=

(2) 材料在比例极限内,横向应变ε'与纵向应变ε之比的绝对值为一常数:

ε

εμ'

=

(3) 上式中的常数μ称为材料的横向变形系数或泊松比。

本实验采用增量法,即逐级加载,分别测量在各相同载荷增量?P 作用下,产生的应变增量?εi 。于是式(2)和式(3)分别写为:

i

i A P

E ε??=

0 (4) i

i i εεμ?'

?=

(5) 根据每级载荷得到的E i 和μi ,求平均值:

n E E n

i i

∑=

=1

(6)

n

n

i i

∑=

=1μμ (7)

以上即为实验所得材料的弹性模量和泊松比。上式中n 为加载级数。

2、实验方法

2.1电测法(见本节实验讲义后所附内容) 本实验采用1/4桥测量应变。

图二 1/4桥测量桥路图 2.2加载方法——增量法与重复加载法

增量法可以验证力与变形之间的线性关系,若各级载荷增量ΔP 相同,相应的应变增量?ε也应大致相等,这就验证了胡克定律,如图三所示。

利用增量法,还可以判断实验过程是否正确。若各次测出的应变不按线性规律变化,则说明实验过程存在问题,应进行检查。

采用增量法拟定加载方案时,通常要考虑以下情况:

(1)初载荷可按所用测力计满量程的10%或稍大于此值来选定;(本次实验试验

机采用50KN 的量程)

(2)最大载荷的选取应保证试件最大应力值不能大于比例极限,但也不能小于

它的一半,一般取屈服载荷Ps 的70%~80%,即max (0.7~0.8)s P P =;

(3)至少有4-6级加载,每级加载后要使应变读数有

明显的变化。 本实验采用增量法加载。

重复加载法为另一种实验加载方法。采用重复加载法时,从初载荷开始,一级加至最大载荷,并重复该过程三到四遍。初载荷与最大载荷的选取通常参照以下标准:

(1) 初载荷可按所用测力计量程的10%或稍大于

此值来选定;

(2) 最大载荷的选取应保证试件的最大应力不大

于试件材料的比例极限,但也不要小于它的一半,一般取屈服载荷的70~80%。 (3) 每次实验重复遍数至少应为3~4遍。 重复加载法不能验证力与变形之间的线性关系。

五、实验步骤

1. 设计实验所需各类数据表格;

2. 测量试件尺寸;

分别在试件标距两端及中间处测量厚度和宽度,将三处测得横截面面积的算术平均值作为试样原始横截面积 。 3. 拟定加载方案;

4. 试验机准备、试件安装和仪器调整;

5. 确定组桥方式、接线和设置应变仪参数;

6. 检查及试车:

检查以上步骤完成情况,然后预加载荷至加载方案的最大值,再卸载至初载荷以下,以检查试验机及应变仪是否处于正常状态。 7. 进行试验:

加初载荷,记下此时应变仪的读数或将读数清零。然后逐级加载,记录每级载荷下各应变片的应变值。同时注意应变变化是否符合线性规律。重复该过程至

P

P 0 P 1 0P n

图三 增量法示意图

少两到三遍,如果数据稳定,重复性好即可。

8.数据经检验合格后,卸载、关闭电源、拆线并整理所用设备。

六、试验结果处理

σ—坐标系下描出实验点,然后拟合成直线,以验证虎克1.在坐标纸上,在ε

定律;

2.按公式(4) ~(7)计算弹性模量E和泊松比μ。

七、思考题

1.利用本实验装置,采用电测法测弹性模量E,试分析哪些因素会对实验结果

造成影响。试提出最佳组桥方案,并画出桥路图。

σ—图时,如何确定坐标原点?

2.在绘制ε

3.本实验加载方案如果不采用增量法,应如何拟定加载方案?

附:电测法基本原理

电测法基本原理和应变片的粘贴及检验方法

1)电测法基本原理:

电测法是以电阻应变片为传感器,通过测量应变片电阻的改变量来确定构件应变,并进一步利用胡克定律或广义胡克定律确定相应的应力的实验方法。

图一电阻应变片的结构示图

试验时,将应变片粘贴在构件表面需测应变的部位,并使应变片的纵向沿需

测应变的方向。当构件该处沿应变片纵向发生正应变时,应变片也产生同样的变形,这时,敏感栅的电阻由初始值R 变为R+ΔR 。在一定范围内,敏感栅的电阻变化率ΔR/R 与正应变ε成正比,即:

R

k R

ε?= (1) 上式中,比例常数k 为应变片的灵敏系数。故只要测出敏感栅的电阻变化率,即可确定相应的应变。

构件的应变值一般都很小,相应的应变片的电阻变化率也很小,需要用专门的仪器进行测量,测量应变片的电阻变化率的仪器称为电阻应变仪,其基本测量电路为一惠斯通电桥。

图二 电阻应变仪的基本测量电路

电桥B 、D 端的输出电压为:

1423

1234()()

BD R R R R U U R R R R -?=

++ (2)

当每一电阻分别改变1234,,,R R R R ????时,B 、D 端的输出电压变为:

1144223311223344()()()()

()()

R R R R R R R R U U R R R R R R R R +?+?-+?+??=

+?++?+?++? (3)

略去高阶小量,上式可写为:

312124

2

121234

()()BD R R R R R R U U

R R R R R R ?????=--++ (4) 在测试时,一般四个电阻的初始值相等,则上式变为:

3124

1234

()4BD R R R R U U R R R R ?????=-

-+ (5) 将式(1)代入上式,得到:

1234()4

BD kU

U εεεε?=

--+ (6) 如果将应变仪的读数按应变标定,则应变仪的读数为: 12344()BD

U kU

εεεεε?==--+ (7) 2)应变片的贴片方法:

在电测应力分析中,应变片的粘贴质量很大程度上决定了测量数据的可靠性。这就要求粘结层薄而均匀,无气泡,充分固化,既不产生蠕滑又不脱胶。应变片的粘贴完全由手工操作,故需要实践经验的积累,才能达到较高的粘贴质量。应变片的粘贴过程如下:

1、应变片的筛选。直观检查应变片的表面质量,看是否有弯折、锈蚀、局

部破损;用万用表测量应变片电阻,看与所给值是否符合。

2、试样表面处理。首先用砂纸将贴片表面区域打磨,打磨方向应与应变片

轴线成45度角,然后用划针划出贴片位置的标志线,并用蘸有丙酮的药棉清洗打磨位置,直至药棉清洁为止。

3、应变片粘贴。待试件风干后,在贴片表面涂一薄层快干胶,用手指(或

镊子)捏住应变片的引出线,将应变片放在试样上,并使应变片的基准线与试件上的标志线对齐。然后盖上聚氯乙烯透明薄膜(或玻璃纸),用拇指按压应变片(一般半分钟即可),挤出气泡和多余胶水,以保证粘结层薄而均匀,但应避免按压时应变片滑动。经过适宜的干燥时间后,将透明薄膜揭开,检查应变片的粘贴情况。

4、导线的连接和固定。应变片的引出线和应变仪的接口之间需用导线连

接,导线一般采用铜导线。导线与应变片引出线的连接一般通过接线端子过渡。接线端子用502胶固定在试件上,导线头和接线端子上预先挂锡,然后将应变片引出线和导线焊接在端子上。最后将导线固定在试件上,以免实验过程中拉断导线或应变片引出线接头。

5、检查。首先检查应变片是否有局部隆起或皱折,应变片引出线是否粘在

试件上。然后用万用表检查导线连接后的应变片电阻值。

6、应变片的防潮保护。粘贴好的应变片,如果长期暴露在空气中,会因受

潮而降低粘结质量。对于长期使用的应变片应在应变片表面涂上一层防潮保护层。一般可用703、704、705胶等

+45

o

-45o

实验三 材料切变模量G 的测定

预习要求:

1、 复习电测法;

2、 预习扭角仪和百分表的使用方法。

3、 设计本实验的组桥方案;

4、 拟定本实验的加载方案;(参照实验二)

5、 设计本实验所需数据记录表格。

一. 实验目的

1. 两种方法测定金属材料的切变模量G ; 2. 验证圆轴扭转时的虎克定律。

二. 实验仪器和设备

1. 微机控制电子万能试验机 2. 扭角仪 3. 电阻应变仪 4. 百分表 5. 游标卡尺

三. 试件

中碳钢圆轴试件,名义尺寸d=40mm, 材料屈服极限MPa s 360=σ。

四. 实验原理和方法

1. 电测法测切变模量G

材料在剪切比例极限内,切应力与切应变成正比,

γτG = (1)

上式中的G 称为材料的切变模量。

由式(1)可以得到:

γ

τ

=

G (2) 图一 实验装置图

H

图二 微体变形示意图

图三 二向应变花示意图

圆轴在剪切比例极限内扭转时,圆轴表面上任意一点处的切应力表达式为:

P

W T

=

max τ (3) 由式(1)~(3)得到:

γ

?=

P W T

G (4) 由于应变片只能直接测出正应变,不能直接测出切应变,故需找出切应变与正应变的关系。圆轴扭转时,圆轴表面上任意一点处于纯剪切受力状态,根据图二所示正方形微体变形的几何关系可知:

454522-=-=εεγ (5)

由式(2)~(5)得到:

45

4522εεp p W T

W T G -==

- (6)

根据上式,实验时,我们在试件表面沿±45o 方向贴应变片(一般贴二向应变花,如图三所示),即可测出材料的切变模量G 。

本实验采用增量法加载,即逐级加载,分别测量在各相同载荷增量?T 作用

下,产生的应变增量?ε。于是式(6)写为:

45

4522εε???-=???=

-p p W T

W T G (7)

根据本实验装置,有

a P T ??=? (8)

a ——力的作用线至圆轴轴线的距离 最后,我们得到:

45

4522εε????-=????=

-p p W a

P W a P G (9)

本实验在中间实验段某一横截面的最高点和最低点各布置了一个剪切应变花。组桥可以采用1/4桥、半桥或者全桥,请根据测量需要选择合适的电桥,并画出桥路图。

2.扭角仪测切变模量G 。

等截面圆轴在剪切比例极限内扭转时,若相距为L 的两横截面之间扭矩为常数,则两横截面间的扭转角为:

p

GI TL

=

? (10) 由上式可得:

p

I TL

G ?=

(11) 本实验采用增量法,测量在各相同载荷增量?T 作用下,产生的转角增量?φ。于是式(11)写为:

p

I L

T G ????=

? (12)

根据本实验装置,按图四所示原理,可以得到:

b

δ

??=

? (13) δ——百分表杆移动的距离

b ——百分表杆触点至试件轴线的距离 最后,我们得到:

p

I b

L a P G ??????=

δ (14)

五、实验步骤

1.设计实验所需各类数据表格; 2.测量试件尺寸 3.拟定加载方案;

4.试验机准备、试件安装和仪器调整; 5.测量实验装置的各种所需尺寸;

6.确定组桥方式、接线、设置应变仪参数; 7.安装扭角仪和百分表; 8.检查及试车;

检查以上步骤完成情况,然后预加一定载荷(一般取试验机量程的15%左右),再卸载,以检查试验机、应变仪、扭角仪和百分表是否处于正常状态。

9.进行试验;

加初载荷,记录此时应变仪的读数或将读数清零,并记录百分表的读数。逐级加载,记录每级载荷下相应的应变值和百分表的读数。同时检查应变变化和位移变化是否基本符合线性规律。实验至少重复三到四遍,如果数据稳定,重复性好即可。

10. 数据检查合格后,卸载、关闭电源、拆线、取下百分表并整理所用设备。

图四 实测?的示意图

六、试验结果处理

1. 从几组实验数据中选取线性最好的一组进行处理;在坐标纸上,分别在)(—004545-εεT 坐标系和?—T 坐标系下描出实验点,并拟合成直线,以验证圆轴扭转时的虎克定律;

2. 用作图法计算两种实验方法所得切变模量G ; 3. 用逐差法计算两种实验方法所得切变模量G ;

七、思考题

1. 电测法测切变模量G ,试提出最佳组桥方案,并画出桥路图。 2. 在安装扭角仪和百分表时,应注意什么问题?

实验四 直梁弯曲实验

预习要求:

1、复习电测法的组桥方法;

2、复习梁的弯曲理论;

3、设计本实验的组桥方案;

4、拟定本实验的加载方案;

5、设计本实验所需数据记录表格。

一、 实验目的:

1. 电测法测定纯弯梁横截面上的正应变分布,并与理论值进行比较,验证理

论公式;

2. 电测法测量三点弯梁横截面上的正应变分布及最大切应变,并

与理论值进行比较,验证理论公式; 3.学习电测法的多点测量方法及组桥练习。

二、实验设备:

1. 微机控制电子万能试验机;

2. 电阻应变仪;

三、实验试件:

本实验所用试件为中碳钢矩形截面梁,其横截面设计尺寸为h ×b

=(50×30)mm 2

,a=50mm (见图一 ), 材料的屈服极限MPa s 360=σ, 弹性模量 E=210GPa ,泊松比μ=0.28。

图一 纯弯曲实验装置示意图

图二 三点弯曲实验装置示意图

四.实验原理及方法:

处于纯弯曲状态的梁,在比例极限内,根据平面假设和单向受力假设,其横截面上的正应变为线性分布,距中性层为 y 处的纵向正应变和横向正应变为:

()()Z

Z

M y y E I M y

y E I εεμ

?=

??'=-? (1)

距中性层为 y 处的纵向正应力为:

()()z

M y

y E y I σε?=?=

(2) 本实验采用重复加载法,多次测量在一级载荷增量?M 作用下,产生的应变增量?ε和?ε’。于是式(1)和式(2)分别变为:

P

()()()Z

Z

Z

M y y E I M y

y E I M y y I εεμσ???=

???'?=-????=

(3) (4)

在本实验中,

/2M P a ?=?? (5) 最后,取多次测量的平均值作为实验结果:

1

1

1

()

()()

()()

()N

n

n N

n

n N

n

n y y N

y y N

y y N

ε

εεεσ

σ===??=

'?'?=

??=

∑∑∑ (6)

三点弯曲时,最大切应力理论值为:

A

s

2F 3max =

理论τ (7) 其实验值测量方法为在最大切应力所在中性层处沿与轴线成±45°布置单向应变片,测量出其应变值,则最大切应力的实验值为:

()()?+?===4545-max 2-G 2G G εεγτ实验 (8)

本实验采用电测法,在梁纯弯曲段某一横截面A —A 的不同高度(梁的顶面、底面、中性层及距中性层±10mm 、±20mm )处粘贴纵向电阻应变片(见图一),并在梁的上下表面处粘贴横向应变片。同时为了练习组桥,上下表面另外粘贴了两片纵向应变片,各应变片的编号为如下图所示。其中1~10片有公线的,11、12两片是没有公线的接线方法。

图三侧面高度方向上应变片布置

图四上、下表面应变片布置

测量采用1/4桥,如下图五所示。

图五 1/4桥测量电桥图

五、实验步骤

1.设计实验所需各类数据表格;

2.拟定加载方案(参考方案:P0=2KN,P max10KN, P=8KN);

3.试验机准备、试件安装和仪器调整;

4.确定组桥方式、接线、设置应变仪参数;

5.检查及试车;

检查以上步骤完成情况,然后预加一定载荷,再卸载,以检查试验机和应

材力实验讲义少学时和工程力学模板

实验一材料在轴向拉伸、压缩和扭转时的力学性能 预习要求: 1、预习教材中有关材料在拉伸、压缩、扭转时力学性能的内容; 2、预习本实验内容及微控电子万能试验机的原理和使用方法; 一、实验目的 1、观察低碳钢在拉伸时的各种现象, 并测定低碳钢在拉伸时的屈 服极限 s σ, 强度极限bσ, 延伸率δ和断面收缩率; 2、观察铸铁在轴向拉伸时的各种现象; 3、观察低碳钢和铸铁在轴向压缩过程中的各种现象; 4、观察低碳钢和铸铁在扭转时的各种现象; 5、掌握微控电子万能试验机的操作方法。 二、实验设备与仪器 1、微控电子万能试验机; 2、扭转试验机; 3、50T微控电液伺服万能试验机; 4、游标卡尺。 三、试件 试验表明, 试件的尺寸和形状对试验结果有影响。为了便于比较各种材料的机械性能, 国家标准中对试件的尺寸和形状有统一规定。根据国家标准( GB6397—86) , 将金属拉伸比例试件的尺寸列表如下: 试件标距长度 L0 横截面积 A0 圆试件直径 d0 表示延伸 率的符号

比例/长短 03.11A 或10d 0 任 意 任 意 δ10 065.5A 或5d 0 任 意 任 意 δ 5 本实验的拉伸试件采用国家标准中规定的长比例试件( 图一) , 试验段直径d 0=10mm , 标距l 0=100mm.。 本实验的压缩试件采用国家标准( GB7314-87) 中规定的圆柱形试件h /d 0=2, d 0=15mm, h =30mm (图二)。 本实验的扭转试件按国家标准( GB6397-86) 制做。 四、 实验原理和方法 ( 一) 低碳钢的拉伸试验 实验时, 首先将试件安装在试验机的上、 下夹头内, 并在实验段的标记处安装引伸仪, 以测量试验段的变形。然后开动试验机, 缓慢加载, 同时, 与试验机相联的 微机会自动绘制出载荷—变形曲 线( F —l 曲线, 见图三) 或应力—应变曲线( —曲线, 见图 图h d 0 l 0 d 0 图F 图 B B D E 图C

工程力学实验指导书(建环)

工程力学实验指导书(建环、给排水、包装工程) 2016年 9月

目录 实验一金属材料的拉伸实验 (2) 实验二金属材料的压缩实验 (5) 实验三弯曲正应力电测实验 (8)

实验一金属材料的拉伸实验 一、实验目的和要求 1、 观察低碳钢和铸铁在拉伸过程中的力与变形的关系。 2、测定低碳钢拉伸时的屈服极限s σ;强度极限b σ,伸长率δ和截面收缩率φ 3、测定铸铁的强度极限b σ。 4、比较低碳钢(塑性材料)与铸铁(脆性材料)拉伸时的力学性质。 5、了解CMT 微机控制电子万能实验机的构造原理和使用方法。 二、实验装置和原理 实验仪器设备: CMT 微机控制电子万能实验机、游标卡尺、拉伸试件。 试件制备: 实验采用的圆截面短比例试件按国家标准(GB/T 228-2002)制成,如图1-1所示。这样可以避免因试件尺寸和形状的影响而产生的差异,便于各种材料的力学性能相互比较。图中:d 0为试件直径,L 0为试件的标距,并且短比例试件要求L 0=5d 0。 图1-1 实验原理: 试件夹持在夹具上,点击试件保护键,消除夹持力,调节拉力作用线,使之能通过试件轴线,实现试件两端的轴向拉伸。 试件在开始拉伸之前,设置好保护限位圈,微机控制系统首先进入POWERTEST3.0界面。试件在拉伸过程中,POWERTEST3.0软件自动描绘出一条力与变形的关系曲线如图1—2,低碳钢在拉伸到屈服强度时,取下引伸计,试件继续拉伸,直至试件被拉断。 低碳钢试件的拉伸曲线(图1—2a)分为四个阶段―弹性、屈服、强化、颈缩四个阶段。 铸铁试件的拉伸曲线(图1—2b)比较简单,既没有明显的直线段,也没有屈服阶段,变形很小时试件就突然断裂,断口与横截面重合,断口形貌粗糙。抗拉强度σb 较低,无明显塑性变形。与电子万能实验机联机的微型电子计算机自动给出低碳钢试件的屈服载荷Fs 。、最大载荷Fb 和铸铁试件的最大载荷Fb 。

材料力学实验讲义

金属材料的拉伸、压缩实验指导书 张雅琴编 北京化工大学

目录实验一金属材料的拉伸实验 实验二金属材料的压缩实验

实验一金属材料的拉伸实验 金属材料的拉伸实验是研究金属材料力学性能的最基本的实验。方法简单,数据可靠,一些工矿企业、研究所一般都用此类方法对金属材料进行出厂检验或进厂复检,用测得的各项指标来评定材质和进行强度、刚度计算。因此,对金属材料进行轴向拉伸实验具有工程实际意义。 不同材料在轴向拉伸过程中会表现出不同的力学性质和现象。低碳钢和铸铁分别是典型的塑性材料和脆性材料。低碳钢材料具有良好的塑性,在拉伸实验中的弹性、屈服、强化和颈缩四个阶段尤为明显和清楚。铸铁材料受拉时处于脆性状态,其破坏是由拉应力拉断。 金属材料拉伸实验是指在室温条件下,将缓慢施加的单向拉伸载荷作用于表面光滑的拉伸试件上,来测定材料力学拉伸性能的方法。最常用拉伸试件的形状和尺寸如图1-1所示。 (a) (b) 图1-1 (a) 圆形试样(b) 矩形试样 若采用光滑圆柱试件,试件的标矩长度L 0比直径d 要大的多;通常L >5d ,以使试件横 截面上的应力均匀地分布,实现轴向均匀加载.试件做成圆柱形是便于测量径向应变,试件的加工也比较简单。当测量板材拉伸性能和带材的拉伸性能时,也可以采用板状试件,如图 1-1(b)所示。但试件的标矩长度L 0应满足下列关系:L =5.65A 或11.3 A ;其中A 为试件 的初始横截面积。 上式中的规定对应于圆柱试件中的L 0=5d ,L =10 d 。拉伸试件的几何形状,尺寸及允 许的加工误差,在国家标准GB228—2002中作了相应的规定。金属材料拉伸实验是材料的力学性能实验中最基本最重要的实验,是工程上广泛使用的测定力学性能的方法之一。

工程力学实验指导书.

第一章绪论 §1.1 工程力学实验的内容 实验是进行科学研究的重要方法,科学史上许多重大发明是依靠科学实验而得到的,许多新理论的建立也要靠实验来验证。例如材料力学中应力应变的线性关系就是虎克于1668年到1678年间作了一系列的弹簧实验之后建立起来的。不仅如此,实验对材料力学有着更重要的一面。因为材料力学的理论是建立在将真实材料理想化,实际构件典型化,公式推导假设化基础之上的,它的结论是否正确以及能否在工程中应用,都只有通过实验验证才能断定。在解决工程设计的强度,刚度等问题时,首先要知道材料的力学性能和表达力学性能的材料常数。这些常数只有靠材料试验测试才能得到。有时实际工程中构件的几何形状和载荷都十分复杂,构件中的应力单纯靠计算难以得到正确的数据,这种情况下必须借助于实验应力分析的手段才能解决。因此,材料力学实验是学习材料力学课程不可缺少的重要环节。材料力学实验包括以下三个方面的内容: 1.测定材料的力学性能材料的力学性能是指在力或能的作用下,材料在变形、强 度等方面表现出的一些特性,如弹性极限、屈服极限(屈服强度)、强度极限、弹性模量、疲劳极限、冲击韧性等。这些强度指标或参数都是构件强度、刚度和稳定性计算的依据,而它们一般要通过实验来测定。此外,材料的力学性能测定又是检验材质、评定材料热处理工艺、焊接工艺的重要手段。随着材料科学的发展,各种新型合金材料、合成材料不断涌现,力学性能的测定,是研究每一中新型材料的重要任务。 2.验证理论公式的正确性材料力学的一些理论是以某些假设为基础的,例如杆件 的弯曲理论就以平面假设为基础。用实验验证这些理论的正确性和适用范围,有助于加深对理论的认识和理解。至于新建立的理论和公式,用实验来验证更是必不可少的。实验是验证、修正和发展理论的必要手段。 3.实验应力分析某些情况下,例如因构件几何形状不规则,受力复杂或精确的边 界条件难以确定等,应力分析计算难于获得准确结果。这时,用诸如电测、光弹性等实验应力分析方法直接测定构件的应力,便成为有效的方法。对经过较大简化后得出的理论计算或数值计算,其结果的可靠性更有赖于实验应力分析的验证。§1.2 材料力学试验的标准、方法和要求 材料的强度指标如屈服极限、强度极限、持久极限等,虽是材料的固有属性,但往往与试样的形状、尺寸、表面加工精度、加载速度、周围环境(温度、介质)等有关。为使实验结果能相互比较,国家标准对试样的取材、形状、尺寸、加工精度、试验手段和方法以及数据处理都作了统一规定。

工程力学讲义

静力学 静力学的基本概念 1、平衡——平衡是物体机械运动的特殊形式,是指物体相对地球处于静止或匀速直线运动状态。 2、刚体——在外界的任何作用下形状和大小都始终保持不变的物体。或者在力的作用下,任意两点间的距离保持不变的物体。 刚体是一种理想化的力学模型。 一个物体能否视为刚体,不仅取决于变形的大小,而且和问题本身的要求有关。 3、力——力是物体相互间的机械作用,其作用结果使物体的形状和运动状态发生改变。 1. 静力学公理 基本概念 力系——作用于同一物体或物体系上的一群力。 等效力系——对物体的作用效果相同的两个力系。 平衡力系——能使物体维持平衡的力系。 合力——在特殊情况下,能和一个力系等效 的一个力。 公理一 (二力平衡公理) 要使刚体在两个力作用下维持平衡状态,必须也只须这两个力大小相等、方向相反、沿同一直线作用。 公理二 (加减平衡力系公理) 可以在作用于刚体的任何一个力系上加上或去掉几个互成平衡的力,而不改变原力系对刚体的作用。 推论 (力在刚体上的可传性) 作用于刚体的力,其作用点可以沿作用线在该刚体内前后任意移动,而不改变它对该刚体的作用。 公理三 (力平行四边形公理) 作用于物体上任一点的两个力可合成为作用于同一点的一个力,即合力。合力的矢由原两力的矢为邻边而作出的力平行四边形的对角矢来表示。 即,合力为原两力的矢量和。 矢量表达式:R= F1+F2 推论 (三力汇交定理) 当刚体在三个力作用下平衡时,设其中两力的作用线相交于某点,则第三力的作用线必定也通过这个点。 公理四 (作用和反作用公理)

任何两个物体间的相互作用的力,总是大小相等,作用线相同,但指向相反,并同时分别作用于这两个物体上。 公理五 (刚化公理) 设变形体在已知力系作用下维持平衡状态,则如将这个已变形但平衡的物体变成刚体(刚化),其平衡不受影响。 2. 力对点之矩 力矩:表示力使物体绕某点转动效应的量称为力对点之矩简称力矩。 它的大小为力F的大小与力臂d的乘积,它的正负号表示力矩在平面上的转向。 由力矩的定义可知: a 当力的作用线通过矩心时,力臂值为0,力矩值也为0. b 力沿其作用线滑移时,不会改变力对点之矩的值,因为此时并未改变力,力臂的大小及力矩的转向。 合力矩定理 平面力系的合理对平面上任一点之矩,等于所有各分力对同一点力矩的代数和。 3 力偶的性质: 1、力偶的第一性质:力偶的作用效果是使刚体发生转动,不能与一个力等效——没有合力,也不能用一个力与之平衡——只有一个反转向的力偶才能与之平衡。因此力偶和力是静力学的两个基本要素(机械作用量)。 2、力偶的第二性质:力偶对物体的转动效应,用力偶矩来度量,其大小为力偶中力F与力偶臂h的乘积。同平面力偶的等效定理 3、同一平面内的两个力偶,如果力偶矩相等,则此二力偶相等。 4、力偶可在其作用面内任意移动(或移动到另一平行平面),而不改变对刚体的作用。 5、只要力偶的转向和力偶矩的大小不变(F、h可变),则力偶对刚体的作用效应就不变, 4. 力的平移定理 力的平移定理表明,作用于刚体上的力可以平移到刚体内任意一点,但必须附加一力偶。此附加力偶的力偶矩等于原力对平移点之矩。 5. 约束和约束反力 基本概念: 1、自由体:可以任意运动(获得任意位移)的物体。 2、非自由体:不可能产生某方向的位移的物体。 3、约束:由周围物体所构成的、限制非自由体位移的条件。 4、约束反力:约束对被约束体的反作用力。 5、主动力:约束力以外的力。 几种常见约束力 (一)光滑接触面约束 性质:光滑支承面对物体的约束力,作用在接触点处,方向沿接触表面的公法线,

工程力学知识点总结(良心出品必属精品)

工程力学知识点总结 第0章 1.力学:研究物体宏观机械运动的学科。机械运动:运动效应,变形效应。 2.工程力学任务:A.分析结构的受力状态。B.研究构件的失效或破坏规律。C.分研究物体运动的几何规律D.研究力与运动的关系。 3.失效:构件在外力作用下丧失正常功能的现象称为失效。三种失效模式:强度失效、刚度失效、稳定性失效。 第1章 1.静力学:研究作用于物体上的力及其平衡的一般规律。 2.力系:是指作用于物体上的一组力。 分类:共线力系,汇交力系,平行力系,任意力系。 等效力系:如果作用在物体上的两个力系作用效果相同,则互为等效力系。 3.投影:在直角坐标系中:投影的绝对值 = 分力的大小;分力的方向与坐标轴一致时投影 为正;反之,为负。 4.分力的方位角:力与x 轴所夹的锐角α: 方向:由 Fx 、Fy 符号定。 5.刚体:是指在力的作用下,其内部任意两点之间的距离始终保持不变。(刚体是理想化模型,实际不存在) 6.力矩:度量力使物体在平面内绕一点转动的效果。 方向: 力使物体绕矩心作逆时针转动时,力矩为正;反之,为负 力矩等于0的两种情况: (1) 力等于零。(2) 力作用线过矩心。 力沿作用线移动时,力矩不会发生改变。力可以对任意点取矩。 7.力偶:由大小相等、方向相反且不共线的两个平行力组成的力系,称为力偶。(例:不能单手握方向盘,不能单手攻丝) 特点: 1.力偶不能合成为一个合力,也不能用一个力来平衡,力偶只能有力偶来平衡。 2.力偶中两个力在任一坐标轴上的投影的代数和恒为零。 3.力偶对其作用面内任一点的矩恒等于力偶矩。即:力偶对物体转动效应与矩心无关。 三要素:大小,转向,作用面。 力偶的等效:同平面内的两个力偶,如果力偶矩相等,则两力偶彼此等效。 推论1:力偶可以在作用面内任意转动和移动,而不影响它对刚体的作用。(只能在作用面内而不能脱离。) 推论2:只要保持力偶矩的大小和转向不变的条件下,可以同时改变力偶中力 和力偶臂的大小,而不改变对刚体的作用。 8.静力学四大公理 A.力的平行四边形规则(矢量合成法则):适用范围:物体。 B.二力平衡公理:适用范围:刚体 (对刚体充分必要,对变形体不充分。) 注:二力构件受力方向:沿两受力点连线。 C.加减平衡力系公理:适用范围:刚体 D.作用和反作用公理:适用范围:物体 特点:同时存在,大小相等,方向相反。 注:作用力与反作用力分别作用在两个物体上,因此,不能相互平衡。(即:作用力反作用力不是平衡力) ()O M F Fd =±

材料力学性能实验指导书(材料成型及控制工程专业)

材料力学性能实验指导书(材料成型及控制工程专业) 张学萍 沈阳理工大学 二零一二年三月

目录 实验一硬度实验......................................................................... (3)

前言 《材料力学性能》这门课的实验是该课的重要组成部分,是该理论课的基础,正确地掌握实验的理论和方法,对提高学生的动手能力、分析问题和解决问题的能力有重要意义。 编写本实验指导书,是根据《材料力学性能》教学大纲及教材的有关内容、又根据我院设备、仪器实际情况编写的,这样,与教材的内容相一致,便于安排实验教学。 本实验指导书适用于:材料成型及控制工程专业 编者 2012 年3月

实验一硬度实验 一.实验目的 1.掌握洛氏、布氏硬度的基本原理及测试方法。 2.根据材料的性质正确选择硬度计类型及压入条件。 3.熟悉各种硬度值之间的换算。 二、实验内容 用洛氏硬度计测定试样热处理前后的硬度;用布氏硬度计测定45刚退火后的硬度。 三、概述 硬度试验操作简便,对工件损伤小,可在零件上直接测试,故在生产实践中应用很普遍。 硬度所表征的不是一个确定的物理量,它是衡量材料软硬程度的一种性能指标。硬度值的意义随试验方法而不同。硬度试验基本上可分为压入法和刻划法。对于以压入法进行的硬度试验,其硬度值是表示材料抵抗另一物体压入其表面的能力,洛氏、布氏和维氏硬度都属于压入法硬度试验。 (一)洛氏硬度试验法。 1.洛氏硬度是以压痕的深度来表示 材料的硬度值。图1-1为洛氏硬度试验 原理图。 测试洛氏硬度时,用规定的压头, 先后施加两个负荷:预负荷F0和主负 荷F1。总负荷F= F0+F1。图1-1中, 0-0位置为未加负荷时的压头位置;l-l 位置为施加10kg预负荷后的位置,压 入深度为h1;2-2位置为加上主负荷后 的位置,此时压入深度为h2;3-3位置图1-1 洛氏硬度试验原理 为卸除主负荷后由于弹性变形的恢复而 使压头略微提高的位置,此时压头的实际压入深度为h3。由主负荷引起的残余压入深度h=h3-h1,用此来衡量金属硬度值的大小。若直接用h来表示硬度,则会出现硬的金

非常经典的工程力学实验指导书+题.

《工程力学》实验指导书 主编:2011年11月

目录 实验一拉伸和压缩实验 (3) 实验二梁弯曲正应力实验 (8) 实验三金属材料扭转实验 (12)

实验一 拉伸和压缩实验 拉伸实验 一、实验目的 1.观察与分析低碳钢、灰铸铁在拉伸过程中的力学现象并绘制拉伸图。 2.测定低碳钢的σs 、σb 、δ、ψ 和灰铸铁的σb 。 3.比较低碳钢与灰铸铁的机械性能。 二、实验内容 1.低碳钢拉伸实验 材料的机械性能指标σs 、σb 、δ 和ψ 由常温、静载下的轴向拉伸破坏试验测定。整个试验过程中,力与变形的关系可由拉伸图表示,被测材料试件的拉伸图由试验机自动记录显示。低碳钢的拉伸图比较典型,可分为四个阶段 : 直线阶段OA ——此阶段拉力与变形成正比,所以也称为线弹性变形阶段,A 点对应的载荷为比例极限载荷Fp ; 屈服阶段BC ——曲线常呈锯齿形,此阶段拉力的变化不大,但变形迅速增加,此段内曲线上的最高点称为上屈服点B ,,最低点称为下屈服点B ,因下屈服点B 比较稳定,工程上一般以B 点对应的力值作为屈服载荷Fs ; 强化阶段CD ——此阶段拉力增加变形也继续增加,但它们不再是线性关系,其最高点D 对应的力值为最大载荷Fb ; 颈缩阶段DE ——过了D 点,试件开始出现局部收缩(颈缩),直至试件被拉断。 图1-1为低碳钢拉伸图。 图1-1 图1-2 F

2.灰铸铁拉伸实验 对于灰铸铁,由于拉伸时的塑性变形极小,在变形很小时就达到最大载荷而突然断裂,没有明显的屈服和颈缩现象,其强度极限即为试件断裂时的名义应力。图1-2为铸铁拉伸图。 三、实验仪器、设备 1.600KN 微机屏显式液压万能试验机; 2.游标卡尺。 四、实验原理 1.根据低碳钢拉伸载荷F s 、F b 计算屈服极限σs 和强度极限σb 。 2.根据测得的灰铸铁拉伸最大载荷F b 计算强度极限σb 。 3.根据拉断前后的试件标距长度和横截面面积,计算低碳钢的延伸率δ和截面收缩率ψ。 %100001?-= L L L δ %1000 1 0?-=A A A ψ 五、实验步骤 (一)实验准备 1.打开计算机,双击计算机桌面上的TestExpert 图标,试验软件启动。 2.打开控制系统电源,系统进行自检后自动进入PC-CONTROL 状态。 3.软件联机并启动控制系统: (1)点击“联机”按钮.出现联机窗口,当此窗口消失证明联机成功。 (2)按下启动按钮,控制系统“ON ”灯亮后,软件操作按钮有效。 4.测量并记录试件的尺寸:在刻线长度内的两端和中部测量三个截面的直径d 0,取直径最小者为计算直径,并量取标距长度L 0。 5.调节横梁位置并安装试样。 (二)进行实验 1.设置试验条件。 2.开始试验: (1)按下“试验”按钮,试验机开始按试验程序对试件进行拉伸。仔细观 A F s s =σ0 A F b b =σ4 2 00d A ?= π

工程力学

《工程力学》综合复习资料 1.已知:梁AB 与BC ,在B 处用铰链连接,A 端为固定端,C 端为可动铰链支座。 试画: 梁的分离体受力图。 2.已知:结构如图所示,受力P 。DE 为二力杆,B 为固定铰链支座,A 为可动铰链支座,C 为中间铰链连接。 试分别画出ADC 杆和BEC 杆的受力图。 3.试画出左端外伸梁的剪力图和弯矩图。(反力已求出) D E C B A P

4.已知:悬臂梁受力如图所示,横截面为矩形,高、宽关系为h=2b ,材料的许用应力〔σ〕=160MPa 。 试求:横截面的宽度b=? 5.已知:静不定结构如图所示。直杆AB 为刚性,A 处为固定铰链支座,C 、 D 处悬挂于拉杆①和②上,两杆抗拉刚度均为EA ,拉杆①长为L ,拉杆②倾斜角为α,B 处受力为P 。 试求:拉杆①和②的轴力N1 , N2 。 提示:必须先画出变形图、受力图,再写出几何条件、物理方程、补充方程和静力方程。可以不求出最后结果。 q M e =qa 2 =(11/6)qa

6.已知:一次静不定梁AB ,EI 、L 为已知,受均布力q 作用。 试求:支反座B 的反力。 提示:先画出相当系统和变形图,再写出几何条件和物理条件。 7.已知:①、②、③杆的抗拉刚度均为EA ,长L ,相距为a ,A 处受力P 。 试求:各杆轴力。 提示:此为静不定结构,先画出变形协调关系示意图及受力图,再写出几何条件、物理条件、补充方程,静立方程。 A L B q

8.已知:传动轴如图所示,C轮外力矩M c=1.2 kN m ,E轮上的紧边皮带拉力为T1,松边拉力为T2,已知 T1=2 T2,E轮直径D=40 cm ,轴的直径d=8cm,许用应力[σ]=120 Mpa 。 求:试用第三强度理论校核该轴的强度。 9.已知:梁ABC受均布力q作用,钢质压杆BD为圆截面,直径d=4 0 mm, BD杆长 L=800 mm , 两端铰链连接,稳定安全系数nst=3 , 临界应力的欧拉公式为 σcr=π2 E / λ2 ,经验公式为σcr= 304–1.12 λ, E = 2 0 0 GPa , σp=2 0 0 MPa ,σs=2 3 5 MPa 。

工程力学(工)

一、单选题 1. (4分)在研究拉伸与压缩应力应变时,我们把杆件单位长度的绝对变形称为() ? A. 应力 ? B. 线应变 ? C. 变形 ? D. 正应力 得分:0知识点:工程力学(工)作业题收起解析 答案B 解析 考查要点: 试题解答: 总结拓展: 2. (4分) 某简支梁A.B.受载荷如图所示,现分别用R A.、R B.表示支座A.、B.处的约束反力,则它们的关系为( )。 ? A. R A.<R B.

? B. R A.>R B. ? C. R A.=R B. ? D. 无法比较 得分:0知识点:工程力学(工)作业题收起解析 答案C 解析 考查要点: 试题解答: 总结拓展: 3. (4分)一空间力系中各力的作用线均平行于某一固定平面,而且该力系又为平衡力系,则可列独立平衡方程的个数是( ) ? A. 6个 ? B. 5个 ? C. 4个 ? D. 3个 得分:0知识点:工程力学(工)作业题收起解析 答案A 解析 考查要点: 试题解答: 总结拓展: 4.

(4分) 情况如下图所示,设杆内最大轴力和最小轴力分别为N mA.x和N min,则下列结论正确的是( ) ? A. N mA.x=50KN,N min=-5KN; ? B. N mA.x=55KN,N min=-40KN;、 ? C. N mA.x= 55KN,N min=-25KN; ? D. N mA.x=20KN,N min=-5KN; 得分:0知识点:工程力学(工)作业题收起解析 答案A 解析 考查要点: 试题解答: 总结拓展: 5. (4分) 如图所示,质量为m、长度为Z的均质细直杆OA.,一端与地面光滑铰接,另一端用绳A.B.维持在水平平衡位置。若将绳A.B.突然剪断,则该瞬时,杆OA.的角速度ω和角加速度仅分别为( )

《工程力学》实验指导书

工程力学实验指导书力学与机械学研究所编 天津理工大学机械工程学院

2005.7 学生实验守则 1.学生应按照课程教学计划,准时上实验课,不得迟到早退。 2.实验前认真阅读实验指导书,明确实验目的、步骤、原理,预习有关的理论知识,并接受实验教师的提问和检查。 3.进入实验室必须遵守实验室的规章制度。不得高声喧哗和打闹,不准抽烟、随地吐痰和乱丢杂物。 4.做实验时必须严格遵守仪器设备的操作规程,爱护仪器设备,节约使用材料,服从实验教师指导。未经许可不得动用与本实验无关的仪器设备及其它物品。 5.实验中要细心观察,认真记录各种试验数据。不准敷衍,不准抄袭别组数据,不得擅自离开操作岗位。 6.实验时必须注意安全,防止人身和设备事故的发生。若出现事故,应立即切断电源,及时向指导教师报告,并保护现场,不得自行处理。 7.实验完毕,应主动清理实验现场。经指导教师检查仪器设备、工具、材料和实验记录后方可离开。 8.实验后要认真完成实验报告,包括分析结果、处理数据、绘制曲线及图表。在规定时间内交指导教师批改。 9.在实验过程中,由于不慎造成仪器设备、工具损坏者,应写出损坏情况报告,并接受检查,由领导根据情况进行处理。 10.凡违反操作规程,擅自动用与本实验无关的仪器设备、私自拆卸仪器而造成事故和损失的,肇事者必须写出书面检查,视情节轻重和认识程度,按章程预以赔偿。

目录 引言..................................................(4)实验一金属拉伸实验....................................(5)实验二金属压缩实验.....................................(8)实验三金属(园轴)扭转试验..............................(17)

工程力学(一)知识要点

《工程力学(一)》串讲讲义 (主讲:王建省工程力学教授,Copyright 2010-2012 Prof. Wang Jianxing) 课程介绍 一、课程的设置、性质及特点 《工程力学(一)》课程,是全国高等教育自学考试机械等专业必考的一门专业课,要求掌握各种基本概念、基本理论、基本方法,包括主要的各种公式。在考试中出现的考题不难,但基本概念涉及比较广泛,学员在学习的过程中要熟练掌握各章的基本概念、公式、例题。 本课程的性质及特点: 1.一门专业基础课,且部分专科、本科专业都共同学习本课程; 2.工程力学(一)课程依据《理论力学》、《材料力学》基本内容而编写,全面介绍静力学、运动学、动力学以及材料力学。按重要性以及出题分值分布,这几部分的重要性排序依次是:材料力学、静力学、运动学、动力学。 二、教材的选用 工程力学(一)课程所选用教材是全国高等教育自学考试指定教材(机械类专业),该书由蔡怀崇、张克猛主编,机械工业出版社出版(2008年版)。 三、章节体系 依据《理论力学》、《材料力学》基本体系进行,依次是 第1篇理论力学 第1章静力学的基本概念和公理受力图 第2章平面汇交力系 第3章力矩平面力偶系 第4章平面任意力系 第5章空间力系重心 第6章点的运动 第7章刚体基本运动 第8章质点动力学基础 第9章刚体动力学基础 第10章动能定理 第2篇材料力学 第11章材料力学的基本概念 第12章轴向拉伸与压缩 第13章剪切 第14章扭转 第15章弯曲内力 第16章弯曲应力 第17章弯曲变形 第18章组合变形 第19章压杆的稳定性 第20章动载荷 第21章交变应力

考情分析 一、历年真题的分布情况 结论:在全面学习教材的基础上,掌握重点章节内容,基本概念和基本计算,根据各个章节的分数总值, 请自行给出排序结果。 二、真题结构分析 全国2010年1月自学考试工程力学(一)试题 课程代码:02159 一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。

工程力学公式总结

刚体 力的三要素:大小、方向、作用点 静力学公理:1力的平行四边形法则2二力平衡条件3加减平衡力系原理(1)力的可传性原理(2)三力平衡汇交定理4作用与反作用定律 约束:柔索约束;光滑面约束;光滑圆柱(圆柱、固定铰链、向心轴承、辊轴支座);链杆约束(二力杆) 平面汇交力系平衡的必要和充分条件是:力系的合力等于零。 平面汇交力系平衡几何条件:力多边形自行封闭 合力投影定理合力在任一轴上的投影,等于各分力在同一轴上投影的代数和。它表明了合力与分力在同一坐标轴投影时投影量之间的关系。 平面汇交力系平衡条件:∑F ix =0;∑F iy =0。2个独立平衡方程 第三章 力矩 平面力偶系 力矩M 0(F)=±Fh(逆时针为正) 合力矩定理:平面汇交力系的合力对平面上任一点力矩,等于力系中各分力对与同一点力矩的代数和。 Mo(F )=Mo(F1)+Mo(F 2)+...+Mo(F n)=∑Mo(F ) 力偶;由大小相等,方向相反,而作用线不重合的两个平行力组成的力系称为力偶 力偶矩M =±Fd(逆时针为正) 力偶的性质:性质1 力偶既无合力,也不能和一个力平衡,力偶只能用力偶来平衡。性质2 力偶对其作用面内任一点之矩恒为常数,且等于力偶矩,与矩心的位置无关。性质3 力偶可在其作用面内任意转移,而不改变它对刚体的作用效果。性质4 只要保持力偶矩的大小和转向不变,可以同时改变力偶中力的大小和力偶臂的长短, 而不改变其对刚体的作用效果。 平面力偶系平衡条件是合力偶矩等于零。 第四章 平面任意力系 力的平移定理:将力从物体上的一个作用点,移动到另外一点上,额外加上一个力偶矩,其大小等于这个力乘以2点距离,方向为移动后的力与移动前力的反向力形成的力偶的反方向 平面力向力系一点简化可得到一个作用在简化中心的主矢量和一个作用于原平面内的主矩,主矢量等于原力系中各力的矢量和,而主矩等于原力系中各力对点之矩的代数和。 平面任意力系平衡条件:∑F ix =0;∑F iy =0,∑M 0(Fi)=0。3个独立方程 平面平行力系平衡条件:∑F iy =0,∑M 0(Fi)=02个独立方程 摩擦,阻止两物体接触表面发生切向相互滑动或滚动的现象。静摩擦力,若两相互接触且相互挤压,而又相对静止的物体,在外力作用下如只具有相对滑动趋势,而又未发生相对滑动,则它们接触面之间出现的阻碍发生相对滑动的力,谓之“静摩擦力”。动摩擦力,两物体相对运动时的摩擦力。 重心是在重力场中,物体处于任何方位时所有各组成质点的重力的合力都通过的那一点。 第五章 空间力系 P53 空间力系平衡条件:6个方程。空间平行力系:3个方程 影响构件持久极限的主要因素:构件尺寸外形和表面质量。 质点的运动:点的速度dt ds v = ,加速度:切向加速度dt dv a = τ,速度大小变化;法向加速度ρ 2 v a n = , 速度方向变化,加速度2 2n a a a +=τ 刚体的基本运动角速度dt d ?ω= ,角加速度dt d ωα= ,角速度n πω2=(n 是转速,r/s) 转动刚体内各点的速度ωR v =,加速度2ωατR a R a n ==, 质心运动定理:e F ma ∑= 转动定理z z M J ∑=α,转动惯量:圆环2mR J z =;圆盘2/2 mR J z =:

8学时实验--材料力学8学时实验讲义

材料力学实验讲义

§1-1 金属材料的拉伸实验 一、试验目的 1.测定低碳钢(Q235 钢)的强度性能指标:上屈服强度R eH,下屈服强度R eL和抗拉强度R m 。 2.测定低碳钢(Q235 钢)的塑性性能指标:断后伸长率A和断面收缩率Z。 3.测定铸铁的抗拉强度R m。 4.观察、比较低碳钢(Q235 钢)和铸铁的拉伸过程及破坏现象,并比较其机械性能。 5.学习试验机的使用方法。 二、设备和仪器 1.试验机(见附录)。 2.电子引伸计。 3.游标卡尺。 三、试样 (a) b h l0 l (b) 图1-1 试样 拉伸实验是材料力学性能实验中最基本的实验。为使实验结果可以相互比较,必须对试样、试验机及实验方法做出明确具体的规定。我国国标GB/T228-2002 “金属材料室温拉伸试验方法”中规定对金属拉伸试样通常采用圆形和板状两种试样,如图(1-1)所示。它们均

由夹持、过渡和平行三部分组成。夹持部分应适合于试验机夹头的夹持。过渡部分的圆孤应与平行部分光滑地联接,以保证试样破坏时断口在平行部分。平行部分中测量伸长用的长度称为标距。受力前的标距称为原始标距,记作l 0,通常在其两端划细线标志。 国标GB/T228-2002中,对试样形状、尺寸、公差和表面粗糙度均有明确规定。 四、实验原理 低碳钢(Q235 钢)拉伸实验(图解方法) 将试样安装在试验机的上下夹头中,引伸计装卡在试样上,启动试验机对试样加载,试验机将自动绘制出载荷位移曲线(F-ΔL 曲线),如图(1-2)。观察试样的受力、变形直至破坏的全过程,可以看到低碳钢拉伸过程中的四个阶段(弹性阶段、屈服阶段、强化阶段和局部变形阶段)。 屈服阶段反映在F-ΔL 曲线图上为一水平波动线。上屈服力eH F 是试样发生屈服而载荷首次下降前的最大载荷。下屈服力eL F 是试样在屈服期间去除初始瞬时效应(载荷第一次急剧下降)后波动最低点所对应的载荷。最大力R m 是试样在屈服阶段之后所能承受的最大载荷。相应的强度指标由以下公式计算: 上屈服强度R eH :0 S F R eH eH = (1-1) 下屈服强度R eL :0 S F R eL eL = (1-2 ) 抗拉强度R m : 0 S F R m m = (1-3) 在强化阶段任一时刻卸载、再加载,可以观察加载、御载规律和冷作硬化现象。 在F m 以前,变形是均匀的。从F m 开始,产生局部伸长和颈缩,由于颈缩,使颈缩处截面减小,致使载荷随之下降,最后断裂。断口呈杯锥形。 测量断后的标距部分长度L u 和颈缩处最小直径d u ,按以下两式计算其主要塑性指标:

工程力学实验指南

工程力学实验指导书 仲恺农业工程学院机电工程系 2008.1

前言 材料力学是研究工程材料力学性能和构件强度、刚度和稳定性计算理论的科学,主要任务是按照安全、适用与经济的原则,为设计各种构件(主要是杆件)提供必要的理论和计算方法以及实验研究方法。 要合理地使用材料,就必须了解材料的力学性能,各种工程材料固有的力学性质要通过相应的试验测得,这是材料力学实验的一个主要任务。 另外,材料力学的理论是以一定的简化和假设为基础。这些假设多来自实验研究,而所建立理论的正确性也必须通过实验的检验,这是材料力学实验的第二个任务。 材料力学实验的第三个任务是通过工程结构模型或直接在现场测定实际结构中的应力和变形,进行实验应力分析,为工程结构的设计和安全评估提供可靠的科学依据。 从以上所述各项任务中,不难看到材料力学实验的重要性,它与材料力学的理论部分共同构成了这门学科的两个缺一不可的环节。 学生在学习并进行材料力学实验时,应注意学习实验原理、试验方法和测试技术,逐步培养科学的工作习惯和独立分析、解决问题的能力,要善于提出问题,勤于思考,勇于创新。这样才能牢固地掌握材料力学课程的基本内容,为将来参加祖国社会主义现代化建设打下坚实的基础。 指导书中将实验内容分为“基本实验”和“选做实验”两个层次,这样既可保证实验教学的基本要求,又可根据不同的需求进行选择,以期在培养学生的综合分析能力和创新能力方面发挥重大作用。 本实验指导书中难免存在缺点和错误之处,请师生们指正,以便今后进一步修改和完善。

基本实验 1 低碳钢和灰口铸铁的拉伸、压缩实验 一、实验目的 1.试样在拉伸或压缩实验过程中,观察试样受力和变形两者间的相互关系,并注意观察材料的弹性、屈服、强化、颈缩、断裂等物理现象。 2.测定该试样所代表材料的P S、P b和ΔL等值。 3.对典型的塑性材料和脆性材料进行受力变形现象比较,对其强度指标和塑性指标进行比较。 4.学习、掌握电子万能试验机的使用方法及其工作原理。 二、仪器设备和量具 电子万能试验机,引伸计、钢板尺,游标卡尺。 三、低碳钢的拉伸和压缩实验 1.低碳钢的拉伸实验 在拉伸实验前,测定低碳钢试件的直径d和标距L。试件受拉伸过程中,观察屈服(流动)、强化,卸载规律、颈缩、断裂等现象;绘制p——ΔL曲线如图2—1(a)所示;记录试件的屈服抗力P s和最大抗力P b。试件断裂后,测量断口处的最小直径d1和标距间的距离L1。依据测得的实验数据,计算低碳钢材料的强度指标和塑性指标。 7 图1—1 低碳钢拉伸图及压缩图 强度指标:

材力实验

拉伸实验 一.实验目的 1.学习液压万能实验机的构造原理,并进行操作练习。 2.确定低碳钢的流动极限(屈服极限)、强度极限、延伸率和面积收缩率。 3.确定铸铁的强度极限。 4.观察材料在拉伸过程中所表现的各种现象。 二.实验仪器 液压式万能实验机,游标卡尺。 三.实验原理 塑性材料和脆性材料在拉伸时的力学性能。(参考材料力学课本及其它相关书籍) 四.实验步骤 1.铸铁实验 (1) 用游标卡尺量取试件的直径。在试件上选取3个位置,每个位置互相垂 直地测量2次直径,取其平均值;然后从3个位置的平均直径值中取最小值作为试件的直径。 (2) 按下油泵"开",打开送油阀,使活动平台上升5-10mm后,按下油泵"停",关闭送油阀。

(3) 安装试件。在安装试件以前,先调整下夹头位置,当上、下夹头间距合适以后,再把试件放入、夹紧。 (4) 调整平衡砣,使示力盘的主指针对零,然后拨动副指针,使之靠近主指针,并调整好自动绘图装置。 (5) 按下油泵"开",打开送油阀,开始加载。 (6) 在试件断裂以后,记下试件的极限荷载。 (7) 试件断裂后,立即按下油泵"停",关闭送油阀。 (8) 取下试件,打开回油阀,将活动平台降到零点以后,关上回油阀。 2.低碳钢实验 (1) 用游标卡尺量取试件的直径。在试件上选取3个位置,每个位置互相垂直地测量2次直径,取其平均值;然后从3个位置的平均直径值中取最小值作为试件的直径。在试件中部用红铅笔作一个5或10长的标距(两端画上圆圈标记)。 (2) 按下油泵"开",打开送油阀,使活动平台上升5-10mm后,按下油泵"停",关闭送油阀。 (3) 安装试件。在安装试件以前,先调整下夹头位置,当上、下夹头间距合适以后,再把试件放入、夹紧。 (4) 调整平衡砣,使示力盘的主指针对零,然后拨动副指针,使之与主指针对齐,并调整好自动绘图装置。 (5) 按下油泵"开",打开送油阀,开始加载。 (6) 在试件受拉的过程中,注意示力盘指针的移动和自动绘图纸上曲线的轨迹,观察流动现象(主指针来回摆动),记录材料在流动时的荷载(取流动时荷 载的下限)。 (7) 在荷载超过流动极限以后,记下试件的极限荷载。在试件断裂以前, 注意观察试件的颈缩现象。

《工程力学》学习心得

《工程力学》学习心得 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

《工程力学》学习心得大二马上就要过去了,在即将过去的一年的大学学习中,我们已经把力学中的理论力学和材料力学都快学习完了。这一年的学习让我了解了许多有关于力的新知识和计算的新方法,老师讲了很多例题的解法,特别是学习的方式更是让我的受益匪浅。 在半年学习力学的过程中,一开始,我以为力学不一定很难,因为很多内容是大学物理里的,所以我应该很容易掌握,但经过一段时间的学习后,我发现它并不是想象中的那么容易,首先,学习内容多,而且有部分特别难。除此之外在学习力学的过程中,还要必须学会画图,学会受力分析。 从老师刚开始老师给我们讲述有关于力学的一些基本知识,并阐明了学习的目标和宗旨到现在将近一年,有时感觉力学容易有时有感觉难。上学期力学考的不是很理想,就是因为有阶段没好好听课,导致材料力学里弯曲变形没学懂,考试前没好好复习,这学期刚开始还是有些吃力,但是后来就慢慢赶上老师的进度,感觉老师应该每次

上课时应该穿插讲一点以前学过的知识来巩固我们以前的知识。 老师也很负责,先把新知识仔细地将一遍,然后再将例题一一讲解一遍,然后挑一两道相似的习题给我们同学现场做,有时还会随意抽同学上黑板做。放学后,老师还会布置一定的作业,到每周力学实验课连同上次力学实验一起交上去。,每次上课都让同学把与上课无关的东西收起来。上课的时候每次做题他都会看看学生的步骤。到考试之前,他还会让我们找个时间来答疑。 通过上学期的学习,我发现其实态度比学习方法更重要,在学习中我们应该端正自己的态度,如果一个学生不能端正自己的态度,大学基本上也学不到多少东西。而且这种心态不能有丝毫松懈,一旦松懈,就得花更长的时间来“补课”。有句话说:“学如逆水行,不进则退。心似平原散马,易放难收。” 上学期力学只考了七十几分,是我对自己有了一个全新的认识。在这学期我一定会好好努力,并且通过自己的努力,争取在期末能得到理想的成绩。给自己即将结束的力学之旅画上一个完整的句号。

材力A实验第二学期讲义

实验一 梁变形实验 (1)简支梁实验 (2)悬臂梁实验 预习要求: 1、 预习百分表的使用方法; 2、 预习梁的挠度和转角的理论公式。 3、 设计本实验所需数据记录表格。 (1)简支梁实验 一、 实验目的: 1、简支梁在跨度中点承受集中载荷P ,测定梁最大挠度和支点处转角,并与 理论值比较; 2、验证位移互等定理; 3、测定简支梁跨度中点受载时的挠曲线(测量数据点不少于7个)。 二、 实验设备: 1、简支梁及支座; 2、百分表和磁性表座; 3、砝码、砝码盘和挂钩; 4、游标卡尺和钢卷尺。 三、 试件及实验装置: 中碳钢矩形截面梁,=s σ360MPa ,E=210GPa 。 图一 实验装置简 图

图二 实验装置图 四、 实验原理和方法: 1、简支梁在跨度中点承受集中载荷P 时,跨度中点处的挠度最大; 3、验证位移互等定理: 对于线弹性体,F 1在F 2引起的位移?12上所作之功,等于F 2在F 1引起的 位移?21上所作之功,即: 212121??=??F F (1) 若F 1=F 2,则有: 2112?=? (2) 上式说明:当F 1与F 2数值相等时,F 2在点1沿F 1方向引起的位移?12,等于F 1在点2沿F 2方向引起的位移?21。此定理称为位移互等定理。 为了尽可能减小实验误差,本实验采用重复加载法,要求重复加载次数n ≥4。取初载荷P 0=(Q+1)Kgf(Q 为砝码盘和砝码钩的总重量),?P=1.5Kgf ,为了防止加 图三 位移互等定理示 意图

力点位置变动,在重复加载过程中,最好始终有0.5Kgf的砝码保留在砝码盘上。 六、试验结果处理 1、取几组实验数据中最好的一组进行处理; 2、计算最大挠度和支点处转角的实验值与理论值之间的误差; 3、验证位移互等定理; 4、在坐标纸上,在f —坐标系下描出实验点,然后拟合成光滑曲线。 x 七、思考题: 1、若需测简支梁跨度中任意截面处的转角,其实验装置如何? 2、验证位移互等定理时,是否可在梁上任选两点进行测量? 3、在测定梁挠曲线时,如果要求百分表不能移动,能否测出挠度曲线?怎 样测? 4、可否利用该实验装置测材料的弹性模量?

相关主题
文本预览
相关文档 最新文档