当前位置:文档之家› 总硫含量测定法(紫外荧光法)SH0689-2000

总硫含量测定法(紫外荧光法)SH0689-2000

总硫含量测定法(紫外荧光法)SH0689-2000
总硫含量测定法(紫外荧光法)SH0689-2000

总硫含量测定法(紫外荧光

法)SH0689-2000

轻质烃及发动机燃料

和其他油品的

总硫含量测定法(紫外荧光法)

SH/T 0689—2000

1范围

1.1本标准适用于测定沸点范围约2 5 —

40 0 C,室温下粘度范围约0. 2一I 0mm 2 /s之间的液态烃中总硫含量。本标准适用于总硫含量在1. 0 — 8 0 0 0mg/kg的石脑油、馏分油、发动

机燃料和其他油品。

1. 2 本标准适用于测定卤素含量低于0. 3 5%(m/m)的液态烃中的总硫含量。

1.3 以SI(国际单位制)作为标准计量单位。

1. 4 本标准涉及某些有危险性的材料、操作和设备,但是无意对与有关的所有安全冋题都提

出建议。因此,用户在使用本标准之前应建立适当的安全和防护措施并确定有适用性的管理制度。

2引用标准

下列标准包括的条文,通过引用而构成为本标准的一部分,除非在标准中另有明确规定,下述引用标准应是现行有效标准。

GB/T 4756石油液体手工取样法

3方法概要

将烃类试样直接注人裂解管或进样舟中,由进样器将试样送至高温燃烧管,在富氧条件中,硫被氧化成二氧化硫(S O2);试样燃烧生成的气体在除去水后被紫外光照射,二氧化硫吸收紫外光的能量转变为激发态的二氧化硫(SO 2),当激发态的二氧

紫外分光光度法测定蛋白质含量

上海百贺仪器科技有限公司提供www.southhk.cn 紫外分光光度法测定蛋白质含量 摘要: 考马斯亮兰G250与蛋白质结合,在0-1000ug/ml范围内,于波长595nm 处的吸光度与蛋白质含量成正比,可用于蛋白质含量的测定。考马斯亮兰G250 与蛋白质结合迅速,结合产物在室温下10分钟内较为稳定,是一种较好的蛋白 质定量测定方法。 1.实验部分 1.1仪器与试剂: Labtech UV POWER紫外分光光度计;玻璃比色皿一套;考马斯亮蓝G250; 牛血清蛋白;超纯水。 1.2试液的制备: 牛血清蛋白标准溶液(1000ug/ml)的制备称取100mg牛血清蛋白置100ml 容量瓶中,加入超纯水溶解并定容。 考马斯亮兰G250试剂称取100mg考马斯亮兰G250,溶于50ml95%的乙 醇后,加入120ml85%的磷酸,用水稀释至1升。 2.结果与讨论 2.1校正曲线的绘制 准确吸取1000ug/ml牛血清蛋白标准溶液0.0、0.02、0.04、0.06、0.08、0.1ml 分别加入到6只10ml试管中,然后用超纯水补充到0.1ml,各试管分别加入5ml 考马斯亮兰G250试剂,混合均匀后,即可依次在595nm处测定吸光度。以浓度 为横坐标,吸光度为纵坐标绘制校正曲线如下图,校正曲线方程为 A=0.613556C+0.001008,R=0.9994。

上海百贺仪器科技有限公司www.southhk.cn 2.2精密度 配制0.6mg/ml牛血清蛋白的考马斯亮兰溶液连续进样6次,得到吸光度的 相对标准偏差。 表1精密度测定结果 次数123456RSD% A0.26260.26220.26200.26280.26290.26260.13 2.3稳定性 取1mg/ml牛血清蛋白标准溶液每十分钟测定一次,50分钟内的吸光度变化 如下表2。 表2稳定度测定结果 时间(min)A1A2A3A平均 00.55110.55230.55160.5517 100.52040.51840.51680.5185 200.49100.49010.49030.4905 300.47650.47160.47210.4734 400.45240.44750.44400.4480 500.39820.39350.40310.3983 3.结论 该方法测定快速、简便,干扰物少,是目前灵敏度较高的蛋白质含量测定 的紫外分光光度法。

紫外-可见分光光度法测定有色溶液 (2)

紫外-可见分光光度法测有色溶液最大吸收波波长 一、实验目的 1.学习紫外-可见分光光度法的原理; 2.掌握紫外-可见分光光度法测定的实验技术; 3.了解掌握U-3010型紫外-可见分光光度仪的构造及使用方法。 二、实验原理 1.紫外-可见吸收光谱法(称紫外-可见分光光度法)以溶液中物质的分子或离 子对紫外和可见光谱区辐射能的选择性吸收为基础而建立起来的一类分析法。根据最大吸收波长可做定性分析;根据朗伯-比尔定律(标准曲线法和标准加入法)可做定量分析。紫外-可见分光光度法定性分析原理:根据吸收曲线中吸收峰的数目、位置、相对强度以及吸收峰的形状进行定性分析。 2.紫外-可见分光光度法定量分析原理,根据朗伯-比耳定律:A=εbc,当入 射光波长λ及光程b一定时,在一定浓度范围内,有色物质的吸光度A与该物质的浓度c成正比。定量分析常用的方法是标准曲线法即只要绘出以吸光度A为纵坐标,浓度c为横坐标的标准曲线,测出试液的吸光度,就可以由标准曲线查得对应的浓度值,即未知样的含量。 3.仪器由五个部分组成:即光源、单色器、吸收池、检测器和信号显示记录装 置。 三、仪器与试剂 日立U-3010型紫外-可见分光光度仪;吸量管;乙醇;待测溶液;烧杯等。 四、实验步骤 1.接通电源,启动计算机,打开主机电源开关,启动工作站并初始化仪器,预 热半小时。 2.在工作接口上选择测量项目为光谱扫描,设置扫描参数(起点:650nm,终 点:250nm,速度:中,间隔:1.0nm,单次扫描) 3.将两个均装有无水乙醇的1cm石英比色皿放入测量池中,进行基线扫描。 4.基线做好后,按下面的顺序进行操作:做Baseline→换样(换上待测样品置 于Sample池)→进入Analysis Method对相关的参数进行设定→Sample命名→Ready→Measure进行测量,寻找待测溶液的最大吸收波长,再在最大吸收波长处分别测定待测溶液的吸光度。

-GBT214煤中全硫的测定方法

煤中全硫的测定方法 GB/T214-2007 代替GB/T214-1996,GB/T18856.8-2002 1 范围 标准规定了测定煤中全硫的艾士卡法、库仑法、高温燃烧中和法的方法原理、试剂和材料、仪器设备、试验步骤、结果计算及精密度等,在仲裁分析时,应采用艾士卡法。 本标准适用于褐煤、烟煤、无烟煤和焦炭,也适用于水煤浆干燥煤样。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 212 煤的工业分析方法(GB/T 212-2001,eqv ISO 11722:1999;eqv ISO 1171:1997;eqv ISO 562:1998) GB/T 483 煤炭分析试验方法一般规定 3 艾士卡法 3.1 原理 将煤样与艾士卡试剂混合灼烧,煤中硫生成硫酸盐,然后使硫酸根离子生成硫酸钡沉淀,根据硫酸钡的质量计算煤中全硫的含量。 3.2 试剂和材料 3.2.1 艾士卡试剂(以下简称艾氏剂):以2份质量的化学纯轻质氧化镁(GB/T 9857)与1份质量的化学纯无水碳酸钠(GB/T 639)混匀并研细至粒度小于0.2㎜后,保存在密闭容器中。 3.2.2 盐酸溶液:(1+1),1体积盐酸(GB/T 622)加1体积水混匀。 3.2.3 氯化钡溶液:100g/L,10g氯化钡(GB/T 652)溶于100mL水中。 3.2.4 甲基橙溶液:2g/L,0.2g甲基橙溶于100mL水中 3.2.5 硝酸银溶液:10g/L,1g硝酸银(GB/T 670)溶于100mL水中,加入几滴硝酸(GB/T 626),贮于深色瓶中。 3.2.6 瓷坩埚:容量为30mL和(10~20)mL两种。

常用紫外分光光度法测定蛋白质含量

6种方法测定蛋白质含量 一、微量凯氏(kjeldahl)定氮法 样品与浓硫酸共热。含氮有机物即分解产生氨(消化),氨又与硫酸作用,变成硫酸氨。经强碱碱化使之分解放出氨,借蒸汽将氨蒸至酸液中,根据此酸液被中和的程度可计算得样品之氮含量。若以甘氨酸为例,其反应式如下:nh2ch2cooh+3h2so4——2co2+3so2+4h2o+nh3 (1) 2nh3+h2so4——(nh4)2so4 (2) (nh4)2so4+2naoh——2h2o+na2so4+2nh3 (3) 反应(1)、(2)在凯氏瓶内完成,反应(3)在凯氏蒸馏装置中进行。 为了加速消化,可以加入cuso4作催化剂,k2so4以提高溶液的沸点。收集氨可用硼酸溶液,滴定则用强酸。实验和计算方法这里从略。 计算所得结果为样品总氮量,如欲求得样品中蛋白含量,应将总氮量减去非蛋白 氮即得。如欲进一步求得样品中蛋白质的含量,即用样品中蛋白氮乘以6.25即得。 二、双缩脲法(biuret法) (一)实验原理 双缩脲(nh3conhconh3)是两个分子脲经180℃左右加热,放出一个分子氨后得到的产物。在强碱性溶液中,双缩脲与cuso4形成紫色络合物,称为双缩脲反应。凡具有两个酰胺基或两个直接连接的肽键,或能过一个中间碳原子相连的肽键,这类化合物都有双缩脲反应。 紫色络合物颜色的深浅与蛋白质浓度成正比,而与蛋白质分子量及氨基酸成分无关,故可用来测定蛋白质含量。测定范围为1-10mg蛋白质。干扰这一测定的物质主要有:硫酸铵、tris缓冲液和某些氨基酸等。 此法的优点是较快速,不同的蛋白质产生颜色的深浅相近,以及干扰物质少。主要的缺点是灵敏度差。因此双缩脲法常用于需要快速,但并不需要十分精确的蛋白质测定。 (二)试剂与器材 1. 试剂: (1)标准蛋白质溶液:用标准的结晶牛血清清蛋白(bsa)或标准酪蛋白,配制成10mg/ml的标准蛋白溶液,可用bsa浓度1mg/ml的a280为0.66来校正

我的论文 煤中全硫含量的测定

南京化工职业技术学院毕业论文 题目煤中全硫含量的测定 姓名汪康康 所在系部应用化学系 专业班级工业分析与检验0721 指导教师煤中全硫含量的测定 2009 年 12 月

煤中全硫的测定 摘要 任何煤中均含有硫,只是其含量有所不同。煤在燃烧时,其中硫主要氧化成二氧化硫。在煤燃烧生成二氧化硫的同时,还伴有少量三氧化硫的生成。二氧化硫是一种无色、有刺激性的气体。大气中的二氧化硫浓度与支气管炎等呼吸系统疾病发生率之间基本成正比关系。大气中二氧化硫和三氧化硫在大气云层中与水分子结合使降雨呈酸性,对环境造成极大危害。而在电力生产中,煤中的硫对设备也具有一定的破坏力。所以煤碳在使用之前对其中硫的含量要进行测定,亦可在测定之后对其进行脱硫处理。煤中全硫含量的测定主要有三种方法,分别是艾氏卡法、库伦滴定法和高温燃烧中和法。 关键词 煤炭,全硫含量,燃烧舟,滴定管,库伦积分仪。

目录 1 前言 (4) 2 实验部分 (5) 2.1 实验原理 (5) 2.1.1 艾氏卡法的实验原理 (5) 2.1.2 库伦滴定法的实验原理 (5) 2.1.3 高温燃烧中和法的实验原理 (5) 2.2 仪器与试剂 (5) 2.2.1 仪器 (5) 2.2.1.1 艾氏卡法所用仪器 (5) 2.2.1.2 库伦滴定法所用仪器 (5) 2.2.1.3 高温燃烧中和法所用仪器 (5) 2.2.2 试剂 (6) 2.2.2.1 艾氏卡法所用试剂 (6) 2.2.2.2 库伦滴定法所用试剂 (6) 2.2.2.3 高温燃烧中和法所用试剂 (6) 2.3 实验条件 (7) 2.3.1 艾氏卡法实验条件 (7) 2.3.2 库伦滴定法实验条件 (7) 2.3.3 高温燃烧中和法实验条件 (7) 2.4 实验步骤 (7) 2.4.1 艾氏卡法的实验步骤 (7) 2.4.2 库伦滴定法的实验步骤 (8) 2.4.3 高温燃烧中和法的实验步骤 (9) 3 结果与讨论 (10) 3.1 实验数据处理 (10) 3.1.1 艾氏卡法实验数据处理 (10) 3.1.2 库伦滴定法实验数据处理 (10)

十五种常用中药的荧光鉴别

中药鉴别 十五种常用中药的荧光鉴别: 一、川芎:本品横切片置紫外光灯下观察,显亮淡紫色荧光,外皮显暗棕色荧光。二、大黄:取本品粉末的稀乙醇浸出液,滴于滤纸上,再滴加稀乙醇扩散后呈黄色至淡棕色环,置紫外光灯下观察,呈棕色至棕红色荧光(蒽醌衍生物),不得显亮蓝紫色荧光(与土大黄苷等芪类化合物区别)。三.黄连:根茎折断面在紫外光灯下观察显金黄色荧光,木质部尤为显著。四、浙贝母:取粉末置紫外光灯下观察,呈亮淡绿色荧光。五.延胡索:药材切面或粉末置紫外光灯下观察,均有亮黄色荧光。六、狗脊:(1)取生狗脊折断,在紫外光灯(254nm)下观察,断面显淡紫色荧光。(2)根茎粉末用甲醇回流提取,取滤液点于滤纸上,置紫外光灯(254nm)下观察,显亮蓝白色荧光(与各种黑狗脊相区别)。七、川牛膝:根的断面置紫外光灯下观察,显淡蓝色荧光八、牛蒡子:取本品粉末少许,置紫外光灯下观察,显绿色荧光。九、石决明:取粉末于紫外光灯下观察,杂色鲍壳显苔绿色荧光;皱纹盘鲍壳显橙皮黄色荧光。十.麻黄:药材纵剖面置紫外光灯下观察,边缘显亮白色荧光,中心显棕色荧光。十一.珍珠母:本品置紫外光灯下观察,有浅蓝紫色(天然珍珠)或亮黄绿色 (养殖珍珠)荧光,通常环周部分较明亮。十二、熊胆:取其粉末在紫外光灯下观察,显黄白色荧光不应显棕黄色荧光。取0.1g溶于20m17%冰醋酸溶液,紫外光灯下观察不得显淡蓝色乳浊荧光。十三、秦皮:本品热水浸出液呈黄绿色,日光下显蓝色荧光十四、常山:取根

折断,将断面置紫外光灯(365nm)下观察,显黄色荧光,尤以皮部更为明显,其水浸液则显天蓝色荧光,在碱性溶液中荧光加强。十五、紫菀:取粗粉2g,加乙醚或甲醇10ml,浸渍过夜,过滤。取滤液滴在纸上,置紫外光灯(254nm)下观察,紫菀显蓝色荧光斑点;而山紫菀显黄色或淡黄色荧光斑点。

紫外可见分光光度法含量测定

【含量测定】照紫外-可见分光光度法(附录V A)测定。 1.仪器与测定条件:室温:____℃相对湿度:____% 分析天平编号:;水浴锅编号:; 紫外可见分光光度计编号:; 2.对照品溶液的制备: 取西贝母碱对照品适量,精密称定,加三氯甲烷制成每1ml含_______mg的溶液,即得。 3. 供试品溶液的制备: 取本品粉末(过三号筛)约______g,精密称定,置具塞锥形瓶中,加浓氨试液3ml,浸润1小时。加三氯甲烷-甲醇(4:1)混合溶液40ml,置80℃水浴加热回流2小时,放冷,滤过,滤液置50ml量瓶中,用适量三氯甲烷-甲醇(4:1)混合溶液洗涤药渣2~3次,洗液并入同一量瓶中,加三氯甲烷-甲醇(4:1)混合溶液至刻度,摇匀,即得。 4.标准曲线的制备: 精密量取对照品溶液0.1ml、0.2ml、0.4ml、0.6ml、1.0ml,置25ml具塞试管中,分别补加三氯甲烷至10.0ml,精密加水5ml、再精密加0.05%溴甲酚绿缓冲液(取溴甲酚绿0.05g,用0.2mol/L氢氧化钠溶液6ml使溶解,加磷酸二氢钾1g,加水使溶解并稀释至100ml,即得)2ml,密塞,剧烈振摇,转移至分液漏斗中,放置30分钟。取三氯甲烷液,用干燥滤纸滤过,取续滤液,以相应的试剂为空白。 5.测定法: 照紫外-可见分光光度法(附录ⅤA),在nm波长处测定吸光度,以吸光度为纵坐标,浓度为横坐标,绘制标准曲线。依法测定吸光度,从标准曲线上读出供试品溶液中含西贝母碱的重量,计算,即得。 6.结果与计算 6.1 标准曲线制备:

对照品批号 纯 度 S 对照品来源 干燥条件 对照品称重W 对(mg) 各浓度点稀释倍数f 对 溶液浓度C 对(ug/ml) 吸光度A 对 线性回归方程 A=( )C +/-( ) r =( ) 计算公式: W S C f ?= 对对对 C 对= 6.2 样品测定: 水分Q 取样量W 样(g ) 样品稀释倍数f 样 样品吸光度A 样 样品平均吸光度A 样 浓度C(ug/ml) 含量X (%) 平均含量X (%) 计算公式:() %100Q 110W f C X 6 ?-???= 样样 样 X 1= X 2= 7.本品按干燥品计算,含总生物碱以西贝母碱(C 27H 43NO 3)计,不得少于0.050%。 结果: 规定 检验人: 检验日期: 复核人: 复核日期:

紫外分光光度法测定未知物

紫外分光光度法测定未知物 1.仪器 1.1紫外分光光度计(UV-1801型);配石英比色皿(1cm)2个 1.2容量瓶(100mL):10个;容量瓶(250mL)1个 1.3吸量管(10mL、5mL):各1支 1.4移液管(20mL、25mL、50mL):各1支 2.试剂 2.1标准溶液(1mg/mL):维生素C、水杨酸、苯甲酸、山梨酸、邻二氮菲分别配成1mg/mL的标准溶液,作为储备液。 2.2未知液:浓度约为(40~60ug/mL)。(其必为给出的五种物质之一) 3.实验操作 3.1比色皿配套性检查 石英比色皿装蒸馏水,以一只比色皿为参比,在测定波长下调节透射比为100%,测定其余比色皿的透射比,其偏差应小于0.5%,可配成一套使用。 3.2未知物的定性分析 将五种标准储备液均稀释成10ug/mL的试液(配制方法由选手自定)。以蒸馏水为参比,于波长200~350nm范围内扫描五种溶液,绘制吸收曲线,根据所得到的吸收曲线对照标准谱图,确定被测物质的名称,并依据吸收曲线确定测定波长。五种标准物质溶液的吸收曲线参五种标准物质溶液的吸收曲线参五种标准物质溶液的吸收曲线参五种标准物质溶液的吸收曲线参考考考考附图附图附图附图。。。。 3.3未知物定量分析 根据未知液吸收曲线上测定波长处的吸光度,确定未知液的稀释倍数,并配制待测溶液3份,进行平行测定。 推荐方法 3.3.1维生素C含量的测定:准确吸取1mg/mL的维生素C标准储备液50.00mL,在250mL容量瓶中定容(此溶液的浓度为200ug/mL)。再分别准确移取1、2、4、6、8、10mL上述溶液,在100mL容量瓶中定容(浓度分别为2、4、8、12、16、20 ug/mL)。准确移取20.00mL维生素C未知液,在100mL容量瓶中定容,于

中药材的荧光鉴别

中药材的荧光鉴别 荧光鉴别,是利用中药材所含有的某些成分可在紫外光或常光下产生一定颜色的荧光来鉴别中药材。用于观察荧光现象的仪器被称为紫外光分析仪,一般用于鉴别钱币的紫外光验钞机也可同等使用。鉴别时,将中药材样品或粉末或浸出液置于暗处的紫外光下进行观察即可。 一、中药材粉末或纵横切面置紫外灯下观察 1.麻黄:药材纵剖面边缘显亮白色荧光,中心显亮棕色荧光。粉末或药材表面显亮棕色荧光。 2.牛蒡子:粉末显绿色荧光。 3.黄柏:药材断面显亮黄色荧光。 4.地骨皮:外表呈棕黄色,常散有金黄色斑;断面木栓层呈棕色,韧皮部呈淡蓝色荧光。 5.沉香:颗粒部分显海天蓝色荧光,部分显灰绿色荧光。 6.秦艽:横切面显黄白色或金黄色荧光。 7.浙贝母:粉末显淡绿色荧光。 8.麦冬:薄片显浅蓝色荧光。 9.怀牛膝:饮片显黄白色荧光。 10.川牛膝:饮片显淡蓝色荧光。 11.黄连:饮片显金黄色荧光,木质部尤为显著。 12.延胡索:切面或粉末显亮黄色荧光。 二、中药材的水或醇浸出液点于滤纸上,直接或经化学处理后置

紫外灯下观察 1.马兜铃:乙醇浸出液滴于滤纸上,显黄绿色荧光。 2.丹参:药材水提醇沉液点于滤纸上,显亮蓝灰色荧光。氨水熏20分钟,显淡亮蓝绿荧光。 3.高良姜:药材95%乙醇浸泡液点于滤纸上,氨熏后显黄色,挥去氨后颜色变浅,喷以1%AICl3试液,置荧光灯下观察,显黄绿色荧光。 4.白芷:水浸液点于滤纸上,显蓝色荧光。 5.前胡:乙醇浸出液点于滤纸上,显淡天蓝色荧光;滴加15%NaOH 试液后,荧光消失。 6.三七:甲醇浸提液点于滤纸上,显淡蓝色荧光。 7.葛根:甲醇浸提液点于滤纸,喷以1%AICI3乙醇溶液,显鲜黄绿色荧光。 8.苦参:甲醇回流液点于滤纸上,喷以5%AICI3乙醇液,晾干,显黄绿色荧光。 9.木瓜:水回流提取液点于滤纸上,喷以1%AICI3乙醇液,晾干,显蓝色荧光。 10.关木通:75%乙醇回流液点于滤纸上,晾干,显天蓝色荧光。 11.大黄:稀醇浸出液滴于滤纸上,滴加稀醇扩散后呈黄色至淡棕色环,置紫外灯下呈棕色至棕红色荧光。 三、中药材的水或醇浸液直接置紫外灯下观察 1.银柴胡:药材的无水乙醇浸提液呈亮蓝微紫色荧光。

紫外分光光度法测定蛋白质含量实验报告.docx

紫外分光光度法测定蛋白质含量 一、实验目的 1.学习紫外光度法测定蛋白质含量的原理; 2.掌握紫外分光光度法测蛋白质含量的实验技术。 二、实验原理 1.测蛋白质含量的方法主要有:①测参数法:折射率、相对密度、紫外吸收等;②基于化学反应:定氮法、双缩脲法、Folin―酚试剂法等。本实验采用紫外分光光度法。 2.蛋白质中的酪氨酸和色氨酸残基的苯环中含有共轭双键,因此,蛋白质具有吸收紫外光的性质,其最大吸收峰位于280nm附近(不同蛋白质略有不同)。在最大吸收波长处,吸光度与蛋白质溶液的浓度服从朗伯―比尔定律。 利用紫外吸收法测蛋白质含量的准确度较差,原因有二:①对于测定那些与标准蛋白质中酪氨酸和色氨酸含量差异较大的蛋白质,有一定误差,故该法适于测定与标准蛋白质氨基酸组成相似的蛋白质;②样品中含有的嘌呤、嘧啶等吸收紫外光的物质,会出现较大干扰。 三、仪器与试剂 TU―1901紫外可见分光光度计、标准蛋白质溶液3.00mg·mL-1、0.9%NaCl 溶液、试样蛋白质溶液。 10mL比色管、1cm石英比色皿、吸量管。 四、实验步骤 1.绘制吸收曲线 用吸量管吸取2mL3.00mg·mL-1标准蛋白质溶液于10mL比色管中,用0.9%NaCl溶液稀释至刻度,摇匀。用1cm石英比色皿,以0.9%NaCl溶液作参比溶液,在190~400nm间每隔5nm测一次吸光度Abs,记录数据并作图。 2.绘制标准曲线 用吸量管分别吸取1.0、1.5、2.0、2.5、3.0mL3.00mg·mL-1标准蛋白质溶液于10mL比色管中,用0.9%NaCl溶液稀释至刻度,摇匀。用1cm石英比色皿,以0.9%NaCl溶液作参比溶液,在波长280nm处分别测其吸光度,记录数据并作图。 3.样品测定 取适量浓度试样蛋白质溶液,在波长280nm处测其吸光度,重复三次。在已经得到标准曲线的情况下,为了使测量结果准确度高,待测溶液的浓度需在标准曲线的线性范围内,所以,先测定试样蛋白质原液的吸光度(1.363),估算浓度为2.0960 mg·mL-1,再将原试液稀释至5倍(即取2mL试液,用0.9%NaCl 溶液稀释至刻度,摇匀),估算浓度为0.4192 mg·mL-1,测吸光度,重复三次五、数据处理与结果分析

重量法测定煤中全硫的含量

重量法测定煤中全硫的含量 ?作者:单位: [2007-10-26] 关键字: ?摘要: 我国南方有些地区的煤含硫量高(3%~6%),灰分高(35%~45%),而热值低(16000kJ/kg),被称为劣质煤,过去利用率很低。为了扩大可持续资源的利用,降低生产成本,不少水泥企业通过几年探索与实践,在生料中掺加部分劣质煤在立窑中烧制出高强熟料,取得了高产、优质、节能的效果。 众所周知,配煤在立窑中具有配热和配料的双重作用,当使用劣质煤时更显出配料意义。 高灰分、低热值、高硫量的煤在立窑煅烧时能降低燃烧速度,使底火厚实;低熔点煤灰使立窑熟料的烧结温度拓宽,有利于底火的稳定;而煤中的硫则起到一定的矿化作用。煤中的硫主要有三种存在形式,即有机硫、硫化物、硫酸盐。硫化物、硫酸盐中的硫在石灰石的分解温度下可转化成硫酸钙。当生料配料需掺石膏时也要考虑这部分硫含量,甚至可替代石膏。 因此许多企业已达共识,不仅需测定煤的灰分、挥发分和热值,而且必须准确测定煤中的硫含量。 1测定方法 目前各企业采取的测定方法不尽一致。有的直接采用碘量法测定,由于反应瓶底粘结成糊而失败;有的将煤燃烧后测煤灰中的硫,由于燃烧过程中煤中的部分硫成气体逸出而使结果偏低。测定方法选择不当,势必造成煤中全硫测定结果产生偏差,失去指导生产的意义。 针对不少企业生产工艺与检验方法脱节的情况,有必要推荐使用GB/T214—1996〈煤中全硫的测定方法〉。 GB/T214—1996〈煤中全硫的测定方法〉有艾士卡法、库仑滴定法和高温燃烧中和法。 库仑滴定法是煤样在三氧化钨催化剂作用下,于1000ml/min空气流在1150℃高温中燃烧分解,使煤中硫生成二氧化硫,被电解池中的碘化钾溶液吸收,并被电解碘化钾所产生的碘滴定,根据电解所消耗的电量计算煤中全硫含量。此法快速准确,但需专用仪器设备。 高温燃烧中和法是煤样在三氧化钨催化剂作用下于350ml/min空气流中在1200℃高温下燃烧,生成硫的氧化物并捕集在过氧化氢溶液中形成硫酸,最后用氢氧化钠滴定而计算全硫含量。此法准确,但需高温燃烧设备。 艾士卡法也称重量法,是煤中全硫测定的仲裁法,方法经典,设备简单,结果准确,在此作重点介绍。

实验一 紫外分光光度法测定苯甲酸

实验一紫外分光光度法测定苯甲酸 一、实验目的 学习、了解紫外分光光度法原理 了解紫外分光光度计的结构和使用方法 二、实验原理 当辐射能(光)通过吸光物质时,物质的分子对辐射能选择性的吸收而得到的光谱称为分子吸收光谱。分子吸收光谱的产生与物质的分子结构、物质所在状态、溶剂和溶液的PH等因素有关。分子吸收光谱的强度与吸光物质的浓度有关。表示物质对光的吸收程度,通常采用“吸光度”这一概念来量度。 根据朗伯-比尔定律,在一定的条件下,吸光物质的吸光度A 与该物质的浓度C和液层厚度成正比。即A= LC 因此,只要选择一定的波长测定溶液的吸光度,即可求出该溶液浓度,这就是紫外-可见分光光度计的基本原理。 在碱性条件下,苯甲酸形成苯甲酸盐,对紫外光有选择性吸收,其吸收光谱的最大吸收波长为225nm。因此,采用紫外分光光度计测定苯甲酸在225nm处的吸收度就能进行定量分析。 三、仪器与主要试剂 TU-1810紫外可见分光光度计1cm石英比色皿 0.1M氢氧化钠溶液 苯甲酸(AR) 四、实验步骤 1、苯甲酸标准溶液的制备 称取苯甲酸(105℃烘干)100mg,用0.1M氢氧化钠溶液100ml溶解后,转入1000ml容量瓶中,用蒸馏水稀释至刻度.此溶液1ml含0.1mg 苯甲酸. 2、制作苯甲酸吸收曲线,选择最大吸收波长 ①移取苯甲酸标准溶液4.00ml于50ml容量瓶中,用0.01M氢氧化钠溶液定容,摇匀,此溶液1ml含苯甲酸8ug. 以氘灯为光源,用0.01M氢氧化钠溶液作为参比,改变测量波长(从210-240nm)测量8ug/ml苯甲酸的吸光度. ②以波长为横坐标,吸光度为纵坐标,绘制苯甲酸的紫外吸收曲线,并找出最大的吸收波长 (是否是225nm). 3﹑样品的测定 ①取10.00ml苯甲酸样品,放入50ml容量瓶中,用0.01M氢氧化钠

中药鉴定 毕业实验报告

实验报告 实习时间: 实习地点: 指导老师: 实习课目: 实习主要内容:黄连、甘草、黄芩的鉴别 黄连 一.实验目的 1.掌握黄连(三种)的药材性状特征鉴别点; 2.比较三种黄连的显微鉴别特征; 3.掌握黄连的化学成分和理化鉴别特征; 二.实验内容 1.原植物的鉴定注意点 味连:Rhizama Captiidis为毛茛科植物黄连Copits Chinese Franch的干燥根茎,多年生草本,叶均基生,卵状三角,3全裂,中央裂片稍呈羽状深裂,边缘有锐锯齿。二歧或多歧聚伞花序,萼片5,窄卵形,花瓣线形,雄蕊多数,与花瓣等长,心皮8-12,离生,蓇葖果具柄。 三角叶黄连(雅连):Copits deltoiolea C.Y.Cheng et Hsiao叶片中央裂片三角状卵形,一回裂片彼此邻接,花瓣线形,雄蕊长约为花瓣之半。 云南黄连(云连):Coptis Teeta Wall叶片中央裂片卵状菱形,羽状深裂,彼此疏离,花瓣匙形至卵形,先端钝。 2.药材性状鉴定注意点 黄连:圆柱形,具结节状突起,部分节间较长而光滑,习称“过桥”,有时可见残存的须根或膜质鳞叶,断面木部部金黄色,髓部、皮部红棕色,味极苦。 味连:根茎多分枝积聚成簇,形如鸡爪。 雅连:根茎多单枝,较粗状,“过桥”较长。 云连:根茎多单枝,细小,略弯曲。 注意点:主产四川石柱等,湖北来凤,甘肃武都,出口以四川、湖北为主,过去有北岸味连,南岸味连两种商品。北是长江以北的川东鄂西地区。南岸是川东鄂西,长江以南。雅连主产于四川西部娥眉、洪雅一带。为栽培品。云连主产于云南西北德钦,维西为野生,主要化学成分为小檗碱(berberine,又称黄连素) 3、显微鉴定 (1)组织切片 味连:最外为木栓层(有时可见未脱落的表皮或鳞叶)→皮层(有黄色石细胞单个或成群散在)→韧皮部(外侧纤維束木化并且有石细胞)→维管束(无限外韧型排列成环)→髓部无石细胞 雅连:髓部由多数石细胞群 云连:皮层及髓部均无石细胞 (2)粉末 黄连:①石细胞类方形或圆形25-105μm壁孔明显。 ②中柱鞘纤维纺锤形或成梭形,135-185μm,直径27-37μm,壁较厚,有孔沟;

水试火试法鉴别中药材举隅

水试火试法鉴别中药材举隅 我国古代医药学家对鉴别中药材积累了许多宝贵的经验和方法,其中水试火试法鉴别中药材就是其中的精华之一,该法具有方便、简单、快速、灵验和不受实验场所、试剂、仪器等客观条件的限制,且检验成本低等优点。下面就常用的中药材水试火试法鉴别举隅如下。 1 水试法鉴别中药材 水试,又称为入水试验,就是利用某些中药材遇水后或在水中所产生的各种比较明显的或特殊的物理、化学现象以鉴别其品种的真伪优劣的一种方法。根据水试产生的物理、化学变化大体有:显色反应、旋转反应、沉降反应、膨胀反应、粘液反应、泡沫反应、乳化反应、气味反应、染甲透甲现象等,鉴别的中药材主要有植物类、动物类和矿物类。青黛:将本品撒于水面,浮于水面而不下者为质优,若有沉淀或水液变色说明掺杂质或假冒。 苏木:取本品粉末加水反复振摇浸置,或将碎片置热水中浸泡,其浸液显桃红色,若在紫外线灯下,显黄绿色荧光,浸液加酸则变成黄色,再加碱则呈猩红色。若为伪品小叶红豆,其浸液成淡黄棕色,置紫外线灯下显蓝色,浸液加酸变成淡黄色,再加碱则变成深绿色。 常山:取本品粗粉加水浸渍,其浸出液显蓝色荧光为正品,否则为伪品。 番红花:取本品少许浸于清水中,柱头膨胀成喇叭状,水被染成金黄色。不得显红色,不得有沉淀,不得有油状物飘浮于水面。 厚朴花:用沸水泡开后,花瓣厚,手揉之显肉质为质优。 红花:将本品投入水中,水变成金黄色,而花本身不褪色。 玄参:取本品碎片或粗粉投入清水杯中,水浸液呈黄棕色,在日光下或紫外线下观察,浸液显碧蓝色荧光。伪品核桃楸皮,水浸液显浅黄棕色,无荧光。 地榆:取本品粗粉浸入水中,水呈淡黄棕色。 楮实子:取本品粗粉少许,浸于水中,水液变红色。 菟丝子:将本品投入水中,加热煮沸,表面有粘性,当种皮破裂时,会露出白色卷旋状的胚,形如吐丝,伪品无此现象。 牵牛子:取本品少许入水浸泡,种皮呈龟裂状,手捻有明显的粘滑感。 天仙子:取本品少许用清水浸泡,不膨胀不发粘。伪品广天仙子,水浸泡后立即膨胀散开,粘性也大。 葶苈子:取本品少许加水浸泡后,用放大镜观察,北葶苈子透明状粘液层较厚,厚度可达种子宽度的1/2以上,南葶苈子透明状粘液层薄,厚度为种子宽度的1/5以下。 车前子:取本品1 g,加水5 ml,煮沸30 s,冷后即呈粘稠状。 胖大海:正品手摇无响声,用水浸泡后为海绵状,其体积可比干品大约3倍。若伪品圆粒萃婆,用手摇动时有响声,用水浸泡膨胀虽亦呈海绵状,但体积仅大1.5~2倍。 天麻:将其隔水蒸后,嗅之其中有马尿样臊气味,用水久煮不散者为真品,反之为伪品。 黄芪:用水浸泡本品无粘液,有豆腥气味为真品,伪品黄蜀葵水浸泡会产生粘液,无豆腥气。牛黄:取小粒样品投入1杯静置的冷水中,吸收水分后不变形,而且不易溶化为真品,反之为伪品。或将水煮沸,然后取天然牛黄粉末少许撒在沸水中,翻滚的大水泡马上消失即为真

中药鉴别中常用的方法

1.中药鉴别中常用的方法是什么?为什么? 十九世纪至二十世纪,中药鉴别最常用的“四大鉴定”。 1.基原鉴定,即中药的原植(动)物鉴定,是应用生物分类学鉴定中药的生物学来源,确定其正确的学名,这是中药鉴定工作的基础。 2.性状鉴定,性状鉴定就是应用看、摸、闻、尝等方法,对中药的性状,包括形状、大小、色泽、表面、质地、断面、气味等特征进行观察,作为鉴别的依据,它是我国中医药工作者长期的丰富经验的总结,具有简单、快速、直观的特点,性状鉴别主要是观察完整的药材及饮片。 3.,显微鉴定,生药的显微鉴定主要是利用显微观察植(动)物生药内部的细胞、组织结构及细胞内含物,描述显微特征,制定显微鉴别的依据以鉴定真品、类似品或用品的一种方法。通常应用于单凭性状不易识别的生药,性状相似不易区别的多来源生药、破碎生药、粉末生药,以及用粉末、生药制成的丸散片丹等,中药成分制剂的鉴定。显微鉴定是一种专门技术,需要有植物解剖、植物显微化学的基本知识和显微切片的制作技术,显微鉴定也是鉴定中成药丸散片丹和制定品质标准的科学方法之一,对保证中成药的质量,有一定的科学意义和应用价值。 4.理化鉴定,是利用中药所含化学成分的某些物理性质或化学反应对中药进行定性和定量分析,一般应用于含不同化学成分、性状相似而又无明显显微鉴定特征的药材。 常用的现代中药鉴别方法: 由于物理、化学、生物学和计算机的加速发展使仪器分析的手段不断更新,紫外、红外、气相、高效液相、核磁共振、扫描电子显微镜、计算机图象处理分析、各种电泳、同功酶分析法、分子生物学技术、X射线衍射技术、差热分析技术、聚类分析法等均被吸收到中药鉴别的方法中来,大大的丰富了中药鉴别方法,形成了以“四大鉴别”法为基础,以理化分析为重点,逐步适应中药现代化并利于中药走向世界的一套更为科学、完善、先进的中药鉴别体系。 1.色谱法。色谱法是20世纪初产生,于60年代开始用于中药分析,经逐步完善最后列入1977年中国药典,并在以后各版药典的中药和成方制剂中的应用比例迅速上升,成为中药鉴别的最主要的方法之一。其理论基础是上述的层析法,根据色谱法的分离方法可为纸色谱法、薄层色谱法、柱色谱法、高效液相色谱法、气相色谱法。

紫外分光光度法检测规程

紫外分光光度法检测规程 目的: 5. 程序: 5.1. 定义:紫外分光光度法是通过被测物质在紫外光区或可见光区的特定 波长处或一定波长范围内光的吸收度,对该物质进行定性和定量分析的 方法,本法在药品检验中主要用于药品的鉴别、检查和含量测定。 5.1.1. 定量分析通常选择在物质的最大吸收波长处测出吸收度,然后用对照品或百分吸收系数求算出被测物质的含量,多用于制剂的含量测定。 5.1.2. 对已知物质定性可用吸收峰波长或吸收度比值作为鉴别方法;若化合物本身在紫外光区无吸收,而杂质在紫外光区有相当强度的吸收,或在杂质的吸收峰处化合物无吸收,则可用本法作杂质检查。 5.2. 原理:物质对紫外辐射的吸收是由于分子中原子的外层电子跃迁所产 生的, 因此,紫外吸收主要决定于分子的电子结构,故紫外光谱又称电子光谱。有机化合物分子结构中如含有共轭体系、芳香环或发色基团,均可在近紫外区(200-400nm)或可见光区(400-850nm)产生吸收。通常使用的紫外分光光度计的工作波长范围为190—900nm,因此又称紫外—可见分光光度计。紫外吸收光谱为物质对紫外区辐射的能量吸收图。朗伯·比耳(lambert—Beer)定律为光的吸收定律,它是紫外分光光度法定量分析的依据,其数学表达式为: A=lg 1 =ECL T 式中:A 为吸收度 T 为透光率 E 为吸收系数 C 为溶液浓度 L 为光路长度 如溶液的浓度(C)为1%(g/ml),光路长度(L)为1cm,相应的吸收系数为百分吸收系数,以E1% 1cm 表示。若溶液的浓度(C)为摩尔浓度(mol/L),光路长度为1cm时,则相应吸收系数为摩尔吸收系数,以ε来表示。

紫外分光光度法检测标准操作规程完整

1. 目的:建立用紫外分光光度法检测药品质量的标准操作规程,保证标准操作。 2. 引用标准:《中华人民国药典》(2015年版四部)通则。 3. 围:本标准适用于用紫外分光光度法进行的检测。 4. 责任人: QC检验员对本标准的实施负责,QC主管负责检查监督。 5. 容: 5.1定义:紫外分光光度法是通过被测物质在紫外光区的特定波长处或一定波长围光的吸收度,对该物质进行定性和定量分析的方法,本法在药品检验中主要用于药品的鉴别、检查和含量测定。 5.1.1. 定量分析通常选择在物质的最大吸收波长处测出吸收度,然后用对照品或百分吸收系数计算出被测物质的含量,多用于制剂的含量测定。 5.1.2. 对已知物质定性可用吸收峰波长或吸光度比值作为鉴别方法;若化合物本身在紫外光区无吸收,而杂质在紫外光区有相当强度的吸收,或在杂质的吸收峰处该化合物无吸收,则可用本法作杂质检查。 5.2 原理:物质对紫外辐射的吸收,是由于分子中原子的外层电子跃迁所产生的,因此,紫外吸收主要决定于分子的电子结构,故紫外光谱又称电子光谱。有机化合物分子结构中如含有共轭体系、芳香环或发色基团,均可在近紫外区(200~400nm)或可见光区(400~760nm)产生吸收。通常使用的紫外分光光度计的工作波长围为190~900nm,因此又称紫外-可见分光光度计。紫外吸收光谱为物质对紫外区辐射的能量吸收图。朗伯·比耳(lambert-Beer)定律为光的吸收定律,它是紫外分光光度法定量分析的依据,其数学表达式为: A=lg 1 =ECL T

式中:A 为吸光度 T 为透光率 E 为吸收系数 C 为溶液浓度 L 为光路长度 若溶液的浓度(C)为1%(g/ml),光路长度(L)为1cm,相应的吸收系数为百分吸收系数,以E1% 表示。若溶液的浓度(C)为摩尔浓度(mol/L),光路长度为1cm时,1cm 则相应吸收系数为摩尔吸收系数,以ε来表示。 5.3. 仪器: 5.3.1. 紫外分光光度计主要由光源、单色器、样品室、检测器、记录仪、显示系统和数据处理系统等部分组成。 5.3.2.为了满足紫外—可见光区全波长围的测定,仪器备有二种光源,即氘灯和碘钨灯,前者用于紫外区,后者用于可见光区。 5.3.3.单色器通常由进光狭缝、出光狭缝、平行光装置、色散元件、聚焦透镜或反射镜等组成,色散元件有棱镜和光栅二种,棱镜多用天然石英或熔融硅石制成,对200~400nm波长光的色散能力很强,对600nm以上波长的光色散能力较差,棱镜色散所得的光谱为非匀排光谱。光栅系将反射或透射光经衍射而达到色散作用,故常称为衍射光栅,光栅光谱是按波长作线性排列,故为匀排光谱,双光束仪器多用光栅为色散元件。 5.3.4.检测器有光电管和光电倍增管二种。 5.3.5.紫外分光光度计依据其结构和测量操作方式的不同,可分为单光束和双光束分光光度计二类。单光束分光光度计有些仍为手工操作,即固定在某一波长,分别测量比较空白、样品或参比的透光率或吸收度,操作比较费时,用于绘制吸收光谱图时很不方便,但适用于单波长的含量测定。双光束分光光度计藉扇形镜交替切换光路,使光分成样品(S)和参比(R)两光束,并先后到达检测器,检测器信号经调制分离成两光路对应信号,信号的比值直接用记录仪记录,双光束分光光度计操作简单,测量快速,自动化程度高,但作含量测定时,为求准确起见,仍宜用固定波长测量方式。 5.4. 紫外分光光度计的检定:

11、煤中全硫的测定方法

11、煤中全硫的测定方法 1 艾士法定硫 一、方法原理 将煤样与艾士卡试剂棍合灼烧,煤中硫生成硫酸盐,然后使硫酸根离子生成硫酸钡沉淀,按照硫酸钡的质量运算煤中全硫的含量。 二、试剂和材料 ( 1 )艾士卡试剂:以2 份质量的化学纯轻质氧化镁与1 份质量的化学纯无水碳酸钠混匀并研细至粒度小于0 . 2mm后,储存在密闭容器中。 ( 2 )盐酸(GB/T622 )溶液:( l + l )水溶液。 ( 3 )氯经钡(GB/T52 )溶液:100 g/L. ( 4 )甲基检溶液:20g/L 。 ( 5 )硝酸银(GB/T670 )溶液:10g / L ,加入几滴硝酸(CB/T626 ) .贮于深色瓶中. ( 6 )瓷增锅:容量30mL 和10 一20mL 两种。 三、仪器设备 ( i )分析天平:感量0.000lg ( 2 )马弗炉:附测温顺控温外表,能升温到900 ℃,温度可调并可通风。 四、 试验步骤 ( 1 )于30mL 柑祸内称取粒度小于0 . 2mm的空气干燥煤样1g(称准至0.0002g)和艾氏剂艳(称准至0.1g) ,认真混合平均,再用lg(称准至0 . 1g)艾氏剂覆盖.( 2 )将装有煤样的柑祸移入通风良好的马弗炉中,在1 一2h内从室温逐步加热到800-850 ℃,并在该温度下保持1 一2h 。 ( 3 )将增祸从炉中取出,冷却到呈温。用玻璃棒将柑祸中的灼烧物认真搅松捣碎(如发觉有未烧尽的煤粒,应在800 一850 ℃下连续灼烧0 . 5h ) ,然后移动到400mL 烧杯中。用热水冲洗增锅内壁,将洗液收入烧杯,再加入100 一150mL 刚煮沸的水,充分搅拌。如果现在尚有黑色煤粒漂浮在液面上.则此次测定作废。 ( 4 )用中速定性滤纸以倾泻法过滤,用热水冲洗3 次,然后将残渣移入滤纸中,用热水认真清洗至少10 次,洗液总体积约为250-300mL.

紫外分光光度法测定苯甲酸

紫外分光光度法测定苯甲酸 一 实验目的 1. 掌握吸收曲线的测定与绘制方法 2. 学习运用直接比较法求样品含量 3. 掌握752型分光光度计的使用方法 二 基本原理 样品中的苯甲酸在碱性条件下形成苯甲酸盐。苯甲酸及其盐对紫外光有选择性吸收,其吸收光谱的最大吸收波长在225nm 左右。 用752型分光光度计可测定物质在紫外光区、可见光区的吸收光谱,并可定量测定物质含量。 三 仪器与试剂 (一) 仪器 752型分光光度计,1cm 石英吸收池一套,50ml 容量瓶二只,刻度吸管5ml 、10ml 各一支,滴管一支 (二) 试剂 L NaOH 溶液; 苯甲酸标准贮备液:精确称取分析纯苯甲酸100mg (预先经105℃烘干),用LNaOH 溶液100ml 溶解后,再用蒸馏水稀释至1000ml 。此液1ml 相当于苯甲酸。 苯甲酸标准溶液:取苯甲酸贮备液,置于50ml 容量瓶中,用LNaOH 溶液定容,摇匀。此液1ml 相当于8μg 苯甲酸。 四 操作步骤 1. 苯甲酸吸收曲线的绘制 测定条件:氘灯,1cm 石英比色皿,苯甲酸标准溶液,LNaOH 为参比液 测定波长(nm ):从210nm~240nm 每隔一定波长(2nm~5nm )测定一次吸光度,在225nm 左右隔1nm 测定一次吸光度。用以上波长为横坐标,测得的吸光度为纵坐标绘制苯甲酸的紫外吸收曲线。 2. 直接比较法测定样品溶液中苯甲酸的含量 取样品溶液,置于50ml 容量瓶中,用LNaOH 溶液定容,摇匀后备用。 在上述吸收曲线中找出最大吸收波长,用此波长作为定量分析的测定波长。以LNaOH 溶液为参比液,在完全相同的条件下测定苯甲酸标准溶液和稀释后样品溶液的吸光度。 五 数据处理 按下式计算样品溶液中苯甲酸的浓度: 58A A 1050C A A )ml /g (s x s s x x ??=??=μC 式中C x 是待测样品液的浓度;C s 是苯甲酸标准液的浓度;A x 是待测样品液的吸光度;A s 是苯甲酸标准液的吸光度。 六 注意事项 1. 在测定时应将光闸拉出,不测定时立即将光闸推入,以保护光电管。 2. 当外界电压波动较大时要用电子交流稳压器,且随时观察并校正暗电流。 思考题 1. 比较722型分光光度计与752型分光光度计在结构和测量方法上有何异同点 2. 测定苯甲酸吸收曲线时,必须使用苯甲酸标准溶液,为什么

焦炭质量标准与检验

焦炭质量标准与检验 焦炭现货市场的标准化程度较高,质量指标体系和检验方法都有国家标准依据,现货市场普遍接受,实际执行情况较好,争议解决方式也较规范。 一、焦炭国家标准符合现货市场的需求 1.焦炭国标按用途来构建质量指标体系 国家标准GB/T 1996—2003《冶金焦炭》设定了高炉冶金焦炭的质量指标体系,包含三类指标:一是灰分Ad、硫分St,d、挥发分Vdaf、水分Mt这些反映焦炭基本组成成分的指标;二是是冷态的抗碎强度M40和耐磨强度M10、热态的反应后强度CSR和反应性CRI这些反映高炉内工作强度和工况的指标;三是粒度、焦末这些反映物理大小和形态的指标。 2.焦炭质量的检验也有国家标准作为依据 焦炭的抽样、制样以及所有指标化验方法都有国家标准作为依据。其中,样品的采样、制备可依据GB/T 1997《焦炭试样的采取和制备》;焦炭水分、灰分、挥发分指标的化验可依据GB/T 2001—1991《焦炭工业分析测定方法》;焦炭的焦末和粒度指标的检测可依据GB/T2005—1994《冶金焦炭的焦末含量及筛分组成的测定方法》;焦炭的机械强度M40和M10的测定可依据GB/T 1996—2003《冶金焦炭》中的附录;焦炭硫分指标的测定可依据GB/T 2286—1991《焦炭全硫含量测定方法》;焦炭热性质指标的测定可依据GB/T 4000—1996《焦炭反应性及反应后强度的测定方法》。 二、现货市场企业和机构普遍采用和认可焦炭国家标准 现货企业普遍参照国家标准来签订贸易合同,按国标的质量体系来定义商品的质量等级。 1.焦化厂出厂检验,钢厂到货检验,质检机构委托检验 大型焦化厂通常以同一批出炉的焦炭作为一个检验批次,依国标的指标体系对焦炭进行全指标的检验。大型焦化厂一般都具备热性质指标的检验设备,能够保证对每个生产班组的焦炭检验一次CSR和CRI。一些中小型焦化厂不具备热性质指标的检验能力,当客户有特殊要求时,一般会委托其他机构代为检验。钢厂对外采购时,不同焦炭厂家的不同生产批次都算作不同批次。每一批次的焦炭入厂时,钢厂都对上述所有指标进行检。 2.焦炭质量指标检验存在误差

相关主题
文本预览
相关文档 最新文档