当前位置:文档之家› 大数据常用的算法

大数据常用的算法

大数据常用的算法
大数据常用的算法

大数据常用的算法(分类、回归分析、聚类、关联规则)

在大数据时代,数据挖掘是最关键的工作。大数据的挖掘是从海量、不完全的、有噪声的、模糊的、随机的大型数据库中发现隐含在其中有价值的、潜在有用的信息和知识的过程,也是一种决策支持过程。其主要基于人工智能,机器学习,模式学习,统计学等。通过对大数据高度自动化地分析,做出归纳性的推理,从中挖掘出潜在的模式,可以帮助企业、商家、用户调整市场政策、减少风险、理性面对市场,并做出正确的决策。目前,在很多领域尤其是在商业领域如银行、电信、电商等,数据挖掘可以解决很多问题,包括市场营销策略制定、背景分析、企业管理危机等。大数据的挖掘常用的方法有分类、回归分析、聚类、关联规则、神经网络方法、Web 数据挖掘等。这些方法从不同的角度对数据进行挖掘。

(1)分类。分类是找出数据库中的一组数据对象的共同特点并按照分类模式将其划分为不同的类,其目的是通过分类模型,将数据库中的数据项映射到摸个给定的类别中。可以应用到涉及到应用分类、趋势预测中,如淘宝商铺将用户在一段时间内的购买情况划分成不同的类,根据情况向用户推荐关联类的商品,从而增加商铺的销售量。

(2)回归分析。回归分析反映了数据库中数据的属性值的特性,通过函数表达数据映射的关系来发现属性值之间的依赖关系。它可以应用到对数据序列的预测及相关关系的研究中去。在市场营销中,回归分析可以被应用到各个方面。如通过对本季度销售的回归分析,对下一季度的销售趋势作出预测并做出针对性的营销改变。

(3)聚类。聚类类似于分类,但与分类的目的不同,是针对数据的相似性和差异性将一组数据分为几个类别。属于同一类别的数据间的相似性很大,但不同类别之间数据的相似性很小,跨类的数据关联性很低。(4)关联规则。关联规则是隐藏在数据项之间的关联或相互关系,即可以根据一个数据项的出现推导出其他数据项的出现。关联规则的挖掘过程主要包括两个阶段:第一阶段为从海量原始数据中找出所有的高频项目组;第二极端为从这些高频项目组产生关联规则。关联规则挖掘技术已经被广泛应用于金融行业企业中用以预测客户的需求,各银行在自己的ATM 机上通过捆绑客户可能感兴趣的信息供用户了解并获取相应信

息来改善自身的营销。

(5)神经网络方法。神经网络作为一种先进的人工智能技术,因其自身自行处理、分布存储和高度容错等特性非常适合处理非线性的以及那些以模糊、不完整、不严密的知识或数据为特征的处理问题,它的这一特点十分适合解决数据挖掘的问题。典型的神经网络模型主要分为三大类:第一类是以用于分类预测和模式识别的前馈式神经网络模型,其主要代表为函数型网络、感知机;第二类是用于联想记忆和优化算法的反馈式神经网络模型,以Hopfield 的离散模型和连续模型为代表。第三类是用于聚类的自组织映射方法,以ART 模型为代表。虽然神经网络有多种模型及算法,但在特定领域的数据挖掘中使用何种模型及算法并没有统一的规则,而且人们很难理解网络的学习及决策过程。

(6)Web数据挖掘。Web数据挖掘是一项综合性技术,指Web 从文档结构和使用的集合C 中发现隐含的模式P,如果将C看做是输入,P 看做是输出,那么Web 挖掘过程就可以看做是从输入到输出的一个映射过程。

当前越来越多的Web 数据都是以数据流的形式出现的,因此对Web 数据流挖掘就具有很重要的意义。目前常用的Web数据挖掘算法有:PageRank算法,HITS算法以及LOGSOM 算法。这三种算法提到的用户都是笼统的用户,并没有区分用户的个体。目前Web 数据挖掘面临着一些问题,包括:用户的分类问题、网站内容时效性问题,用户在页面停留时间问题,页面的链入与链出数问题等。在Web 技术高速发展的今天,这些问题仍旧值得研究并加以解决。

THANKS !!!

致力为企业和个人提供合同协议,策划案计划书,学习课件等等

打造全网一站式需求

欢迎您的下载,资料仅供参考

大数据复习提纲

1、线性判别函数的正负和数值大小的几何意义 正(负)表示样本点位于判别界面法向量指向的正(负)半空间中;绝对值正比于样本点到判别界面的距离。 2、感知器算法特点 收敛性:经过算法的有限次迭代运算后,求出了一个使所有样本都能正确分类的W,则称算法是收敛的。感知器算法是在模式类别线性可分条件下才是收敛的。 感知器算法只对线性可分样本有收敛的解,对非线性可分样本集会造成训练过程的震荡,这也是它的缺点。 3、聂曼-皮尔逊判决准则、最小最大判决准则等区别 聂曼-皮尔逊判决准则主要用于某一种判决错误较另一种判决错误更为重要情况; 最小最大判别准则主要用于先验概率未知的情况。 4、马式距离较之于欧式距离的优点 优点:马氏距离不受量纲的影响,两点之间的马氏距离与原始数据的测量单位无关。由标准化数据和中心化数据(即原始数据与均值之差)计算出的二点之间的马氏距离相同。马氏距离还可以排除变量之间的相关性的干扰。缺点:夸大了变化微小的变量的作用。受协方差矩阵不稳定的影响,马氏距离并不总是能顺利计算出。尺度不变性;考虑了模式的分布 5、关联规则的经典算法有哪些 Apriori 算法;FP-tree;基于划分的算法 Apriori算法、GRI算法、Carma 6、分类的过程或步骤 答案一:ppt上的 1、模型构建(归纳) 通过对训练集合的归纳,建立分类模型。 2、预测应用(推论) 根据建立的分类模型,对测试集合进行测试。 答案二:老师版本的 训练样本的收集训练集的预处理、模型的选择、模型的训练(问老师后理解整理) 7、分类评价标准

1)正确率(accuracy)就是被分对的样本数除以所有的样本数,通常来说,正确率越高,分类器越好; 2)错误率(error rate) 错误率则与正确率相反,描述被分类器错分的比例,error rate = (FP+FN)/(P+N),对某一个实例来说,分对与分错是互斥事件,所以 accuracy =1 - error rate; 3)灵敏度(sensitive) sensitive = TP/P,表示的是所有正例中被分对的比例,衡量了分类器对正例的识别能力; 4)特效度(specificity) specificity = TN/N,表示的是所有负例中被分对的比例,衡量了分类器对负例的识别能力;5)精度(precision) 精度是精确性的度量,表示被分为正例的示例中实际为正例的比例, precision=TP/(TP+FP);6)召回率(recall) 召回率是覆盖面的度量,度量有多个正例被分为正例, recall=TP/(TP+FN)=TP/P= sensitive,可以看到召回率与灵敏度是一样的。 正确率:它表示的预测结果正确比例。包括正例和负例。 精确度:它表示的是预测是正例的结果中,实际为正例的比例。 召回率:它表示的是实际为正例样本中,预测也为正例的比例。 综合指标:F1=2*精确率*召回率/精确率+召回率,它实际上精确度和召回率的一个综合指标。 8、支持向量机及常见的核函数选择 SVM的目的是寻找泛化能力好的决策函数,即由有限样本量的训练样本所得的决策函数,在对独立的测试样本做预测分类时,任然保证较小的误差。 本质:求解凸二次优化问题,能够保证所找到的极值解就是全局最优解。 支持向量机的标准:使两类样本到分类面的最短距离之和尽可能大 支持向量机基本思想:通过训练误差和类间宽度之间的权衡,得到一个最优超平面 支持向量机是利用分类间隔的思想进行训练的,它依赖于对数据的预处理,即在更高维的空间表达原始模式。通过适当的到一个足够高维的非线性映射,分别属于两类的原始数据就能够被一个超平面来分隔。 支持向量机的基本思想可以概括为:首先通过非线性变换将输入空间变换到一个高维空间,然后在这个新空间中求取最优线性分类面,而这种非线性变换是通过定义适当的内积函数来实现的。支持向量机求得的分类函数形式上类似于一个神经网络,其输出是若干中间层节点的线性组合,而每一个中间层节点对应于输入样本与一个支持向量的内积,因此也被叫做支持向量网络。

数据挖掘领域的十大经典算法原理及应用

数据挖掘领域的十大经典算法原理及应用 国际权威的学术组织the IEEE International Conference on Data Mining (ICDM) 2006年12月评选出了数据挖掘领域的十大经典算法:C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART. 不仅仅是选中的十大算法,其实参加评选的18种算法,实际上随便拿出一种来都可以称得上是经典算法,它们在数据挖掘领域都产生了极为深远的影响。 1.C4.5 C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法.C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进: 1)用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足; 2) 在树构造过程中进行剪枝; 3) 能够完成对连续属性的离散化处理; 4) 能够对不完整数据进行处理。

C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。 2. The k-means algorithm即K-Means算法 k-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k < n。它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均方误差总和最小。 3. Support vector machines 支持向量机,英文为Support Vector Machine,简称SV 机(论文中一般简称SVM)。它是一种監督式學習的方法,它广泛的应用于统计分类以及回归分析中。支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假定平行超平面

数据挖掘十大待解决问题

数据挖掘领域10大挑战性问题与十大经典算法 2010-04-21 20:05:51| 分类:技术编程| 标签:|字号大中小订阅 作为一个数据挖掘工作者,点可以唔知呢。 数据挖掘领域10大挑战性问题: 1.Developing a Unifying Theory of Data Mining 2.Scaling Up for High Dimensional Data/High Speed Streams 3.Mining Sequence Data and Time Series Data 4.Mining Complex Knowledge from Complex Data 5.Data Mining in a Network Setting 6.Distributed Data Mining and Mining Multi-agent Data 7.Data Mining for Biological and Environmental Problems 8.Data-Mining-Process Related Problems 9.Security, Privacy and Data Integrity 10.Dealing with Non-static, Unbalanced and Cost-sensitive Data 数据挖掘十大经典算法 国际权威的学术组织the IEEE International Conference on Data Mining (ICDM) 2006年12月评选出了数据挖掘领域的十大经典算法:C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART. 不仅仅是选中的十大算法,其实参加评选的18种算法,实际上随便拿出一种来都可以称得上是经典算法,它们在数据挖掘领域都产生了极为深远的影响。 1. C4.5 C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法. C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进: 1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足; 2) 在树构造过程中进行剪枝; 3) 能够完成对连续属性的离散化处理; 4) 能够对不完整数据进行处理。 C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。 2. The k-means algorithm 即K-Means算法 k-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k < n。它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均方误差总和最小。 3. Support vector machines 支持向量机,英文为Support Vector Machine,简称SV机(论文中一般简称SVM)。它是一种監督式學習的方法,它广泛的应用于统计分类以及回归分析中。支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假定平行超平面间的距离或差距越大,分类器的总误差越小。一个极好的指南是C.J.C Burges的《模式识别支持向量机指南》。van der Walt 和Barnard 将支持向量机和其他分类器进行了比较。 4. The Apriori algorithm

十 大 经 典 排 序 算 法 总 结 超 详 细

数据挖掘十大经典算法,你都知道哪些? 当前时代大数据炙手可热,数据挖掘也是人人有所耳闻,但是关于数据挖掘更具体的算法,外行人了解的就少之甚少了。 数据挖掘主要分为分类算法,聚类算法和关联规则三大类,这三类基本上涵盖了目前商业市场对算法的所有需求。而这三类里又包含许多经典算法。而今天,小编就给大家介绍下数据挖掘中最经典的十大算法,希望它对你有所帮助。 一、分类决策树算法C4.5 C4.5,是机器学习算法中的一种分类决策树算法,它是决策树(决策树,就是做决策的节点间的组织方式像一棵倒栽树)核心算法ID3的改进算法,C4.5相比于ID3改进的地方有: 1、用信息增益率选择属性 ID3选择属性用的是子树的信息增益,这里可以用很多方法来定义信息,ID3使用的是熵(shang),一种不纯度度量准则,也就是熵的变化值,而 C4.5用的是信息增益率。区别就在于一个是信息增益,一个是信息增益率。 2、在树构造过程中进行剪枝,在构造决策树的时候,那些挂着几个元素的节点,不考虑最好,不然容易导致过拟。 3、能对非离散数据和不完整数据进行处理。 该算法适用于临床决策、生产制造、文档分析、生物信息学、空间数据建模等领域。 二、K平均算法

K平均算法(k-means algorithm)是一个聚类算法,把n个分类对象根据它们的属性分为k类(kn)。它与处理混合正态分布的最大期望算法相似,因为他们都试图找到数据中的自然聚类中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均方误差总和最小。 从算法的表现上来说,它并不保证一定得到全局最优解,最终解的质量很大程度上取决于初始化的分组。由于该算法的速度很快,因此常用的一种方法是多次运行k平均算法,选择最优解。 k-Means 算法常用于图片分割、归类商品和分析客户。 三、支持向量机算法 支持向量机(Support Vector Machine)算法,简记为SVM,是一种监督式学习的方法,广泛用于统计分类以及回归分析中。 SVM的主要思想可以概括为两点: (1)它是针对线性可分情况进行分析,对于线性不可分的情况,通过使用非线性映射算法将低维输入空间线性不可分的样本转化为高维特征空间使其线性可分; (2)它基于结构风险最小化理论之上,在特征空间中建构最优分割超平面,使得学习器得到全局最优化,并且在整个样本空间的期望风险以某个概率满足一定上界。 四、The Apriori algorithm Apriori算法是一种最有影响的挖掘布尔关联规则频繁项集的算法,其核心是基于两阶段“频繁项集”思想的递推算法。其涉及到的关联规则在分类上属于单维、单层、布尔关联规则。在这里,所有支持度大于最小支

数据挖掘算法

数据挖掘的10大经典算法 国际权威的学术组织the IEEE International Conference on Data Mining (ICDM) 2006年12月评选出了数据挖掘领域的十大经典算法:C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART. 不仅仅是选中的十大算法,其实参加评选的18种算法,实际上随便拿出一种来都可以称得上是经典算法,它们在数据挖掘领域都产生了极为深远的影响。 1. C4.5 C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法. C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进: 1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足; 2) 在树构造过程中进行剪枝; 3) 能够完成对连续属性的离散化处理; 4) 能够对不完整数据进行处理。 C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在 构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。 2. The k-means algorithm 即K-Means算法 k-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k < n。它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均方误差总和最小。 3. Support vector machines 支持向量机,英文为Support Vector Machine,简称SV机(论文中一般简称SVM)。它是一种監督式學習的方法,它广泛的应用于统计分类以及回归分析中。支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假定平行超平面间的距离或差距越大,分类器的总误差越小。一个极好的指南是C.J.C Burges的《模式识别支持向量机指南》。van der Walt 和 Barnard 将支持向量机和其他分类器进行了比较。 4. The Apriori algorithm

数据挖掘中十大经典算法

数据挖掘十大经典算法 国际权威的学术组织the IEEE International Conference on Data Mining (ICDM) 2006年12月评选出了数据挖掘领域的十大经典算法:C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART. 不仅仅是选中的十大算法,其实参加评选的18种算法,实际上随便拿出一种来都可以称得上是经典算法,它们在数据挖掘领域都产生了极为深远的影响。 1. C4.5 C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法. C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进: 1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足; 2) 在树构造过程中进行剪枝; 3) 能够完成对连续属性的离散化处理; 4) 能够对不完整数据进行处理。 C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。 2. The k-means algorithm 即K-Means算法 k-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k < n。它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均方误差总和最小。 3. Support vector machines 支持向量机,英文为Support Vector Machine,简称SV机(论文中一般简称SVM)。它是一种監督式學習的方法,它广泛的应用于统计分类以及回归分析中。支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假定平行超平面间的距离或差距越大,分类器的总误差越小。一个极好的指南是C.J.C Burges的《模式识别支持向量机指南》。van der Walt 和Barnard 将支持向量机和其他分类器进行了比较。 4. The Apriori algorithm Apriori算法是一种最有影响的挖掘布尔关联规则频繁项集的算法。其核心是基于两阶段频集思想的递推算法。该关联规则在分类上属于单维、单层、布尔关联规则。在这里,所有支持度大于最小支持度的项集称为频繁项集,简称频集。 5. 最大期望(EM)算法 在统计计算中,最大期望(EM,Expectation–Maximization)算法是在概率(probabilistic)模型中寻找参数最大似然估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variabl)。最大期望经常用在机器学习和计算机视觉的数据集聚(Data Clustering)领域。 6. PageRank PageRank是Google算法的重要内容。2001年9月被授予美国专利,专利人是Google创始人之一拉里?佩奇(Larry Page)。因此,PageRank里的page不是指网页,而是指佩奇,即这个

数据挖掘 资源

Data Mining: What Is Data Mining ? https://www.doczj.com/doc/47692930.html,/faculty/jason.frand/teacher/technologies/palace/datamining .htm Data Mining - An Introduction https://www.doczj.com/doc/47692930.html,/library/weekly/aa100700a.htm?iam=excite_1&terms=data+m ining Data Mining - An Introduction Student Notes https://www.doczj.com/doc/47692930.html,/tec/courses/datamining/stu_notes/dm_book_1.html Data Mining Overview https://www.doczj.com/doc/47692930.html,/dm/index.php3 Data Mining - Award Winning Software https://www.doczj.com/doc/47692930.html,/?source=goto Data Mining With MicroStrategy Best In Business Intelligence https://www.doczj.com/doc/47692930.html,/Software/Mining.asp?CID=1818dm Data Mining, Web Mining and Knowledge Discovery Directory https://www.doczj.com/doc/47692930.html,/ Data Miners Home Page https://www.doczj.com/doc/47692930.html,/ Data Mining and Knowledge Discovery Journal https://www.doczj.com/doc/47692930.html,/usama/datamine/ Data Mining and Knowledge Discovery Journal https://www.doczj.com/doc/47692930.html,/issn/1384-5810

学习笔记5:大数据预处理与大数据挖掘十大经典算法

学习笔记5:数据预处理与数据挖掘十大经典算法 前言在介绍了数据挖掘的一般流程、常用方法、应用功能和数据可视化之后,在本篇博文中,笔者想要分享一些在数据挖掘开始之前要做的一些事——数据预处理。在第二部分中,笔者整理了数据挖掘中的十大经典算法,与读者们共享。两部分分别从《数据挖掘中数据预处理的方法与技术》一文与网络中引用而来,作为自己和读者朋友们的学习笔记。在第三部分阶段小结中,笔者对近期的学习进行了阶段性的总结。 一、数据预处理现实中数据大多数都是不完整、不一致的,无法直接进行数据挖掘,或直接影响了挖掘结果。为了提高数据挖掘质量和数据挖掘效率,产生了数据预处理技术。对数据进行预处理,不但可以节约大量的空间和时间而且得到的挖掘结果能更好地起到决策和预测作用。数据预处理一般包括:数据清理,数据集成,数据变换,数据归约等方法。这些数据预处理技术根据数据挖掘项目的需要和原始数据的特点,在数据挖掘之前有选择的单独使用或综合使用,可大大提高数据挖掘模式的质量,降低实际挖掘所需要的时间。数据预处理技术整理如下:1、数据清理数据清理是数据预处理中最花费时间、最乏味的,但也是最重要的一步。该步骤可以有效地减少学习过程中可能出现相互矛盾的情

况。数据清理主要处理缺失数据,噪声数据,识别、删除孤立点。数据清理的基本方法有:(1)缺失数据处理:目前最常用的方法是使用最可能的值填充缺失值,比如可以用回归、贝叶斯形式化方法工具或判定树归纳等确定缺失值。这类方法依靠现有的数据信息来推测缺失值,使缺失值有更大的机会保持与其他属性之间的联系。还有其他一些方法来处理缺失值,如用一个全局常量替换缺失值、使用属性的平均值填充缺失值或将所有元组按某些属性分类,然后用同一类中属性的平均值填充缺失值。如果缺失值很多,这些方法可能误导挖掘结果。如果缺失值很少,可以忽略缺失数据。(2)噪声数据处理:噪声是一个测量变量中的随机错误或偏差,包括错误的值或偏离期望的孤立点值。目前最广泛的是应用数据平滑技术处理,具体包括:分箱技术,将存储的值分布到一些箱中,用箱中的数据值来局部平滑存储数据的值。具体可以采用按箱平均值平滑、按箱中值平滑和按箱边界平滑;回归方法,可以找到恰当的回归函数来平滑数据。线性回归要找出适合两个变量的“最佳”直线,使得一个变量能预测另一个。多线性回归涉及多个变量,数据要适合一个多维面;计算机检查和人工检查结合方法,可以通过计算机将被判定数据与已知的正常值比较,将差异程度大于某个阈值的模式输出到一个表中,然后人工审核表中的模式,识别出孤立点;聚类技术,将类似的值组织成群或“聚类”,落在

十大算法

十大算法 1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法, 同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法) 2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具) 3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现) 4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备) 5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用) 7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具) 8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用) 10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理) 一、蒙特卡罗算法 1946年,美国拉斯阿莫斯国家实验室的三位科学家John von Neumann,Stan Ulam 和Nick Metropolis共同发明了,蒙特卡罗方法。此算法被评为20世纪最伟大的十大算法之一。蒙特卡罗方法(Monte Carlo method),又称随机抽样或统计模拟方法,是一种以概率统计理论为指导的一类非常重要的数值计算方法。此方法使用随机数(或更常见的伪随机数)来解决很多计算问题的方法。由于传统的经验方法由于不能逼近真实的物理过程,很难得到满意的结果,而蒙特卡罗方法由于能够真实地模拟实际物理过程,故解决问题与实际非常符合,可以得到很圆满的结果。 蒙特卡罗方法的基本原理及思想如下: 当所求解问题是某种随机事件出现的概率,或者是某个随机变量的期望值时,通过某种“实验”的方法,以这种事件出现的频率估计这一随机事件的概率,或者得到这个随机变量的某些数字特征,并将其作为问题的解。有一个例子可以使你比较直观地了解蒙特卡洛方法:假设我们要计算一个不规则图形的面积,那么图形的不规则程度和分析性计算(比如,积分)的复杂程度是成正比的。蒙特卡洛方法是怎么计算的呢?假想你有一袋豆子,把豆子均匀地

28个不得不看的经典编程算法!!数学软件计算机的进来!~

前十个是来自圣经的十大算法: 发起人的描述:《来自圣经的证明》收集了数十个简洁而优雅的数学证明,迅速赢得了大批数学爱好者的追捧。如果还有一本《来自圣经的算法》,哪些算法会列入其中呢? 第一名:Union-find 严格地说,并查集是一种数据结构,它专门用来处理集合的合并操作和查询操作。并查集巧妙地借用了树结构,使得编程复杂度降低到了令人难以置信的地步;用上一些递归技巧后,各种操作几乎都能用两行代码搞定。而路径压缩的好主意,更是整个数据结构的画龙点睛之笔。并查集的效率极高,单次操作的时间复杂度几乎可以看作是常数级别;但由于数据结构的实际行为难以预测,精确的时间复杂度分析需要用到不少高深的技巧。 第二名:Knuth-Morris-Pratt字符串匹配算法 关于此算法的介绍,请参考此文:六、教你从头到尾彻底理解KMP算法。KMP算法曾经落选于二十世纪最伟大的十大算法,但人们显然不能接受,如此漂亮、高效的KMP算法竟然会落选。所以,此次最终投票产出生,KMP算法排到了第二名。 第三名:BFPRT 算法 1973 年,Blum、Floyd、Pratt、Rivest、Tarjan集体出动,合写了一篇题为“Time bou nds for selection” 的论文,给出了一种在数组中选出第k 大元素的算法,俗称"中位数之中位数算法"。依靠一种精心设计的pivot 选取方法,该算法从理论上保证了最坏情形下的线性时间复杂度,打败了平均线性、最坏O(n^2) 复杂度的传统算法。一群大牛把递归算法的复杂度分析玩弄于骨掌股掌之间,构造出了一个当之无愧的来自圣经的算法。 我在这里简单介绍下在数组中选出第k大元素的时间复杂度为O(N)的算法: 类似快排中的分割算法: 每次分割后都能返回枢纽点在数组中的位置s,然后比较s与k的大小 若大的话,则再次递归划分array[s..n], 小的话,就递归array[left...s-1] //s为中间枢纽点元素。 否则返回array[s],就是partition中返回的值。//就是要找到这个s。 找到符合要求的s值后,再遍历输出比s小的那一边的元素。 各位可参考在:算法导论上,第九章中,以期望线性时间做选择,一节中, 我找到了这个寻找数组中第k小的元素的,平均时间复杂度为O(N)的证明:上述程序的期望运行时间,最后证明可得O(n),且假定元素是不同的。 第四名:Quicksort(快速排序) 快速排序算法几乎涵盖了所有经典算法的所有榜单。它曾获选二十世纪最伟大的十大算法(参考这:细数二十世纪最伟大的10大算法)。关于快速排序算法的具体介绍, 请参考我写的这篇文章:一之续、快速排序算法的深入分析,及十二、快速排序算法之所有版本的c/c++实现。

数据挖掘算法摘要

国际权威的学术组织the IEEE International Conference on Data Mining (ICDM) 2006年12月评选出了数据挖掘领域的十大经典算法:C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART. 不仅仅是选中的十大算法,其实参加评选的18种算法,实际上随便拿出一种来都可以称得上是经典算法,它们在数据挖掘领域都产生了极为深远的影响。 1. C4.5 C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法. C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进: 1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足; 2) 在树构造过程中进行剪枝; 3) 能够完成对连续属性的离散化处理; 4) 能够对不完整数据进行处理。 C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法 的低效。 2. The k-means algorithm 即K-Means算法 k-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k < n。它与处理混合正态分布的最大期望算法很相似,因为他们都 试图找到数据中自然聚类的中心。它假设对象属性来自于空间向量,并且目标 是使各个群组内部的均方误差总和最小。 3. Support vector machines 支持向量机,英文为Support Vector Machine,简称SV机(论文中一般简称SVM)。它是一种監督式學習的方法,它广泛的应用于统计分类以及回归分析中。支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个 最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分 隔超平面使两个平行超平面的距离最大化。假定平行超平面间的距离或差距越大,分类器的总误差越小。一个极好的指南是C.J.C Burges的《模式识别支持向量机指南》。van der Walt 和 Barnard 将支持向量机和其他分类器进行了 比较。 4. The Apriori algorithm Apriori算法是一种最有影响的挖掘布尔关联规则频繁项集的算法。其核心是基于两阶段频集思想的递推算法。该关联规则在分类上属于单维、单层、布

数据挖掘10大算法

数据挖掘十大算法1 https://www.doczj.com/doc/47692930.html,/600009052/note/472629892 数据挖掘十大经典算法 国际权威的学术组织the IEEE International Conference on Data Mining (ICDM) 2006年12月评选出了数据挖掘领域的十大经典算法:C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART. 不仅仅是选中的十大算法,其实参加评选的18种算法,实际上随便拿出一种来都可以称得上是经典算法,它们在数据挖掘领域都产生了极为深远的影响。 1.C4.5 C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法. C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进: 1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足; 2) 在树构造过程中进行剪枝; 3) 能够完成对连续属性的离散化处理; 4) 能够对不完整数据进行处理。 C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。 2. The k-means algorithm 即K-Means算法 k-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k < n。它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均方误差总和最小。 3. Support vector machines 支持向量机,英文为Support Vector Machine,简称SV机(论文中一般简称SVM)。它是一种監督式學習的方法,它广泛的应用于统计分类以及回归分析中。支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假定平行超平面间的距离或差距越大,分类器的

数据挖掘十大算法及案例

数据挖掘十大算法及经典案例 一、数据挖掘十大经典算法 国际权威的学术组织the IEEE International Conference on Data Mining (ICDM) 2006年12月评选出了数据挖掘领域的十大经典算法:C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART。 不仅仅是选中的十大算法,其实参加评选的18种算法,实际上随便拿出一种来都可以称得上是经典算法,它们在数据挖掘领域都产生了极为深远的影响。 (一)C4.5 C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法。C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进: 1. 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足; 2. 在树构造过程中进行剪枝; 3. 能够完成对连续属性的离散化处理; 4. 能够对不完整数据进行处理。 C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。

(二)The k-means algorithm 即K-Means算法 k-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k < n。它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均方误差总和最小。 (三)Support vector machines 支持向量机,英文为Support Vector Machine,简称SV机(论文中一般简称SVM)。它是一种監督式學習的方法,它广泛的应用于统计分类以及回归分析中。支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假定平行超平面间的距离或差距越大,分类器的总误差越小。一个极好的指南是C.J.C Burges的《模式识别支持向量机指南》。van der Walt 和Barnard 将支持向量机和其他分类器进行了比较。 (四)The Apriori algorithm Apriori算法是一种最有影响的挖掘布尔关联规则频繁项集的算法。其核心是基于两阶段频集思想的递推算法。该关联规则在分类上属于单维、单层、布尔关联规则。在这里,所有支持度大于最小支持度的项集称为频繁项集,简称频集。 (五)最大期望(EM)算法

数据挖掘十大经典算法(第八章)

Chapter8 k NN:k-Nearest Neighbors Michael Steinbach and Pang-Ning Tan Contents 8.1Introduction (151) 8.2Description of the Algorithm (152) 8.2.1High-Level Description (152) 8.2.2Issues (153) 8.2.3Software Implementations (155) 8.3Examples (155) 8.4Advanced Topics (157) 8.5Exercises (158) Acknowledgments (159) References (159) 8.1Introduction One of the simplest and rather trivial classi?ers is the Rote classi?er,which memorizes the entire training data and performs classi?cation only if the attributes of the test object exactly match the attributes of one of the training objects.An obvious problem with this approach is that many test records will not be classi?ed because they do not exactly match any of the training records.Another issue arises when two or more training records have the same attributes but different class labels. A more sophisticated approach,k-nearest neighbor(k NN)classi?cation[10,11,21],?nds a group of k objects in the training set that are closest to the test object,and bases the assignment of a label on the predominance of a particular class in this neighborhood.This addresses the issue that,in many data sets,it is unlikely that one object will exactly match another,as well as the fact that con?icting information about the class of an object may be provided by the objects closest to it.There are several key elements of this approach:(i)the set of labeled objects to be used for evaluating a test object’s class,1(ii)a distance or similarity metric that can be used to compute This need not be the entire training set. 151

人工智能数据挖掘十大经典算法

数据挖掘十大经典算法 一、C4.5 C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法。 C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进: 1)用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足; 2)在树构造过程中进行剪枝; 3)能够完成对连续属性的离散化处理; 4)能够对不完整数据进行处理。 C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。 1、机器学习中,决策树是一个预测模型;他代表的是对象属性与对象值之间的一种映射关系。树中每个节点表示某个对象,而每个分叉路径则代表的某个可能的属性值,而每个叶结点则 对应从根节点到该叶节点所经历的路径所表示的对象的值。决策树仅有单一输出,若欲有复数输出,可以建立独立的决策树以处理不同输出。 2、从数据产生决策树的机器学习技术叫做决策树学习,通俗说就是决策树。 3、决策树学习也是数据挖掘中一个普通的方法。在这里,每个决策树都表述了一种树型结构,他由他的分支来对该类型的对象依靠属性进行分类。每个决策树可以依靠对源数据库的分割进行数据测试。这个过程可以递归式的对树进行修剪。当不能再进行分割或一个单独的类可以被应用于某一分支时,递归过程就完成了。另外,随机森林分类器将许多决策树结合起来以提升分类的正确率。 决策树是如何工作的? 1、决策树一般都是自上而下的来生成的。 2、选择分割的方法有好几种,但是目的都是一致的:对目标类尝试进行最佳的分割。 3、从根到叶子节点都有一条路径,这条路径就是一条―规则 4、决策树可以是二叉的,也可以是多叉的。 对每个节点的衡量: 1)通过该节点的记录数 2)如果是叶子节点的话,分类的路径 3)对叶子节点正确分类的比例。

相关主题
文本预览
相关文档 最新文档