当前位置:文档之家› 铅酸蓄电池发展简史

铅酸蓄电池发展简史

铅酸蓄电池发展简史
铅酸蓄电池发展简史

铅酸蓄电池发展简史

铅酸蓄电池1859年由法国人普兰特创造,1881年法国人富尔发明以铅化合物涂在铅片上,可以很快形成活性物质。

①20世纪20年代由美国EXIDE公司推出的管式极板,用多缝隙的

硬橡胶管容纳活性物质,以一支铅合金棒插在中间导电,这就大大提高了要板的耐深度充放电的能力,硬橡胶管现已由无纺布或玻璃纤维管所取代,管式极板多用于动力牵引型蓄电池。

②50年代由美国DELCO公司首先推出用无锑合金为板栅的免维护

汽车蓄电池,免去了以往汽车蓄电池须定期补水的工作,现在免维护式已经是汽车蓄电池的主要选择。

③70年代由美国DEVIFF氏创新的阀控式蓄电池。

④1970年以来出现拉网式板栅(目前国内湖北骆驼及保定风帆等)微孔PE及PVC隔板

单体间的穿壁焊技术(汽车及摩托车电池)

铅钙合金的加铝及加锡

铅酸蓄电池的基本结构与分类

铅酸蓄电池由正极板、负极板、隔板、电槽及电解液组成,此外还有一些零件如气塞、连接条、极柱等等,分述如下:

⑴正极板包括涂膏式、形成式、铅布式、铅箔式等

⑵负极板包括涂膏式、铅布式、铅箔式。

⑶隔板包括微孔橡胶式、PVC、微孔PVC(叉车电池)、AGM (阀控铅酸蓄电池).PE代式隔板(汽车免维护电池)

⑷电池槽硬橡胶式及塑料槽(ABS及PP料等)如我们公司阀控电池用ABS;汽车及摩托车免维护电池用PP料

⑸电解液一律为稀硫酸(1.28,1.23,1.26,1.29,1.315,1.325,1.34);有一部分做成胶体

铅酸蓄电池的主要品种

1、起动用蓄电池:这是铅酸蓄电池品种中最大的一个,专为汽车

的起动、照明、点火提供能源。因要求放电电流大,故均用薄的涂膏式极板组成,最早每只为6V,现今为12V,正在向36V转变2、固定型蓄电池,作为备用电源,广泛用于邮电、电站、医院、

会堂等处。

3、助力车蓄电池(如12V12AH及12V18AH)

4、铁路客车蓄电池

5、内燃机车用蓄电池专供内燃机车起动及照明,长期使用管式

极板,近年来已改为涂膏式阀控蓄电池,型号为NG-462等。

6、摩托车用蓄电池用于摩托车的起动点火与照明

7、牵引蓄电池用于各种蓄电池、叉车、铲车、矿车、矿用电

机车、要求深充放。多采用管式正极板。

铅酸蓄电池的分类

A、按极板型式分

1、形成式正极板为纯铅板用电化方法生成过氧化铅、负极板

曾经用箔式,后改为涂膏式。

2、涂膏式这是用得最广泛的,即以铅合金板栅涂上铅膏。

3、铅网式用玻璃纤维复以薄层纯铅,制成铅线,以铅线织成布状,称为铅布,以铅布取代板栅。其优点是比合金板栅轻、但涂膏后其整体刚度差,不应垂直,只能水平放置,故构成的蓄电池称水平电池,这种蓄电池内阻小,比能量高。但自放电亦高,适用于牵引车用。

4、卷绕式有两种,其一用厚0.7mm的纯铅板栅涂膏,另一用厚仅0.05mm的铅箔涂膏。

B、按荷电状态分

1、干荷电式正负极板均保持化成后的荷电状态

2、干放电式正负极板化成后未加处理,故负极已被大气氧化,使用前除了注酸外,还要长期间的初充电才能投入使用

3、湿荷电式产品出厂时不但正负极板处于干荷电态,连稀酸也由厂方加好,马上可以用,如库存已久,可稍补充电再用。

4、免维护式当今汽车蓄电池的最主要形式,与上述湿荷式不同在于采用无锑合金,自放电小,使用中水损耗小,在整个使用期中不必补水。

5、阀控式与免维护式之不同在于AGM隔板且为贫液式,所具阴极还原作用,充电时一般不会排出气体,故俗称密闭式。

板栅制造过程及质量控制

板栅俗称格子体,是由铅基合金通过浇铸或压铸而成的。板栅在蓄电池中的作用有三个方面:一个作为活性物质的载体起着骨架的支撑和粘附活性物质的作用。二是作为电流传导体起着集流、汇流和输流的作用;三是作为极板的均流体起着使电流均匀分布到活怀物质中的作用。因此,板栅的形成应具备下列条件:

1)板栅的构造应有利于与活性物质的牢固结合,即通过化学或机械的作用,使得板栅和活性物质之间存在着良好的“粘附力”。

2)制造板栅的材料要求电阻小,以便提高极板的导电能力和使电流均匀分布的能力。

3)板栅的结构不妨碍活性物质的膨胀,收缩,不能使极板发生变形、活性物质脱落和产生龟或翘曲。

4)板栅材料应有良好的抗蚀性,它的结构和组织应能抵抗充电或搁置期间电解液的腐蚀。

5)板栅材料应易于加工或铸造,且成本尽可能低廉

6)板栅材料应具备充分的硬度和机械强度,以满足极板的制造、加工要求。

板栅制造所用的材料

板栅是由铅基合金浇铸或压铸而成的。主要材料是金属铅(Pb)相对原子量为207.21,铅的密度为11.3437g/cm3;熔点为327.43℃铅基合金

纯铅柔软、机械强度差,铸造及加工成型不好,以优化板栅的成型及板栅的特性,在纯铅中掺杂不同金属元素所形成的合金编统称铅基合金

1、铅锑合金(Pb-Sb)

铅锑合金较纯铅有以下优点:

1)抗张强度、延展性、硬度及晶粒强化均明显优于纯铅2)熔点及收缩率低于纯铅,浇铸性能好,即熔化时有良好的流动性,容易充满模具型腔,铸造易成型,能够适合机

械化大规模生产。

3)比纯铅更低的热膨胀系数,因此,在循环充放电时,板栅不易变形。

4)伸缩变形小,增强了板栅与活性物质之间的“粘附力”,使活性物质不易脱落,有利用蓄电池的深充深放能力及循

环充放寿命。

5)腐蚀较纯铅更均匀,且Sb对板栅腐蚀膜中的PbO2的生长有显著的抑制作用。

铅锑合金缺点:

1)铅锑合金的电阻比纯铅稍大

2)铅锑合金板栅中的锑,易溶解进入电解液,移向负极,

加速了蓄电池的自放电。

3)由于锑的存在,降低了氢的析出电位,相对增加了氢的析出,从而加速了电解液中水的分解损失,而且,失水量

随着含锑量的增加而增加。

4)铅锑合金抗电化学腐蚀能力不如纯铅。

2、铅钙合金

由于铅锑合金存在蓄电池有自放电大及析氢、失水大等缺点,因此,在免维护蓄电池及阀控密封蓄电池的负极板栅中目前一般采用的是铅钙合金板栅。

铅钙合金的优点:

1)Pb-Ca合金的析氢过电位比Pb-Sb合金提高约0.2V,接近于纯铅,从而有效地抑制了蓄电池的自放电和充电时负极的析氢量。

2)沉淀硬化型铅钙合金,显著提高了板栅材料的机械强度,减缓了板栅的膨胀变形。

3)Pb-Ca合金的导电能力优于Pb-Sb合金。例如含钙0.09%r Pb-Ca合金电阻率为22*10-4Ω.cm,其导电性能比Pb-Sb(7%)合金提高20倍。因此,使用Pb-Ca合金板栅的蓄电池,其低温性能明显优于Pb-Sb合金。

4)Pb-Ca合金不存在锑向负极转移问题,因此,过充电流小,水损缓慢,有利用蓄电池的密封。

铅钙合金的缺点主要是;

1)由于钙易氧化,高温铸造时易烧损,故不易获得成分稳定的合金。由于合金的配制、熔化要求在惰性气氛保护之下,所以设备和操作较为复杂。

2)Pb-Ca合金不适于做深放电循环蓄电池的正极板栅材料,因为合金在阳极溶解过程中钙溶解成CaSO4,成为PbSO4新的结晶中心。腐蚀膜中的PbSO4的增加,膜的渗透性也差,膜更致密,可阻碍腐蚀的深入发展,致使蓄电池深放电后接受再充电能力变差,不适于深度循环放电使用的蓄电池。

3)合金的硬度大,有时会影响板栅的铸造成型。

4)铅钙合金在铸板生产时产生的浮渣若处理不当可能会发生燃烧和爆炸,而且铅钙合金与铅锑合金的渣灰不能混合放置,易反应生成有毒物质。

3、铅钙锡铝合金(Pb-Ca-Sn-Al)

铅钙合金的缺点之一是钙极易氧化或烧损,在没有惰性气体保护的条件下,铅钙合金和铅钙锡合金都难以进行正常的浇铸。在550℃条件下,含钙量达0.09%的铅钙锡合金液,经过3H,钙损失达成0.05%,钙含量降至0.04%以下时,铅钙合金板栅的硬度接近纯铅,难以满足工艺的需要。

防止钙的氧化可采用两种方法:一种是使金锅用惰性气体保护或采用密闭装置;另一种是采用铝作为铅钙锡合金液的保护剂。

板栅制造工艺流程

一、板栅制造工艺流程

板栅制造过程的质量控制

板栅的制造过程同时也是板栅的质量形成的过程,因此,板栅的设计、合金材料的质量与配比、合金熔化过程的损失、合金的温度、铸造设

备及铸模质量、铸模温度、脱模剂的配制、喷模刮模的方法和程度、合金的冷却速度、板栅厚度的均匀性、剪切方法、检查水平、贮存方式等都影响板栅质量的因素,应对这些因素实施有效的控制。

一、

板栅设计的影响

板栅的结构设计对铅酸蓄电池的电性能影响很大,如目前汽车

用铅酸蓄电池普遍使用垂直矩形板栅,其结构外框较粗厚,内部横竖筋条较细薄(其厚度约为外框的1/3或2/3

),并且横竖筋条是相互垂直沿线性均匀分布。这种结构的板栅不利于电流在极板中的分布,

由于横筋和竖筋的截面积相差不大,不利于电流沿竖筋方向极耳汇流,同时以极耳为中心一相同竖向距离上的电流分布不均衡,

从而导致竖向等位线出现较大的欧姆压降,使得极板的内阻增加,损耗电能。由于这种板栅结构横筋过密,吃膏量不高,因此所制得的正极板的活性物质与板栅的重量比偏低,降低了蓄电池的比能量。

另外,矩型板栅由于横竖小筋条比四框细,加之要浇铸过程中,由于模具温度均衡性,合金液流动性及冷却速度等诸原因,可

能使得小筋条或局部小筋条更偏细,实际中也难以检查到,因此,这种小筋条偏细的板栅,在蓄电池使用中易腐蚀断裂,影响产品性能。同时,这种板栅在单面涂板机上涂板时,压辊易把板栅压成一定程度的微凹形,使得极板两面铅膏涂填厚度不均,底下的一面依稀可见小筋条,严重时完全露筋,这种极板在使用时由于小筋条裸露在外,受硫酸的腐蚀速度加快,故耐腐蚀能力下降。同时极板两面铅膏厚度不一,使得在充电过程中活性物质有膨胀收缩程度不一,易引起极板的弯曲。

因此,板栅结构设计影响蓄电池的质量,目前,行业上已使用了一些改进型板栅及新型板栅,如斜筋型板栅,放射型板栅、拉网型板栅等都在汇流效果及板栅电位分布等方面有所提高和改进。

二、合金材料质量配比的控制

在板栅制造时,所使用的合金材料的质量和配比应符合设计与工艺的要求,合金配比若出现影响到板栅的质量。

1、合金的质量

购买的母合金或配制的合金中各金属的含量配比是影响板栅铸造质量的重要因素,特别是合金中的非金属杂质含量的影响,如果合金中含有过量的非金属夹杂,易在合金晶粒间形成杂晶界,这时板栅在浇铸后外观无何异常,但在贮存的“时效”过程中,在板栅筋条的交界处会产生细小的裂纹。

2、合金的蒸发与烧损

由于在板栅浇铸时,溶铅锅的温度高达500~600℃,使得合金中各种金属均产生不同程度的金属蒸气挥发损失及氧化烧损损失,特别是As Ca等金属的蒸发和烧损较为严重。

例如,AS在受热时会燃烧产生AS4O6的白烟,在615℃时升华生成四原子分子AS4(白砒)的有毒蒸气。距含AS 量为0.1%~0.2%的铅锑合金熔锅1m处的烟雾区内测量,可测得空气中AS的含量为0.008~0.010mg/m3 ,在铅锅的捞出的浮渣中测量,AS2O3含量为0.14%。

又例如,Ca的化学性质活泼,极易氧化,要高温的情况下更易氧化和烧损,在板栅的浇铸过程中,尽管有保护剂和保护措施,但一般情况下的损耗为10%~15%,在凝固重熔时,其损耗率可达25%左右。而配制合金时,耗损率特别大,如果没有得力的保护措施和得当的工艺,甚至可以使合金中的Ca丧失殆尽。

由此可见,板栅的浇铸过程中,As和Ca在合金铅锅内的蒸发和烧损是比较大,同理,也存在其他金属的蒸发与烧损。由于金属的蒸发与烧损,使得原先配比好的合金组份发生改变而易对板栅的重量产生影响。另外,由于铅锅温度较高,使得铅和锑也不同程度的受到氧化而形成铅、锑氧化物,使浮渣增加。一般情况下,铅、锑熔渣损失在

1.0%~

2.0%,烧减损失在0.2%~0.6%。同时,生成的浮渣会

渗杂要液态合金中,在铸件冷却过程中又析出,造成板栅出现白斑。因此,在板栅的浇铸过程中,应对合金液中合金的组份实施有效的控制,一般情况下,在铅锅的熔融合金液上覆盖一层木炭粉、石墨粉或石英粉,用以抑制蒸发和烧损。

在控制方面还应进行以下工作:

1)在合金投入使用之前,无论是母合金还是配制合金都要化验合金成份,特别是对非金属杂质含量的测定,

确认符合要求后方可投入使用,并有质量记录予以记

载。

2)无锑的铅钙合金,严格防止含锑合金的混入。

3)要根据工厂的实际情况,摸索和总结出合金的蒸发量的烧损量,并准确在定时,适量的补充,应有补充记

录。

4)对浇铸过程中,对捞出的浮渣应进行称量及成分化验,以确定损失的合金状况,并随时根据情况进行适量

的补充。

5)由于铅钙合金流动性差,不易浇铸,又因熔融温度高,钙耗大,影响合金的配比,所以要经常对合金液中

的钙含量进行测定,确保钙的配比。

三、合金在浇铸过程中的冷却速度

冷却速度是指液态合金在铸模内的凝固(即结晶)过程的快慢程度,它是决定形成的板栅合金晶粒大小和晶粒间夹层厚薄的重要因素。在浇铸过程中,模腔内液戊合金凝固的开始,也就是板栅晶粒形成的开始,晶粒的形成分为两步,首先是先形成晶核,又称为结晶中心,然后晶核长大,生成晶粒,于是形成固体的合金板栅。当合金温度冷却很快,造成过冷度很大(过冷度G=K(TM-T),式中K为常数,由合金性质决定;Tm为合金凝固点温度;T为实际温度),这时形成的结晶中心很多,使得晶体不不及长大,所形成的晶粒就细小、均匀、致密。反之,合金液冷却慢,生成的结晶中心较少,而晶体成长的速度较快,因此得到的晶粒就比较粗大,易造成板栅出现缩孔,气孔及收缩裂纹。同时,合金冷却速度慢,使得有害的杂质和易熔杂质有了聚集的时间,夹在晶粒的边缘,使晶间夹层增厚。由于蓄电池的实际使用过程中,板栅的腐蚀基本上是沿着晶间夹层的晶粒边界进行的,而且在晶粒之间发生的腐蚀速度比晶体内发生的腐蚀速度大的多。对于薄的晶间夹层,腐蚀产物易于把日粒的晶间夹层盖住,如果腐蚀不是多孔的,则腐蚀会变的很缓慢,对于厚的晶间夹层,腐蚀产物不易把表面与晶间夹层盖住。因此,在电流的作用下,从晶间夹层开始,腐蚀不断加剧,造成板栅不耐腐。合金液在模腔内的冷却速度是由合金液温度、模具温度及脱模剂喷层匹配结果所决定的。

四、合金温度的控制

合金的温度是保证合金在模腔内获得最佳冷却速度的一个因

素。不同的合金配方,应采用不同的浇铸温度,合金液的温度

过高或过低都不能浇铸出良好的板栅。因此,合金液的温度控

制是板栅浇铸过程中的一个重要环节。

(1)浇铸时合金液温度过高产生的问题

1)在模具温度一定的条件下,合金液温度过高,将使得合金要模腔内冷却凝固的过程较长,铸出的板栅内部结晶粒过大,晶粒间的夹层厚,使板栅内部结构疏松,严重时将使板栅极耳及边框出现裂纹,缩孔及筋条成型不均或断筋,而且板栅不耐腐。

2)合金液温度过高时,合金中的合金锑易被氧化,合金组分容易发生变化,浇铸时若冷却不好,凝固后的板栅会出现“白斑、“麻点”或板栅发白。

3)氧化铅、氧化锑浮渣增多,原材料损耗增多。

(2)浇铸时合金液温度过低产生的问题

1)在模具温度一定的条件下,合金温度过低,将使得合金液在模腔内冷却凝固的过程太短,模腔内夹杂的空气不能及时地排出,形成气孔,造成板栅多孔腐蚀。

2)合金液温度过低时,由于合金冷却太快,降低了合金液的流动性,造成合金充模能力降低,使得腔内板栅筋条不能全部铸满,出现筋条不均匀或断筋。

3)合金液温度过低时,合金凝固易产生偏析并形成偏析线,在板栅的贮存过程中,由于内应力的作用,易使析栅产生裂纹。

因此,在板栅的浇铸过程中,应加严对合金温度的控制,具体应进行以下工作:

1)保证合金锅加热系统的完好,并定期进行检查。

2)温度测量仪保证完好,并定期进行计量校准。

3)定期测记合金液的温度,特别是铸板机浇铸端头的合金液的温度,保证合金液的温度符号要求。

五、模具温度的控制

要保证合金液在模腔内的最佳冷却速度,不但要选定正确、控制准确的合金液的温度,同时也必须选定和控制好模具的温度,因为,一般合金液从注入模具到凝固成型,在模具内需要停留5~10S,待凝固完全后,才能打开模具,取出板栅。这就需要模具保持一定的温度,才能保证合金液有一个正常的凝固速度。也就是要保证整个模腔内各处的液态合金的凝固速度均匀一致。

1模具温度过低会产生的问题

1)在正常的合金液温度下,如果模具的温度过低,将使液态合金的凝固速度过快,使得板栅在凝固过程中,极耳、边框与横、竖筋条凝固速度不一致,易造成厚、薄的交界处收缩程度不地,冷却后形成裂纹,也易造成内部和外部合金凝固速度不一样,造成收缩和疏松,使板栅耐腐蚀性降低

2)模具温度过低,使得合金液的流动性差,热的合金液还未流到模具下部就凝固了,使得

板栅下部成型差。

2、模具温度过高会产生的问题

1)在正常的合金液温度下,如果模具温度过高,使得合金液的模腔内的凝固速度过慢,形成的板栅合金晶粒结构粗大,板栅疏松而不耐腐蚀。

2)模具温度过高,将使得板栅的冷却速度不均匀,极耳及四边框容易产生裂纹,缺肉。

因此,在板栅的浇铸过程中,对模具温度应进行严格的控制,具体应进行以下工作:

1)模具应配备自控加温装置,否则模具温度很难控制,在许多工厂手工铸板时仅靠合金液的温度来调整模具温度或有采用木炭火保温或用喷枪喷烧模具内腔,都不是很好的办法,容易造成模具温度不均衡。一般情况下,只要在模具的动模板和定模板背面适当位置上增高电加热管(一般情况下,用4只功率为8~10KW的加热管即可),并配备相应的温度自动控制装置,就可以实现模具温度的自动控制。

2)模具温度一般控制在150℃左右为好,具体的模具温度要考虑板栅面积的大小,厚度和形状等因素。

3)要保证模具温度与合金液温度之间的最佳配合。合金温度高时,模具温度应适当低些,反之,合金液温度低时,模具温度应适当高些。

4)要掌握模具温度的分布及变化状态,并具备监控和测量显示手段,如果模具温度分布差异较大,则温度低处不易成型,温度高

处易出现热裂点,因此必须保证模具温度的均衡性。

5)要制定模具温度的检查方法及温变曲线,并定时进行检查,做好记录。

六、喷模、刮模的控制

前面说到在板栅的浇铸时,由于金属模具散热快且板栅的横竖筋条较为细小,很难保证熔融状态下的合金充满模具,另外,合金液直接接触模具将造成脱模困难,因此常采用软木粉县浮液作为脱模剂喷涂在模具内腔,起保温、隔热、润滑及调整厚度均匀性的作用。

1)润滑使板栅易于脱模。

2)保温在铸模内腔表面形成保温层,使模腔内的合金液不易很快散失热量,这样液态的合金在模腔内就能保持一定时间的流动性,因而在浇铸时液态的合金能充满模具的内腔。

3)调整合金的冷却速度形状较为复杂的板栅,耳部、四边框、横竖筋条、模具薄处和厚处的冷却速度不一样。厚的地方冷却慢、板栅容易出现缩孔和疏松结构,薄的地方及厚薄交界处冷却较快,板栅容易出现细筋的裂纹或断裂等现象,通过喷涂脱模剂,调整脱模剂厚度可调整合金的局部冷却速度,从现时防止上述弊病。4)调整板栅厚度通过喷涂脱模剂,可在模具内腔不同程度地调整沟槽的深浅,因此脱模剂的配制与脱模剂的喷涂是板栅浇铸时保证合金冷却速度的重要环节,因此对脱模剂的配制质量、脱模剂的喷模剂的喷涂方式及喷层的形成程度应有足够认识。这方面的主要问题是,配制完的脱模剂以及喷模时喷层的厚度是否均匀,

用仪器是无法检验的。对喷模、刮模的程度、薄部位、厚部位的程度全凭操作者依实际经验去掌握和处理。惊由于不同人员有操作水平、判断能力、工作责任心等均存在差异,这样就使得喷模、刮模的程度不地,从而导致浇铸的板栅易出现偏差和不均衡的现象。因此,对脱模剂的配制及喷模,刮模过程应进行严格的控制,具体应做以下工作:

A、对脱模剂配制人员、铸板操作人员,必须进行正规的专业

培训,包括基础知识,专业技术、操作方法等,经培训考核合格的人员允许上岗操作。

B、配制完的脱模剂必须经反复试用确认符合要求后方可投入

使用,使用过程中发现脱模剂以粘或发烯要及时地给予以调整,过期或变质的脱模剂禁止使用。

C、应制定详细的喷模、刮模的程序文件和检查方法,尽可能

有细化操作方法,加强巡检及质量记录。一般情况下,喷涂模具时,从模具内腔有左上角开始,喷涂时放低喷枪,每次喷涂宽度大约4~6mm,总共5次行程,这样重复3~4次,要确保喷枪与相近的喷模面部是相互垂直。

喷涂模具不要从模具正面的中心点开始,也不要使喷枪因手腕弯曲而摇摆,要保持喷枪和手腕关节固定,在敞开的模具前使喷枪从一侧喷向加一侧,喷枪与被喷涂的模具表面相距大约25cm,两半模具都以同样的方式喷涂。

D、喷模时要注意和调整模具的温度,模具温度过高,模具温

度过高,脱模剂易碳化、掉块。模具温度过低,脱模剂的水分挥发慢,脱模剂在模具表面粘不住,易造成下流,合适的温度是边气化边干燥。

E、要保证模具腔体四周和中间部位喷涂一致,防止漏铅液和

板栅糊筋及防止板栅上下左右厚薄不均,影响蓄电池装配。F、要注意喷层的厚度,平面喷层过厚,沟槽内喷层相对变薄,

合金液保温不够,容易凝固,板栅筋条浇铸不到位或不饱满,极耳大筋易穿孔;平面喷层过薄,沟槽内喷层相对变厚,合金液流通不畅,筋条易中断,极耳大筋易收缩发脆。

G、刮模晨要注意不要漏刮和刮得不均匀,并要掌握好刮模尺

度。

H、如果铸出的板栅出现毛刺,应打开模具,在发生毛刺的地

方进行补喷脱模剂,直至毛刺消除;如果发现板栅出现糊筋,应打开模具,把糊筋部位的脱模剂刷掉或刮掉重新喷涂,直至消除糊筋。一般情况下,在板栅开始铸成后,大约铸出20~30片时,就称量5片板栅以检查板栅的重量,如果铸出的板栅比规定的重量轻的多,则将模具的喷涂次数从3~4次减到2~3次;

如果板栅重量超重,则喷模次数应增加到4~5次,一定要将模具表面刮净并喷涂均匀,这样在以后的操作中就可以减少喷涂次数。另外,在喷涂时如果模具较凉,则应迅速喷涂,如果模具较热,喷涂速度就应减慢一些。

I、如果模具在喷涂以后太热,为使浇铸顺利进行,在不注铅液的

情况下,将模具开,闭5~6次,这样能降低和均衡模具的温度,另一种冷却模具温度的方法是注入铅液后立即停止操作,使铸件在模具内保持5~10S,这也是一个均衡模具温度有效方法。J、要经常对铸出的板栅进行重量称量和厚度测量,如其超过规定值,可增加喷涂次数;如其低于规定值,可减少喷涂次数或刮洗模具重新喷模。

K、喷枪使用后的处理在一班或一天工作结束后,将软木粉溶液从喷枪盛料杯中倒回原来的软木粉盛装容器内,用干净水将喷枪盛料杯和喷枪各部分洗净,用正常操作方式通过喷枪喷出水直接喷出干净的水为止,拆开喷枪,倒出盛料杯中的水,并让其晾干后收入工具箱内保存。

七、浇铸方法的控制

板栅的浇铸有铸板机浇铸方法和手工浇铸方法。一般情况下,在铸板机牌完好状态下,浇铸方法基本上是自动程序化的,在这里主要是指手工铸板的方法控制。

手工铸板是用铁勺从合金锅内舀取合金液,倒入铸模,稍量用布条沾取冷却水淋于注液口,待水分蒸发后打开模具,用刻刀撬开板栅用手将板栅取出,合闭模具,重复上述操作。利用冷却水蒸发的空隙时间,用刻刀刻掉注液口余料,用手撕掉板栅周围的边料,叠放在一旁,铸好的板栅每50片一垛堆放,待板栅定型后用刮刀刮掉板栅周围的毛刺。将余料投入合金锅继续使用。在板栅的浇铸过程中的质量控制要做到以下工作:

A、要控制合金从合金锅舀出倒入铸模的时间,即舀出后要

迅速倒入铸模,否则由于合金液的冷却速度太快导致合金液的温度下降影响浇铸质量。

B、要控制住小铁勺的温度,使之在闲置时始终处于预热状

态(妥善的置于铅锅内),否则,舀合金液时易使合金液冷却过快。

C、在浇铸过程中,为了加快浇铸的速度,常在浇口内的合

金液刚凝固时,用长毛刷、海绵团、布团等蘸水来加速浇口的冷却速度,从而达到加速铸件的冷却。在这个过程中一方面要控制好蘸水的时间不能过早,以免合金液崩溅;

另一方面要控制好蘸水的量,蘸水过早或水量过多,都将使上部的合金液冷却速度过快,而影响板栅成型质量。D、要控制好开模的时间,如果开模时间过早,铸件还未完

全凝固,则板栅易出现裂纹,同时取板时,易造成板栅的弯曲和变形。

E、开模取出板栅后,要迅速合模,尽量减少空模的时间以

减小模具温度的变化。

F、要掌握好合金液温度,模具温度与脱模剂喷层的相互关

系,以保证合金液的冷却速度达到板栅成型的要求。

G、对铸出的每片板栅都要进行表观质量检查,对板栅出现

变形,筋条断裂、极耳边框出现收缩,白斑、脆裂以及毛刺、糊筋等应剔出投回合金锅,一般情况下,查找如下原

铅酸蓄电池制造工艺

铅酸蓄电池制造工艺流程 1、极板的制造 包括:铅粉制造、板栅铸造、极板制造、极板化成、装配电池。 ⑴铅粉制造设备铸粒机或切段机、铅粉机及运输储存系统; ⑵板栅铸造设备熔铅炉、铸板机及各种模具; ⑶极板制造设备与膏机、涂片机、表面干燥、固化干燥系统等; ⑷极板化成设备充放电机; ⑸水冷化成及环保设备。 2、装配电池设备 汽车蓄电池、摩托车蓄电池、电动车蓄电池、大中小型阀控密封式蓄电池装配线、电池检测设备(各种电池性能检测)。 ⑴典型铅酸蓄电池工艺过程概述 铅酸蓄电池主要由电池槽、电池盖、正负极板、稀硫酸电解液、隔板及附件构成。 ⑵工艺制造简述如下 铅粉制造:将1#电解铅用专用设备铅粉机通过氧化筛选制成符合要求的铅粉。 板栅铸造:将铅锑合金、铅钙合金或其她合金铅通常用重力铸造的方式铸造成符合要求的不同类型各种板板栅。 极板制造:用铅粉与稀硫酸及添加剂混合后涂抹于板栅表面再进行干燥固化即就是生极板。 极板化成:正、负极板在直流电的作用下与稀硫酸的通过氧化还原反

应生产氧化铅,再通过清洗、干燥即就是可用于电池装配所用正负极板。 装配电池:将不同型号不同片数极板根据不同的需要组装成各种不同类型的蓄电池。 3、板栅铸造简介 板栅就是活性物质的载体,也就是导电的集流体。普通开口蓄电池板栅一般用铅锑合金铸造,免维护蓄电池板栅一般用低锑合金或铅钙合金铸造,而密封阀控铅酸蓄电池板栅一般用铅钙合金铸造。 第一步:根据电池类型确定合金铅型号放入铅炉内加热熔化,达到工艺要求后将铅液铸入金属模具内,冷却后出模经过修整码放。 第二步:修整后的板栅经过一定的时效后即可转入下道工序。板栅主要控制参数:板栅质量;板栅厚度;板栅完整程度;板栅几何尺寸等; 4、铅粉制造简介 铅粉制造有岛津法与巴顿法,其结果均就是将1#电解铅加工成符合蓄电池生产工艺要求的铅粉。铅粉的主要成份就是氧化铅与金属铅,铅粉的质量与所制造的质量有非常密切的关系。在我国多用岛津法生产铅粉, 而在欧美多用巴顿法生产铅粉。 岛津法生产铅粉过程简述如下: 第一步:将化验合格的电解铅经过铸造或其她方法加工成一定尺寸的铅球或铅段; 第二步:将铅球或铅段放入铅粉机内,铅球或铅段经过氧化生成氧化铅; 第三步:将铅粉放入指定的容器或储粉仓,经过2-3天时效,化验合格后

铅酸蓄电池结构详解

铅酸蓄电池结构详解 一、蓄电池的功用 蓄电池种类较多,根据电解液不同,有酸性和碱性之分。由于铅酸蓄电池内阻小,电压稳定,在短时间内能供给较大的起动电流,而且结构简单,价格较低,所以在汽车拖拉机上被广泛采用。 蓄电池为一可逆直流电源,在汽车拖拉机上及发电机并联,它的主要作用是: (1)发动机起动时,蓄电池向起动机和点火装置供电。起动发动机时,蓄电池必须在短时间内(5~10s)给起动机提供强大的起动电流(汽油机为200~600A。柴油机有的高达1000A)。 (2)在发电机不发电或电压较低发动机处于低速时,蓄电池向点火系及其它用电设备供电,同时向交流发电机供给他激励磁电流。(3)当用电设备同时接入较多,发电机超载时,蓄电池协助发电机共同向用电设备供电。 (4)当蓄电池存电不足,而发电机负载又较少时,可将发电机的电能转变为化学能储存起来,即充电。 (5)蓄电池还有稳定电网电压的作用。当发动机运转时,交流发电机向整个系统提供电流。蓄电池起稳定电器系统电压的作用。蓄电池相当于一个较大的电容器,可吸收发电机的瞬时过电压,保护电子元件不被损坏。延长其使用寿命。 二、蓄电池的构造

车用12V蓄电池均由6个单格电池串联而成,每个单格的标称电压为2V,串联成12V的电源,向汽车拖拉机用电设备供电。 蓄电池主要由极板、电解液、格板、电极、壳体等部分组成。 1.极板 极板分为正极板和负极板两种。蓄电池的充电过程是依靠极板上的活性物质和电解液中硫酸的化学反应来实现的。正极板上的活性物质是深棕色的二氧化铅(PbO2),负极板上的活性物质是海绵状、青灰色的纯铅(Pb)。 正、负极板的活性物质分别填充在铅锑合金铸成的栅架上,加入锑的目的是提高栅架的机械强度和浇铸性能。但锑有一定的副作用,锑易从正极板栅架中解析出来而引起蓄电池的自行放电和栅架的膨胀、溃烂,从而影响蓄电池的使用寿命。 负极板的厚度为1.8mm,正极板为2.2mm,为了提高蓄电池的容量,国外大多采用厚度为1.1~1.5mm的薄型极板。另外,为了提高蓄电池的容量,将多片正、负极板并联,组成正、负极板组。在每单格电池中,负极板的数量总比正极板多一片,正极板都处于负极板之间,使其两侧放电均匀,否则因正极板机械强度差,单面工作会使两侧活性物质体积变化不一致,造成极板弯曲。 2.隔板 为了减少蓄电池的内阻和体积,正、负极板应尽量靠近但彼此又不能接触而短路,所以在相邻正负极板间加有绝缘隔板。隔板应具有多孔性,以便电解液渗透,而且应具有良好的耐酸性和抗碱性。

铅酸蓄电池的装配过程

第九章铅酸蓄电池的装配过程及质量控制 铅酸蓄电池的装配是指将极板、隔板、槽盖及电解液配合组装形成铅酸蓄电池的过程,装配是铅酸蓄电池制造的最后一道工序,装配后形成成品蓄电池可以实现电能与化学能的相互转换。 第一节铅酸蓄电池零部件及技术要求 一、极板 极板是铅酸蓄电池的主体部件,是由板栅与活性物质(活化的铅膏)构成,按其结构形式极板分为涂膏式极板和管式极板,按其状态可分为普通极板和干荷电极板,按其功效可分为正极板和负极板。极板在铅酸蓄电池中的主要作用是: 1、电化反应的母体 2、电压形成的电极 3、电流形成的转换体 极板的技术要求详见第八章。 二、隔板 隔板是铅酸蓄电池重要的部件,又称“第三极板”,它的质量优劣直接影响到铅酸蓄电池的功能和功效,隔板由微孔橡胶或塑料或玻璃纤维材料制成,其一般以片状或袋状的形式存在于蓄电池中,其主要的作用是: 1、防止正、负极板接触短路并保证正、负极板实现最短的距离。 2、保证电解液中的正、负离子顺利通过参加电极反应。 3、电解液的载体。 4、阻缓正、负极板铅膏物质的脱落及极板受震损伤。 5、阻止一些对电极有害物质通过隔板进行迁移和扩散。 铅酸蓄电池用隔板应具有以下特性: ⑴、在硫酸中的应具有良好耐腐蚀性; ⑵、具有疏松多孔结构且能吸入大量的电解质溶液; ⑶、浸透性好; ⑷、有满足使用的机械强度和弹性; ⑸、具有一定的抗压性; ⑹、具有较小的电阻; ⑺、在一定温度范围内具有一定的耐温性; ⑻、具有一定耐老化性和耐氧化性。 铅酸蓄电池的种类很多,目前常用的有以下几类: 1、微孔橡胶隔板 微孔橡胶隔板是一种用生胶、硅酸以及其它添加剂制成的、具有10μm以下微孔的平板式隔板。它具有使用寿命长、可制厚度较小、电阻较低、没有毛刺和枝节等优点。缺点是被电解液浸渍的速度比较慢,成本较高,且不易制成0.5mm以下的薄板。此隔板多用于工业电池中。 微孔橡胶隔板的技术要求见表9—1 表9—1 微孔橡胶隔板物理化学性能

蓄电池基本知识培训试题

蓄电池基本知识培训试题 一、填空: 1、蓄电池按极板结构可分为:涂膏式、管式、形成式。 2、极板是铅酸蓄电池的主体部件,是由板栅与活性物质构成。 3、微孔橡胶隔板是一种用生胶硅酸以及其他添加剂制成的,具有10ūm以下微孔的平板式隔板。 4、蓄电池的主要部件,正负极板、极板、电池槽、电池液和一些零部件。 5、蓄电池封口的作用是防止电液溢流。 二、判断题 1、移动型蓄电池是为了便于携带,在移动情况下使用的电源 设备,因此,它具有体积大,重量轻,瞬时放电电流大和耐震、耐冻性较好等基本要求。(×) 2、蓄电池极板一般为单数,至少在三片以上,负极板总比正 极板多一块。(√) 3、蓄电池槽是用来储盛电解液与支撑极板,所以它必须具 有防止酸液漏泄,耐腐蚀、坚固和耐高温等条件。(√) 4、极板所能付出的能量与他的表面积成反比。(×) 5、蓄电池供给外电路电流时所做放电。(√) 三、问答题 1、什么叫蓄电池的容量、流程,理论容量、额定容量、实际 容量三者的区别?

答:蓄电池的容量是指在一定的放电条件下可以从电池中获得的电量,用A·H容量,W·H容量表示,A·H容量是电池输出的电量,W·H容量表示其作功能力的能量。 理论容量:根据活性物质的重量,按照法拉第定律求得的。 实际容量:是指在一定放电条件下(放电率、终止电压、温度)电池实际放出的电量,它总是低于理论容量。 额定容量:是指在设计电池和生产电池时规定或保证电池在放电条件下应该放出的最低限度容量。 2、说说特殊工作栓的工作原理。 答:特殊工作栓主要是由金刚沙压制而成,金刚沙有称刚玉,即氧化铝为多孔性物质一般孔率在30-40%,成型后用四氧乙烯处理,形成一层膜四氧乙烯有较强的憎水性,电池中出的酸雾遇到这层膜变为液珠,又流回电池起到防酸作用。 3、根据有关标准,产品型号的含义可分为三段,解释下列几 种电池型号的含义是什么? (1)6-DZM-10 6个单体串联、电动、助动用、密封、10AH (2)D330KT “D”电机“K”矿用“T”特殊,容量330AH (3)N-462 “N”内燃机用,容量462AH (4)GFM-300 单格电池,“G”“F”阀控“M”密封,容量300AH 4、什么叫穿壁焊? 穿壁焊:又称对焊,它是用对焊机将相邻单体极群的偏极柱。在

蓄电池的化成

蓄电池的化成 什么是“化成”? “化成”即“转化而成”之意,极板化成是指利用化学和电化学反应使极板转化成具有电化学特性的正、负极板的过程。化成以前的极板其铅膏物质的主体部分相同,都是由氧化铅、金属铅、硫酸铅、三碱式硫酸铅、四碱式硫酸铅等物质相组成,原则上不存在正、负极板之分。化成之前的极板不存在铅酸蓄电池电化学反应的所需的正极活性物质二氧化铅。负极活性物质为海棉状铅。虽然在极板结构、工艺添加剂方面形成了正、负极板之分,但此时却不具备铅酸蓄电池放电的正、负极板条件。而通过化成这一过程,使得准备形成正极板的极板铅膏物质转化成为以二氧化铅为主体的物相结构而形成正极板,同时使得准备形成负极板的极板铅膏转化成以海绵状铅为主体的物相结构而形成负极板。化成是蓄电池制造很关键的一道工序,其转化过程的好坏都将直接影响到蓄电池的性能。 对于同配方、同工艺、同批次的铅酸蓄电池,因为在化成过程中采用了不同的电流而会导致活性物质颗粒大小与排列形式的变化.通过研究发现,采用大电流化成有利于形成均匀致密的正极活性物质与界面结构,从而使电池在大电流放电的使用条件下,极板软化速度明显放缓,循环寿命大幅度提高,这一特性非常适合电动车电池的使用要求,因此可以成为电动车电池的主要化成形式.采用间歇脉冲充电方式可以有效控制大电流充电时的温升,为大电流化成在工业生产中的应用扫除了障碍。

一、化成电解液的控制 1、化成电解液密度的控制: 化成电解液密度对极板化成质量有所影响。如果密度较高,浸酸时,极板表面就会生成结晶较粗且较厚的硫酸铅层,使得化成所需的电能增大,时间增长;如果密度较低,浸酸后,初期电解液的导电率降低,且硫酸在极板深处的扩散速率降低,从而使得极板内部的铅膏转化困难,加剧水解析气,降低电流效率,增加耗能及化成时间。因此,在化成过程中,应对化成电解液密度进行控制。 硫酸的密度,以25℃时的密度为准,若测定的硫酸密度若不在25℃可按下式进行换算。 d25 = d t+ a( t-25) 式中: d25—换算成25℃时的硫酸密度(g/cm3); d t—温度为t℃时的硫酸密度(g/cm3); t —电解液实测温度(℃); a —硫酸密度的温度系数。 a=??? 2、化成电解液数量的控制: 极板化成时,所用的化成电解液量直接影响极板的化成质量。极板浸入电解液后,立即发生中和反应,使硫酸浓度降低,在化成开始后一段时间,化成电解液密度继续降低,到了化成中期,密度逐渐上升,后期达到基本不变。故在化成过程中,化成电解液的密度是一个变量,而其变化的幅度与化成电解液的数量有关。当液量较多时,密度变化就小,有利于极板化成和散热。当液量较少时,其密度变化就

铅酸蓄电池发展简史

铅酸蓄电池发展简史 铅酸蓄电池1859年由法国人普兰特创造,1881年法国人富尔发明以铅化合物涂在铅片上,可以很快形成活性物质。 ①20世纪20年代由美国EXIDE公司推出的管式极板,用多缝隙的 硬橡胶管容纳活性物质,以一支铅合金棒插在中间导电,这就大大提高了要板的耐深度充放电的能力,硬橡胶管现已由无纺布或玻璃纤维管所取代,管式极板多用于动力牵引型蓄电池。 ②50年代由美国DELCO公司首先推出用无锑合金为板栅的免维护 汽车蓄电池,免去了以往汽车蓄电池须定期补水的工作,现在免维护式已经是汽车蓄电池的主要选择。 ③70年代由美国DEVIFF氏创新的阀控式蓄电池。 ④1970年以来出现拉网式板栅(目前国内湖北骆驼及保定风帆等)微孔PE及PVC隔板 单体间的穿壁焊技术(汽车及摩托车电池) 铅钙合金的加铝及加锡 铅酸蓄电池的基本结构与分类 铅酸蓄电池由正极板、负极板、隔板、电槽及电解液组成,此外还有一些零件如气塞、连接条、极柱等等,分述如下: ⑴正极板包括涂膏式、形成式、铅布式、铅箔式等 ⑵负极板包括涂膏式、铅布式、铅箔式。 ⑶隔板包括微孔橡胶式、PVC、微孔PVC(叉车电池)、AGM (阀控铅酸蓄电池).PE代式隔板(汽车免维护电池)

⑷电池槽硬橡胶式及塑料槽(ABS及PP料等)如我们公司阀控电池用ABS;汽车及摩托车免维护电池用PP料 ⑸电解液一律为稀硫酸(1.28,1.23,1.26,1.29,1.315,1.325,1.34);有一部分做成胶体 铅酸蓄电池的主要品种 1、起动用蓄电池:这是铅酸蓄电池品种中最大的一个,专为汽车 的起动、照明、点火提供能源。因要求放电电流大,故均用薄的涂膏式极板组成,最早每只为6V,现今为12V,正在向36V转变2、固定型蓄电池,作为备用电源,广泛用于邮电、电站、医院、 会堂等处。 3、助力车蓄电池(如12V12AH及12V18AH) 4、铁路客车蓄电池 5、内燃机车用蓄电池专供内燃机车起动及照明,长期使用管式 极板,近年来已改为涂膏式阀控蓄电池,型号为NG-462等。 6、摩托车用蓄电池用于摩托车的起动点火与照明 7、牵引蓄电池用于各种蓄电池、叉车、铲车、矿车、矿用电 机车、要求深充放。多采用管式正极板。 铅酸蓄电池的分类 A、按极板型式分 1、形成式正极板为纯铅板用电化方法生成过氧化铅、负极板 曾经用箔式,后改为涂膏式。 2、涂膏式这是用得最广泛的,即以铅合金板栅涂上铅膏。

铅酸蓄电池充放电工艺

铅酸蓄电池充放电工艺 一、电池主要技术参数 1、铅酸蓄电池单格标称电压为2V(每槽),12V电池=2V×6槽,6V电池=2V×3槽。 2、电池安时容量(Ah)=放电电流(A)×放电时间(h) 。放电时间根据标准的要求选择,一般有5小时率、10小时率、20小时率。 3、充放电流(A)=电池安时容量(Ah)÷小时率(h) 。小时率(h)=电池安时容量(Ah)÷充放电流(A) 。 二、电池安时容量测试与判定(以12V10Ah 为例) 一般应根据要求的小时率容量进行恒流放电计算连续放电时间来判定是否合格。 例1、10小时率容量:10Ah=1A×10h 12V10Ah电池用1A电流放电应≥10小时为合格,若<10小时为不合格。 例2、20小时率容量:10Ah =0.5A×20h 12V10Ah电池用0.5A电流放电应≥20小时为合格,若<20小时为不合格。 例3、5小时率容量:10Ah=2A×5h 12V10Ah电池用2A电流放电应≥5小时为合格,若<5小时为不合格。 三、电池放电生产工艺(以12V10Ah为例) 1 、一般用5 小时率的电流放电至单格电压为1.6V时终止放电,若电池完全充足电后放电时间设置≥6小时。 2、例:12V10Ah电池放电电流设置为2A,终止电压设置为1.6V×6格=9.6V,放电时间设置6小时。

3、若采用10小时率放电单格终止电压设置为1.7V,则1.7V×6格(12V)=10.2V,放电电流设置为1A,放电时间设置≥12小时。 4、若采用20小时率放电单格终止电压设置为1.8V,则1.8V×6格(12V)=10.8V,放电电流设置为0.5A,放电时间设置≥24小时。 5、新装未充电电池根据极板带电量放电容量一般小于额定容量,根据实际测试而定。 四、电池充电生产工艺(以12V10Ah为例,指完全放电后。) 1、以10小时率的电流(1A)充电1小时,充电电压设置=2.5V×6格(12V)=15.0V。 2、以5小时率的电流(2A)充电5小时,充电电压设置=2.4V×6格(12V)=14.4V。 3、以10小时率的电流(1A)充电2小时,充电电压设置=2.5V×6格(12V)=15.0V。 4、以20小时率的电流(0.5A)充电2小时,充电电压设置=2.6V×6格(12V)=15.6V。 5、以50小时率的电流(0.2A)充电4小时,充电电压设置=2.75V×6格(12V)=16.5V。 五、例:12V10Ah铅酸蓄电池30台串联电池组充放电生产工艺(仅供参考) (电池组总标称电压12V×30台=360V,选用PCF-5A500V型充放电机。)

铅酸蓄电池设计计算

VRLA电池酸量确定 VRLA电池相对于以前的开口富液式电池,其最大的优势是在电池寿命期间不需要添加电解液或水维护,电池可以任意位置放置使用等等。这就要求电解液被完全固定在AGM隔板和活性物质中不能流动,并且为了实现其寿命期间不需要加酸加水维护,就必须要实现电池寿命期间内的氧循环,即不能有电解液的损失。而形成氧循环的关键一点要求就是要严格限定电池的内的酸液总量,并且必须保证AGM隔板留有10%左右的孔不被电解液所淹没,从而为氧气的循环复合提供通道。但是又必须要求电池中电解液的总量能够维持活性物质放电反应的需要。 要想使电池中电解液总量完全够用,又能够为氧气的循环复合提供通道,就需要根据电池的实际用途,正确确定和控制电池的加酸量,下面将从三个大的方面来探讨VRLA电池加酸量确定的问题。 1、最低加酸量 VRLA电池需要的酸体积,取决于电池放电态与荷电态所要求的电解液密度以及电池放电过程输出的总电量和放电率。通常在VRLA设计时,荷电态的电解液密度要求1.28-1.30g/cm3,当其放出100%额定容量时又希望电解液密度为1.07-1.09g/cm3.这就要求电池中电解液总量至少必须满足能够维持电池在一定条件下放出其额定容量所必须消耗的电解液

总量,因此VRLA电池的最低用酸量可根据电池反液压方程式推导如下: PbO2 + Pb + 2H2SO4 = 2PbSO4 + 2H2O 根据电池充放电反应的方程式,结合充放电态物质各自的电化学当量值可知,电池每放出1AH的电量,要消耗纯的H2SO4 3.66g,生成水0.67g. 设放电开始时电池中电解液密度为ρ1(15℃),对应的质量百分比浓度为m%,放电终了时电解液密度为ρ2,对应的质量百分比浓度为n%。当电解液浓度由ρ1降到ρ2时,反应开始时加入的密度为ρ1的酸的体积为V ml。则根据电池反应式中每放出1AH电量所消耗的硫酸量为3.66g,生成的水的质量为0.67g,经过方程式两边等值计算,整理得出VRLA电池中每放出1AH电量的最低用酸体积V的表达式为: V = (3.66-2.99n)/[(m-n)ρ1] 如果设定电池荷电态的电解液密度为1.28g/cm3,放电态的电解液密度为1.08 g/cm3,则将各自对应的质量百分比数值带入最低用酸体积V的表达式中可以得出放电容量为C的电池的最低用酸体积为: V = (3.66-2.99×11.5%)/[(36.8-11.5)% ×1.28] C = 10.24C

铅酸蓄电池行业准入条件正式版

中华人民共和国工业和信息化部 中华人民共和国环境保护部 公告 2012年第18号 为促进我国铅蓄电池行业结构调整和产业升级,规范行业投资行为,防止低水平重复建设,保护生态环境,提高资源综合利用效率,依据国家有关法律、法规和产业政策,工业和信息化部与环境保护部共同制定了《铅蓄电池行业准入条件》,现予以公告。 有关部门在对铅蓄电池生产项目进行投资管理、土地供应、环保核查、信贷融资、电力供给、安全许可等工作中要以本准入条件为依据。 附件:铅蓄电池行业准入条件 二〇一二年五月十一日 附件 铅蓄电池行业准入条件 为促进我国铅蓄电池及其含铅零部件生产行业持续、健康、协调发展,规范行业投资行为,依据《中华人民共和国环境保护法》、《重金属污染综合防治“十二五”规划》和《产业结构调整指导目录(2011年本)》等国家有关法律、法规和产业政策,按照合理布局、控制总量、优化存量、保护环境、有序发展的原则,制定铅蓄电池行业准入条件。 一、企业布局 (一)新建项目应在依法批准设立的县级以上工业园区内的相应功能区建设,符合《铅蓄电池厂卫生防护距离标准》(GB 11659)的要求。有条件的地区应将现有生产企业逐步迁入工业园区。重金属污染防控重点区域禁止新建铅蓄电池及其含铅零部件生产项目。所有新建、改扩建项目必须有所在地省级以上环境保护主管部门确定的重金属污染物排放总量来源。

(二)《建设项目环境影响评价分类管理名录》(环境保护部令第2号)第三条规定的各级各类自然保护区、文化保护地等环境敏感区内,以及土地利用总体规划确定的耕地和基本农田保护范围内,禁止新建、改扩建铅蓄电池及其含铅零部件生产项目。 二、生产能力 (一)新建、改扩建铅蓄电池生产企业(项目),建成后同一厂区年生产能力不应低于50万千伏安时(按单班8小时计算,下同)。 (二)现有铅蓄电池生产企业(项目)同一厂区年生产能力不应低于20万千伏安时;现有商品极板(指以电池配件形式对外销售的铅蓄电池用极板)生产企业(项目),同一厂区年极板生产能力不应低于100万千伏安时。 (三)卷绕式、双极性、铅碳电池(超级电池)等新型铅蓄电池,或采用扩展式(拉网、冲孔、连铸连轧等)板栅制造工艺的生产项目,不受生产能力限制。 三、不符合准入条件的建设项目 (一)开口式普通铅蓄电池(指采用酸雾未经过滤的直排式结构,内部与外部压力一致的铅蓄电池)生产项目。现有开口式普通铅蓄电池生产能力应予以淘汰。 (二)新建、改扩建商品极板生产项目。 (三)新建、改扩建外购商品极板组装铅蓄电池的生产项目。 (四)新建、改扩建干式荷电铅蓄电池(内部不含电解质,极板为干态且处于荷电状态的铅蓄电池)生产项目。 (五)新建、改扩建镉含量高于0.002%(电池质量百分比,下同)或砷含量高于0.1%的铅蓄电池及其含铅零部件生产项目。 (六)现有镉含量高于0.002%或砷含量高于0.1%的铅蓄电池及其含铅零部件生产能力应于2013年12月31日前予以淘汰。 四、工艺与装备 新建、改扩建企业(项目)及现有企业,工艺装备及相关配套设施必须达到下列要求:(一)项目应按照生产规模配备符合相关管理要求及技术规范的工艺装备和具备相应处理能力的节能环保设施。节能环保设施应定期进行保养、维护,并做好日常运行维护记录。新建、改扩建项目的工程设计和工艺布局设计应由具有国家批准工程设计行业资质的单位承担。 (二)熔铅、铸板及铅零件工序应设在封闭的车间内,熔铅锅、铸板机中产生烟尘的部位,应保持在局部负压环境下生产,并与废气处理设施连接。熔铅锅应保持封闭,并采用自动温控措施,加料口不加料时应处于关闭状态。禁止采用开放式熔铅锅和手工铸板工艺。新建、改扩建项目如采用重力浇铸板栅工艺,应实现集中供铅(指采用一台熔铅炉为两台以上铸板机供铅),现有项目采用重力浇铸板栅工艺的,应于2013年12月31日前实现集中供铅。 (三)铅粉制造工序应采用全自动密封式铅粉机。铅粉系统(包括贮粉、输粉)应密封,系统排放口应与废气处理设施连接。禁止使用开口式铅粉机和人工输粉工艺。 (四)和膏工序(包括加料)应使用自动化设备,在密封状态下生产,并与废气处理设施连接。禁止使用开口式和膏机。

铅酸蓄电池制造工艺流程及主要设备(精)

铅酸蓄电池制造工艺流程及主要设备 1、极板的制造 包括:铅粉制造、板栅铸造、极板制造、极板化成等。 ⑴铅粉制造设备铸粒机或切段机、铅粉机及运输储存系统; ⑵板栅铸造设备熔铅炉、铸板机及各种模具; ⑶极板制造设备和膏机、涂片机、表面干燥、固化干燥系统等; ⑷极板化成设备充放电机; ⑸水冷化成及环保设备。 2、装配电池设备 汽车蓄电池、摩托车蓄电池、电动车蓄电池、大中小型阀控密封式蓄电池装配线、电池检测设备(各种电池性能检测)。 ⑴典型铅酸蓄电池工艺过程概述 铅酸蓄电池主要由电池槽、电池盖、正负极板、稀硫酸电解液、隔板及附件构成。⑵工艺制造简述如下 铅粉制造:将1#电解铅用专用设备铅粉机通过氧化筛选制成符合要求的铅粉。板栅铸造:将铅锑合金、铅钙合金或其他合金铅通常用重力铸造的方式铸造成符合要求的不同类型各种板板栅。 极板制造:用铅粉和稀硫酸及添加剂混合后涂抹于板栅表面再进行干燥固化即是生极板。极板化成:正、负极板在直流电的作用下与稀硫酸的通过氧化还原反应生产氧化铅,再通过清洗、干燥即是可用于电池装配所用正负极板。 装配电池:将不同型号不同片数极板根据不同的需要组装成各种不同类型的蓄电池。 3、板栅铸造简介 板栅是活性物质的载体,也是导电的集流体。普通开口蓄电池板栅一般用铅锑合金铸造,免维护蓄电池板栅一般用低锑合金或铅钙合金铸造,而密封阀控铅酸蓄电池板栅一般用铅钙合金铸造。 第一步:根据电池类型确定合金铅型号放入铅炉内加热熔化,达到工艺要求后将铅液铸入金属模具内,冷却后出模经过修整码放。 第二步:修整后的板栅经过一定的时效后即可转入下道工序。板栅主要控制参数:板栅质量;板栅厚度;板栅完整程度;板栅几何尺寸等; 4、铅粉制造简介 铅粉制造有岛津法和巴顿法,其结果均是将1#电解铅加工成符合蓄电池生产工艺要求的铅粉。铅粉的主要成份是氧化铅和金属铅,铅粉的质量与所制造的质量有非常密切的关系。在我国多用岛津法生产铅粉,而在欧美多用巴顿法生产铅粉。岛津法生产铅粉过程简述如下:

铅酸蓄电池简易生产流程

铅酸蓄电池简易生产流程 电池工厂生产流程 铸铅零件 包板 1.2.1包板结构=正极板(PbO2)+AGM(玻璃纤维与棉的混合物)+负极板(棉状铅) 极板结构=板栅(成分铅钙,可把电集中在极耳,固定铅膏)+铅膏(主要放电物质)+极耳 电池中电流容量大小与正负极配比密切相关。 Eg, 4+5-,6V4AH2+3- 入铁盒。烧焊的前序动作,用于装包板。 上梳,形成烧焊部位。 摆铅零件。 烧焊。 焊合包板的正极板极耳,形成包板的正极点(铅零件)。焊合包板的负极板极耳,形成电池的负极点(铅零件)。 烧焊是VRLA的瓶颈产能。旭威有两把烧焊,1000PCS/把/天,总产能2000PCS/2把/天。 下模装底槽。 下模前,在正极连接处划红线,以示正极。 底槽为高强度,耐撞击的 ABS材质。 对焊。电池组的正负极对焊,形成回路。 试盖。 查假焊,扶正极位。 短路测试,用极板短路测试仪。 标型号,于电池盖上。 配胶,倒封盖胶。 胶为环氧树脂,起密封作用。 封盖。 电池底槽部位倒对盖口,向下正位,防露胶。露胶会导致酸稀释不到位,加大自放电,也可能导致内短路。注意密封要到位,否则易导致极板氧化,使电池的容量降低、寿命减短。 在正负极呈对角状态时,要注意反盖。 中盖胶固化。过烘干机,夏天1~,冬天~2H。 塞O型圈,用旋子加固。 塞端子,焊接。端子一般为铅合金,铜或其他合成物,表面镀银,采用最新的密封结构和技术。 倒极柱胶。先倒密封胶(环氧树脂),再倒色胶(一般的脱氧剂,红色为正极,黑色为负极),先后过烘干机烘干。 查气密性,开路或闭路(万用表),查外观。 配酸。一般为含有特殊添加剂浓度为22%~33%的稀硫酸,全部被吸附在AGM隔板中,电池中无流动硫酸,可任意放置使用。稀硫酸为电池中的电解液。 加酸。采用微电脑控制精密定量蓄电池加酸机,12孔型,9台。 分三次加酸,加酸后静止2H,以便AGM充分吸收酸液。 上安全阀。安全阀为耐酸抗老化的聚合橡胶,可自动排放电池内部过多的气体,并保持电池内部气压在安全范围。放电时通气,充电时闭合。 加垫片,上胶条(充电时酸会冒泡,可防止溢酸)。 初充电。时间范围为20~35H,采用微电脑控制多功能蓄电池充放电机,20台。 下胶条、垫片后,清洗电池。 查酸,查电压,全检,是否开路或闭路。采用微电脑控制蓄电池容量检测机,2台。 测电容量,抽检,采用微电脑蓄电池循环充放电测试仪,14台。 超声波封盖片。

铅酸蓄电池内化成工艺研究

铅酸蓄电池内化成工艺研究 摘要:电池化成和槽化成相比,有着许多优点,其工艺流程简化了极板水洗、干燥和电池补充电以及槽式化成的装片、焊接、取片等工序。节省了大量工时和能源,不用购置化成槽设备和防酸雾设备,电池成本能得到一定的降低。并且,极板不易为杂质所污染,能降低电池自放电,电池质量也可得到更好的控制,因此,电池化成值得推广,而制定合理的电池化成工艺,是电池化成的关键。 关键词:电池化成化成制度反充失水量添加剂 一、实验方法 根据有关资料报道及相关的模拟试验,确定电池化成加酸密度为l.25g/cm3、(25℃),并添加1%Na2SO4和一定量的2#添加剂(2#添加剂为公司机密在此不便公开),加酸量按公司现行的加酸量执行,最大充电电流为0.15C~0.3C。本次试验主要讨不同化成制度对电池化成的影响。 二、试验分析及讨论 1、化成电量 化成电量是影响电池化成的主要因素之一,化成电量过低,活性物质未能充分转换,二氧化铅含量低,导致电池初期性能能不好。而化成电量高,除能量损耗增加外,化成过程的温升不易控制,气体对极板冲击也较大,会影响电池寿命。因此,应选择合适的化成电量。 以RA12-100为例,见表1 从表1可以看出,化成电量为5.0C时、二氧化铅含量偏低,化成电量为5.5C时,二氧化铅含量比较合适;化成电量为6.0C时虽二氧化铅含量较高,但充电时间稍长且充电过程电池温升也较大。化成电量与活性物质富裕量有关,如RA12-100电池正极活性物质为9.8/Ah,活性物质富裕量越大,化成电量宜相应提高。另外,化成电量与化成电流密度有关,化成电流密度越大,化成效率越低,则化成电量需提高;化成电流密度越小,化成效率越高,则化成电量可适当降低。

铅酸蓄电池充放电工艺.(DOC)

铅酸蓄电池充放电工艺 铅酸蓄电池充放电工艺 一、电池主要技术参数 1、铅酸蓄电池单格标称电压为2V(每槽),12V电池=2V×6槽,6V电池=2V×3槽。 2、电池安时容量(Ah)=放电电流(A)×放电时间(h) 。放电时间根据标准的要求选择,一般有5小时率、10小时率、20小时率。 3、充放电流(A)=电池安时容量(Ah)÷小时率(h) 。小时率(h)=电池安时容量(Ah)÷充放电流(A) 。 二、电池安时容量测试与判定(以12V10Ah 为例) 一般应根据要求的小时率容量进行恒流放电计算连续放电时 间来判定是否合格。 例1、10小时率容量:10Ah=1A×10h 12V10Ah电池用1A电流放电应≥10小时为合格,若<10小时为不合格。

例2、20小时率容量:10Ah =0.5A×20h 12V10Ah电池用0.5A电流放电应≥20小时为合格,若<20小时为不合格。 例3、5小时率容量:10Ah=2A×5h 12V10Ah电池用2A电流放电应≥5小时为合格,若<5小时为不合格。 三、电池放电生产工艺(以12V10Ah为例) 1 、一般用5 小时率的电流放电至单格电压为1.6V时终止放电,若电池完全充足电后放电时间设置≥6小时。 2、例:12V10Ah电池放电电流设置为2A,终止电压设置为1.6V ×6格=9.6V,放电时间设置6小时。 3、若采用10小时率放电单格终止电压设置为1.7V,则1.7V×6格(12V)=10.2V,放电电流设置为1A,放电时间设置≥12小时。 4、若采用20小时率放电单格终止电压设置为1.8V,则1.8V×6格(12V)=10.8V,放电电流设置为0.5A,放电时间设置≥24小时。 5、新装未充电电池根据极板带电量放电容量一般小于额定容量,根据实际测试而定。

铅酸电池的制造工艺

铅酸电池的制造工艺 要想详细的了解铅酸蓄电池污染物的来源就必须熟悉其相应的生产流程,然后根据生产工艺流程来分析其污染物的来源。 2.1 铅酸蓄电池的生产工艺 2.1.1 铅酸蓄电池的生产工艺流程 铅酸蓄电池的生产工艺流程略。 图2-1 铅酸22.2.1.2 板栅的制造 板栅在电池中的作用,主要是支持活性物质,充当活性物质的载体,传导汇集电流,使电流均匀分布在活性物质上,以提高活性物质的利用率。所以,板栅质量的好坏直接影响着蓄电池的整体性能。其生产工艺流程如下: 合金配制→熔化→铸模调温→喷模→浇铸→剪修平整→检查→贮存→待用 2.1.2.1.合金的配制 铅基合金的配制要在专用的熔锅或合金冶炼炉内进行,锅内应有搅拌装置。在铅锑合金配制时,先将总数约一半的铅锭加入熔锅内,加温到350-400℃,使铅熔化(铅熔点327℃),待熔锅内的铅全部熔化后,加入配方所规定的全部量的锑。锑锭在加入熔锅前,须砸碎成50-70mm的小块,锑加入后,升高熔锅内合金温度到500-550℃(锑熔点631℃,含锑量为2%-8%的铅锑合金的熔点为313℃-271℃),使全部的锑熔化,最后再将余下的铅全部加入锅内,待合金全部熔化后,开始进行搅拌,使之充分混合均匀,搅拌的时间不少于30min。搅拌的形式有机械搅拌和压缩空气搅拌。此时,熔锅内的合金液温度应保持在450-550℃,由于铅的密度(11.3g/cm3 )与锑的密度(6.7g/cm3 )差别较大。上述的方法可以避免锑块过早地浮在铅液表面,同时,为了合金均匀,必须进行充分的搅拌。以上铅锑合金配制过程的时间大约为4h。在开始铸锭前必须检查合金的锑含量。如不符合规定,应加适量的铅或适量的锑进行调整,符合工艺规定的合金液,除掉表面氧化残渣后,开始铸锭。铸模要干燥无水,铸锭时要注意避免合金液溅出烫伤。铸锭后标

废铅酸蓄电池处理工艺流程及污染控制

废铅酸蓄电池处理工艺流程及污染控制 废铅酸蓄电池的资源再生应先经过预处理后,再采用冶金的方法处理电极板填料等含铅物料。 1)预处理(废铅酸蓄电池预处理过程应在封闭式的构筑物中进行。不得对废铅酸蓄电池进行人工破碎和在露天环境下进行破碎作业)。 一般包括机械打孔、破碎、分离等。 (1)废铅酸蓄电池的机械打孔应采取妥善措施避免二次污染产生。 (2)废铅酸蓄电池破碎工艺应保证电池中的铅板、连接器、塑料盒和酸性电解液等成分在后续步骤中易被分离。 (3)破碎后的铅的氧化物和硫酸盐可通过筛分、水力分选、过滤等方式使其从其他的原料中分离出来。 (4)应对废塑料进行清洗,并应清洗至无污染,基本不含铅后方可进一步回收利用。 (5)预处理过程应积极推进采用自动破碎分选设备进行。 预处理过程产生的塑料、铅电极板、含铅物料、废酸液分别回收、处理;废铅酸蓄电池中的废酸液应收集处理,不得将其排入下水道或排入环境中。 2)铅回收

经预处理后的含有金属铅、铅的氧化物、铅的硫酸盐以及其他金属如钙、铜、银、锑、砷及锡等物质的电池碎片可采取火法冶金法或湿法冶金法把金属铅从混合物中分离出来。 A火法冶金法:包括两种方式,即一种是先预脱硫后高温冶炼还原铅;另一种方法为直接熔炼还原回收铅,同时进行硫的回收处理工艺。 (1)预脱硫过程可通过与碳酸铵或碳酸钠和氢氧化钠的混合物或三氧化二铁和碳酸钙混合物等反应来脱硫,脱硫产生的硫酸钠溶液可进一步纯化生产高纯度的盐。 (2)利用直接熔炼还原回收铅,其冶炼过程应对含二氧化硫烟气进行收集制酸,其尾气应经净化处理后实现达标排放。 (3)火法冶金可采用回转窑、鼓风炉、电炉、旋转窑、反射炉(不含直接燃煤的反射炉)等。应严格控制熔炼介质和还原介质的加入数量,以保证去除电池碎片中所有的硫和其他杂质以及还原所有的铅氧化物。 (4)利用火法冶金工艺进行废铅酸蓄电池资源再生,其冶炼过程应在密闭负压条件下进行,以免有害气体和粉尘逸出,收集的气体应进行净化处理,达标后排放。 B湿法冶金法: 一般包括两种工艺方法,一种是预脱硫-电解沉积工艺,另一种是固相电还原铅工艺。

铅酸蓄电池行业职业控制措施

铅酸蓄电池行业职业控 制措施 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

铅酸蓄电池行业职业控制措施1.管理措施 (1)健全和理机构、管理制度并配备专管人员。健全的管理机构和必要的专管人员是企业实施职业健康安全管理的前提。铅酸蓄电池生产企业应按照《安全生产法》的要求设置管理机构并配备必要的专管人员。 职业健康安全管理规章制度是企业实施专项管理的依据,完善的规章制度应包括责任制、管理行为要求、操作行为要求以及设备运行要求等,并应根据企业生产现状定期更新。 (2)坚持对从业人员进行教育和培训。职业健康安全教育培训是提高企业职业健康安全管理水平的基础工作,除新职工的三级教育以外,还必须进行经常性的专业知识的教育和幸喜训。这是提高职工自我保护意识水平和技能的基本手段,也是提高职工对企业实施监督能力前提要件,同时还是维护职工基本权益的体现。 (3)定期进行职工健康状况检查和车间空气卫生监测。对接触有害作业职工进行健康状况检查和车间空气卫生监测,是企业贯彻落实国家安全生产法律法规的基本体现。系统性地对接害职工进行健康体检和作业场所有害物质监测,建立职业病监控记录、职业危害监测记录,不但能

够真实地反映出企业接害职工的范围、程度,还能分析出职业健康安全管理的运行动态、有效程度及发展趋势,为企业制定制冷计划及工作重点提供依据。 (4)危害告知。企业向从业人员进行危害告知不仅是出于落实《安全生产法》《职业病防治法》等法律法规的要求,履行自己义务和维护从业人员的知情权的目的,更主要的应该是教育从业人员时刻关注身边的危害,加强自我防范,以及认真遵守企业安全规章制度。 (5)加强生产现场管理。有效地对生产现场实施管理工作能够充分发挥通风除尘世等技术措施的功能,降低有害物质对操作人员的侵害。因此,在接触有毒有害物质的生产现场应做到: 设置职业病危害警示标识; 监督检查生产作业现场人员规范使用个人劳动防护用品; 定时检查通风、除尘(烟)设备的运行状况,定期测试其功效; 实施“湿式作业”,班后清理地面、墙壁和设备表面的集尘; 坚持实施“5S”(整理、整顿、清扫、清洁、素养)管理;

铅酸蓄电池行业危害因素分析与控制措施

铅酸蓄电池行业危害因素分析与控制措施 随着汽车、船舶和通讯工业的快速发展,铅酸蓄电池作为性价比较高的动力能源也随之迅速发展,从业人员在逐年增加。由于铅酸蓄电池生产企业80%以上的人员密切接触有毒有害物质,加之控制措施不完善,致使接触铅和硫酸等有害物质的作业人员的健康受到了严重威胁。因而,对铅酸蓄电池生产企业的职业危害因素进行分析并对其实施有效的控制措施,降低职业病发病率,已成为铅酸蓄电池生产企业职业健康管理工作的当务之急。 一、铅酸蓄电池行业的主要危害特性 铅酸蓄电池生产中的有害物质有铅、硫酸、炭黑、硫磺、沥青等。其中接触铅和硫酸的人员最多,这2种物质对操作者的危害也很严重。我国目前已将铅中毒、炭黑尘肺、牙酸蚀病列入法定职业病名单之中。 1.铅的侵入途径及危害 铅及其化合物的侵入途径,主要是呼吸道,其次是消化道,完好的皮肤不能吸收。 呼吸道:通常以蒸气、烟及粉尘形态进入,其吸入的铅量,随着尘粒的大小而有差异,如尘粒在0.27 um时吸入率达54%。一般说,吸入的铅大部分仍随呼气排出,仅35%~50%吸收人体内。 消化道:主要来自铅作业场所进食、饮水。 铅对人体各个部位均有毒性作用,简单地讲,铅的毒性作用是:铅可以造成血红素的合成障碍,从而引起贫血;还可致血管的痉挛,并引起铅中毒的一些明显症状,如腹绞痛、中毒性脑病、神经麻痹等。腹绞痛时可伴有视网膜小动脉痉挛和高血压,患者面色苍白,即所谓“铅容”,这是皮肤血管收缩所致。铅中毒性脑病是一种高血压病,是脑血管痉挛、脑贫血、脑水肿等引起的。铅中毒后最常见的症状是神经衰弱、肠胃的消化不良,还可发生麻痹和中毒性脑病,如短时间接触高浓度铅可引起剧烈的腹绞痛和中毒性肝炎。 2.硫酸的侵入途径及危害 硫酸的侵入途径主要是硫酸雾由呼吸道吸入,对操作人员的牙齿和上呼吸道造成伤害。目前列入法定职业病名单中的为牙酸蚀病,呼吸道的过敏性炎症虽然未列入法定职业病之中,但也应受到关注。 3.炭黑和沥青的侵入途径及危害 碳黑主要通过呼吸道和皮肤对人体造成危害。人体长期吸入碳黑,肺部组织会发生纤维化病变,使肺部组织逐渐硬化,失去正常的呼吸功

铅酸蓄电池组装工艺规程1

铅酸蓄电池组装工艺规程 一、检查正、负极板 二、称/配片 三、包片 四、手工焊接 五、下槽 六、彩环 七、加酸 八、充电 九、包装

一、检查正、负极板 极板要求:极板无明显缺陷,四框及板面平整、干净、无断裂、掉膏、穿孔、弯曲、严重凹凸不平、环状裂纹等现象,极耳下方不允许有 穿孔、活物质松动、脱落与板栅剥离,铅膏与板栅之间的结合力强,从1 米高处自由落体掉下,铅膏无脱落现象发生等。 1、正极板无白花,PbO2的含量(78—88)%; 2、负极板PbO的含量≦10%; 3、正极板水分的含量≦0.4%; 4、负极板水分的含量≦0.3%; 5、检验频度10箱抽取300片。 二、称/配片 所需材料及工具电子称(精度0.1克)铜刷 1、自检正、负极板,挑出不符合要求的极板; 2、20AH/只正极板24片,负极板30片;正极板每片110克,负极板每片 74克;每个小单格正极板重量不得小于434克,负极板的重量不得少于 362.5克;并且每个小单格正、负极板的总重量不得小于804克。 3、17AH/只正极板24片,负极板30片;正极板每片97克,负极板每片65 克;每个小单格正极板重量不得小于382克,负极板的重量不得小于 317.5克;并且每个小单格正、负极板的总重量不得小于707克。 4、12AH/只正极板42片,负极板48片;正极板每片43克,负极板每片29 克;每个小单格正极板重量不得小于290.5克,负极板的重量不得少于 228克;并且每个小单格正、负极板的总重量不得小于522.5克。 5、10AH/只正极板42片,负极板48片;正极板每片40克,负极板每片26 克;每个小单格正极板重量不得小于269.5克,负极板的重量不得少于 196克;并且每个小单格正、负极板的总重量不得小于477.5。 6、称片时,称正极板和称负极板的工位一定要隔分开,称片时所留下的铅 粉要远离所有工位,保持工作台面卫生清洁、干净。 三、包片 所需材料及工具包片盒隔板纸 PVC薄膜单格塑壳擦手毛巾 1、包片时,重的正极板匹配轻的负极板,轻的正极板匹配重的负极板,两 种匹配的情况必须做好标识,分开放置。 2、将配比正确的正、负极板和隔板纸置于工作台上,先在包片盒中放置一 片负极板,再一手拿一组隔板纸(2张),使有网扣花纹面朝下,取一片 正极板,在塑料板上轻敲一下,除去表面浮粉、膏包,置于隔板纸中央,将隔板纸对折包裹正极板,再取一片负极板叠于隔板纸上,使正、负极 板对齐,正、负极耳分别置于极群的两侧,再一手拿一组隔板纸(2张)叠于负极板上,如此重复操作,使正、负极板达到规定数,极群表面用 一张PVC薄膜(沿极板方向)包裹,插入单格塑壳中。包片时,仔细检 查每块极板,剔除不合格的极板。 3、保持隔板纸洁白、完整,不允许有破损现象。

铅酸蓄电池铅污染物的来源及生产防护

铅酸蓄电池铅污染物的来源及生产防护 要想详细的了解铅酸蓄电池污染物的来源就必须熟悉其相应的生产流程,然后根据生产工艺流程来分析其污染物的来源。 2.1 铅酸蓄电池的生产工艺 2.1.1 铅酸蓄电池的生产工艺流程 铅酸蓄电池的生产工艺流程略。 图2-1 铅酸22.2.1.2 板栅的制造 板栅在电池中的作用,主要是支持活性物质,充当活性物质的载体,传导汇集电流,使电流均匀分布在活性物质上,以提高活性物质的利用率。所以,板栅质量的好坏直接影响着蓄电池的整体性能。其生产工艺流程如下: 合金配制→熔化→铸模调温→喷模→浇铸→剪修平整→检查→贮存→待用 2.1.2.1.合金的配制 铅基合金的配制要在专用的熔锅或合金冶炼炉内进行,锅内应有搅拌装置。在铅锑合金配制时,先将总数约一半的铅锭加入熔锅内,加温到350-400℃,使铅熔化(铅熔点327℃),待熔锅内的铅全部熔化后,加入配方所规定的全部量的锑。锑锭在加入熔锅前,须砸碎成50-70mm的小块,锑加入后,升高熔锅内合金温度到500-550℃(锑熔点631℃,含锑量为2%-8%的铅锑合金的熔点为313℃-271℃),使全部的锑熔化,最后再将余下的铅全部加入锅内,待合金全部熔化后,开始进行搅拌,使之充分混合均匀,搅拌的时间不少于30min。搅拌的形式有机械搅拌和压缩空气搅拌。此时,熔锅内的合金液温度应保持在450-550℃,由于铅的密度(11.3g/cm3)与锑的密度(6.7g/cm3)差别较大。上述的方法可以避免锑块过早地浮在铅液表面,同时,为了合金均匀,必须进行充分的搅拌。以上铅锑合金配制过程的时间大约为4h。在开始铸锭前必须检查合金的锑含量。如不符合规定,应加适量的铅或适量的锑进行调整,符合工艺规定的合金液,除掉表面氧化残渣后,开始铸锭。铸模要干燥无水,铸锭时要注意避免合金液溅出烫伤。铸锭后标号存放。在铅锑合金的配制过程中,熔渣损失约为 1.0%- 2.0%,烧减损失约为0.2%-0.6%。 2.1.2.2 合金的熔化 板栅浇铸时,需先将配制好的合金熔化,熔化后的合金液温度对板栅浇铸时的成型关系很大,合金液温度过高或过低都不能浇铸出良好的板栅。一般情况下,合金液温度应控制在450-550 ℃的范围,但工厂在实际中应根据具体情况摸索出最佳的合金液浇铸温度。 2.1.2.3 浇铸模具的温度调整 浇铸使用的模具在浇铸前都应进行预热和温度调整,铸板机通过由加热预热,手工模具通过电加热或合金液预铸预热,其目的是为了保证在浇铸过程中合金液的冷却速度,铸模温度过高或过低或不均匀都会对板栅的成型影响很大,特别是对于手工铸板显得更为重要。 2.1.2.4 喷模、刮模 在浇铸时由于模具是金属制成,故存在散热快的特点,加入模具内腔沟槽比较窄浅,使得熔锅状态下的合金液难以充满模具。为了保证浇铸板栅的成型率,必须在模具表面和浇铸合金之间喷涂脱模剂。目前,在蓄电池厂一般使用由软木粉、硅酸钠和水配制的脱模剂,喷涂在模具内腔,主要起保温、隔热、润滑,确保合金液充满模具的作用。同时,对板栅的厚度均匀性起调整作用。 脱模剂的配制方法如下: 取8Kg左右的水和密度为1.35g/cm3的硅酸钠(水玻璃)450mL左右,放入加温锅内(可用铝锅)混合均匀后放在炉子上加热烧煮。待硅酸钠水溶液煮沸后,即将1kg细度为180-200目的软木粉缓慢地倒入锅内,充分搅拌均匀,再加入8kg左右的水小火煮沸30min,冷却后用60-80目筛子过滤后装入容器内待用。以上配制出的脱模剂使用的有效期为2-3小时,如在上述配方中加入25mL左右的磷酸铝(含铝36.4%)或400g左右的膨润土,有效期可延长至6-8小时。在使用中,如果脱模剂发粘,可适当减少硅酸钠量或适当增加用水量,如果脱模剂稀,喷模时容易从模具表面脱落,可适当增加硅酸钠量或适当减少水用量。脱模剂稀稠要合适,太稀粘附力差,太稠脱模剂在模具表面堆积太厚,因此,可以根据实际使用情况和板栅要求的厚薄程度进行调整。 2.1.3 铅粉的制造

相关主题
文本预览
相关文档 最新文档