当前位置:文档之家› 纳米银和金属网格的对比分析

纳米银和金属网格的对比分析

纳米银和金属网格的对比分析
纳米银和金属网格的对比分析

纳米银和金属网格对比分析

2014-11-11

?一、市场因素的评价

关于市场因素决定于产品价格与技术规格,技术规格将于之后再详细讨论。

评价产品价格的变动,包括初期生产价格,例如材料成本、制造成本,IC及其器件的整合成本,假如企业一条龙式地能掌握从原料至器件,甚至IC器件的成本,则有机会端出具有竞争力的产品价格。第二种系量产价格,当不同材料技术与生产良率仍有提升空间,以及产品的应用领域扩大,因而具备更多压低成本的能力,例如掌握了主要品牌商且成为市场的主流产品,或者进一步扩展到其他应用领域,而造成市占及出货量的扩大。

从原料与制造成本的角度,金属网格材料可为银或铜原子,或银的氧化物,以印刷方式形成金属网格,而该金属网格的线幅超过5μm以上;由于银或铜原料取得并不是问题,原料成本系相对低廉,但超过5μm以上的金属线幅所产生的视觉莫瑞干涉过于明显致规格劣化,因此必须设法降低线幅至3μm以下始为市场所接受,如此,为降低线幅所增加的成本,包括放弃印刷法而改成黄光微影或雷射制作遮罩、良率降低等制造成本增加,就占有很高比重。相对地,纳米银线油墨包括纳米银线(线径约50nm、线长约23μm)、调制溶液配方等,并非能直接取得,而是购自如纳米银线材料供应商

Cambriostechnologies等少数专业厂商,因此原料成本欲降不易,但相对地,纳米银线没有如金属网格的视觉莫瑞干涉现象,不必刻意要求线幅降低,加上可以搭配成本较低的卷对卷印刷方式生产,即能获得符合市场规格的触控面板。

为降低原料与制造成本,主推纳米银线触控面板的触控大厂宸鸿,即于2013宣布与日本写真印刷联手开发纳米银线触控技术,并搭配先前与Cambriostechnologies合资而提供的纳米银线材料。日本写真擅长塑胶薄膜生产技术与卷轴式(roll-to-roll)生产技术,而Cambriostechnologies系纳米银线材料的少数供应厂商,透过宸鸿专业的触控图案设计及制造技术,三者强强合作将会有不错的价格竞争力,打入高阶产品市场的机会也很高。虽然Cambriostechnologies的商业模式不单是与宸鸿技术合作而已。

进一步地,因为纳米银线材料也具有其他领域的应用价值,例如在太阳能电池的应用,因此未来可望吸引更多厂商投入研发与生产行列,而纳米银线的材料成本在供给增加之后或许有较大的降价机会。

二、技术因素的评价

1.莫瑞效应问题及克服

触控屏幕上有时会出现看似波纹状画面,这种情况被称之为「莫瑞效应(Moiréeffects)」,特别是当数位产品中之画素、光学膜片或触控图案,在

水平和垂直方向上,若规则对齐的画素和物体的精细规则图案重叠时稍有偏差,则出现干扰图案和实际物体并不存在的条纹或干涉。

金属网格是在薄膜上制造出格状图案,并在其中涂布银、铜等金属物质的技术。由于图案系由银、铜等具有反光的金属所构成,特别是网格线幅稍粗(反光面积大)、上下网格图案交叠在一定角度时,例如金属网格触控面板用于200ppi以上高解析度显示器,例如手机,即容易出现该莫瑞效应,故在商用化上仍有重重障碍。而在AllinOne产品的电脑、监视器、笔记型电脑等,则因为视距较远及解析度较低,所以规格要求相对较低。

金属网格的莫瑞效应,例如三星,系以微细线幅和图样化(Patterning)技术来克服,通过将线幅由目前的约5~6μm缩减到3μm以下,特别是若能缩减到1μm.,则智能手机也将能搭载金属网格触控面板。

然而,欲将线幅大幅缩减并非易事,包括无法采用简易的印刷制程、过细的线幅制作前后容易断线、网格阻值升高而IC侦测技术需要更精进地配合才行,如此,即失去获得低制造成本的机会。

相对地,纳米银线并非格状图案而呈现不规则地分布,并且纳米银线的线径约50nm而低于1μm以下,故没有金属网格的莫瑞效应问题。例如Cambrios的银奈米线材料制成ClearOhm导电透明油墨,能提供比ITO更高的导电性与更快速的触控反应速度,92%以上透光率,同时没有特别图案纹与干涉叠纹的情况,适合各种尺寸的触控面板,包括华为Ascend,搭售日本

NTTDoCoMo的NECMEDIASXN-07D等智能手机,LG23寸显示器/AIO一体机,GVision15寸POS屏幕,及英特尔寸Ultrabook参考平台等。

2.雾度问题及克服

所谓雾度(Haze)系指透明或半透明材料的内部或表面,由于光漫射而造成的云雾状或混浊的外观。

就金属网格图案而言,呈现光漫射的在于金属图案材料,特别是银金属可以反射更宽范围的可见光波长。因为金属网格图案中的金属材料所占面积不大,而纳米银线因为分布整个基板表面,所以相对地,光漫射所形成的雾度问题,纳米银线显得较为严重。

为降低光漫射,日产化学工业开发出了通过在纳米银线薄膜上进行涂布可降低雾度的高折射率材料,利用涂布高分子材料实现了的高折射率,可使薄膜电阻值为100Ω/□的纳米银线薄膜的雾度降至基本看不到的1以下。

其次,黑化纳米银线表面、减少散射光强度,或者粗糙化纳米银线表面等手段,也可以改善雾度问题。

3.挠度评价

替代ITO的材料技术需求,不只是低价与薄化考虑,更包括一些可挠性产品问世的需要,从小尺寸穿戴式眼镜、智慧型手表或手环类运动器材,至配合的可挠性显示器产品。

金属网格与纳米银线材料技术均可符合这些可挠性产品的性能规格,但如果比较穿戴频繁较高的穿戴式眼镜、智慧型手表或手环类产品,纳米银线材料技术因为具有比金属网格更大的曲率,而能获更长的耐久性。例如,Cambrios与日立化工合作所制作的透明导电胶膜,由上、下两层PETfilm,中间镀上一道仅5μm厚的日立乾式光阻胶膜,以及仅μm的ClearOhm奈米级导电油墨;采低温贴合技术,X轴电极与Y轴电极叠合后厚度仅10μm,具备优异的颜色光源传导性,跟任何胶膜基板或强化玻璃都能搭配,且能适用简易的卷筒(roll-to-roll)或单元制程。

再者,(AUO)的可挠式电子纸产品,系以弯曲半径R=5mm来进行卷曲,该电子纸也是采用Cambrios的ClearOhm导电膜,每平方英尺电阻值从欧姆,到弯曲超过50,000次时仅增加到欧姆,可以维持相当耐久的高透光与高导电性。

另外ClearOhm技术除了触控板外,也可做为3DTV液晶电视、可挠式显示器、OLED显示器╱照明材料、太阳能光电转换板(转换率达12%),以及车用电子等领域的更多应用。然而这些纳米银线材料的优异挠度,是金属网格所无法达成的。

4.线幅评价

为配合高解析度显示器及解决莫瑞效应问题,金属网格触控研发极力寻求降低线幅的技术方案。同时,为降低制作成本,也不放弃印刷工艺制作金

属网格的前提,包括采用不同材料银膏或铜材料的丝网印刷或者压印方式填入金属材料。

再者,静电容量式触控面板,为了从触控电极区拉出的布线,可以在屏幕周边排列极小面积的布线要求(客户需求一小边框或无边框的设计规格),因此此一区域的众多密集布线也必须细微化。实务上,线距为200μm左右的布线区可以采用丝网印刷或压印工艺;而线距小于150μm的布线区则须改用光刻(Photolithography)技术来达成。然而,以制程整合的观点,触控电极区与周边布线区的制程需要一致才能简化并降低成本,亦即,金属网格于高解析度显示器的制程整合中存在成本优化不易的缺点。

相对地,纳米银线的线径极细,没有网格而产生视觉莫瑞效应的问题及与周边布线区连接的制程整合问题。

理解到金属网格的本质问题与纳米银线的优点,开始有趋势期待着采用纳米银线为材料,然后藉以形成纳米银线网格结构这样的概念产生。目前导入纳米银线材料之后,辅以印刷工艺可以制得线幅小于10μm的进展,最低已到2μm左右的梦想线幅,在成本降低上具有很大的潜力,故全球相关电子应用产品厂商无不聚焦该技术的发展状况,冀望能即时掌握此关键技术优势,大幅提升市场占有率,以及所衍生出之庞大印刷电子产品市场商机。

三、产业供应链的评价

的产业供应链概况

如前所评析,纳米银线材料供应掌握在少数如CambriosTechnologies 厂家手上。目前CambriosTechnologies的策略投资夥伴包括与宸鸿合资成立一家FilmSolution,并于2013年再与日本写真进一步策略结盟;另外与东丽(Toray)、南韩三星(Samsung)亦有合作关系,而销售纳米银线材料的对象更扩及金属网格研发及制造阵营的中台企业,例如苏大维格、欧菲光与胜华等。

纳米银线材料是SNW触控面板最重要的一环,宸鸿是触控面板最重要的制造商,而南韩三星极力发展挠性面板,更是SNW触控面板潜在的重要出海口,因此,CambriosTechnologies透过策略结盟初步可以站稳此一供应链的防线,进一步地,因为金属网格也可能改采以纳米银线作为网格的制作材料而渔利双收。

日本写真印刷的加入宸鸿与CambriosTechnologies之间的策略结盟,将引进塑胶薄膜触控制程,加上卷对卷(roll-to-roll)生产技术,可以进一步整合并制定纳米银线触控技术的产业规格,开发出更具有价格竞争力的产品。

至于下游相关感测元件部分,则由eTurboTouch、LGE、NisshaPrinting、CNi、ShinEtsu与其他厂商所提供。

整体而言,纳米银线触控的产业供应链尽管加入总家数不若金属网格家数多,但因为原料供应商、制造商与品牌出海口之间所专擅的业务与专业能力非常明确,单一企业体不易一条龙式垂直整合,呈现上中下游产业供应链结构紮实的型态,再者,由于纳米银线触控技术具有横跨全尺寸与不同领域

的潜力,因此可以促进此一供应链参与者更潜心于研发改进,而避免不公平的低价倾销与违反营业秘密等冲突。

的产业供应链概况及可能遭遇的利益冲突

以金属网格感测器而言,透明导电膜主要架构包括金属材料图案与基材搭配而成,上游厂商于完成透明导电膜后,其实可以进一步完成中游的组装成触控感测器的业务而降低成本,甚至再进一步延伸至下游的触控模组业务;反之,周边末端的厂亦能跨步进入金属网格触控图案的设计与生产业务,或者,由下游端往上游端延伸发展,身为MetalMesh的产业供应链一环者,彼此都有垂直整合的空间,也因此,金属网格的产业供应链分界开始趋于模糊,在此产业供应链分不清楚的态样下,容易产生利益冲突,包括供应链关系不稳定,商业模式建立在彼此防范的脆弱基础上。

资料来源:本文推论

表四:新兴技术方案的评价:以SNW对MetalMesh为例

新兴材料、技术和方案对比之后的结论

一、金属网格仍存在视觉莫瑞干涉的问题

在去年(2013/9/1,金属网格触控技术与先进内嵌式触控技术分析),业界原本看好用金属网格取代ITO来降低触控面板的成本、使用卷对卷的技术来增加生产速度、使用凹凸版印刷、纳米印刷来做触控的图案化等,而寄厚望于金属网格的触控技术,并誉之为中大尺寸触控面板的救星,然而时至目前,仍有下列几个问题待解:

(1)金属是不透光的材料,要达到可接受的穿透率,在细线化的过程中必须拿95%~99%的触控sensor面积,在这个条件下是否还有可以支援这个金属网格的触控面板。

(2)要让眼睛看不到,金属网格中的金属线幅最好要小于5微米。现有触控面板厂的黄光显影设备无法达成,必须用LCD面板厂等级的黄光显影设备,造成良率不易提高、模板费用居高不下。

(3)使用卷对卷的生产设备要如何在高转速的张力下让小于5微米的金属线不断裂,也考验着设备厂商的功力。

(4)金属除了不透光外还有高反射的特性,要解决金属反射的问题则须加上遮光材料或抗反射材料,增加生产的难度与成本。

(5)使用银、铝或铜作为金属网格的材料时需面临氧化的问题。如何增加表面处理材料来防止氧化,同样增加了制程的难度与成本。

一般而言,低价的触控解决方案中,触控网格感测器与面板搭配时实务上易产生干莫瑞干涉,欲解决干涉纹问题,首先透过制程选择与改进来解决。

MetalMesh的制程可以采用印刷制程及黄光制程,采用印刷制程可以省去蒸镀、曝光、显影、蚀刻等工序及设备投资,直接在基材上印刷所需图形,有较佳的成本优势,但网格的精细度控制不易,易有光学特性不佳的问题,且要做到可有较好的性能表现的低于5um线幅之难度较高;假如采用黄光制程,虽然可以提供较精细的网格及相对细线的线幅,但成本却有显着提升,在市场降低成本需求的压力下,如何透过制程成本较低的印刷制程,得到低于5um以下的线幅设计,以及解决线路过细易产生断线等良率问题,成为厂商重点开发方向。

采用较高成本的黄光制程来获得相对更细的线幅设计(即低于5um以下)是可行的,但高阶黄光制程对于使金属网格朝低价化的推进是互相违背的。

虽然,近期发展上,莫瑞干涉这类问题可以改为仰赖不规则网格与差排、转角度来解决,但却因而衍生更多其他的技术问题,例如不规则网格让电极

图案设计更困难,且单位不规则的连续会构成规则可能;差排或转角度让Trace引线设计更困难,并造成layout难度增加。

资料来源:本文推论

表六:新兴触控技术的难点与解决

二、纳米银线相对较具有更大的挠度、冲击承受度

既有的ITO材料在面临触控面板大面积趋势时,会产生电阻值过高造成耗电量增加的现象,其次它也不利于可携装置之使用。例如:智能手机、与笔记型电脑等产品,欲降低其电阻值,虽然可以利用提高制程温度改善材料特性或增加镀膜厚度来达成,但前者需搭配耐高温基板,后者将增加生产成本,皆非两全其美之解决方案。

放眼未来,大面积触控面板也有朝挠性化的趋势,若欲利用ITO材料制作挠性触控面板,则触控线路容易因为材料特性,在多次弯折后断裂,将会造成触控功能不佳甚至失效的后果,因此全球相关研发单位都积极发展下世代透明导电材料,都希望能找到一种导电性高且能制作成透明线路之材料。

今年2014/2/20,一则来自台湾媒体的报导指出,苹果已经选择宸鸿集团(以下简称)作为神秘产品iWatch的屏幕供应商。据其分析,是全球领先的电容触控面板生产商,其带有触控功能的柔性面板深受业界好评。苹果将于2014年下半年开始生产iWatch的柔性面板。

进一步地,苹果之选择,是因为他们想要在iWatch屏幕中使用纳米银线(SilverNanowire)技术,而正是具备这种技术的领先厂商。苹果将会为iWatch的屏幕添加一层3D保护玻璃罩,使这款设备可以显示出3D效果。

资料来源:本文推论

表七:新兴技术方案的评价(以SNW对MetalMesh为例)

网格划分主要软件

网格划分主要软件 网格划分——连续空间的离散化。 主要软件: ICEM-CFD(Ansys Inc): 最NB的网格划分软件,主要四个模块:Tetra(水平最高)、Hexa(用起来方便)、Global(难得的笛卡尔网格划分软件)、AutoHexa(算是垃圾,有那幺一点点用处)。接口贼多,几乎支持所有流行的CFD软件!!!使用方便,一个月内可以学会,两个月就可以针对课题努力了。这个软件还有后处理模块Visual3,但是目前说来还没有听过哪个兄弟用过,我也没用过。 Gridgen(Poinwise Inc): 你要学习网格理论,用它比较好,你要和它一起来完成网格,不能靠它自动给你个复杂网格。结构网格划分很好。帮助文档有些标新立异了,很多术语就是难为大家这些入门级别的,实体不叫实体,它非得说是Database,何必呢! Gambit(Fluent Inc): 好学、好用。就是要拖着一个Exceed当靠山,功能强大。但是占用内存比较多,常常会跑死机(不是个别的问题)。 CFX-build(Ansys Inc): 基于Patran的非结构网格划分软件,会Patran就会它!功能自不用说,Patran有多猛,搞FEA/CAE的兄弟都知道。 CFD-Geom(CFDRC Inc): 好学,不过有些概念要仔细领会,最好是对拓扑与网格结构、类型比较熟悉。 Patran(Msc Inc)、Hypermesh(Altair Inc): 这两个不说了FEA方面的猛将,CFD也可以借鉴。 以上按功能和在CFD领域的适用范围分类。 TrueGrid六面体网格划分工具 TrueGrid六面体网格划分工具 中文名称:TrueGrid六面体网格划分工具 英文名称:Scientific.Truegrid

有限元网格划分的基本原则

有限元网格划分的基本原则 划分网格是建立有限元模型的一个重要环节,它要求考虑的问题较多,需要的工作量较大,所划分的网格形式对计算精度和计算规模将产生直接影响。为建立正确、合理的有限元模型,这里介绍划分网格时应考虑的一些基本原则。 1 网格数量 网格数量的多少将影响计算结果的精度和计算规模的大小。一般来讲,网格数量增加,计算精度会有所提高,但同时计算规模也会增加,所以在确定网格数量时应权衡两个因数综合考虑。图1中的曲线1表示结构中的位移随网格数量收敛的一般曲线,曲线2代表计算时间随网格数量的变化。可以看出,网格较少时增加网格数量可以使计算精度明显提高,而计算时间不会有大的增加。当网格数量增加到一定程度后,再继续增加网格时精度提高甚微,而计算时间却有大幅度增加。所以应注意增加网格的经济性。实际应用时可以比较两种网格划分的计算结果,如果两次计算结果相差较大,可以继续增加网格,相反则停止计算。 图1 位移精度和计算时间随网格数量的变化 在决定网格数量时应考虑分析数据的类型。在静力分析时,如果仅仅是计算结构的变形,网格数量可以少一些。如果需要计算应力,则在精度要求相同的情况下应取相对较多的网格。同样在响应计算中,计算应力响应所取的网格数应比计算位移响应多。在计算结构固有动力特性时,若仅仅是计算少数低阶模态,可以选择较少的网格,如果计算的模态阶次较高,则应选择较多的网格。在热分析中,结构内部的温度梯度不大,不需要大量的内部单元,这时可划分较少的网格。 2 网格疏密 网格疏密是指在结构不同部位采用大小不同的网格,这是为了适应计算数据的分布特点。在计算数据变化梯度较大的部位(如应力集中处),为了较好地反映数据变化规律,需要采用比较密集的网格。而在计算数据变化梯度较小的部位,为减小模型规模,则应划分相对稀疏的网格。这样,整个结构便表现出疏密不同的网格划分形式。图2是中心带圆孔方板的四分之一模型,其网格反映了疏密不同的划分原则。小圆孔附近存在应力集中,采用了比较密的网格。板的四周应力梯度较小,网格分得较稀。其中图b中网格疏密相差更大,它比图a中的网格少48个,但计算出的孔缘最大应力相差1%,而计算时间却减小了36%。由此可见,采用疏密不同的网格划分,既可以保持相当的计算精度,又可使网格数量减

网格划分模版

生成的网格所能达到的基本指标 1概述 1.1控制网格质量的必要性 在CFD计算中数值误差,也即数值解与微分方程精确解之间的偏差,主要是由截断误差及网格划分不够细密所造成的。而当离散格式的截断误差确定以后,网格的疏密及其分布特性就成了决定离散误差的关键因素。一般在CFD计算中,第一步就是生成计算网格,流场的主要信息都存储在计算网格的节点或者界面上,网格生成质量的高低直接影响着数值分析结果的精度与稳定性。特别是近壁处及通量梯度较大的区域的网格分布最为关键。粗糙的网格会导致数值模拟精度的降低,甚至不能得到收敛解;而过细的网格一方面会耗费过多的计算资源,另一方面也可能导致离散误差的增加,选择适宜的精密网格对于提高计算精度非常关键。因此生成高质量的、适宜的精密网格是获得高精度数值模拟结果的必要条件,在进行CFD计算中必须控制网格的数量及质量。 1.2对计算网格的基本要求 网格分为结构化和非结构化两大类,由于结构化网格在计算精度、计算时间等方面存在相对优势,目前在CFD计算中广泛采用的仍是结构型网格。因此为确保计算结果的正确性及模拟的精度,本课题组要求尽量使用结构化网格,除非在极个别的情况下(如几何结构过于复杂,很难生成结构化网格)才允许使用非结构化网格。 对生成的六面体结构化网格的质量有以下几方面的要求: 首先计算网格中不允许存在负体积,这是保障计算网格正确性的基本要求。 网格单元的总体分布应尽量与主流方向保持一致。 有叶片的区域,应采用绕叶片的O型网格来处理边界层内的流动,另外,O型网格对网格加密很有利。 在所有计算区域的边界处的计算网格线应最大程度的与边界正交,角度最小应大于45°。 计算单元的纵横比不能过大,一般应控制在[1,100]之间,不应高于100。(Aspect Ratio,[1,∞],越接近于1表明网格质量越高)

纳米银及金属网格的对比分析

纳米银与金属网格对比分析 行业资讯2014-11-11 ?一、市场因素的评价 关于市场因素决定于产品价格与技术规格,技术规格将于之后 再详细讨论。 评价产品价格的变动,包括初期生产价格,例如材料成本、制 造成本,IC及其器件的整合成本,假如企业一条龙式地能掌握从原料至器件,甚至IC器件的成本,则有机会端出具有竞争力的产品价格。第二种系量产价格,当不同材料技术与生产良率仍有提升空间,以及产品的应用领域扩大,因而具备更多压低成本的能力,例如掌 握了主要品牌商且成为市场的主流产品,或者进一步扩展到其他应 用领域,而造成市占及出货量的扩大。 从原料与制造成本的角度,金属网格材料可为银或铜原子,或 银的氧化物,以印刷方式形成金属网格,而该金属网格的线幅超过 5μm以上;由于银或铜原料取得并不是问题,原料成本系相对低廉,但超过5μm以上的金属线幅所产生的视觉莫瑞干涉过于明显致规格劣化,因此必须设法降低线幅至3μm以下始为市场所接受,如此,为降低线幅所增加的成本,包括放弃印刷法而改成黄光微影或雷射 制作遮罩、良率降低等制造成本增加,就占有很高比重。相对地,

纳米银线油墨包括纳米银线(线径约50nm、线长约23μm)、调制溶液配方等,并非能直接取得,而是购自如纳米银线材料供应商Cambriostechnologies等少数专业厂商,因此原料成本欲降不易,但相对地,纳米银线没有如金属网格的视觉莫瑞干涉现象,不必刻意要求线幅降低,加上可以搭配成本较低的卷对卷印刷方式生产,即能获得符合市场规格的触控面板。 为降低原料与制造成本,主推纳米银线触控面板的触控大厂宸鸿,即于2013宣布与日本写真印刷联手开发纳米银线触控技术,并搭配先前与Cambriostechnologies合资而提供的纳米银线材料。日本写真擅长塑胶薄膜生产技术与卷轴式(roll-to-roll)生产技术,而Cambriostechnologies系纳米银线材料的少数供应厂商,透过宸鸿专业的触控图案设计及制造技术,三者强强合作将会有不错的价格竞争力,打入高阶产品市场的机会也很高。虽然Cambriostechnologies的商业模式不单是与宸鸿技术合作而已。 进一步地,因为纳米银线材料也具有其他领域的应用价值,例如在太阳能电池的应用,因此未来可望吸引更多厂商投入研发与生产行列,而纳米银线的材料成本在供给增加之后或许有较大的降价机会。 二、技术因素的评价 1.莫瑞效应问题及克服

mike21fm网格生成器中文教程

MIKE21 FM网格生成器培训教程

目录 17简介 (1) 17.1概念 (2) 17.2边界定义 (3) 18开始 (3) 18.1介绍 (3) 18.2数据位置 (4) 18.3 步骤1 - 建立一个工作区域 (4) 18.4步骤2 - 导入模型边界线 (5) 18.5步骤3 - 编辑陆地边界线 (7) 18.6 步骤4 - 定义开边界 (9) 18.7步骤5 - 生成网格 (9) 18.8步骤6 - 对陆地边界进行光滑处理 (10) 18.9步骤7 - 网格地形插值 (12) 18.10 步骤8 - 对网格进行光滑处理 (15) 18.11 步骤9 - 使用多边形来控制节点密度 (15)

MzGeneric.pdf手册中Mesh Generator部分 17 简介 网格生成器(mesh generator)为制作三角网格提供了工作平台。 创建合理的网格是模型获得可靠结果的重要条件。基于 MIKE Zero 之上的MIKE 21 Flow Model FM, MIKE 3 Flow Model FM 和 MIKE 21 Spectral Wave Model FM,都是以三角网格为基础的。 图 17.1 全球模型的陆地/海洋边界 网格的生成包括选择适当的模拟范围,确定地形网格的分辨率,考虑流场,风场和波浪场的影响,为开边界和陆地边界确定边界代码。此外,在考虑稳定性的前提下,确定地理空间的分辨率。 生成网格文件可以使用MIKE Zero网格生成器。网格文件是一个ASCII文件(扩展名*.mesh),其中包括地理位置信息和在网格中每一个节点的水深。文件还包括三角形的节点连通性信息。所有关于生成网格文件的配置信息都在网格定义文件(扩展名*.mdf) 中, 文件可以被修改和再利用。 网格生成器的功能包括从不同的外部信息源(例如. XYZ 水深点,XYZ等值线,MIKE 21矩形网格地形,MIKE C-MAP数据) 输入原始数据,或是用内置的制图工具手动创建地形数据。用户可以在网格生成器中导入背景图片,例如地图,在数据编辑时使用它们,或用来提高图形的后处理效果。

纳米银和金属网格地对比分析报告

纳米银和金属网格对比分析 行业资讯 2014-11-11 ?一、市场因素的评价 关于市场因素决定于产品价格与技术规格,技术规格将于之后再详细讨论。 评价产品价格的变动,包括初期生产价格,例如材料成本、制造成本,IC及其器件的整合成本,假如企业一条龙式地能掌握从原料至器件,甚至IC器件的成本,则有机会端出具有竞争力的产品价格。第二种系量产价格,当不同材料技术与生产良率仍有提升空间,以及产品的应用领域扩大,因而具备更多压低成本的能力,例如掌握了主要品牌商且成为市场的主流产品,或者进一步扩展到其他应用领域,而造成市占及出货量的扩大。 从原料与制造成本的角度,金属网格材料可为银或铜原子,或银的氧化物,以印刷方式形成金属网格,而该金属网格的线幅超过5μm以上;由于银或铜原料取得并不是问题,原料成本系相对低廉,但超过5μm以上的金属线幅所产生的视觉莫瑞干涉过于明显致规格劣化,因此必须设法降低线幅至3μm以下始为市场所接受,如此,为降低线幅所增加的成本,包括放弃印刷法而改成黄光微影或雷射制作遮罩、良率降低等制造成本增加,就占有很高比重。相对地,纳米银

线油墨包括纳米银线(线径约50nm、线长约23μm)、调制溶液配方等,并非能直接取得,而是购自如纳米银线材料供应商Cambriostechnologies等少数专业厂商,因此原料成本欲降不易,但相对地,纳米银线没有如金属网格的视觉莫瑞干涉现象,不必刻意要求线幅降低,加上可以搭配成本较低的卷对卷印刷方式生产,即能获得符合市场规格的触控面板。 为降低原料与制造成本,主推纳米银线触控面板的触控大厂宸鸿,即于2013宣布与日本写真印刷联手开发纳米银线触控技术,并搭配先前与Cambriostechnologies合资而提供的纳米银线材料。日本写真擅长塑胶薄膜生产技术与卷轴式(roll-to-roll)生产技术,而Cambriostechnologies系纳米银线材料的少数供应厂商,透过宸鸿专业的触控图案设计及制造技术,三者强强合作将会有不错的价格竞争力,打入高阶产品市场的机会也很高。虽然Cambriostechnologies的商业模式不单是与宸鸿技术合作而已。 进一步地,因为纳米银线材料也具有其他领域的应用价值,例如在太阳能电池的应用,因此未来可望吸引更多厂商投入研发与生产行列,而纳米银线的材料成本在供给增加之后或许有较大的降价机会。 二、技术因素的评价 1.莫瑞效应问题及克服

网格划分原则

有限元分析中的网格划分好坏直接关系到模型计算的准确性。本文简述了网格划分应用的基本理论,并以ANSYS限元分析中的网格划分为实例对象,详细讲述了网格划分基本理论及其在工程中的实际应用,具有一定的指导意义。 1 引言 ANSYS有限元网格划分是进行数值模拟分析至关重要的一步,它直接影响着后续数值计算分析结果的精确性。网格划分涉及单元的形状及其拓扑类型、单元类型、网格生成器的选择、网格的密度、单元的编号以及几何体素。从几何表达上讲,梁和杆是相同的,从物理和数值求解上讲则是有区别的。同理,平面应力和平面应变情况设计的单元求解方程也不相同。在有限元数值求解中,单元的等效节点力、刚度矩阵、质量矩阵等均用数值积分生成,连续体单元以及壳、板、梁单元的面内均采用高斯(Gauss)积分,而壳、板、梁单元的厚度方向采用辛普生(Simpson)积分。辛普生积分点的间隔是一定的,沿厚度分成奇数积分点。由于不同单元的刚度矩阵不同,采用数值积分的求解方式不同,因此实际应用中,一定要采用合理的单元来模拟求解。 2 ANSYS网格划分的指导思想 ANSYS网格划分的指导思想是首先进行总体模型规划,包括物理模型的构造、单元类型的选择、网格密度的确定等多方面的内容。在网格划分和初步求解时,做到先简单后复杂,先粗后精,2D单元和3D单元合理搭配使用。为提高求解的效率要充分利用重复与对称等特征,由于工程结构一般具有重复对称或轴对称、镜象对称等特点,采用子结构或对称模型可以提高求解的效率和精度。利用轴对称或子结构时要注意场合,如在进行模态分析、屈曲分析整体求解时,则应采用整体模型,同时选择合理的起点并设置合理的坐标系,可以提高求解的精度和效率,例如,轴对称场合多采用柱坐标系。有限元分析的精度和效率与单元的密度和几何形状有着密切的关系,按照相应的误差准则和网格疏密程度,避免网格的畸形。在网格重划分过程中常采用曲率控制、单元尺寸与数量控制、穿透控制等控制准则。在选用单元时要注意剪力自锁、沙漏和网格扭曲、不可压缩材料的体积自锁等问题 ANSYS软件平台提供了网格映射划分和自由适应划分的策略。映射划分用于曲线、曲面、实体的网格划分方法,可使用三角形、四边形、四面体、五面体和六面体,通过指定单元边长、网格数量等参数对网格进行严格控制,映射划分只用于规则的几何图素,对于裁剪曲面或者空间自由曲面等复杂几何体则难以控制。自由网格划分用于空间自由曲面和复杂实体,采用三角形、四边形、四面体进行划分,采用网格数量、边长及曲率来控制网格的质量。 3 ANSYS网格划分基本原则 3.1 网格数量 网格数量的多少将影响计算结果的精度和计算规模的大小。一般来讲,网格数量增加,计算精度会有所提高,但同时计算规模也会增加,所以在确定网格数量时应权衡两个因数综合考虑。

高性能计算、分布式计算、网格计算、云计算概念与区别

高性能计算、分布式计算、网格计算、云计算--概念和区别 《程序员》2009-02 P34 “见证高性能计算21年” 高性能计算(High Performance Computing)HPC是计算机科学的一个分支,研究并行算法和开发相关软件,致力于开发高性能计算机(High Performance Computer)。 分布式计算是利用互联网上的计算机的中央处理器的闲置处理能力来解决大型计算问题的一种计算科学。 网格计算也是一种分布式计算。网格计算的思路是聚合分布资源,支持虚拟组织,提供高层次的服务,例如分布协同科学研究等。网格计算更多地面向科研应用,商业模型不清晰。网格计算则是聚合分散的资源,支持大型集中式应用(一个大的应用分到多处执行)。 云计算(Cloud Computing)是分布式处理(Distributed Computing)、并行处理(Parallel Computing)和网格计算(Grid Computing)的发展,或者说是这些计算机科学概念的商业实现。云计算的资源相对集中,主要以数据中心的形式提供底层资源的使用,并不强调虚拟组织(VO)的概念。云计算从诞生开始就是针对企业商业应用,商业模型比较清晰。云计算是以相对集中的资源,运行分散的应用(大量分散的应用在若干大的中心执行);

目录 高性能计算、分布式计算、网格计算、云计算--概念和区别 (1) 高性能计算 (3) 百科名片 (3) 概念 (3) 服务领域 (3) 网格 (5) 百科名片 (5) 网格的产生 (5) 网格技术的特征及其体系结构 (5) 高性能计算机的发展与应用 (17) 我国高性能计算机应用前景及发展中的问题 (17) 高性能计算机与大众生活息息相关 (17) 高性能计算机发展任重道远 (18) 分布式计算、网格计算和云计算 (21) 分布式计算 (21) 网格计算 (21) 云计算 (22) 网格计算和云计算的概念和区别 (24) 目标不同 (24) 分配资源方式的不同 (25) 殊途同归 (26) 钱德沛教授:云计算和网格计算差别何在? (27) 云计算与网格计算的概念 (27) 网格计算的特点是什么呢? (27) 云计算与网格计算区别何在 (28)

评析纳米银线与金属网格材料技术之优劣

评析纳米银线与金属网格材料技术之优劣作者:段晓辉教授时间:2014-05-07 源于:北京大学信息科学技术学院总点击:2756 【导读】:新材料技术应用可以从智能手机的常用面板尺寸一路延伸到20英寸以上的设备,而其阻值,延伸性,弯曲性均优于ITO薄膜。新材料技术在短时间内无法全面取代ITO薄膜,但新材料技术有巨大的优势,而且从市场反应上来看,应用新材料技术生产的薄膜产品所占的比重在逐年提高。 ITO,即掺锡氧化铟(Indium Tin Oxide)。它是液晶显示器(LCD)、等离子显示器(PDP)、电致发光显示器(EL/OLED)、触摸屏(Touch Panel)、太阳能电池以及其他电子仪表的透明电极最常用的薄膜材料。 未来移动终端、可穿戴设备、智能家电等产品,对触摸面板的有着强劲需求,同时随着触控面板大尺寸化、低价化,以及传统ITO薄膜不能用于可弯曲应用,导电性及透光率等本质问题不易克服等因素,众面板厂商纷纷开始研究ITO的替代品,包括纳米银线、金属网格、纳米碳管以及石墨烯等材料。 新材料技术应用可以从智能手机的常用面板尺寸一路延伸到20英寸以上的设备,而且其阻值,延伸性,弯曲性均优于ITO薄膜。虽然,新材料技术在短时间内无法全面取代ITO 薄膜,但是新材料技术有着巨大的优势,而且从市场反应上来看,应用新材料技术生产的薄膜产品所占的比重在逐年提高。目前,石墨烯扔处于研发阶段,距离量产还有很远的距离。纳米碳管工业化量产技术尚未完善,其制成的薄膜产品导电性还不能达到普通ITO薄膜的水平。因而,从技术发展与市场应用综合评价,金属网格与纳米银线技术将是近期新兴触控技术的两大主角。 金属网格(Metal Mesh)技术利用银,铜等金属材料或者氧化物等易于得到且价格低廉的原料,在PET等塑胶薄膜上压制所形成的导电金属网格图案。其理论的最低电阻值可达到0.1欧姆/平方英寸,而且就有良好的电磁干扰屏蔽效果。但是受限于印刷制作的工艺水平,其所制得的触控感测器图样的金属线宽较粗,通常大于5um,这样会导致在高像素下(通常大于200ppi)莫瑞干涉波纹非常明显。莫瑞干涉指数码产品显示屏中像素,光学膜片以及触控导电的金属图案,在水平和垂直方向上,规则对齐的像素和物体的精细规则图案重叠式稍有偏差,则会出现的干扰波纹图案。由于莫瑞干涉的存在,金属网格技术制成的薄膜产品不适用在高分辨率智能手机,平板电脑等高分辨率的产品上,仅仅适用于观测距离较远的显示器屏幕,例如台式一体机器,笔记本电脑,智能电视等。 如果薄膜中金属网格图样的线宽能够大幅度下降,则能有效的降低金属网格技术中的莫瑞干涉的问题,特别是如果金属网格图样的线宽下降到1um左右,则该技术制成的薄膜同样可以搭载在高分辨率的智能设备上。目前韩国三星公司利用微细线宽和图样化

网格划分

有限元网格划分 摘要:总结近十年有限元网格划分技术发展状况。首先,研究和分析有限元网格划分的基本原则;其次,对当前典型网格划分方法进行科学地分类,结合实例,系统地分析各种网格划分方法的机理、特点及其适用范围,如映射法、基于栅格法、节点连元法、拓扑分解法、几何分解法和扫描法等;再次,阐述当前网格划分的研究热点,综述六面体网格和曲面网格划分技术;最后,展望有限元网格划分的发展趋势。 关键词:有限元网格划分;映射法;节点连元法;拓扑分解法;几何分解法;扫描法;六面体网格 1 引言 有限元网格划分是进行有限元数值模拟分析至关重要的一步,它直接影响着后续数值计算分析结果的精确性。网格划分涉及单元的形状及其拓扑类型、单元类型、网格生成器的选择、网格的密度、单元的编号以及几何体素。在有限元数值求解中,单元的等效节点力、刚度矩阵、质量矩阵等均用数值积分生成,连续体单元以及壳、板、梁单元的面内均采用高斯(Gauss)积分,而壳、板、梁单元的厚度方向采用辛普生(Simpson)积分。 2 有限元网格划分的基本原则 有限元方法的基本思想是将结构离散化,即对连续体进行离散化,利用简化几何单元来近似逼近连续体,然后根据变形协调条件综合求解。所以有限元网格的划分一方面要考虑对各物体几何形状的准确描述,另一方面也要考虑变形梯度的准确描述。为正确、合理地建立有限元模型,这里介绍划分网格时应考虑的一些基本原则。 2.1 网格数量

网格数量直接影响计算精度和计算时耗,网格数量增加会提高计算精度,但同时计算时耗也会增加。当网格数量较少时增加网格,计算精度可明显提高,但计算时耗不会有明显增加;当网格数量增加到一定程度后,再继续增加网格时精度提高就很小,而计算时耗却大幅度增加。所以在确定网格数量时应权衡这两个因素综合考虑。 2.2 网格密度 为了适应应力等计算数据的分布特点,在结构不同部位需要采用大小不同的网格。在孔的附近有集中应力,因此网格需要加密;周边应力梯度相对较小,网格划分较稀。由此反映了疏密不同的网格划分原则:在计算数据变化梯度较大的部位,为了较好地反映数据变化规律,需要采用比较密集的网格;而在计算数据变化梯度较小的部位,为减小模型规模,网格则应相对稀疏。 2.3 单元阶次 单元阶次与有限元的计算精度有着密切的关联,单元一般具有线性、二次和三次等形式,其中二次和三次形式的单元称为高阶单元。高阶单元的曲线或曲面边界能够更好地逼近结构的曲线和曲面边界,且高次插值函数可更高精度地逼近复杂场函数,所以增加单元阶次可提高计算精度。但增加单元阶次的同时网格的节点数也会随之增加,在网格数量相同的情况下由高阶单元组成的模型规模相对较大,因此在使用时应权衡考虑计算精度和时耗。 2.4 单元形状 网格单元形状的好坏对计算精度有着很大的影响,单元形状太差的网格甚至会中止计算。单元形状评价一般有以下几个指标: (1)单元的边长比、面积比或体积比以正三角形、正四面体、正六面体为参考基准。 (2)扭曲度:单元面内的扭转和面外的翘曲程度。 (3)节点编号:节点编号对于求解过程中总刚矩阵的带宽和波前因数有较大的影响,从而影响计算时耗和存储容量的大小

网格划分的几种基本处理方法

网格划分的几种基本处理方法 贴体坐标法: 贴体坐标是利用曲线坐标,并使其坐标线与燃烧室外形或复杂计算区域边界重合,这样所有边界点能够用网格点来表示,不需要任何插值。一旦贴体坐标生成通过变换,偏微分方程求解可以不在任意形状的物理平面上,而在矩形或矩形的组合(空间问题求解域为长方体或它们的组合)转换平面上进行。这样计算与燃烧室外形无关,也与在物理平面上网格间隔无关。 而是把边界条件复杂的问题转换成一个边界条件简单的问题;这样不仅可避免因燃烧室外形与坐标网格线不一致带来计算误差,而且还可节省计算时间和内存,使流场计算较准确,同时方便求解,较好地解决了复杂形状流动区域的计算,在工程上比较广泛应用。 区域法: 虽然贴体坐标系可以使坐标线与燃烧室外形相重合,从而解决复杂流动区域计算问题。但有时实际流场是一个复杂的多通道区域,很难用一种网格来模拟,生成单域贴体网格,即使生成了也不能保证网格质量,影响流场数值求解的效果。因此,目前常采用区域法或分区网格,其基本思想是,根据外形特点把复杂的物理域或复杂拓扑结构的网格,分成若干个区域,分别对每个子区域生成拓扑结构简单的网格。由这些子区域组合而成的网格,或结构块网格。对区域进行分区时,若相邻两个子域分离边界是协调对接,称为对接网格;若相邻两子域有相互重叠部分,则此分区网格称为重叠网格。根据实际数值模拟计算的需要,把整个区域(燃烧室)分成几个不同的子区域,并分别生成网格。这样不仅可提高计算精度,而且还可节省计算机内存,提高收敛精度。但是计算时,必须考虑各区域连接边界处耦合以及变量信息及时、准确地传递问题。处理各个区域连接有多种方法,其中一个办法是在求解各变量时各区域可以单独求解若干次而对压力校正方程.设压力校正值在最初迭代时为零,为了保证流量连续各个区域应同时求解,然后对各个速度和压力进行校正。或者采用在两个区域交界处有一个重叠区,两个区域都对重叠区进行计算,重叠区一边区域内的值,要供重叠区另一边区域求解时用。或通过在重叠内建立两个区域坐标对应关系,实现数据在重叠区内及时传递。如果两个区采用网格疏密分布不相同,要求重叠区二边流量相等。区域法能合理解决网格生成问题,已被大量用来计算复杂形状区域流动。 区域分解法: 对于复杂几何形状的实际燃烧装置,为了保证数值求解流场质量,目前常采用区域分解法。该法基本要点是:根据燃烧室形状特点和流场计算需要,把计算区域分成一个主区域和若干个子区域,对各个区域(块)分别建立网格,并对各个区域分别进行数值求解。区域分解原则是尽量使每个子区域边界简便以便于网格建立,各个子区域大小也尽可能相同,使计算负载平衡有利于平行计算。各区域的网格间距数学模型以及计算方法都可以不同,通常在变量变化梯度大的区域,可以布置较细网格,并采用高阶紊流模型和描述复杂反应的紊流燃烧模型,以便更合理模拟实际流场。对于变量变化不太大区域,可采用较疏的网格和较简单的数学模型,这样可节省计算时间。各子区域的解在相邻子区域边界处通过耦合条件来实现光滑,相邻子区域连接重叠网格或对接网格来实现,在各子区域交界处通过插值法提供各子域求解变量的信息传递,满足各子域流场计算要求通量和动量守恒条件以便实现在交界面处各子域流场解的匹配和耦合,从而取得全流场解。 非结构网格法: 上述各方法所生成的网格均属于结构化网格,其共同特点是网格中各节点排列有序,每个节点与邻点之间关系是固定的,在计算区域内网格线和平面保持连续。特别是其中分区结构网格生成方法已积累了较多经验,计算技术也较成熟,目前被广泛用来构造复杂外形区域

石墨烯纳米银线金属网格对比分析

石墨烯/纳米银线/金属网格对比分析OFweek显示网讯:从触摸屏产业链来讲,玻璃基板、Petfilm、胶材是产业上游的主要材料,而玻璃基板、Petfilm的供应被美日企业所垄断。ITO 玻璃、ITOfilm、sensor(包含触控IC)、coverlens是中游部分,下游的就是触控模组一块。从近几年的触控材料研发上看,替代性材料的研发主要在上中游部分。 2013年,国内电容屏出货面积超过400万平方米,其中ITO导电玻璃需求量超过360万平方米,ITO PET导电膜需求量超过140万平方米。从触摸屏产业上游材料的成本分析,ITO材料占据40%左右。且随着触摸屏行业的发展,对ITO材料的需求将越来越大,作为稀有金属的铟,不但价格随之不断上涨,而且将会有告罄的危险,所以在此进行分析的烽烟四起的触控材料,主要为替代ITO的石墨烯、Metal Mesh和纳米银。 东莞市鑫聚光电科技有限公司董事长蔡文珍表示,三种材料中,纳米银线是唯一一个具有现实应用前景的。理论上,石墨烯的透光度及电阻性能都占优势,但是由于其制备过程工艺复杂,在设备改进、工艺优化等方面都预示在前期需要有巨大的投入。相信石墨烯在很长一段时间内都不具备量产的条件。 金属网格最主要的优势在于成本低且导电性佳,但为了达到足透的光穿透率,在线细化过程中必须拿掉95%~99%的触控感应面积,导致触控讯号降低20~100倍,现今触控IC难以支持;其二,为了让眼睛看不到,金属线宽必须小于5微米,使的其黄光显影制程或精密印刷技术费用高;此外,5

微米金属线不断裂、解决金属反射问题、材料氧化等问题都让金属网格技术备受考验。在解决以上难题时,成本也会随之增加,届时Metal Mesh是否还具备成本优势是厂商必须考量的问题。 相比之下,纳米银线在工艺制程上就拥有得天独厚的优势:生产工艺简单、良率高。由于线宽较小,银线技术制成的导电薄膜相比于金属网格技术制成的薄膜可以达到更高的透光率。再次,纳米银线薄膜相比于金属网格薄膜具有较小的弯曲半径,且在弯曲时电阻变化率较小,应用在具有曲面显示的设备,例如智能手表,手环等上的时候,更具有优势。银纳米线除具有银优良的导电性之外,由于纳米级别的尺寸效应,还具有优异的透光性、耐曲挠性。此外由于银纳米线的大长径比效应,使其在导电胶、导热胶等方面的应用中也具有突出的优势。以鑫聚光电目前小批量生产的纳米银线产品为例,是利用研发出来的液体涂料,经过涂布机涂在基膜上,然后经过干燥、覆盖保护膜,成品的生产就完成了。而且,鑫聚光电拥有完善的LCD用光学膜产品生产线,纳米银线的部分制程与LCD用光学膜制程相似,因此,鑫聚产线拥有很大的通用性,大大减少了前期对于产线的投入,从而降低了产品成本。

云计算和网格计算有什么本质区别

云计算和网格计算有什么本质区别 https://www.doczj.com/doc/4712312117.html,/z/q157731426.htm?w=%CD%F8%B8%F1%BC%C6%CB%E3%BC%BC%CA %F5&spi=1&sr=1&w8=%E7%BD%91%E6%A0%BC%E8%AE%A1%E7%AE%97%E6%8A%80%E6%9 C%AF&qf=10&rn=360 [标签:云计算,本质区别,区别] 我对云了解的比较深入,对网格 计算不太了解,但是初步观察发现相 似之处很多,求解两者本质区别 限量版回答:4 人气:108 解决 时间:2009-10-03 20:35 满意答案 耐心看吧 您可能非常关注云计算和网格计 算的比较。本文介绍了云计算服务类 型,云计算和网格计算的相似与不同。 同时本文探讨了云计算优于网格计算 的地方,两者面临的共同问题以及一 些安全方面的问题。本文以Amazon Web Services 为例。 实现云计算需要三个部分:瘦客 户机(或者能够在胖瘦之间切换的客 户机)、网格计算和效用计算。网格 计算将独立的计算机连接成一个大的 基础设施,充分利用闲置的资源。效用计算就是支付在共享服务器上使用的服务,就好象支付公共事业一样(比如电力、天然气等)。 通过网格计算,可以把计算资源作为能够开启关闭的公用事业来提供。云计算更进一步,可以随需提供计算资源。这样在使用公用定价时就可以避免过度供给。在满足数百万用户的需求时也消除了过度供给的需要。 基础设施即服务 消费者通过Internet 可以从完善的计算机基础设施获得服务。这类服务称为基础设施即服务(Infrastructure as a Service,IaaS)。基于Internet 的服务(如存储和数据库)是IaaS 的一部分。Internet 上其他类型的服务包括平台即服务(Platform as a Service,PaaS)和软件即服务(Software as a Service,SaaS)。PaaS 提供了用户可以访问的完整或部分的应用程序开发,SaaS 则提供了完整的可直接使用的应用程序,比如通过Internet 管理企业资源。 作为Infrastructure as a Service (IaaS) 在实际应用中的一个例子,The New York Times 使用成百上千台Amazon EC2 实例在36 小时内处理TB 级的文档数据。如果没有EC2,The New York Times 处理这些数据将要花费数天或者数月的时间。 IaaS 分为两种用法:公共的和私有的。Amazon EC2 在基础设施云中使用公共服务器池。更加私有化的服务会使用企业内部数据中心的一组公用或私有服务器池。如果在企业数据中心环境中开发软件,那么这两种类型都能使用,而且使用EC2 临时扩展资源的成本也很低—比方说测试。结合使用两者可以更快地开发应用程序和服务,缩短开发和测试周期。 Amazon Web 服务

金属过滤网格布转用高强度胶

金属过滤网格布转用高强度胶 【高强度环氧结构胶产品特点】 ★研泰牌高强度环氧高温结构胶是采用国际最新环保型技术,通过添加活性增韧剂及其它热塑性树脂精制而成的双组份高性能高强度结构型环氧树脂ab胶粘剂。 ★具有高粘接强度、高柔韧性、耐冲击、振动、收缩率低,常温固化。 ★耐油、耐水、耐酸碱、防潮、防尘性能等众多优点。 ★耐湿热和大气老化、具有良好的绝缘、抗压、收缩率低等电气及物理特性。 ★环保无毒。可根据工艺需要调节胶水的稀稠度。 【高强度环氧结构胶产品应用】 ★研泰牌高强度高韧性环氧结构胶,具有极高的剪切强度和拉伸强度以及高剥离强度,适合用于强烈冲击、振动的场合;广泛用于粘接金属、不锈钢网、金属过滤网格布、眼镜支架贴合、玻璃、陶瓷、竹木、碳纤维、玻璃纤维、硬泡棉、abs、pvc、尼龙、塑料等材质的自粘或相互粘接,并且具有极高的粘接力。 【高强度环氧结构胶技术参数】 高强度环氧高温结构胶详细技术参数请咨询研泰客服人员。 数据,敬请客户使用时,以测试数据准。 【高强度环氧结构胶使用说明】 ★被粘接物表面必须洁净、光滑、干燥。为了达到最佳效果,不同材质互粘时,请根据实际情况处理表面(抛光打磨、处理剂)。技术139 29 430 431 ★配比:A胶与B胶的配比为:A:B=2:1(重量比),称重配胶并充分搅拌均匀备用,2-3天可达到最佳效果。 ★把配好的胶均匀的涂于两个被粘表面合拢定位,在胶液没凝胶前不得移动受力,根据粘接的要求进行工艺上的处理,如果材料不平或很薄,请在粘接物上面加压,以免影响效果。 ★固化过程中,请保持产品水平摆放,以免固化过程中胶液溢出。 ★用户批量使用时,请先做试验。避免因操作不当而影响粘接效果。 【高强度环氧结构胶注意事项】 ★工作场所保持通风,避免儿童接触。 ★未使用时勿将两胶液混合,使用完后勿将胶帽盖错。固化过程中,请保持环境干净,以免杂质或尘土落入未固化的胶液表面。 ★操作时,请带隔离手套。有极少数人长时间接触胶液会产生轻度皮肤过敏,有轻度痒痛,建议使用时戴防护手套,粘到皮肤上请用丙酮或酒精擦去,并使用清洁剂清洗干净。 ★混合在一起的胶量越多,其反应就越快,固化速度也会越快,并可能伴随放出大量的热量,请注意控制一次配胶的量,因为由于反应加快,其可使用的时间也会缩短,混合后的胶液尽量在可使用时间内使用完。 【高强度环氧结构胶储存包装】 ★本品需在通风、阴凉、干燥处密封保存,保质期一年,过期经试验合格,可继续使用。 ★包装规格为每组1.5kg,其中包含主剂1kg/桶、固化剂0.5kg/桶。

网格划分的原则

划分网格是建立有限元模型的一个重要环节,它要求考虑的问题较多,需要的工作量较大,所划分的网格形式对计算精度和计算规模将产生直接影响。为建立正确、合理的有限元模型,这里介绍划分网格时应考虑的一些基本原则。 1网格数量 网格数量的多少将影响计算结果的精度和计算规模的大小。一般来讲,网格数量增加,计算精度会有所提高,但同时计算规模也会增加,所以在确定网格数量时应权衡两个因数综合考虑。 图1中的曲线1表示结构中的位移随网格数量收敛的一般曲线,曲线2代表计算时间随网格数量的变化。可以看出,网格较少时增加网格数量可以使计算精度明显提高,而计算时间不会有大的增加。当网格数量增加到一定程度后,再继续增加网格时精度提高甚微,而计算时间却有大幅度增加。所以应注意增加网格的经济性。实际应用时可以比较两种网格划分的计算结果,如果两次计算结果相差较大,可以继续增加网格,相反则停止计算。 图1位移精度和计算时间随网格数量的变化 在决定网格数量时应考虑分析数据的类型。在静力分析时,如果仅仅是计算结构的变形,网格数量可以少一些。如果需要计算应力,则在精度要求相同的情况下应取相对较多的网格。同样在响应计算中,计算应力响应所取的网格数应比计算位移响应多。在计算结构固有动力特性时,若仅仅是计算少数低阶模态,可以选择较少的网格,如果计算的模态阶次较高,则应选择较多的网格。在热分析中,结构内部的温度梯度不大,不需要大量的内部单元,这时可划分较少的网格。 2网格疏密 网格疏密是指在结构不同部位采用大小不同的网格,这是为了适应计算数据的分布特点。在计算数据变化梯度较大的部位(如应力集中处),为了较好地反映数据变化规律,需要采用比较密集的网格。而在计算数据变化梯度较小的部位,为减小模型规模,则应划分相对稀疏的网格。这样,整个结构便表现出疏密不同的网格划分形式。 图2是中心带圆孔方板的四分之一模型,其网格反映了疏密不同的划分原则。小圆孔附近存在应力集中,采用了比较密的网格。板的四周应力梯度较小,网格分得较稀。其中图b 中网格疏密相差更大,它比图a中的网格少48个,但计算出的孔缘最大应力相差1%,而计算时间却减小了36%。由此可见,采用疏密不同的网格划分,既可以保持相当的计算精度,又可使网格数量减小。因此,网格数量应增加到结构的关键部位,在次要部位增加网格是不必要的,也是不经济的。

金属网格触控技术与先进内嵌式触控技术

金属网格触控的问题探讨 金属是不透光的材料所以要达到够质量的穿透率,在细线化的过程中必须拿掉95%~99%原有的触控Sensor 面积,相当于触控Sensor的面积少了20~100倍,这会不会让触控电路接收到的触控讯号也跟着减少20~100倍,这个条件下是否还有触控IC可以支持这个金属网格的触控面板。 要让眼睛看不到,金属网格中的金属线宽最好要小于5微米,现有触控面板厂的黄光显影设备是做不到的,必须用LCD面板厂等级的黄光显影设备才行,如果将黄光显影制程换成印刷的方法来打印小于5微米的金属线,不论凹凸版印刷技术再精良,良率的问题都很难克服,范本的费用也会很高,每个模板的可使用的次数,模板的清洗成本都将会对金属网格触控面板的成本造成很大的影响。 使用卷对卷的生产设备要如何在高转速的张力下,让小于5微米的金属线不断裂,也考验着设备厂商的功力。 金属除了不透光的特性外还有高反射的特性,要解决金属反射的问题则须加上遮光材料或抗反射材料,如此又对制程产生影响,增加生产的难度与成本。 使用银,铝或铜作为金属网格的材料时会还要面临氧化的问题,如何增加表面处理材料来防止氧化,又还是增加了制程的难度与成本。 当我们成功的克服了上述所有的难题后我们还能确信金属网格仍还具有成本优势? 触控IC的技术才是金属网格可否成功的主要关键 目前触控产业最热门的话题”金属网格触控”,一场取代ITO材料与降低触控面板成本的新技术与新材料正蓄势待发,许多业界的朋友也都聚焦在此,金属网格是不透明材料,却要使用在透明的用途上,这必然会产生光学上的考虑与用户接受度之间的平衡问题,透光度、反光率、干涉所造成的牛顿环现象都在考验着使用者的接受程度,要求越高质量的产品就必须使用越细的金属线与越少的感应面积,而越细的金属线会增加生产难度让成本上升,越少的感应面积则会考验触控IC的感测能力,让现有的触控IC业者都跨不过这个技术门坎,所以触控IC的技术才是金属网格可否成功的主要关键,而不在产品的生产技术。 金属网格不应该使用互电容的技术 驱动电极Tx与接收电极Rx重迭的区域是属于无效区域,这个区域已经是电力线可以走的最短距离,所以当手指碰触时,是影响不到这个区域的电力线,也就不会产生任何的互电容变化,其次重迭的区域越小则互电容就会越小,两层的距离越近,则会让互电容变大,调整这两个参数可以产生所需要的互电容值,互电容的大小反比于其容抗的大小,如果互电容的容抗变大,量到的触控感应电流就会变小,因此设计的要诀就在于在可量测到的最佳触控感应电流的条件下,让重迭的面积越小越好。 要让手指触碰时产生较大的变化,就要让靠近接收电极Rx的非重迭区域越大越好,如此才会有更多的电力线溢出,穿透玻璃基材与外部的手指互动,当手指碰触时可以吸收到这些溢出的电力线,让电力线回不到接收电极Rx,造成互电容的减少,Apple的双层互电容结构都保持较大面积的Tx与较小面积的Rx原因就在此。 合理的分配互电容的大小与互电容改变量的大小,这考验着触控面板厂设计的功力,由于触控发生时互电容是变小的,变化最多也只能让互电容从现有值变到零为止,所以关键点就在于,从哪一个基本数值开始变化,这个数值就是我们所要的互电容值,有人会说不是越

网格和单元的基本概念

网格和单元的基本概念 前记:首先说明,和一般的有限元或者计算力学的教材不一样,本人也不打算去抄袭别人的著作,下面的连载是一个阶段的学习或者专业感悟集大成,可以说深入浅出,也可以说浅薄之极——如果你认为浅薄,很好,说明我理解透了,也祝贺你理解透了!好了,废话少说,书归正传。 无论是CSD(计算结构力学)、CTD(计算热力学)还是CFD(计算流体动力学)——我们统一称之为工程物理数值计算技术。支撑这个体系的4大要素就是:材料本构、网格、边界和荷载(荷载问题可以理解为数学物理方程的初值问题),当然,如果把求解技术也看作一个要素,则也可以称之为5大要素。网格是一门复杂的边缘学科,是几何拓补学和力学的杂交问题,也是支撑数值计算的前提保证。本番连载不做任何网格理论的探讨(网格理论是纯粹的数学理论),仅限于尽量简单化的应用技术揭秘。 网格出现的思想源于离散化求解思想,离散化把连续求解域离散为若干有限的子区域,分别求解各个子区域的物理变量,各个子区域相邻连续与协调,从而达到整个变量场的协调与连续。离散网格仅仅是物理量的一个“表征符号”,网格是有形的,但被离散对象既可以是有形的(各类固体),也可以是无形的(热传导、气体),最关键的核心在于网格背后隐藏的数学物理列式,因此,简单点说,看得见的网格离散是形式,而看不见的物理量离散才是本质核心。 对计算结构力学问题,网格剖分主要包含几个内容:杆系单元剖分(梁、杆、索、弹簧等)、二维板壳剖分(曲面或者平面单元)、三维实体剖分(非结构化全六面体网格、四面体网格、金字塔网格、结构化六面体网格、混合网格等),计算热力学和计算流体动力学的网格绝大部分是三维问题。对于CAE工程师而言,任何复杂问题域最终均直接表现为网格的堆砌,工程师的任务等同于上帝造人的过程,网格是一个机体,承载着灵魂(材料本构、网格、边界和荷载),求解技术则是一个思维过程。 网格基本要素是由最基本的节点(node)、单元线(edge)、单元面(face)、单元体(body)构成,实质上,线、面、体只不过是为了让网格看起来更加直观,在分析求解过程中,线、面、体本质上并没有起多大的作用,数值离散的落脚点在节点(node)上,所有的物理变量均转化为节点变量实现连续和传递。在所有的CAE环境下,网格的基本要素均可以直接构成,但对于复杂问题而言,这是一个在操作上很难实现的事情,因此,基于几何要素的网格划分技术成为现代网格剖分应用的支点,和网格基本要素完全相同,对应的几何要素分别称之为点(point)、线(curve)、面(surface)和实体(solid)。 数值离散求解器是不能识别几何元素的,要对其添加“饲料”,工程师必须对几何元素进行“精加工”,因此,从这个意义上来说,网格剖分的本质就是把几何要素转换为若干离散的元素组,这些元素组堆砌成形态上近似逼近原有几何域的简单网格集合体。因此,这里说明了一个网格“加工”质量的基本判别标准——和几何元素的拟合逼近程度,理论上,越逼近几何元素的网格质量越好,当然,几何逼近只是一个基本的判别标准,网格质量判别有一系列复杂的标准,后文详细阐述。 本篇将专门解释几个基本概念:点网格;一维线网格;二维三角形面网格、二维四边形面网格;三维四面体网格(tetrahedra)、三维金字塔单元(pyramid)、五面体单元(prism)、三维六面体单元(hexahedra);结构化网格(structural grid)、非结构化网格(nonstructural grid)、混合网格(blend grid)。需要专门

相关主题
文本预览
相关文档 最新文档