当前位置:文档之家› 基于Fisher判别分析的贝叶斯分类器

基于Fisher判别分析的贝叶斯分类器

基于Fisher判别分析的贝叶斯分类器
基于Fisher判别分析的贝叶斯分类器

贝叶斯分类器的matlab实现

贝叶斯分类器的matlab实现 贝叶斯分类原理: 1)在已知P(Wi),P(X|Wi)(i=1,2)及给出待识别的X的情况下,根据贝叶斯公式计算出后验概率P(Wi|X) ; 2)根据1)中计算的后验概率值,找到最大的后验概率,则样本X属于该类 举例: 解决方案: 但对于两类来说,因为分母相同,所以可采取如下分类标准:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%% %By Shelley from NCUT,April 14th 2011 %Email:just_for_h264@https://www.doczj.com/doc/471132055.html, %此程序利用贝叶斯分类算法,首先对两类样本进行训练, %进而可在屏幕上任意取点,程序可输出属于第一类,还是第二类%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%% clear; close all %读入两类训练样本数据 load data %求两类训练样本的均值和方差 u1=mean(Sample1); u2=mean(Sample2); sigm1=cov(Sample1); sigm2=cov(Sample2); %计算两个样本的密度函数并显示 x=-20:0.5:40; y= -20:0.5:20; [X,Y] = meshgrid(x,y); F1 = mvnpdf([X(:),Y(:)],u1,sigm1); F2 = mvnpdf([X(:),Y(:)],u2,sigm2); P1=reshape(F1,size(X)); P2=reshape(F2,size(X)); figure(2) surf(X,Y,P1) hold on surf(X,Y,P2) shading interp colorbar title('条件概率密度函数曲线'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% %以下为测试部分 %利用ginput随机选取屏幕上的点(可连续取10个点)

Bayes分类器原理

贝叶斯分类器 一、朴素贝叶斯分类器原理 目标: 计算(|)j P C t 。注:t 是一个多维的文本向量 分析: 由于数据t 是一个新的数据,(|)j P C t 无法在训练数据集中统计出来。因此需要转换。根据概率论中的贝叶斯定理 (|)()(|)() P B A P A P A B P B = 将(|)j P C t 的计算转换为: (|)() (|)()j j j P t C P C P C t P t = (1) 其中,()j P C 表示类C j 在整个数据空间中的出现概率,可以在训练集中统计出来(即用C j 在训练数据集中出现的频率()j F C 来作为概率()j P C 。但(|)j P t C 和()P t 仍然不能统计出来。 首先,对于(|)j P t C ,它表示在类j C 中出现数据t 的概率。根据“属性独立性假设”,即对于属于类j C 的所有数据,它们个各属性出现某个值的概率是相互独立的。如,判断一个干部是否是“好干部”(分类)时,其属性“生活作风=好”的概率(P(生活作风=好|好干部))与“工作态度=好”的概率(P(工作态度=好|好干部))是独立的,没有潜在的相互关联。换句话说,一个好干部,其生活作风的好坏与其工作态度的好坏完全无关。我们知道这并不能反映真实的情况,因而说是一种“假设”。使用该假设来分类的方法称为“朴素贝叶斯分类”。 根据上述假设,类j C 中出现数据t 的概率等于其中出现t 中各属性值的概率的乘积。即: (|)(|)j k j k P t C P t C =∏ (2) 其中,k t 是数据t 的第k 个属性值。

其次,对于公式(1)中的 ()P t ,即数据t 在整个数据空间中出现的概率,等于它在各分类中出现概率的总和,即: ()(|)j j P t P t C =∑ (3) 其中,各(|)j P t C 的计算就采用公式(2)。 这样,将(2)代入(1),并综合公式(3)后,我们得到: (|)()(|),(|)(|)(|) j j j j j j k j k P t C P C P C t P t C P t C P t C ?=????=??∑∏其中: (4) 公式(4)就是我们最终用于判断数据t 分类的方法。其依赖的条件是:从训练数据中统计出(|)k j P t C 和()j P C 。 当我们用这种方法判断一个数据的分类时,用公式(4)计算它属于各分类的概率,再取其中概率最大的作为分类的结果。 改进的P(t | C j )的计算方法: 摒弃t(t 1, t 2 , t 3,)中分量相互独立的假设, P(t 1, t 2 , t 3,| C j ) = P(t 1 | C j ) * P(t 2 | t 1, C j ) * P(t 3| t 1, t 2 ,C j ) 注意: P(t 3| t 1, t 2 ,C j )

五种贝叶斯网分类器的分析与比较

五种贝叶斯网分类器的分析与比较 摘要:对五种典型的贝叶斯网分类器进行了分析与比较。在总结各种分类器的基础上,对它们进行了实验比较,讨论了各自的特点,提出了一种针对不同应用对象挑选贝叶斯网分类器的方法。 关键词:贝叶斯网;分类器;数据挖掘;机器学习 故障诊断、模式识别、预测、文本分类、文本过滤等许多工作均可看作是分类问题,即对一给定的对象(这一对象往往可由一组特征描述),识别其所属的类别。完成这种分类工作的系统,称之为分类器。如何从已分类的样本数据中学习构造出一个合适的分类器是机器学习、数据挖掘研究中的一个重要课题,研究得较多的分类器有基于决策树和基于人工神经元网络等方法。贝叶斯网(Bayesiannetworks,BNs)在AI应用中一直作为一种不确定知识表达和推理的工具,从九十年代开始也作为一种分类器得到研究。 本文先简单介绍了贝叶斯网的基本概念,然后对五种典型的贝叶斯网分类器进行了总结分析,并进行了实验比较,讨论了它们的特点,并提出了一种针对不同应用对象挑选贝叶斯分类器的方法。 1贝叶斯网和贝叶斯网分类器 贝叶斯网是一种表达了概率分布的有向无环图,在该图中的每一节点表示一随机变量,图中两节点间若存在着一条弧,则表示这两节点相对应的随机变量是概率相依的,两节点间若没有弧,则说明这两个随机变量是相对独立的。按照贝叶斯网的这种结构,显然网中的任一节点x均和非x的父节点的后裔节点的各节点相对独立。网中任一节点X均有一相应的条件概率表(ConditionalProbabilityTable,CPT),用以表示节点x在其父节点取各可能值时的条件概率。若节点x无父节点,则x的CPT为其先验概率分布。贝叶斯网的结构及各节点的CPT定义了网中各变量的概率分布。 贝叶斯网分类器即是用于分类工作的贝叶斯网。该网中应包含一表示分类的节点C,变量C的取值来自于类别集合{C,C,....,C}。另外还有一组节点x=(x,x,....,x)反映用于分类的特征,一个贝叶斯网分类器的结构可如图1所示。 对于这样的一贝叶斯网分类器,若某一待分类的样本D,其分类特征值为x=(x,x,....,x),则样本D属于类别C的概率为P(C=C|X=x),因而样本D属于类别C的条件是满足(1)式: P(C=C|X=x)=Max{P(C=C|X=x),P(C=C|X=x),...,P(C=C|X=x)}(1) 而由贝叶斯公式 P(C=C|X=x)=(2) 其中P(C=Ck)可由领域专家的经验得到,而P(X=x|C=Ck)和P(X=x)的计算则较困难。应用贝叶斯网分类器分成两阶段。一是贝叶斯网分类器的学习(训练),即从样本数据中构造分类器,包括结构(特征间的依赖关系)学习和CPT表的学习。二是贝叶斯网分类器的推理,即计算类结点的条件概率,对待分类数据进行分类。这两者的时间复杂性均取决于特征间的依赖程度,甚至可以是NP完全问题。因而在实际应用中,往往需

贝叶斯统计方法研究

贝叶斯方法 贝叶斯分类器是一种比较有潜力的数据挖掘工具,它本质上是一种分类手段,但是它的优势不仅仅在于高分类准确率,更重要的是,它会通过训练集学习一个因果关系图(有向无环图)。如在医学领域,贝叶斯分类器可以辅助医生判断病情,并给出各症状影响关系,这样医生就可以有重点的分析病情给出更全面的诊断。进一步来说,在面对未知问题的情况下,可以从该因果关系图入手分析,而贝叶斯分类器此时充当的是一种辅助分析问题领域的工具。如果我们能够提出一种准确率很高的分类模型,那么无论是辅助诊疗还是辅助分析的作用都会非常大甚至起主导作用,可见贝叶斯分类器的研究是非常有意义的。 与五花八门的贝叶斯分类器构造方法相比,其工作原理就相对简单很多。我们甚至可以把它归结为一个如下所示的公式: 选取其中后验概率最大的,即分类结果,可用如下公式表示

贝叶斯统计的应用范围很广,如计算机科学中的“统计模式识别”、勘探专家所采用的概率推理、计量经济中的贝叶斯推断、经济理论中的贝叶斯模型等。 上述公式本质上是由两部分构成的:贝叶斯分类模型和贝叶斯公式。下面介绍贝叶斯分类器工作流程: 1.学习训练集,存储计算条件概率所需的属性组合个数。 2.使用中存储的数据,计算构造模型所需的互信息和条件互信息。3.使用种计算的互信息和条件互信息,按照定义的构造规则,逐步构建出贝叶斯分类模型。 4.传入测试实例 .根据贝叶斯分类模型的结构和贝叶斯公式计算后验概率分布。.选取其中后验概率最大的类,即预测结果。 一、第一部分中给出了个定义。 定义给定事件组,若其中一个事件发生,而其他事件不发生,则称这些事件互不相容。 定义若两个事件不能同时发生,且每次试验必有一个发生,则称这些事件相互对立。 定义若定某事件未发生,而其对立事件发生,则称该事件失败

作业1-贝叶斯分类器

作业1、BAYES分类器 算法1. %绘图,从多个视角观察上述3维2类训练样本 clear all; close all; N1=440; x1(1,:)=-1.7+0.9*randn(1,N1); % 1 类440 个训练样本,3 维正态分布 x1(2,:)= 1.6+0.7*randn(1,N1); x1(3,:)=-1.5+0.8*randn(1,N1); N2=400; x2(1,:)= 1.3+1.2*randn(1,N2); % 2 类400 个训练样本,3 维正态分布 x2(2,:)=-1.5+1.3*randn(1,N2); x2(3,:)= 1.4+1.1*randn(1,N2); plot3(x1(1,:),x1(2,:),x1(3,:),'*',x2(1,:),x2(2,:),x2(3,:),'o'); grid on; axis equal; axis([-5 5 -5 5 -5 5]); xlabel('x ');ylabel('y ');zlabel('z '); %假定2类的类条件概率分布皆为正态分布,分别估计2类的先验概率、均值向量、协方差矩阵 p1=N1/(N1+N2); % 1 类的先验概率 p2=N2/(N1+N2); % 2 类的先验概率 u1=sum(x1')/N1; % 1 类均值估计 u1=u1' for i=1:N1 xu1(:,i)=x1(:,i)-u1;end; e1=(xu1*xu1')/(N1-1) % 1 类协方差矩阵估计 u2=sum(x2')/N2; % 2 类均值估计 u2=u2' for i=1:N2 xu2(:,i)=x2(:,i)-u2;end; e2=(xu2*xu2')/(N2-1) % 2 类协方差矩阵估计 %求解2类的BAYES分类器的决策(曲)面,并绘图、从多个视角观察决策面 %bayse 概率概率分布函数 w10=-(1/2)*u1'*(inv(e1))*u1-0.5*log(det(e1))+log(0.52); w20=-(1/2)*u2'*(inv(e2))*u2-0.5*log(det(e2))+log(0.48); W1=-(0.5)*inv(e1); W2=-(0.5)*inv(e2); w1=inv(e1)*u1; w2=inv(e2)*u2; temp=-5:0.1:5; [x1,y1,z1]=meshgrid(temp,temp,temp); val=zeros(size(x1)); for k=1:(size(x1,1)^3) X=[x1(k),y1(k),z1(k)]';

贝叶斯分类多实例分析总结

用于运动识别的聚类特征融合方法和装置 提供了一种用于运动识别的聚类特征融合方法和装置,所述方法包括:将从被采集者的加速度信号 中提取的时频域特征集的子集内的时频域特征表示成以聚类中心为基向量的线性方程组;通过求解线性方程组来确定每组聚类中心基向量的系数;使用聚类中心基向量的系数计算聚类中心基向量对子集的方差贡献率;基于方差贡献率计算子集的聚类中心的融合权重;以及基于融合权重来获得融合后的时频域特征集。 加速度信号 →时频域特征 →以聚类中心为基向量的线性方程组 →基向量的系数 →方差贡献率 →融合权重 基于特征组合的步态行为识别方法 本发明公开了一种基于特征组合的步态行为识别方法,包括以下步骤:通过加速度传感器获取用户在行为状态下身体的运动加速度信息;从上述运动加速度信息中计算各轴的峰值、频率、步态周期和四分位差及不同轴之间的互相关系数;采用聚合法选取参数组成特征向量;以样本集和步态加速度信号的特征向量作为训练集,对分类器进行训练,使的分类器具有分类步态行为的能力;将待识别的步态加速度信号的所有特征向量输入到训练后的分类器中,并分别赋予所属类别,统计所有特征向量的所属类别,并将出现次数最多的类别赋予待识别的步态加速度信号。实现简化计算过程,降低特征向量的维数并具有良好的有效性的目的。 传感器 →样本及和步态加速度信号的特征向量作为训练集 →分类器具有分类步态行为的能力 基于贝叶斯网络的核心网故障诊断方法及系统 本发明公开了一种基于贝叶斯网络的核心网故障诊断方法及系统,该方法从核心网的故障受理中心采集包含有告警信息和故障类型的原始数据并生成样本数据,之后存储到后备训练数据集中进行积累,达到设定的阈值后放入训练数据集中;运用贝叶斯网络算法对训练数据集中的样本数据进行计算,构造贝叶斯网络分类器;从核心网的网络管理系统采集含有告警信息的原始数据,经贝叶斯网络分类器计算获得告警信息对应的故障类型。本发明,利用贝叶斯网络分类器构建故障诊断系统,实现了对错综复杂的核心网故障进行智能化的系统诊断功能,提高了诊断的准确性和灵活性,并且该系统构建于网络管理系统之上,易于实施,对核心网综合信息处理具有广泛的适应性。 告警信息和故障类型 →训练集 —>贝叶斯网络分类器

iris数据集的贝叶斯分类

IRIS 数据集的Bayes 分类实验 一、 实验原理 1) 概述 模式识别中的分类问题是根据对象特征的观察值将对象分到某个类别中去。统计决策理论是处理模式分类问题的基本理论之一,它对模式分析和分类器的设计有着实际的指导意义。 贝叶斯(Bayes )决策理论方法是统计模式识别的一个基本方法,用这个方法进行分类时需要具备以下条件: 各类别总体的分布情况是已知的。 要决策分类的类别数是一定的。 其基本思想是:以Bayes 公式为基础,利用测量到的对象特征配合必要的先验信息,求出各种可能决策情况(分类情况)的后验概率,选取后验概率最大的,或者决策风险最小的决策方式(分类方式)作为决策(分类)的结果。也就是说选取最有可能使得对象具有现在所测得特性的那种假设,作为判别的结果。 常用的Bayes 判别决策准则有最大后验概率准则(MAP ),极大似然比准则(ML ),最小风险Bayes 准则,Neyman-Pearson 准则(N-P )等。 2) 分类器的设计 对于一个一般的c 类分类问题,其分类空间: {}c w w w ,,,21 =Ω 表特性的向量为: ()T d x x x x ,,,21 = 其判别函数有以下几种等价形式: a) ()()i j i w w i j c j w w x w P x w P ∈→≠=∈→>,且,,,2,11 , b) ()()() ()i j j i w w i j c j w P w x p w P w x p ∈→≠=>,且,,,2,1i c) ()() () ()()i i j j i w w i j c j w P w P w x p w x p x l ∈→≠=>=,且,,,2,1 d) ()()() ()i j j i i w w i j c j w P w x np w P w x p ∈→≠=+>+,且,,,2,1ln ln ln 3) IRIS 数据分类实验的设计

朴素贝叶斯分类器

朴素贝叶斯分类器 Naive Bayesian Classifier C语言实现 信息电气工程学院 计算本1102班 20112212465 马振磊

1.贝叶斯公式 通过贝叶斯公式,我们可以的知在属性F1-Fn成立的情况下,该样本属于分类C的概率。 而概率越大,说明样本属于分类C的可能性越大。 若某样本可以分为2种分类A,B。 要比较P(A | F1,F2......) 与P(B | F1,F2......)的大小只需比较,P(A)P(F1,F2......| A) ,与P(B)P(F1,F2......| B) 。因为两式分母一致。 而P(A)P(F1,F2......| A)可以采用缩放为P(A)P(F1|A)P(F2|A).......(Fn|A) 因此,在分类时,只需比较每个属性在分类下的概率累乘,再乘该分类的概率即可。 分类属性outlook 属性temperature 属性humidity 属性wind no sunny hot high weak no sunny hot high strong yes overcast hot high weak yes rain mild high weak yes rain cool normal weak no rain cool normal strong yes overcast cool normal strong no sunny mild high weak yes sunny cool normal weak yes rain mild normal weak yes sunny mild normal strong yes overcast mild high strong yes overcast hot normal weak no rain mild high strong 以上是根据天气的4种属性,某人外出活动的记录。 若要根据以上信息判断 (Outlook = sunny,Temprature = cool,Humidity = high,Wind = strong) 所属分类。 P(yes| sunny ,cool ,high ,strong )=P(yes)P(sunny|yes)P(cool |yes)P(high|yes)P(strong|yes)/K P(no| sunny ,cool ,high ,strong )=P(no)P(sunny|no)P(cool |no)P(high|no)P(strong|no)/K K为缩放因子,我们只需要知道两个概率哪个大,所以可以忽略K。 P(yes)=9/14 P(no)=5/14 P(sunny|yes)=2/9 P(cool|yes)=1/3 P(high|yes)=1/3 P(strong|yes)=1/3 P(sunny|no)=3/5 P(cool|no)=1/5 P(high|no)=4/5 P(strong|no)=3/5 P(yes| sunny ,cool ,high ,strong)=9/14*2/9*1/3*1/3*1/3=0.00529 P(no| sunny ,cool ,high ,strong )=5/14*3/5*1/5*4/5*3/5=0.20571 No的概率大,所以该样本实例属于no分类。

贝叶斯分类算法

最近在面试中,除了基础& 算法& 项目之外,经常被问到或被要求介绍和描述下自己所知道的几种分类或聚类算法,而我向来恨对一个东西只知其皮毛而不得深入,故写一个有关聚类& 分类算法的系列文章以作为自己备试之用(尽管貌似已无多大必要,但还是觉得应该写下以备将来常常回顾思考)。行文杂乱,但侥幸若能对读者也起到一定帮助,则幸甚至哉。 本分类& 聚类算法系列借鉴和参考了两本书,一本是Tom M.Mitchhell所著的机器学习,一本是数据挖掘导论,这两本书皆分别是机器学习& 数据挖掘领域的开山or杠鼎之作,读者有继续深入下去的兴趣的话,不妨在阅读本文之后,课后细细研读这两本书。除此之外,还参考了网上不少牛人的作品(文末已注明参考文献或链接),在此,皆一一表示感谢。 本分类& 聚类算法系列暂称之为Top 10 Algorithms in Data Mining,其中,各篇分别有以下具体内容: 1. 开篇:决策树学习Decision Tree,与贝叶斯分类算法(含隐马可夫模型HMM); 2. 第二篇:支持向量机SVM(support vector machine),与神经网络ANN; 3. 第三篇:待定... 说白了,一年多以前,我在本blog内写过一篇文章,叫做:数据挖掘领域十大经典算法初探(题外话:最初有个出版社的朋友便是因此文找到的我,尽管现在看来,我离出书日期仍是遥遥无期)。现在,我抽取其中几个最值得一写的几个算法每一个都写一遍,以期对其有个大致通透的了解。 OK,全系列任何一篇文章若有任何错误,漏洞,或不妥之处,还请读者们一定要随时不吝赐教& 指正,谢谢各位。 基础储备:分类与聚类 在讲具体的分类和聚类算法之前,有必要讲一下什么是分类,什么是聚类,都包含哪些具体算法或问题。 常见的分类与聚类算法 简单来说,自然语言处理中,我们经常提到的文本分类便就是一个分类问题,一般的模式分类方法都可用于文本分类研究。常用的分类算法包括:朴素的贝叶斯分类算法(native Bayesian classifier)、基于支持向量机(SVM)的分类器,k-最近邻法(k-nearest neighbor,

贝叶斯分类器

实验报告 一. 实验目的 1、 掌握密度函数监督参数估计方法; 2、 掌握贝叶斯最小错误概率分类器设计方法。 二.实验内容 对于一个两类分类问题,设两类的先验概率相同,(12()()P P ωω=),两类的类条件概率密度函数服从二维正态分布,即 11(|)~(,)P N ω1x μΣ2(|)~(,)P N ω22x μΣ 其中,=[3,6]T 1μ,0.50=02???? ?? 1Σ,=[3,-2]T 2μ,20=02??????2Σ。 1) 随机产生两类样本; 2) 设计最大似然估计算法对两类类条件概率密度函数进行估计; 3) 用2)中估计的类条件概率密度函数设计最小错误概率贝叶斯分类器,实现对两类样本的分类。 三.实验原理 最大似然估计 1. 作用

在已知试验结果(即是样本)的情况下,用来估计满足这些样本分布的参数,把可能性最大的那个参数θ作为真实* θ的参数估计。 2. 离散型 设X 为离散型随机变量, 12=(,,...,)k θθθθ为多维参数向量,如果随机变量 1,...,n X X 相互独立且概率计算式为 {}1(;,...) i i i k P x p x θθX ==,则可得概率函数为 {}1111,...,(;,...)n n n i k i P x x p x θθ=X =X ==∏,在 12=(,,...,)k θθθθ固定时,上式表示11,...,n n x x X =X =的概率;当 11,...,n n x x X =X =已知的时候,它又变成 12=(,,...,)k θθθθ的函数,可以把它记为12111(,,...,)(;,...,)n k k i L p x θθθθθ==∏,称此函数为似然函数。似然函数值的大小意味着该样本值出现的可能性的大小,既然已经得到了样本值 11,...,n n x x X =X =,那么它出现的可能性应该是较大的,即似然 函数的值也应该是比较大的,因而最大似然估计就是选择使12(,,...,) k L θθθ达到最 大值的那个θ作为真实* θ的估计。 3. 连续型 设X 为连续型随机变量,其概率密度函数为1(;,...) i k f x θθ, 1,...n x x 为从该总体中 抽出的样本,同样的如果 1,...n x x 相互独立且同分布,于是样本的联合概率密度为12111(,,...,)(;,...,) n k k i L f x θθθθθ==∏。大致过程同离散型一样。 最大后验概率判决准则 先验概率 1() P ω和 2() P ω,类条件概率密度 1(|) P X ω和 2(|) P X ω,根据贝叶斯公 式1 (|)() (|)(|)() i i i c j j j p x P P X p X P ωωωωω== ∑,当 12(|)(|) P P ωω>x x 则可以下结论,在x 条件 下,事件 1ω出现的可能性大,将x 判定为1ω类。

朴素贝叶斯分类算法代码实现

朴素贝叶斯分类算法 一.贝叶斯分类的原理 贝叶斯分类器的分类原理是通过某对象的先验概率,利用贝叶斯公式计算出其后验概率,即该对象属于某一类的概率,选择具有最大后验概率的类作为该对象所属的类。也就是说,贝叶斯分类器是最小错误率意义上的优化。 贝叶斯分类器是用于分类的贝叶斯网络。该网络中应包含类结点C,其中C 的取值来自于类集合( c1 , c2 , ... , cm),还包含一组结点X = ( X1 , X2 , ... , Xn),表示用于分类的特征。对于贝叶斯网络分类器,若某一待分类的样本D,其分类特征值为x = ( x1 , x2 , ... , x n) ,则样本D 属于类别ci 的概率P( C = ci | X1 = x1 , X2 = x 2 , ... , Xn = x n) ,( i = 1 ,2 , ... , m) 应满足下式: P( C = ci | X = x) = Max{ P( C = c1 | X = x) , P( C = c2 | X = x ) , ... , P( C = cm | X = x ) } 贝叶斯公式: P( C = ci | X = x) = P( X = x | C = ci) * P( C = ci) / P( X = x) 其中,P( C = ci) 可由领域专家的经验得到,而P( X = x | C = ci) 和P( X = x) 的计算则较困难。 二.贝叶斯伪代码 整个算法可以分为两个部分,“建立模型”与“进行预测”,其建立模型的伪代码如下: numAttrValues 等简单的数据从本地数据结构中直接读取 构建几个关键的计数表 for(为每一个实例) { for( 每个属性 ){ 为 numClassAndAttr 中当前类,当前属性,当前取值的单元加 1 为 attFrequencies 中当前取值单元加 1 } } 预测的伪代码如下: for(每一个类别){ for(对每个属性 xj){ for(对每个属性 xi){

贝叶斯分类器工作原理

贝叶斯分类器工作原理原理 贝叶斯分类器是一种比较有潜力的数据挖掘工具,它本质上是一 种分类手段,但是它的优势不仅仅在于高分类准确率,更重要的是,它会通过训练集学习一个因果关系图(有向无环图)。如在医学领域,贝叶斯分类器可以辅助医生判断病情,并给出各症状影响关系,这样医生就可以有重点的分析病情给出更全面的诊断。进一步来说,在面对未知问题的情况下,可以从该因果关系图入手分析,而贝叶斯分类器此时充当的是一种辅助分析问题领域的工具。如果我们能够提出一种准确率很高的分类模型,那么无论是辅助诊疗还是辅助分析的作用都会非常大甚至起主导作用,可见贝叶斯分类器的研究是非常有意义的。 与五花八门的贝叶斯分类器构造方法相比,其工作原理就相对简 单很多。我们甚至可以把它归结为一个如下所示的公式: 其中实例用T{X0,X1,…,Xn-1}表示,类别用C 表示,AXi 表示Xi 的 父节点集合。 选取其中后验概率最大的c ,即分类结果,可用如下公式表示 () ()()() ()( ) 0011111 00011111 0|,, ,|,,, ,C c |,i i n n n i i X i n n n i i X i P C c X x X x X x P C c P X x A C c P X x X x X x P P X x A C c ---=---========= ===∝===∏∏()() 1 0arg max |A ,i n c C i i X i c P C c P X x C c -∈=====∏

上述公式本质上是由两部分构成的:贝叶斯分类模型和贝叶斯公式。下面介绍贝叶斯分类器工作流程: 1.学习训练集,存储计算条件概率所需的属性组合个数。 2.使用1中存储的数据,计算构造模型所需的互信息和条件互信息。 3.使用2种计算的互信息和条件互信息,按照定义的构造规则,逐步构建出贝叶斯分类模型。 4.传入测试实例 5.根据贝叶斯分类模型的结构和贝叶斯公式计算后验概率分布。6.选取其中后验概率最大的类c,即预测结果。 其流程图如下所示:

贝叶斯分类器MATLAB经典程序

function Bayes2 %为了提高实验样本测试的精度,故采用多次模拟求平均值的方法 N=input('实验模拟次数N(N最好为奇数)='); Result(1:3,1:3)=0; %判别矩阵的初始化 for k=1:N %控制程序模拟次数N %生成二维正态分布的样本2 X N 维的矩阵 X1=mvnrnd([1 2],[4 0;0 6],300)'; %2 X N X2=mvnrnd([5 3],[5 0;0 1],200)'; X3=mvnrnd([4 7],[2 0;0 9],500)'; %样本程序 %---------------------------------------------------% %测试样本 X10=mvnrnd([1 2],[4 0;0 6],100)'; %2 X N X20=mvnrnd([5 3],[5 0;0 1],100)'; X30=mvnrnd([4 7],[2 0;0 9],100)'; %先验概率 P(1)=length(X1)/(length(X1)+length(X2)+length(X3)); P(2)=length(X2)/(length(X1)+length(X2)+length(X3)); P(3)=length(X3)/(length(X1)+length(X2)+length(X3)); %计算相关量cov(X):协方差矩阵Ave:均值 %--------------------------------------------------------% W1=-1/2*inv(cov(X1')); W2=-1/2*inv(cov(X2')); W3=-1/2*inv(cov(X3'));% Ave1=(sum(X1')/length(X1))';Ave2=(sum(X2')/length(X2))'; Ave3=(sum(X3')/length(X3))';%计算平均值(2维列向量) w1=inv(cov(X1'))*Ave1;w2=inv(cov(X2'))*Ave2;w3=inv(cov(X3'))* Ave3;%2 w10=-1/2*Ave1'*inv(cov(X1'))*Ave1-1/2*log(det(cov(X1')))+log(P(1 ));

朴素贝叶斯分类

朴素贝叶斯分类 1.1、摘要 贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。本文作为分类算法的第一篇,将首先介绍分类问题,对分类问题进行一个正式的定义。然后,介绍贝叶斯分类算法的基础——贝叶斯定理。最后,通过实例讨论贝叶斯分类中最简单的一种:朴素贝叶斯分类。 1.2、分类问题综述 对于分类问题,其实谁都不会陌生,说我们每个人每天都在执行分类操作一点都不夸张,只是我们没有意识到罢了。例如,当你看到一个陌生人,你的脑子下意识判断TA是男是女;你可能经常会走在路上对身旁的朋友说“这个人一看就很有钱、那边有个非主流”之类的话,其实这就是一种分类操作。 从数学角度来说,分类问题可做如下定义: 已知集合:和,确定映射规则 ,使得任意有且仅有一个使得成立。(不考虑模糊数学里的模糊集情况) 其中C叫做类别集合,其中每一个元素是一个类别,而I叫做项集合,其中每一个元素是一个待分类项,f叫做分类器。分类算法的任务就是构造分类器f。 这里要着重强调,分类问题往往采用经验性方法构造映射规则,即一般情况下的分类问题缺少足够的信息来构造100%正确的映射规则,而是通过对经验数据的学习从而实现一定概率意义上正确的分类,因此所训练出的分类器并不是一定能将每个待分类项准确映射到其分类,分类器的质量与分类器构造方法、待分类数据的特性以及训练样本数量等诸多因素有关。 例如,医生对病人进行诊断就是一个典型的分类过程,任何一个医生都无法直接看到病人的病情,只能观察病人表现出的症状和各种化验检测数据来推断病情,这时医生就好比一个分类器,而这个医生诊断的准确率,与他当初受到的教育方式(构造方法)、病人的症状是否突出(待分类数据的特性)以及医生的经验多少(训练样本数量)都有密切关系。1.3、贝叶斯分类的基础——贝叶斯定理 每次提到贝叶斯定理,我心中的崇敬之情都油然而生,倒不是因为这个定理多高深,而是因为它特别有用。这个定理解决了现实生活里经常遇到的问题:已知某条件概率,如何得到两个事件交换后的概率,也就是在已知P(A|B)的情况下如何求得P(B|A)。这里先解释什么是条件概率:

最小错误率贝叶斯分类器

硕士研究生专业课考试大作业 课程名称:模式识别 课程编号:063806 任课教师姓名:刘海波 职称:副教授 学生姓名:黄跃平 学号:S309060181 作业题目:最小错误率贝叶斯分类器 成绩: 二〇一〇年四月二十五日

最小错误率贝叶斯分类 摘要:统计决策理论是处理模式识别问题的基本理论之一,而贝叶斯决策理论方法又是统计模式识别中的一个基本方法,它可以有效地对大量数据进行分析,并生成相应的分类器,对于数据的分类识别有着重大的意义。本文把最小错误率的贝叶斯方法运用到男女性别的识别中,提高了分类的准确性和有效性。 关键词:贝叶斯统计决策;最小错误率;先验概率;条件概率 1 问题描述 模式是通过对具体的个别事物进行观测所得到的具有时间和空间分布的信息;把模式所属的类别或同一类中模式的总体称为模式类(或简称为类)。而“模式识别”则是在某些一定量度或观测基础上把待识模式划分到各自的模式类中去。 有两种基本的模式识别方法,即统计模式识别方法和结构(句法)模式识别方法。统计模式识别是对模式的统计分类方法,即结合统计概率论的贝叶斯决策系统进行模式识别的技术,又称为决策理论识别方法。与此相应的模式识别系统都是有两个过程(设计与实现)所组成。“设计”是指用一定数量的样本(训练集/学习集)进行分类器的设计。“实现”是指用所设计的分类器对待识别的样本进行分类决策。基于统计模式识别方法的系统主要由以下几个部分组成:信息获取、预处理、特征提取和选择、分类决策。 图1 统计模式识别系统 在本文中问题主要是通过提取人类身高和体重两个特征值,然后对样本集进行训练学习并设计分类器设计,最后对待识别的样本集进行男女性别的分类。 2 研究现状 贝叶斯(Reverend Thomas Bayes 1702-1761)学派奠基性的工作是贝叶斯的论文“关于几率性问题求解的评论”。或许是他自己感觉到他的学说还有不完善的地方,这一论文在他生前并没有发表,而是在他死后,由他的朋友发表的。著名的数学家拉普拉斯(Laplace,P.S )用贝叶斯的方法导出了重要的“相继律”,贝叶斯的方法和理论逐渐被人理解和重视起来。但由于当时贝叶斯方法在理论和实际应用中还存在很多不完善的地方,因而在十九世纪并未被普遍接受。二十世纪初,意大利的菲纳特(B.de Finetti )及其英国的杰弗莱(Jeffreys,H.)都对贝叶斯学派的理论作出重要的贡献。第二次世界大战后,瓦尔德(Wald,A.)提出了统计的决策理论,在这一理论中,贝叶斯解占有重要的地位;信息论的发展也对贝叶斯学派做出了新的贡献。1958年英国最悠久的统计杂志Biometrika 全文重新刊登了贝叶斯的论文,20世纪50年代,以罗宾斯(Robbins, H. )为代表,提出了经验贝叶斯方法和

简单朴素贝叶斯分类器的思想与算法分析

简单朴素贝叶斯分类器的思想与算法分析 在数据仓库和数据挖掘应用中,分类是一种非常重要的方法.分类的概念是在已有数据的基础上学会一个分类函数或构造出一个分类模型,即我们通常所说的分类器(Classifier).该函数或模型能够把数据集合中的数据记录映射到给定类别中的某一个值,从而可以应用于数据预测.目前,分类的主要算法有贝叶斯算法、决策树算法(如ID3、C4.5等)、规则推导、人工神经网络、最近邻算法、支持向量机等等.这些算法在许多现实数据集合上具有较好的预测精度.其中朴素贝叶斯算法具有良好的可解释性等,在实践中的应用最为广泛. 朴素贝叶斯算法是基于统计理论的方法,它能够预测所属类别的概率.简单朴素贝叶斯分类器假设一个指定类别中各属性的取值是相互独立的.这一假设称为给定类别条件下的独立性(Class Conditional Independence)假设,它可以有效减少在构造分类器时所需要的计算量. 简单朴素贝叶斯算法的分类模型是基于Bayes 定理的,下面就简单介绍一下Bayes 定理.设X 为一个类别未知的数据样本,H 为某个假设,C 表示类别集合,若数据样本X 属于一个特定的类别c ,那么分类问题就是决定P (H /X ),即在获得数据样本X 时,H 假设成立的概率.由于P (H ) , P (X ), P (X /H )的概率值可以从(供学习使用的)数据集合中得到,Bayes 定理描述了如何根据P (H ) , P (X ), P (X /H )计算获得的P (H /X ),有关的具体公式定义描述如下: (/)() (/)() P X H P H P H X P X = (1) 简单朴素贝叶斯分类器进行分类操作的步骤说明如下: 1. 每个数据样本均是由一个n 维特征向量X ={x 1,x 2, ……, x n }来描述其n 个属性(A 1, A 2, ……, A n )的具体取值. 2. 假设共有m 个不同类别,{C 1, C 2, ……, C n }.给定一个未知类别的数据样本X ,分类器在已知样本X 的情况下,预测X 属于事后概率最大的那个类别.也就是说,朴素贝叶斯分类器将未知类别的样本X 归属到类别C i ,当且仅当:P (C i /X )> P (C j /X ) 其中1≤j ≤m ,j ≠i . 也就是P (C i /X )最大.其中的类别C i 就称为最大事后概率的假设,根据Bayes 定理可知, (/)() (/)() i i i P X C P C P C X P X = (2) 3. 由于P (X )对于所有的类别均是相同的,所以,要使公式(2)取得最大值,只需要P (X /C i )P (C i )取最大即可.类别的事前概率P (C i )可以通过公式P (C i )=s i /s 进行估算,其中s i 为训练样本集合类别C i 的个数,s 为整个训练样本集合的大小.

贝叶斯决策模型及实例分析

贝叶斯决策模型及实例分析 一、贝叶斯决策的概念 贝叶斯决策,是先利用科学试验修正自然状态发生的概率,在采纳期望效用最大等准则来确定最优方案的决策方法。 风险型决策是依照历史资料或主观推断所确定的各种自然状态概率(称为先验概率),然后采纳期望效用最大等准则来确定最优决策方案。这种决策方法具有较大的风险,因为依照历史资料或主观推断所确定的各种自然状态概率没有通过试验验证。为了降低决策风险,可通过科学试验(如市场调查、统计分析等)等方法获得更多关于自然状态发生概率的信息,以进一步确定或修正自然状态发生的概率;然后在利用期望效用最大等准则来确

定最优决策方案,这种先利用科学试验修正自然状态发生的概率,在采纳期望效用最大等准则来确定最优方案的决策方法称为贝叶斯决策方法。 二、贝叶斯决策模型的定义 贝叶斯决策应具有如下内容 贝叶斯决策模型中的组成部分:)(,θθP S A a 及∈∈。概率分布S P ∈θθ)(表示决策者在观看试验结果前对自然θ发生可能的可能。这一概率称为先验分布。 一个可能的试验集合E ,E e ∈,无情报试验e0通常包括在集合E 之内。 一个试验结果Z 取决于试验e 的选择以Z0表示的结果只能是无情报试验e0的结果。 概率分布P(Z/e,θ),Z z ∈表示在自然状态θ的条件下,进行e 试验后发生z 结果的概率。这一概率分布称为似然分布。 一个可能的后果集合C ,C c ∈以及定义在后果集合C 的效用函数u(e,Z,a,θ)。 每一后果c=c(e,z,a,θ)取决于e,z,a 和θ。.故用u(c)形成一个复合函数u{(e,z,a,θ)},并可写成u(e,z,a,θ)。 三、贝叶斯决策的常用方法

机器学习实验报告-朴素贝叶斯学习和分类文本

机器学习实验报告 朴素贝叶斯学习和分类文本 (2015年度秋季学期) 一、实验内容 问题:通过朴素贝叶斯学习和分类文本 目标:可以通过训练好的贝叶斯分类器对文本正确分类二、实验设计

实验原理与设计: 在分类(classification)问题中,常常需要把一个事物分到某个类别。 一个事物具有很多属性,把它的众多属性看做一个向量,即 x=(x1,x2,x3,…,xn),用x这个向量来代表这个事物。类别也是有很多种,用集合Y=y1,y2,…ym表示。如果x属于y1类别,就可以给x打上y1标签,意思是说x属于y1类别。这就是所谓的分类(Classification)。x的集合记为X,称为属性集。一般X和Y的关系是不确定的,你只能在某种程度上说x有多大可能性属于类y1,比如说x有80%的可能性属于类y1,这时可以把X和Y看做是随机变量,P(Y|X)称为Y的后验概率(posterior probability),与之相对的,P(Y)称为Y的先验概率(prior probability)1。在训练阶段,我们要根据从训练数据中收集的信息,对X和Y的每一种组合学习后验概率P(Y|X)。分类时,来了一个实例x,在刚才训练得到的一堆后验概率中找出所有的P(Y|x),其中最大的那个y,即为x所属分类。根据贝叶斯公式, 后验概率为 在比较不同Y值的后验概率时,分母P(X)总是常数,因此可以忽略。先验概率P(Y)可以通过计算训练集中属于每一个类的训练样本所占的比例容易地估计。 在文本分类中,假设我们有一个文档d∈X,X是文档向量空间(document space),和一个固定的类集合C={c1,c2,…,cj},类别又称为标签。显然,文档向量空间是一个高维度空间。我们把一堆打了标签的文档集合作为训练样本,∈X×C。例如:={Beijing joins the World Trade Organization, China}对于这个只有一句话的文档,我们把它归类到 China,即打上china标签。 我们期望用某种训练算法,训练出一个函数γ,能够将文档映射到某一个类别:γ:X→C这种类型的学习方法叫做有监督学习,因为事先有一个监督者(我们事先给出了一堆打好标签的文档)像个老师一样监督着整个学习过程。朴素贝叶斯分类器是一种有监督学习。 实验主要代码: 1、 由于中文本身是没有自然分割符(如空格之类符号),所以要获得中文文本的特征变量向量首先需要对文本进行中文分词。这里采用极易中文分词组件

相关主题
文本预览
相关文档 最新文档