当前位置:文档之家› 2013年高考数学理科一轮复习经典例题——算术平均数与几何平均数

2013年高考数学理科一轮复习经典例题——算术平均数与几何平均数

2013年高考数学理科一轮复习经典例题——算术平均数与几何平均数
2013年高考数学理科一轮复习经典例题——算术平均数与几何平均数

典型例题一

例1 已知R c b a ∈,,,求证.2

2

2

ca bc ab c b a ++≥++

证明:∵ ab b a 22

2≥+, bc c b 22

2

≥+,

ca a c 222≥+, 三式相加,得 )(2)(2222ca bc ab c b a ++≥++,即.222ca bc ab c b a ++≥++

说明:这是一个重要的不等式,要熟练掌握.

典型例题二

例2 已知c b a 、、是互不相等的正数,

求证:

abc b a c c a b c b a 6)()()(222222>+++++ 证明:∵022

2>>+a bc c b ,,

abc c b a 2)(22>+ 同理可得:

abc b a c abc c a b 2)(2)(2

222>+>+,. 三个同向不等式相加,得

abc b a c c a b c b a 6)()()(222222>+++++ ①

说明:此题中c b a 、、互不相等,故应用基本不等式时,等号不成立.特别地,b a =,c b ≠时,所得不等式①仍不取等号.

典型例题三

例3 求证

)(2222222c b a a c c b b a ++≥+++++. 分析:此问题的关键是“灵活运用重要基本不等式ab b a 22

2≥+,并能由)(2c b a ++这一

特征,思索如何将ab b a 22

2≥+进行变形,进行创造”. 证明:∵ab b a 22

2

≥+,

两边同加22b a +得222)()(2b a b a +≥+.

2)(2

2

2

b a b a +≥

+. ∴

)

(222122b a b a b a +≥+≥

+.

同理可得:

)(22

22c b c b +≥

+,

)(22

22a c a c +≥

+.

三式相加即得

)(22

22222c b a a c c b b a ++≥+++++. 典型例题四

例4 若正数a 、b 满足3++=b a ab ,则ab 的取值范围是 .

解:∵+∈R b a ,, ∴323+≥++=ab b a ab ,令ab y =,得0322

≥--y y ,

∴3≥y ,或1-≤y (舍去).

92≥=ab y ,∴ ab 的取值范围是[).,9+∞ 说明:本题的常见错误有二.一是没有舍去1-≤y ;二是忘了还原,得出[)+∞∈,3ab .前者和后者的问题根源都是对ab 的理解,前者忽视了.0≥ab 后者错误地将2

y 视为ab . 因此,解题过程中若用换元法,一定要对所设“元”的取值范围有所了解,并注意还原之.

典型例题五

例5 (1)求

4162

2++=x x y 的最大值. (2)求函数

14

22++

=x x y 的最小值,并求出取得最小值时的x 值.

(3)若0,0>>y x ,且2=+y x ,求2

2

y x +的最小值.

解:(1)

4162

2

++=x x y 1

3163)1(162

222++

+=+++=x x x x .

33

26=≤

当且仅当

13

122+=

+x x 时,即22=x 2±=x 时,取得此最大值.

(2)

11

41142

2

22-+++=++

=x x x x y 3142=-?≥ ∴ y 的最小值为3,当且仅当114

22+=+x x ,即

4)1(22=+x ,212=+x ,1±=x 时取得此最小值.

(3)∴ xy y x 222≥+ ∴2

22)()(2y x y x +≥+即2)(2

2

2

y x y x +≥+

∵2=+y x ∴222≥+y x 即2

2y x +的最小值为2.

当且仅当4==y x 时取得此最小值.

说明:解这类最值,要选好常用不等式,特别注意等号成立的条件.

典型例题六

例6 求函数

x x y 3

21-

-=的最值.

分析:本例的各小题都可用最值定理求函数的最值,但是应注意满足相应条件.如:0≠x ,

应分别对0,0<>x x 两种情况讨论,如果忽视+

∈R x 的条件,就会发生如下错误:∵

6

213

221)32(1321-=?-≤+-=-

-=x x x x x x y ,.621max

-=y 解:当0>x 时,

03,

02>>x x ,又63

2=?x x ,

当且仅当x x 32=

,即26=x 时,函数x x 32+

有最小值.62

.621max -=y

当0

03,02>-

>-x x ,又6)3()2(=-?-x x ,

∴ .621min +=y 典型例题七

例7 求函数

910

22++=

x x y 的最值.

分析:

2

9

199

1)9(2

22

2≥++

+=+++=

x x x x y .

但等号成立时82-=x ,这是矛盾的!于是我们运用函数

x x y 1

+

=在1≥x 时单调递增这一性

质,求函数)

3(1

≥+=t t t y 的最值.

解:设

392

≥+=x t , ∴

t t x x y 1

9

1022+

=++=

当3≥t 时,函数

t t y 1

+

=递增.

故原函数的最小值为310313=

+

,无最大值.

典型例题八

例8 求函数

45

22++=

x x y 的最小值.

分析:用换元法,设242

≥+=x t ,原函数变形为)2(1≥+=t t t y ,再利用函数)

2(1

≥+=t t t y 的单调性可得结果.或用函数方程思想求解.

解:解法一:

242

≥+=x t ,故).

2(1

45

22≥+=++=

t t t x x y

212

121212121121)()1

1()(2t t t t t t t t t t y y t t --=-+-=-≥>,设.

由202121><-t t t t ,

,得:0121>-t t ,故:21y y <. ∴函数)2(1≥+=t t t y 为增函数,从而

25

212=

+≥y . 解法二:

设242

≥=+t x ,知)2(1

≥+=t t t y ,可得关于t 的二次方程012=+-yt t ,由根与系数

的关系,得:121=t t .

又2≥t ,故有一个根大于或等于2,

设函数

1)(2

+-=yt t t f ,则0)2(≤f ,即0124≤+-y ,故25

y .

说明:本题易出现如下错解:

2

4

144

52

22

2≥++

+=++=

x x x x y .要知道,

41

422+=

+x x 无实数解,即2≠y ,所以原函数的最小值不是2.错误原因是忽视了等

号成立的条件.

当a 、b 为常数,且ab 为定值,b a ≠时,ab

b

a >+2,不能直接求最大(小)值,可以

利用恒等变形ab b a b a 4)(2

+-=+,当b a -之差最小时,再求原函数的最大(小)值.

典型例题九

例9 ,4,0,0=+>>b a b a 求2

211?

?? ??++??? ?

?

+b b a a 的最小值. 分析:此题出现加的形式和平方,考虑利用重要不等式求最小值.

解:由,4=+b a ,得.2162)(2

22ab ab b a b a -=-+=+ 又

,22

2ab b a ≥+得ab ab 2216≥-,即4≤ab .

211112

22??? ??+++≥??? ??++??? ??+∴b b a a b b a a .22524444442

2=?

?? ??+≥??? ??+=ab

故2

211??? ??++??? ??+b b a a 的最小值是225.

说明:本题易出现如下错解:

8441212112

2

22

=+=???? ???+???? ???≥??? ?

?

+

+??? ??+∴b b a a b b a a ,故2

211??? ??++??? ?

?+b b a a 的最小值是8.

错误的原因是,在两次用到重要不等式当等号成立时,有1=a 和1=b ,但在4=+b a 的条件下,这两个式子不会同时取等号(31==b a 时,).排除错误的办法是看都取等号时,与题设是否有矛盾.

典型例题十

例10 已知:+

∈R c b a ,,,求证:c b a c ab b ac a bc ++≥++.

分析:根据题设,可想到利用重要不等式进行证明.

证明:.2,222c b ac a bc c ab abc b ac a bc ≥+=≥+即

同理:a c ab b ac b c ab a bc 2,2≥+≥+

).

(22c b a c ab b ac a bc ++≥???

??++∴ .c b a c ab b ac a bc ++≥++∴

说明:证明本题易出现的思维障碍是:(1)想利用三元重要不等式解决问题;(2)不会利用

重要不等式ab b

a ≥+2的变式;(3)不熟练证明轮换对称不等式的常用方法.因此,在证明

不等式时,应根据求证式两边的结构,合理地选择重要不等式.另外,本题的证明方法在证

轮换对称不等式时具有一定的普遍性. 典型例题十一

例11设R e d c b a ∈、、、、,且8=++++e d c b a ,162

2222=++++e d c b a ,求e

的最大值.

分析:如何将2

2

b a +与b a +用不等式的形式联系起来,是本题获解的关键.算术平均数与

几何平均数定理ab b a 222≥+两边同加2

2b a +之后得

222)(21

b a b a +≥

+.

解:由

222)(21

b a b a +≥

+,则有

,

)(41

])()[(212222222d c b a d c b a d c b a +++≥+++≥+++

.

516

0)8(411622≤≤?-≥-∴e e e

.

516

56=时,当最大值e d c b a ====

说明:常有以下错解:

abcd cd ab d c b a e 4)(21622222≥+≥+++=-,

448abcd d c b a e ≥+++=-. 故abcd e abcd e ≥-≥-42

22)48(,4)16(.

两式相除且开方得516014)8(162

2≤

≤?≥--e e e .

错因是两不等式相除,如

21

1,12>

>,相除则有22>.

不等式

222)(21

b a b a +≥

+是解决从“和”到“积”的形式.从“和”到“积”怎么办呢?

有以下变形:2

2

2

)

(21b a b a +≥+或)(21222b a b a +≥+.

典型例题十二

例12 已知:0>y x >,且:1=xy ,求证:222

2≥-+y x y x ,并且求等号成立的条件.

分析:由已知条件+

∈R y x ,,可以考虑使用均值不等式,但所求证的式子中有y x -,无法

利用

xy

y x 2≥+,故猜想先将所求证的式子进行变形,看能否出现

)(1

)(y x y x -+

-型,再

行论证.

证明:,1.

0,0=>-∴>>xy y x y x 又

y x xy y x y x y x -+-=

-+∴2)(222

y x y x -+

-=2

)(

.

22)

(2

)(2=-?

-≥y x y x

等号成立,当且仅当

)(2

)(y x y x -=

-时.

.4,2,2)(222=+=-=-∴y x y x y x

,6)(,12=+∴=y x xy

.6=+∴y x

由以上得

22

6,226-=+=

y x

即当

226,226-=+=

y x 时等号成立.

说明:本题是基本题型的变形题.在基本题型中,大量的是整式中直接使用的均值不等式,

这容易形成思维定式.本题中是利用条件将所求证的式子化成分式后再使用均值不等式.要注意灵活运用均值不等式. 典型例题十三

例13 已知00>>y x ,,且302=++xy y x ,求xy 的最大值.

分析:由302=++xy y x ,可得,

)300(230<<+-=

x x x

y , 

故)300(2302<<+-=x x x x xy ,令

x x x t +-=

2302

. 利用判别式法可求得t (即xy )的最大值,但因为x 有范围300<

达定理展开讨论.仅用判别式是不够的,因而有一定的麻烦,下面转用基本不等式求解. 解法一:由302=++xy y x ,可得,

)300(230<<+-=

x x x

y .

x x x x x x xy +-+++-=

+-=264

)2(34)2(23022

??????

+++-=264)2(34x x 注意到

16264

)2(2264)2(=+?+≥++

+x x x x .

可得,18≤xy .

当且仅当264

2+=

+x x ,即6=x 时等号成立,代入302=++xy y x 中得3=y ,故xy 的最

大值为18.

解法二:+

∈R y x , ,

xy xy y x ?=≥+∴22222, 代入302=++xy y x 中得:

3022≤+?xy xy

解此不等式得180≤≤xy .下面解法见解法一,下略.

说明:解法一的变形是具有通用效能的方法,值得注意:而解法二则是抓住了问题的本质,

所以解得更为简捷. 典型例题十四

例14 若+

∈R c b a 、、,且1=++c b a ,求证:8111111≥??? ??-??? ??-??? ??-c b a .

分析:不等式右边的数字“8”使我们联想到可能是左边三个因式分别使用基本不等式所得三

个“2”连乘而来,而

a bc

a c

b a a a 2111≥+=-=-. 证明:

a c

b a a a +=-=-111

,又0>a ,0>b ,0>c ,

a bc a c

b 2≥+∴

,即a bc a a 21≥-.

同理b ca b

211≥-,c ab c 211≥

-,

8111111≥??? ??-??? ??-??? ??-∴c b a .

当且仅当

31

=

==c b a 时,等号成立.

说明:本题巧妙利用1=++c b a 的条件,同时要注意此不等式是关于c b a 、、的轮换式. 典型例题十五

例15 设+∈R c b a 、、,求证:

)(2222222c b a a c c b b a ++≥+++++. 分析:本题的难点在于222222a c c b b a +++、、不易处理,如能找出2

2b a +与b a +之

间的关系,问题可得到解决,注意到:

b a b a b a b a ab b a +≥+?+≥+?≥+)(2)()(222222222,

则容易得到证明.

证明:2

2

2

2

2

2

2

)(2)(22b a ab b a b a ab b a +≥++≥+∴≥+, ,

于是

.)(222222b a b a b a +=+≥

+

同理:

)(2222c b c b +≥

+,)(22

22a c a c +≥+.

三式相加即得:

)(2222222c b a a c c b b a ++≥+++++. 说明:注意观察所给不等式的结构,此不等式是关于c b a 、、的轮换式.因此只需抓住一个根号进行研究,其余同理可得,然后利用同向不等式的可加性.

典型例题十六

例16 已知:+

∈R b a 、(其中+

R 表示正实数)

求证:

.b a ab b a b a b a 112

2222

2

2

+

≥≥???? ??+≥+≥+ 分析:要证明的这一串不等式非常重要,222b a +称为平方根,2b a +称为算术平均数,ab

称为几何平均数,b a 112

+称为调和平均数. 证明:().

04122222

2

2≥-=??? ??+-???? ??+b a b a b a

.2

2

2222??? ??+≥???? ?

?+∴b a b a

+∈R b a 、

2222b a b a +≥+,当且仅当“b a =”时等号成立. .0)(41

2222

≥-=???? ??+-+b a b a b a ∴

222???? ??+≥+b a b a ,等号成立条件是“b a =” ,0)(41

222

≥-=-???? ??+b a ab b a ∴ab b a ≥????

??+22,等号成立条件是“b a =”.

b

a ab

ab b a b a ab ab b

a a

b +-+=+-

=+-

2)(21

12

0)()2(2

≥+-=+-+=b a b a ab b a ab b a ab

b a ab 112

+

,等号成立条件是“b a =”.

说明:本题可以作为均值不等式推论,熟记以上结论有利于处理某些复杂不等式的证明问

题.本例证明过程说明,不等式性质中的比较法是证明不等式的最基本、最重要的方法. 典型例题十七

例17 设实数1a ,1b ,1c ,2a ,2b ,2c 满足021>a a ,2111b c a ≥,2

222b c a ≥,求证

2212121)())((b b c c a a +≥++.

分析:由条件可得到1a ,2a ,1c , 2c 同号.为方便,不妨都设为正.将求证式子的左边展开后可看出有交叉项21c a 和12c a 无法利用条件,但使用均值不等式变成乘积后,重新搭配,可利用条件求证.

证明:同号.2121,,0a a a a ∴>

同理,由2

2222

111b c a b c a ≥≥,知1a 与1c 同号,2a 与2c 同号 ∴1a ,1c ,2a ,2c 同号.不妨都设为正.

122122112121))((c a c a c a c a c c a a +++=++∴ 12212

2212c a c a b b ?++≥ 22112

2212c a c a b b ?++= 2

22122212b b b b ?++≥

||2212

22

1b b b b ++=

221212

22

1)(2b b b b b b +=++≥,

即2

212121)())((b b c c a a +≥++.

说明:本题是根据题意分析得1a ,1c ,2a ,2c 同号,然后利用均值不等式变形得证.换一个角度,由条件的特点我们还会联想到使用二次方程根的判别式,可能会有另一类证法.

实际上,由条件可知1a ,1c ,2a ,2c 为同号,不妨设同为正.又∵2111b c a ≥,2

222b c a ≥,

∴211144b c a ≥,2

22244b c a ≥.

不等式021121≥++c x b x a ,02222

2≥++c x b x a 对任意实数x 恒成立(根据二次三项式恒为正的充要条件),两式相加得

0)()(2)(21212

21≥+++++c c x b b x a a ,它对任意实数x 恒成立.同上可得:2

212121)())((b b c c a a +≥++.

典型例题十八

例18 如下图所示,某畜牧基地要围成相同面积的羊圈4间,一面可利用原有的墙壁,其余各面用篱笆围成,篱笆总长为36m .问每间羊圈的长和宽各为多少时,羊圈面积最大?

分析:可先设出羊圈的长和宽分别为x ,y ,即求xy 的最大值.注意条件3664=+y x 的利用.

解:设每间羊圈的长、宽分别为x ,y ,则有3664=+y x ,即1832=+y x .设xy S =

,623223218xy y x y x =?≥+=

227

,227≤

≤∴S xy 即

上式当且仅当y x 32=时取“=”.

此时?

?

?===,1832,32y x y x ?????

==∴.3,29y x

∴羊圈长、宽分别为29

m , 3m 时面积最大.

说明:(1)首先应设出变量(此处是长和宽),将题中条件数学化(即建立数学模型)才能利用数学知识求解;(2)注意在条件1832=+y x 之下求积xy 的最大值的方法:直接用不等式

y x y x 3223218?≥+=,即可出现积xy .当然,也可用“减少变量”的方法:

2

2218261)218(261)218(31)218(31?

?? ??-+?≤-??=-?==→-=x x x x x x xy S x y ,当且

仅当x x 2182-=时取“=”.

典型例题十九

例19 某单位建造一间地面面积为12m2的背面靠墙的矩形小房,房屋正面的造价为1200元/m2,房屋侧面的造价为800 元/m2,屋顶的造价为5800元.如果墙高为3m ,且不计房屋背面的费用,问怎样设计房屋能使总造价最低,最低总造价是多少元?

分析:这是一个求函数最小值的问题,关键的问题是设未知数,建立函数关系.从已知条件

看,矩形地面面积为12m2,但长和宽不知道,故考虑设宽为x m ,则长为x 12

m ,再设总造价

为y .由题意就可以建立函数关系了.

解:设矩形地面的正面宽为x m ,则长为x 12

m ;设房屋的总造价为y .根据题意,可得: 5800280012

312003+???+?=x x y

580057600

3600++

=x x

580016236005800)16(3600+??≥++

=x x x x

)(34600580028800元=+=

x x 16

=

,即4=x 时,y 有最小值34600元.

因此,当矩形地面宽为4m 时,房屋的总造价最低,最低总造价是34600元.

说明:本题是函数最小值的应用题,这类题在我们的日常生活中经常遇到,有求最小值的问题,也有求最大值的问题,这类题都是利用函数式搭桥,用均值不等式解决,解决的关键是等号是否成立,因此,在解这类题时,要注意验证等号的成立. 典型例题二十

例20 某单位决定投资3200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每1m 长造价40元,两侧墙砌砖,每1m 长造价45元,顶部每1m2造价20元.计算:

(1)仓库底面积S的最大允许值是多少?

(2)为使S达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长? 分析:用字母分别表示铁栅长和一堵砖墙长,再由题意翻译数量关系. 解:设铁栅长为x m ,一堵砖墙长为y m ,则有xy S =. 由题意得(*).32002045240=+?+xy y x

应用算术平均数与几何平均数定理,得

,

201202012020904023200S S xy xy xy

y x +=+=+?≥

,1606≤+∴S S

即:.0)10)(10(≤--S S

,010,016≤-∴>+S S

从而:.100≤S

因此S 的最大允许值是2

100m ,取得此最大值的条件是y x 9040=,而100=xy ,由此求得

15=x ,即铁栅的长应是m 15.

说明:本题也可将x S

y =

代入(*)式,导出关于x 的二次方程,利用判别式法求解.

典型例题二十一

例21 甲、乙两地相距km s ,汽车从甲地匀速行驶到乙地,速度不超过km/h c ,已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度km/h v 的平方成正比,且比例系数为b ;固定部分为a 元.

(1)把全程运输成本y 元表示为速度km/h v 的函数,并指出这个函数的定义域; (2)为了使全程运输成本最小,汽车应以多大速度行驶? 分析:这是1997年的全国高考试题,主要考查建立函数关系式、不等式性质(公式)的应用.也是综合应用数学知识、思想和方法解决实际问题的一道优秀试题.

解:(1)依题意知汽车从甲地匀速行驶到乙地所用的时间为h

v s ,全程运输成本为 )

(2bv v a

s v s bv v s a y +=?+?=.

故所求函数为)

(bv b a

s y +=,定义域为)0(c v ,∈.

(2)由于v b a s 、、、都为正数,

故有bv

b a

s bv v a s ??≥+2)(,

即ab s bv v a

s 2)(≥+.

当且仅当bv

v a

=,即b a v =时上式中等号成立. 若c b a ≤时,则

b a

v =

时,全程运输成本y 最小;

)

(min bc c a

s y +=.

综上可知,为使全程运输成本y 最小,

在c b a ≤时,行驶速度应为b a v =

; 在c b a

≤时,行驶速度应为c v =.

统计学计算题例题

第四章 1. 某企业1982年12月工人工资的资料如下: 要求:(1)计算平均工资;(79元) (2)用简捷法计算平均工资。 2. 某企业劳动生产率1995年比1990年增长7%,超额完成计划2%,试确定劳动生产率计划增长数。7%-2%=5% 3. 某厂按计划规定,第一季度的单位产品成本比去年同期降低8%。实际 执行结果,单位产品成本较去年同期降低4%。问该厂第一季度产品单位成本计划的完成程度如何?104.35%( (1-4%)/(1-8%)*100%=96%/92%*100%=104.35%结果表明:超额完成4.35%( 104.35%-100%)) 4. 某公社农户年收入额的分组资料如下:

要求:试确定其中位数及众数。中位数为774.3(元)众数为755.9(元) 求中位数: 先求比例:(1500-720)/(1770-720)=0.74286 分割中位数组的组距:(800-700)*0.74286=74.286 加下限700+74.286=774.286 求众数: D1=1050-480=570 D2=1050-600=450 求比例:d1/(d1+d2)=570/(570+450)=0.55882 分割众数组的组距:0.55882*(800-700)=55.882 加下限:700+55.882=755.882 5.1996年某月份某企业按工人劳动生产率高底分组的生产班组数和产量资料如下: 64.43(件/人) (55*300+65*200+75*140+85*60)/(300+200+140+60) 6.某地区家庭按人均月收入水平分组资料如下:

根据表中资料计算中位数和众数。中位数为733.33(元) 众数为711.11(元) 求中位数: 先求比例:(50-20)/(65-20)=0.6667 分割中位数组的组距:(800-600)*0.6667=66.67 加下限:600+66.67=666.67 7.某企业产值计划完成103%,比去年增长5%。试问计划规定比去年增长 多少?1.94% (上年实际完成1.03/1.05=0.981 本年实际计划比上年增长 (1-0.981)/0.981=0.019/0.981=1.937%) 8.甲、乙两单位工人的生产资料如下: 试分析:(1)哪个单位工人的生产水平高? (2)哪个单位工人的生产水平整齐? % 3.33V %7.44V /8 .1x /5.1x ====乙甲乙甲人)(件人)(件9.在 计算平均数里,从每个标志变量中减去75个单位,然后将每个差数 缩小10倍,利用这个变形后的标志变量计算加权算术平均数,其中各个变量的权数扩大7倍,结果这个平均数等于0.4个单位。试计算这个平均标志变量的实际平均数,并说明理由。79 10.某地区1998~1999年国内生产总值资料如下表:(单位:亿元)

2013年高考理科数学全国新课标卷2试题与答案word解析版

2013年普通高等学校夏季招生全国统一考试数学理工农医类 (全国新课标卷II) 第Ⅰ卷 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2013课标全国Ⅱ,理1)已知集合M ={x |(x -1)2<4,x ∈R },N ={-1,0,1,2,3},则M ∩N =( ). A .{0,1,2} B .{-1,0,1,2} C .{-1,0,2,3} D .{0,1,2,3} 2.(2013课标全国Ⅱ,理2)设复数z 满足(1-i)z =2i ,则z =( ). A .-1+i B .-1-I C .1+i D .1-i 3.(2013课标全国Ⅱ,理3)等比数列{a n }的前n 项和为S n .已知S 3=a 2+10a 1,a 5=9,则a 1=( ). A .13 B .13- C .19 D .1 9- 4.(2013课标全国Ⅱ,理4)已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l ⊥m ,l ⊥n ,l α,l β,则( ). A .α∥β且l ∥α B .α⊥β且l ⊥β C .α与β相交,且交线垂直于l D .α与β相交,且交线平行于l 5.(2013课标全国Ⅱ,理5)已知(1+ax )(1+x )5的展开式中x 2的系数为5,则a =( ). A .-4 B .-3 C .-2 D .-1 6.(2013课标全国Ⅱ,理6)执行下面的程序框图,如果输入的N =10,那么输出的S =( ). A .1111+23 10+++ B .1111+2!3! 10!+++ C .1111+23 11+++ D .1111+2!3!11!+++ 7.(2013课标全国Ⅱ,理7)一个四面体的顶点在空间直角坐标系O -xyz 中的坐标分别是 (1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到的正视图可以为( ). 8.(2013课标全国Ⅱ,理8)设a =log 36,b =log 510,c =log 714,则( ). A .c >b >a B .b >c >a C .a >c >b D .a >b >c

高考数学大题经典习题

1. 对于函数()3 2 1(2)(2)3 f x a x bx a x =-+-+-。 (1)若()f x 在13x x ==和处取得极值,且()f x 的图像上每一点的切线的斜率均不超过 22sin cos t t t -+t 的取值范围; (2)若()f x 为实数集R 上的单调函数,设点P 的坐标为(),a b ,试求出点P 的轨迹所形成的图形的面积S 。 1. (1)由()3 2 1 (2)(2)3 f x a x bx a x =-+-+-,则()2'(2)2(2)f x a x bx a =-+-+- 因为()13f x x x ==在和处取得极值,所以()13'0x x f x ===和是的两个根 22 1(2)121(2)02 (2)323(2)0a a b a b a b a ?=--+?-?+-=????=--+?-?+-=?? ()2 '43f x x x ∴=-+- 因为()f x 的图像上每一点的切线的斜率不超过2 2sin cos t t t -+ 所以()2 '2sin cos f x t t t x R ≤-∈恒成立, 而()()2 '21f x x =--+,其最大值为1. 故2 2sin cos 1t t t -≥ 72sin 21,3412t k t k k Z πππππ? ??-≥?+≤≤+∈ ??? (2)当2a =-时,由()f x 在R 上单调,知0b = 当2a ≠-时,由()f x 在R 上单调()'0f x ?≥恒成立,或者()'0f x ≤恒成立. ∵()2 '(2)2(2)f x a x bx a =-+-+-, 2244(4)0b a ∴?=+-≤可得224a b +≤ 从而知满足条件的点(),P a b 在直角坐标平面aob 上形成的轨迹所围成的图形的面积为 4S π= 2. 函数cx bx ax x f ++=2 3 )((0>a )的图象关于原点对称,))(,(ααf A 、)) (,(ββf B 分别为函数)(x f 的极大值点和极小值点,且|AB|=2,αββα-=-)()(f f .

高中数学经典例题

高中数学经典例题讲解高中数学经典例题讲解典型例题一例1下列图形中,满足唯一性的是 (). A.过直线外一点作与该直线垂直的直线 B.过直线 外一点与该直线平行的平面C.过平面外一点与平面平行的直 线D.过一点作已知平面的垂线分析:本题考查的是空间线线 关系和线面关系,对定义的准确理解是解本题的关键.要注意空间垂直并非一定相关.解:A.过直线外一点作与这条直线垂直的直线,由于并没有强调相交,所以这样的垂线可以作无数条.事实上这无数条直线还在同一个平面内,这个平面为该直线的一个垂面.B.过直线外一点可以作一条而且仅能作一条直线与该直线平行,但可以作无数个平面和该直线平行.C.过此点作平面内任一直线的平行线,这条平行线都平行于平面.所以过平面外一点与平面平行的直线应有无数条..过一点作已知平面的垂线是有且仅有一条.假设空间点、平面,过点有两条直线、都垂直于,由于、为相交直线,不妨设、所确定的平面为 ,与的交线为,则必有,,又由于、、都在平面内,这样在内经过点就有两条直线和直线垂直,与平面几何中经过一点有县仅有一条直线与已知直线垂直相矛盾.故选D.说明:有关“唯一性”结论的问题,常用反证法,或者借助于其它已证明过的唯一性命题来证明.在本书中,过一点作已知平面的垂线有且仅有一条,同时,过一点作

已知直线的垂面也是有且仅有一个.它们都是“唯一性”命题,在空间作图题中常常用到.典型例题二例2 已知下列命题:(1)若一直线垂直于一个平面的一条斜线,则该直线必垂直于斜线在这个平面内的射影;(2)平面内与这个平面的一条斜线垂直的直线互相平行;(3)若平面外的两条直线,在这个平面上的射影互相垂直,则这两条直线互相垂直;(4)若两条直线互相垂直,且其中的一条平行一个平面,另一条是这个平面的斜线,则这两条直线在这个平面上的射影互相垂直.上述命题正确的是(). A.(1)、(2) B.(2)、(3) C.(3)、(4) D.(2)、(4)分析:本题考查的三垂线定理及其逆定理的简单应用.应用这两个定理时要特别注意“平面内”这一条件,同时要注意各种不同位置的两定理的基本图形及其变式图形.解:(1)已知直线不一定在平面内,所以不能用三垂线逆定理来判断垂直关系; - 1 - 高中数学经典例题讲解(2)平面内与这个平面的一条斜线垂直的直线必定与斜线在平面内的射影垂直,所以它们之间也平行;(3)根据三垂线定理可证明直线与另一直线的射影垂直,但不能进一步说明直线和直线垂直;(4)根据三垂线定理的逆定理和空间两直线所成角的概念,不难证明此命题的正确性.故选D.说明:(3)中若一直线与另一直线的射影垂直,则有另一直线必与这一直线的射影垂直.如E、FGBC在

统计学计算题例题及计算分析

计算分析题解答参考 1.1.某厂三个车间一季度生产情况如下: 计算一季度三个车间产量平均计划完成百分比和平均单位产品成本。 解:平均计划完成百分比=实际产量/计划产量=733/(198/0.9+315/1.05+220/1.1) =101.81% 平均单位产量成本 X=∑xf/∑f=(15*198+10*315+8*220)/733 =10.75(元/件) 1.2.某企业产品的有关资料如下: 试分别计算该企业产品98年、99年的平均单位产品成本。 解:该企业98年平均单位产品成本 x=∑xf/∑f=(25*1500+28*1020+32*980)/3500 =27.83(元/件) 该企业99年平均单位产品成本x=∑xf /∑(m/x)=101060/(24500/25+28560/28+48000/32) =28.87(元/件) 年某月甲、乙两市场三种商品价格、销售量和销售额资料如下: 1.3.1999 解:三种商品在甲市场上的平均价格x=∑xf/∑f=(105*700+120*900+137*1100)/2700 =123.04(元/件) 三种商品在乙市场上的平均价格x=∑m/∑(m/x)=317900/(126000/105+96000/120+95900/137) =117.74(元/件) 2.1.某车间有甲、乙两个生产小组,甲组平均每个工人的日产量为22件,标准差为 3.5件;乙组工人日产量资料:

试比较甲、乙两生产小组中的哪个组的日产量更有代表性? 解:∵X 甲=22件 σ甲=3.5件 ∴V 甲=σ甲/ X 甲=3.5/22=15.91% 列表计算乙组的数据资料如下: ∵x 乙=∑xf/∑f=(11*10+14*20+17*30+20*40)/100 =17(件) σ乙= √[∑(x-x)2 f]/∑f =√900/100 =3(件) ∴V 乙=σ乙/ x 乙=3/17=17.65% 由于V 甲<V 乙,故甲生产小组的日产量更有代表性。 2.2.有甲、乙两个品种的粮食作物,经播种实验后得知甲品种的平均产量为998斤,标准差为162.7斤;乙品种实验的资料如下: 试研究两个品种的平均亩产量,确定哪一个品种具有较大稳定性,更有推广价值? 解:∵x 甲=998斤 σ甲=162.7斤 ∴V 甲=σ甲/ x 甲=162.7/998=16.30% 列表计算乙品种的数据资料如下:

[高考数学]高考数学函数典型例题

?0x时,总有 00 ?01}的四组函数如下: ①f(x)=x2,g(x)=x;②f(x)=10-x+2,g(x)=2x-3 x;

③ f(x)= , g(x)= ; ④ f(x)= , g(x)=2(x-1-e -x ) . 年 高 考 江 苏 卷 试 题 11 ) 已 知 函 数 f ( x ) = ? x + 1, x ≥ 0 , 则 满 足 不 等 式 ) 剪成两块,其中一块是梯形,记 S = ,则 S 的最小值是____▲____。 2 x 2 +1 xlnx+1 2x 2 x lnx x+1 其中, 曲线 y=f(x) 和 y=g(x) 存在“分渐近线”的是( ) A. ①④ B. ②③ C.②④ D.③④ 33. (20XX 年 高 考 天 津 卷 理 科 16) 设 函 数 f ( x ) = x 2 - 1 , 对 任 意 3 x x ∈[ , +∞) , f ( ) - 4m 2 f ( x ) ≤ f ( x - 1) + 4 f (m ) 2 m 恒成立,则实数 m 的取值范围是 。 34 .( 20XX ? 2 ?1, x < 0 f (1- x 2 )> f ( 2x 的 x 的范围是__▲___。 35.(20XX 年高考江苏卷试题 14)将边长为 1m 正三角形薄片,沿一条平行于底边的直线 (梯形的周长) 梯形的面积 36 已知函数 f ( x ) = ( x + 1)ln x - x + 1 . (Ⅰ)若 xf '(x) ≤ x 2 + ax + 1 ,求 a 的取值范围; (Ⅱ)证明: ( x - 1) f ( x ) ≥ 0 .

高考数学百大经典例题 曲线和方程(新课标)

典型例题一 例1 如果命题“坐标满足方程()0=y x f ,的点都在曲线C 上”不正确,那么以下正确的命题是 (A )曲线C 上的点的坐标都满足方程()0=y x f ,. (B )坐标满足方程()0=y x f ,的点有些在C 上,有些不在C 上. (C )坐标满足方程()0=y x f ,的点都不在曲线C 上. (D )一定有不在曲线C 上的点,其坐标满足方程()0=y x f ,. 分析:原命题是错误的,即坐标满足方程()0=y x f ,的点不一定都在曲线C 上,易知答案为D . 典型例题二 例2 说明过点)1,5(-P 且平行于x 轴的直线l 和方程1=y 所代表的曲线之间的关系. 分析:“曲线和方程”的定义中所列的两个条件正好组成两个集合相等的充要条件,二者缺一不可.其中“曲线上的点的坐标都是方程0),(=y x f 的解”,即纯粹性;“以方程的解为坐标的点都是曲线上的点”,即完备性.这是我们判断方程是不是指定曲线的方程,曲线是不是所给方程的曲线的准则. 解:如下图所示,过点P 且平行于x 轴的直线l 的方程为1-=y ,因而在直线l 上的点的坐标都满足1=y ,所以直线l 上的点都在方程1=y 表示的曲线上.但是以1=y 这个方程的解为坐标的点不会都在直线l 上,因此方程1=y 不是直线l 的方程,直线l 只是方程 1=y 所表示曲线的一部分. 说明:本题中曲线上的每一点都满足方程,即满足纯粹性,但以方程的解为坐标的点不都在曲线上,即不满足完备性. 典型例题三

例3 说明到坐标轴距离相等的点的轨迹与方程x y =所表示的直线之间的关系. 分析:该题应该抓住“纯粹性”和“完备性”来进行分析. 解:方程x y =所表示的曲线上每一个点都满足到坐标轴距离相等.但是“到坐标轴距离相等的点的轨迹”上的点不都满足方程x y =,例如点)3,3(-到两坐标轴的距离均为3,但它不满足方程x y =.因此不能说方程x y =就是所有到坐标轴距离相等的点的轨迹方程,到坐标轴距离相等的点的轨迹也不能说是方程x y =所表示的轨迹. 说明:本题中“以方程的解为坐标点都在曲线上”,即满足完备性,而“轨迹上的点的坐标不都满足方程”,即不满足纯粹性.只有两者全符合,方程才能叫曲线的方程,曲线才能叫方程的曲线. 典型例题四 例 4 曲线4)1(2 2 =-+y x 与直线4)2(+-=x k y 有两个不同的交点,求k 的取值范围.有一个交点呢?无交点呢? 分析:直线与曲线有两个交点、一个交点、无交点,就是由直线与曲线的方程组成的方程组分别有两个解、一个解和无解,也就是由两个方程整理出的关于x 的一元二次方程的判别式?分别满足0>?、0=?、0?即0)52)(12(<--k k ,即 25 21<--k k ,即21k 时,直线与曲线没有公共点. 说明:在判断直线与曲线的交点个数时,由于直线与曲线的方程组成的方程组解的个数 与由两方程联立所整理出的关于x (或y )的一元方程解的个数相同,所以如果上述一元方程是二次的,便可通过判别式来判断直线与曲线的交点个数,但如果是两个二次曲线相遇,两曲线的方程组成的方程组解的个数与由方程组所整理出的一元方程解的个数不一定相同,所以遇到此类问题时,不要盲目套用上例方法,一定要做到具体问题具体分析. 典型例题五

统计学练习题——计算题

统计学练习题——计算题 1、某企业工人按日产量分组如下: 单位:(件) 试计算7、8月份平均每人日产量,并简要说明8月份比7月份平均每人日产量变化的原因。 7月份平均每人日产量为:37360 13320 == = ∑∑f Xf X (件) 8月份平均每人日产量为:44360 15840 == = ∑∑ f Xf X (件) 根据计算结果得知8月份比7月份平均每人日产量多7件。其原因是不同组日产量水平的工人所占比重发生变化所致。7月份工人日产量在40件以上的工人只占全部工人数的40%,而8月份这部分工人所占比重则为66.67%。

2、某纺织厂生产某种棉布,经测定两年中各级产品的产量资料如下: 解: 2009年棉布的平均等级= 250 10 3 40 2 200 1? + ? + ? =1.24(级) 2010年棉布的平均等级= 300 6 3 24 2 270 1? + ? + ? =1.12(级) 可见该厂棉布产品质量2010年比2009年有所提高,其平均等级由1.24级上升为1.12级。质量提高的原因是棉布一级品由80%上升为90%,同时二级品和三级品分别由16%及4%下降为8%及2%。

试比较和分析哪个企业的单位成本高,为什么? 解: 甲企业的平均单位产品成本=1.0×10%+1.1×20%+1.2×70%=1.16(元) 乙企业的平均单位产品成本=1.2×30%+1.1×30%+1.0×40%=1.09(元) 可见甲企业的单位产品成本较高,其原因是甲企业生产的3批产品中,单位成本较高(1.2元)的产品数量占70%,而乙企业只占30%。

2013年高考文科数学全国新课标卷1试题与答案word解析版

2013年普通高等学校夏季招生全国统一考试数学文史类 (全国卷I 新课标) 第Ⅰ卷 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2013课标全国Ⅰ,文1)已知集合A ={1,2,3,4},B ={x |x =n 2 ,n ∈A },则A ∩B =( ). A .{1,4} B .{2,3} C .{9,16} D .{1,2} 2.(2013课标全国Ⅰ,文2) 2 12i 1i +(-)=( ). A . 11i 2-- B .11+i 2- C .11+i 2 D .11i 2- 3.(2013课标全国Ⅰ,文3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率 是( ). A .12 B .13 C .14 D .16 4.(2013课标全国Ⅰ,文4)已知双曲线C :2222=1x y a b -(a >0,b >0) 的离心率为2,则C 的渐近线方程 为( ). A .y =14x ± B .y =13x ± C .y =1 2x ± D .y =±x 5.(2013课标全国Ⅰ,文5)已知命题p :?x ∈R,2x <3x ;命题q :?x ∈R ,x 3 =1-x 2 ,则下列命题中为真命题的是( ). A .p ∧q B .?p ∧q C .p ∧?q D .?p ∧?q 6.(2013课标全国Ⅰ,文6)设首项为1,公比为 2 3 的等比数列{a n }的前n 项和为S n ,则( ). A .Sn =2an -1 B .Sn =3an -2 C .Sn =4-3an D .Sn =3-2an 7.(2013课标全国Ⅰ,文7)执行下面的程序框图,如果输入的t ∈[-1,3],则输出的s 属于( ). A .[-3,4] B .[-5,2] C .[-4,3] D .[-2,5] 8.(2013课标全国Ⅰ,文8)O 为坐标原点,F 为抛物线C :y 2 =的焦点,P 为C 上一点,若|PF | =POF 的面积为( ). A .2 B . ..4 9.(2013课标全国Ⅰ,文9)函数f (x )=(1-cos x )sin x 在[-π,π]的图像大致为( ). 10.(2013课标全国Ⅰ,文10)已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c,23cos 2 A +cos 2A =0,a =7,c =6,则b =( ). A .10 B .9 C .8 D .5

高考数学百大经典例题不等式证明

典型例题一 例1 若10<-(0>a 且1≠a ). 分析1 用作差法来证明.需分为1>a 和10<a 时, 因为 11,110>+<---=x a . (2)当10<+<--=x a . 综合(1)(2)知)1(log )1(log x x a a +>-. 分析2 直接作差,然后用对数的性质来去绝对值符号. 解法2 作差比较法. 因为 )1(log )1(log x x a a +-- a x a x lg ) 1lg(lg )1lg(+- -= [])1lg()1lg(lg 1 x x a +--= [])1lg()1lg(lg 1 x x a +---= 0)1lg(lg 1 2>--= x a , 所以)1(log )1(log x x a a +>-.

说明:解法一用分类相当于增设了已知条件,便于在变形中脱去绝对值符号;解法二用对数性质(换底公式)也能达到同样的目的,且不必分而治之,其解法自然简捷、明快. 典型例题二 例2 设0>>b a ,求证:.a b b a b a b a > 分析:发现作差后变形、判断符号较为困难.考虑到两边都是正数,可以作商,判断比值与1的大小关系,从而证明不等式. 证明:b a a b b a a b b a b a b a b a b a ---=?=)( ∵0>>b a ,∴ .0,1>->b a b a ∴1)(>-b a b a . ∴a b b a b a b a .1> 又∵0>a b b a , ∴.a b b a b a b a >. 说明:本题考查不等式的证明方法——比较法(作商比较法).作商比较法证明不等式的步 骤是:判断符号、作商、变形、判断与1的大小. 典型例题三 例3 对于任意实数a 、b ,求证 444 ()22 a b a b ++≥(当且仅当a b =时取等号) 分析 这个题若使用比较法来证明,将会很麻烦,因为,所要证明的不等式中有4 ( )2 a b +,展开后很复杂。若使用综合法,从重要不等式:2 2 2a b ab +≥出发,再恰当地利用不等式的有关性质及“配方”的技巧可得到证明。 证明:∵ 222a b ab +≥(当且仅当22 a b =时取等号) 两边同加4 4 4 4 2 22 ():2()()a b a b a b ++≥+, 即: 44222 ()22 a b a b ++≥ (1) 又:∵ 22 2a b ab +≥(当且仅当a b =时取等号) 两边同加2 2 2 2 2 ():2()()a b a b a b ++≥+

应用统计学练习题(含答案)

应用统计学练习题 第一章绪论 一、填空题 1.统计工作与统计学的关系是__统计实践____和___统计理论__的关系。 2.总体是由许多具有_共同性质_的个别事物组成的整体;总体单位是__总体_的组成单位。 3.统计单体具有3个基本特征,即__同质性_、__变异性_、和__大量性__。 4.要了解一个企业的产品质量情况,总体是_企业全部产品__,个体是__每一件产品__。 5.样本是从__总体__中抽出来的,作为代表_这一总体_的部分单位组成的集合体。 6.标志是说明单体单位特征的名称,按表现形式不同分为__数量标志_和_品质标志_两种。 7. 8.统计指标按其数值表现形式不同可分为__总量指标__、__相对指标_和__平均指标__。 9.指标与标志的主要区别在于: (1)指标是说明__总体__特征的,而标志则是说明__总体单位__特征的。 (2)标志有不能用__数量__表示的_品质标志_与能用_数量_表示的_数量标志_,而指标都是能用_数量_表示的。 10.一个完整的统计工作过程可以划分为_统计设计_、_统计调查_、_统计整理_和__统计分析__4个阶段。 二、单项选择题 1.统计总体的同质性是指(A)。 A.总体各单位具有某一共同的品质标志或数量标志 B.总体各单位具有某一共同的品质标志属性或数量标志值 C.总体各单位具有若干互不相同的品质标志或数量标志 D.总体各单位具有若干互不相同的品质标志属性或数量标志值 2.设某地区有800家独立核算的工业企业,要研究这些企业的产品生产情况,总体是( D)。

A.全部工业企业 B.800家工业企业 C.每一件产品 D.800家工业企业的全部工业产品 3.有200家公司每位职工的工资资料,如果要调查这200家公司的工资水平情况,则统计总体为(A)。 A.200家公司的全部职工 B.200家公司 C.200家公司职工的全部工资 D.200家公司每个职工的工资 4.一个统计总体( D)。 A.只能有一个标志 B.可以有多个标志 C.只能有一个指标 D.可以有多个指标 5.以产品等级来反映某种产品的质量,则该产品等级是(C)。 A.数量标志 B.数量指标 C.品质标志 D.质量指标 6.某工人月工资为1550元,工资是( B )。 A.品质标志 B.数量标志 C.变量值 D.指标 7.某班4名学生金融考试成绩分别为70分、80分、86分和95分,这4个数字是( D)。 A.标志 B.指标值 C.指标 D.变量值 8.工业企业的职工人数、职工工资是(D)。 A.连续变量 B.离散变量 C.前者是连续变量,后者是离散变量 D.前者是离散变量,后者是连续变量 9.统计工作的成果是(C)。 A.统计学 B.统计工作 C.统计资料 D.统计分析和预测 10.统计学自身的发展,沿着两个不同的方向,形成(C)。 A.描述统计学与理论统计学 B.理论统计学与推断统计学 C.理论统计学与应用统计学 D.描述统计学与推断统计学

2013年高考理科数学试题及答案-全国卷1

2013年普通高等学校招生全国统一考试(全国课标I) 理科数学 注意事项: 1.本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4.考试结束后,将本试题和答题卡一并交回. 第Ⅰ卷 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|x2-2x>0},B={x|-5<x<5},则( ). A.A∩B= B.A∪B=R C.B?A D.A?B 2.若复数z满足(3-4i)z=|4+3i|,则z的虚部为( ). A.-4 B. 4 5 - C.4 D. 4 5 3.为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( ). A.简单随机抽样 B.按性别分层抽样 C.按学段分层抽样 D.系统抽样 4.已知双曲线C: 22 22 =1 x y a b -(a>0,b>0)的离心率为 5 2 ,则C的渐近线方程为( ). A.y= 1 4 x ± B.y= 1 3 x ± C.y= 1 2 x ± D.y=±x 5.执行下面的程序框图,如果输入的t∈[-1,3],则输出的s属于( ).

A .[-3,4] B .[-5,2] C .[-4,3] D .[-2,5] 6.如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器的厚度,则球的体积为( ). A . 500π3cm 3 B .866π3 cm 3 C . 1372π3cm 3 D .2048π3 cm 3 7.设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,则m =( ). A .3 B .4 C .5 D .6 8.某几何体的三视图如图所示,则该几何体的体积为( ).

高考数学百大经典例题——不等式解法

典型例题一 例1 解不等式:(1)01522 3>--x x x ;(2)0)2()5)(4(3 2 <-++x x x . 分析:如果多项式)(x f 可分解为n 个一次式的积,则一元高次不等式0)(>x f (或 0)(-+x x x 把方程0)3)(52(=-+x x x 的三个根3 ,2 5 , 0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分. ∴原不等式解集为? ?????><<-3025x x x 或 (2)原不等式等价于 ?? ?>-<-≠????>-+≠+?>-++2450)2)(4(0 50 )2()5)(4(32x x x x x x x x x 或 ∴原不等式解集为{} 2455>-<<--

①0 ) ( ) ( ) ( ) ( < ? ? < x g x f x g x f ②0 ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( < ? = ? ≤ ? ? ? ≠ ≤ ? ? ≤x g x f x f x g x f x g x g x f x g x f 或 或 (1)解:原不等式等价于 ? ? ? ≠ - + ≥ + - + - ? ≥ + - + - ? ≤ + - + + - ? ≤ + - - - + ? ≤ + - - ? + ≤ - )2 )( 2 ( )2 )( 2 )( 1 )( 6 ( )2 )( 2 ( )1 )( 6 ( )2 )( 2 ( 6 5 )2 )( 2 ( )2 ( )2 (3 2 2 3 2 2 3 2 x x x x x x x x x x x x x x x x x x x x x x x x x 用“穿根法” ∴原不等式解集为[)[) +∞ ? - ? - -∞,6 2,1 )2 , (。 (2)解法一:原不等式等价于0 2 7 3 1 3 2 2 2 > + - + - x x x x 2 1 2 1 3 1 2 7 3 1 3 2 2 7 3 1 3 2 )2 7 3 )( 1 3 2( 2 2 2 2 2 2 > < < < ? ?? ? ? ? < + - < + - ?? ? ? ? > + - > + - ? > + - + - ? x x x x x x x x x x x x x x x 或 或 或 ∴原不等式解集为) ,2( )1, 2 1 ( ) 3 1 , (+∞ ? ? -∞。 解法二:原不等式等价于0 )2 )(1 3( )1 )(1 2( > - - - - x x x x )2 ( )1 3 )( 1 )( 1 2(> - ? - - - ?x x x x 用“穿根法” ∴原不等式解集为) ,2( )1, 2 1 ( ) 3 1 , (+∞ ? ? -∞ 典型例题三

统计学计算题例题学习资料

统计学计算题例题

第四章 1. 某企业1982年12月工人工资的资料如下: 要求:(1)计算平均工资;(79元) (2)用简捷法计算平均工资。 2. 某企业劳动生产率1995年比1990年增长7%,超额完成计划2%,试确定劳动生产率计划增长数。 7%-2%=5% 3. 某厂按计划规定,第一季度的单位产品成本比去年同期降低8%。实际 执行结果,单位产品成本较去年同期降低4%。问该厂第一季度产品单位成本计划的完成程度如何?104.35%( (1-4%)/(1-8%)*100%=96%/92%*100%=104.35%结果表明:超额完成4.35%(104.35%-100%)) 4. 某公社农户年收入额的分组资料如下:

要求:试确定其中位数及众数。中位数为774.3(元)众数为755.9(元) 求中位数: 先求比例:(1500-720)/(1770-720)=0.74286 分割中位数组的组距:(800-700)*0.74286=74.286 加下限700+74.286=774.286 求众数: D1=1050-480=570 D2=1050-600=450 求比例:d1/(d1+d2)=570/(570+450)=0.55882 分割众数组的组距:0.55882*(800-700)=55.882 加下限:700+55.882=755.882 5.1996年某月份某企业按工人劳动生产率高底分组的生产班组数和产量资料如 下: 率。64.43(件/人)

(55*300+65*200+75*140+85*60)/(300+200+140+60) 6.某地区家庭按人均月收入水平分组资料如下: 根据表中资料计算中位数和众数。中位数为733.33(元) 众数为711.11(元) 求中位数: 先求比例:(50-20)/(65-20)=0.6667 分割中位数组的组距:(800-600)*0.6667=66.67 加下限:600+66.67=666.67 7.某企业产值计划完成 103%,比去年增长5%。试问计划规定比去年增长 多少?1.94% (上年实际完成1.03/1.05=0.981 本年实际计划比上年增长 (1-0.981)/0.981=0.019/0.981=1.937%) 8.甲、乙两单位工人的生产资料如下:

2013年高考理科数学全国卷1有答案

数学试卷 第1页(共21页) 数学试卷 第2页(共21页) 数学试卷 第3页(共21页) 绝密★启用前 2013年普通高等学校招生全国统一考试(全国新课标卷1) 理科数学 使用地区:河南、山西、河北 注意事项: 1.本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至3页,第Ⅱ卷3至6页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4.考试结束后,将本试题卷和答题卡一并交回. 第Ⅰ卷 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合 题目要求的. 1.已知集合2 0{}|2A x x x =-> ,{|B x x <<=,则 ( ) A .A B =R B .A B =? C .B A ? D .A B ? 2.若复数z 满足(34i)|43i|z -=+,则z 的虚部为 ( ) A .4- B .45 - C .4 D .45 3.为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是 ( ) A .简单随机抽样 B .按性别分层抽样 C .按学段分层抽样 D .系统抽样 4.已知双曲线C :22 221(0,0)x y a b a b -=>> ,则C 的渐近线方程为 ( ) A .1 4y x =± B .1 3y x =± C .1 2 y x =± D .y x =± 5.执行如图的程序框图,如果输入的[1,3]t ∈-,则输出的s 属于 ( ) A .[3,4]- B .[5,2]- C .[4,3]- D .[2,5]- 6.如图,有一个水平放置的透明无盖的正方体容器,容器 高8cm ,将一个球放在容器口,再向容器内注水,当球 面恰好接触水面时测得水深为6cm ,如果不计容器的 厚度,则球的体积为 ( ) A .3866π cm 3 B . 3500π cm 3 C .31372πcm 3 D .32048πcm 3 7.设等差数列{}n a 的前n 项和为n S ,12m S -=-,0m S =,13m S +=,则m = ( ) A .3 B .4 C .5 D .6 8.某几何体的三视图如图所示,则该几何的体积为 ( ) A .168π+ B .88π+ C .1616π+ D .816π+ 9.设m 为正整数,2()m x y +展开式的二项式系数的最大值 为a ,21()m x y ++展开式的二项式系数的最大值为b .若137a b =,则m = ( ) A .5 B .6 C .7 D .8 10.已知椭圆 E :22 221(0)x y a b a b +=>>的右焦点为(3,0)F ,过点F 的直线交E 于A ,B 两点. 若AB 的中点坐标为(1,1)-,则E 的方程为 ( ) A .22 14536 x y += B .2213627x y += C .2212718x y += D .22 1189x y += 11.已知函数22,0, ()ln(1),0.x x x f x x x ?-+=?+>? ≤若|()|f x ax ≥,则a 的取值范围是 ( ) A .(,1]-∞ B .(,0]-∞ C .[2,1]- D .[2,0]- 12.设n n n A B C △的三边长分别为n a ,n b ,n c ,n n n A B C △的面积为n S ,1,2,3, n =.若11b c >,1112b c a +=,1n n a a +=,12n n n c a b ++= ,12 n n n b a c ++=,则 ( ) A .{}n S 为递增数列 B .{}n S 为递减数列 C .21{}n S -为递增数列,2{}n S 为递减数列 D .21{}n S -为递减数列,2{}n S 为递增数列 第Ⅱ卷 本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分. 13.已知两个单位向量a ,b 的夹角为60,(1)t t =+-c a b .若0=b c ,则t =________. 14.若数列{}n a 的前n 项和21 33 n n S a = +,则{}n a 的通项公式是n a =________. 15.设当x θ=时,函数()sin 2cos f x x x =-取得最大值,则cos θ=________. 16.设函数22()(1)()f x x x ax b =-++的图象关于直线2x =-对称,则()f x 的最大值为________. 三、解答题:解答应写出文字说明,证明过程或演算步骤. --------在 --------------------此--------------------卷-------------------- 上-------------------- 答-------------------- 题-------------------- 无-------------------- 效 ---------------- 姓名________________ 准考证号_____________

高考数学大题经典习题

1. 对于函数()32 1(2)(2)3 f x a x bx a x =- +-+-。 (1)若()f x 在13x x ==和处取得极值,且()f x 的图像上每一点的切线的斜率均不超过 2 2sin cos t t t -+ t 的取值范围; (2)若()f x 为实数集R 上的单调函数,设点P 的坐标为(),a b ,试求出点P 的轨迹所形成的图形的面积S 。 1. (1)由()32 1(2)(2)3 f x a x bx a x =- +-+-,则 ()2 '(2)2(2)f x a x bx a =-+-+- 因为()13f x x x ==在和处取得极值,所以()13'0x x f x ===和是的两个根 22 1(2)121(2)02(2)323(2)0 a a b a b a b a ?=--+?-?+-=????=--+?-?+-=?? ()2 '43f x x x ∴=-+- 因为()f x 的图像上每一点的切线的斜率不超过2 2sin cos t t t -+ 所以()2 '2sin cos f x t t t x R ≤-+ ∈恒成立, 而()()2 '21f x x =--+,其最大值为1. 故2 2sin cos 1t t t -+ ≥ 72sin 21,3412t k t k k Z πππππ? ??-≥?+≤≤+∈ ??? (2)当2a =-时,由()f x 在R 上单调,知0b = 当2a ≠-时,由()f x 在R 上单调()'0f x ?≥恒成立,或者()'0f x ≤恒成立. ∵()2 '(2)2(2)f x a x bx a =-+-+-, 2244(4)0b a ∴?=+-≤可得22 4a b +≤ 从而知满足条件的点(),P a b 在直角坐标平面aob 上形成的轨迹所围成的图形的面积为 4S π= 2. 函数cx bx ax x f ++=2 3)((0>a )的图象关于原点对称,))(,(ααf A 、)) (,(ββf B

相关主题
文本预览
相关文档 最新文档