当前位置:文档之家› 机械密封定义

机械密封定义

机械密封定义
机械密封定义

1、机械密封基本原理及特点

2.1.1、定义一两个平直圆环端面,在弹力和被密封介质压力共同作用下紧密贴合并可相对转动,和辅助密封一同阻止泄漏的密封装置。故机械密封又称端面密封。

2.1.2定义二一种依靠弹性元件对动、静环端面密封副预紧和介质压力与弹性元件压力压紧而达到密封的轴向端面密封装置。

2.2、机械密封与滑动推力轴承机械密封原型为滑动推力轴承。相同点,两个端面作为工作承载面,端面间需要润滑;不同点,轴承是载荷决定润滑,机械密封则是泄漏决定载荷。机械密封国内标准规定:当轴颈不超过50mm时,泄漏量最大为3ml/h,超过50mm 时,最大泄漏量为5ml/h。国外标准基本如此。

2.3、基本构成及工作原理

2.3.1、密封环,提供平直端面的部件,旋转的称为动环,静止的为静环。端面接触部分称为摩擦副。端面精度直接决定了机械密封的性能,故端面制造者精度极高。机械密封国内标准规定:密封端面平面度不大于0.0009 mm,硬质材料密封环密封端面粗糙度值Ra 不大于0.2 μm,软质材料密封环密封端面粗糙度值Ra 不大于0.4 μm。实际制造精度一般可达到端面平面度不大于0.0003mm,粗糙度值Ra 不大于0.04μm。因平面度存在误差,机械密封端面间存在着缝隙,这是机械密封泄露的根本,也是其能够工作的根本,泄漏用来润滑。端面是机械密封主要泄漏点,占整体泄漏量的80~90%。

2.3.2、辅助密封,也称付密封、补偿密封,为密封环相对回转轴的运动提供密封和位移补偿的部件。

2.3.3、弹性元件,提供弹力的原件。

2.3.4、传动原件,实现端面能相对转动的零部件。

2.4、按照功能特点分类

2.4.1、按端面接触状态

2.4.1.1、接触式工作时两端面机械接触。端面结构及工艺简单,泄漏量小,有磨损,功耗高,适用于密封液体介质。轻载时可密封蒸汽、气体及混合状态介质。端面可加工一定形状,工作时产生动或静压力,降低端面载荷,但泄漏量会增加。

2.4.1.2、非接触式工作时两端面不接触。端面结构及工艺复杂,泄漏量大,无磨损,功耗低,理论上寿命无限,适合密封液体或气体介质。按端面分离分离原理分为动、静压型,前者依靠端面间流体动压力实现,后者则为流体静压力实现。

2.4.2、按辅助密封

2.4.2.1、推进式辅助密封为独立的密封元件,一般为成型填料,在压力和弹力的作用下保持与被密封件间的密封和位移补偿。因材料限制,目前多为橡胶或塑料(如PTFE)制造,使用温度受限,但可耐高压。目前最好的橡胶材料为全氟橡胶,最高使用温度可超过300℃,但此时磨损特性不佳,只适合做静密封。推进式密封的辅助密封工作时处于微动状态,故属于动密封范围,除端面外另一个主要泄漏点,其摩擦运动增加动态阻力,影响端面跟随性,影响泄漏和运行稳定性及耐久性。

2.4.2.2、波纹管式辅助密封为波纹管,利用弹性管原理实现密封和运动补偿。按使用材料可分为金属波纹管和有机材料两种。前者按制造分为成型和焊接两种,后者一般采用塑料如聚四氟乙烯(PTFE)或橡胶制造。金属波纹管介质及温度适应性好,故金属波纹管密封可用于高温,目前高温机械密封多属此类。波纹管因制造结构及工作原理限制不适合高压,目前焊接金属波纹管机械密封标称最高工作压力为 6.9Mpa,实际应用一般不差过2.1Mpa。因波纹管为一个整体,故较推进式密封少一个主要泄漏点,泄漏量低;另波纹管运动时无摩擦,动态特性好,对泄漏影响小,工作稳定性与持久性较推进式高。 2.4.3、按弹性元件

2.4.

3.1、弹簧式弹性元件为弹簧。通常采用螺旋弹簧或波形弹簧,

2.4.

3.1.1、螺旋弹簧,分为单弹簧和多弹簧。单弹簧采用一个包容旋转轴的弹簧提供轴向推力。结构简单,适合中小轴颈,可以实现弹簧传动进一步简化结构,但须区分旋向;另因轴向弹力分布不均,不适合高性能产品;因单个弹簧尺寸相对大些,俗称大弹簧,轴向长度也较大,结构不够紧凑。单弹簧节距及线径较大,杂质及腐蚀适应性好。

多弹簧采用多个较小弹簧按圆周点步,结构相对单弹簧复杂,不能实现弹簧传动,但因弹力均匀,性能较单弹簧稳定,且结构紧凑,布置灵活,适合中高性能产品。杂质及腐蚀适应性差。多弹簧俗称小弹簧。

2.4.

3.1.1、波形弹簧波形弹簧属于单弹簧密封,具有单弹簧结构简单特点,同时兼顾多弹簧密封特点。随着制造工艺及设备的成熟,在通用密封上应用更为普遍。

2.4.

3.2、波纹管式弹性元件为波纹管。因弹力及压缩率需要,目前基本为焊接金属波纹管。随着材料的进步,金属成型波纹管也逐渐开始普及,且金属成型波纹管波距较大,杂质适应性要好于焊接的。其它材料波纹管因弹力问题,只能作为辅助密封,需单独的弹性元件,如橡胶波纹管密封多采用单弹簧,聚四氟乙烯波纹管为多弹簧结构。

2.4.

3.3、磁力密封利用磁性元件对某些金属的磁吸力作为弹力,结构简单紧凑。但采用磁吸力原理时,端面恢复力差,且当介质中有铁磁性杂质时会失效,这些均制约其使用,目前多作为轴承密封。

2.4.

3.4、高弹性体密封采用材料自身的高弹性提供弹力,如直接采用橡胶材料,目前在钻机中应用较多。2、机械密封技术参数

3.1、弹簧比压弹力作用在端面上的压强。Kt = k * n * L /(D12-D22)其中k为弹簧的弹率n为弹簧数量D1 为摩擦副外径D2 为摩擦副外径弹簧比压为无压时端面载荷,表明端面初始贴合能力。因为设计方法及理论差异,不同制造商取值不同,同时考虑密封的通用性及压力适用范围,差异更多。按照顾永泉先生的理论及我公司实践,对于推进式密封,Kt一般选用0.2~0.3,对于金属波纹管密封一般选用0.15~0.25。

3.2、平衡系数

3.2.1、平衡直径平衡直径之压力在端面上有效作用直径。对推进式密封来说,平衡直径也称滑移直径,就是滑移面的直径。滑移面是指辅助密封做轴向补偿时与其有相对位移的表面。对于焊接金属波纹管密封,平衡直径理论上可视作为其有效作用中经。这是因为焊接金属波纹管可简单看做是圆锥面的链接,受压时,按虚功原理计算,实际承压面积仅为全部面积的1/2。 3.2.2、平衡系数平衡系数也成面积比,是机械密封基本参数之一。平衡系数为摩擦副实际承压面积与摩其面积比值,通常采用K表示。K=(D12-Dm2)/(D12-D22)其中D1 为摩擦副外径D2 为摩擦副外径Dm 为平衡直径 3.2.3、平衡性及非平衡型密封

按平衡系数大小可将机械密封分为两类,当K≥1时称为非平衡型,当0≤K<1时称为平衡性。这种分类只适合于推进式密封。因推进式密封为实现平衡性结构,滑移直径一定在摩擦副直径范围内,故需设计一个台阶方能实现,结构也复杂。平衡型密封可有效降低端面载荷,实现更高性能,故当压力超过1.0~1.5Mpa时,推进式密封多采用平衡型结构。波纹管密封平衡直径为其有效作用中经,故波纹管密封可不需此台阶而直接设计为平衡性密封。

3.3、膜压系数

3.3.1、泄漏与膜压机械密封端面存在间隙,按标准最大可以为0.0018mm,实际上可能更大或更小。按顾永泉先生的理论,接触式机械密封端面在工作时大多处于混合摩擦状态,端面间实际接触面积不超过名义面积的2%,故端面间实际存在连续流体膜,这是泄漏根本。当摩擦副内外径存在压差时,流体膜即形成压力流,从而形成液膜压力。但液膜压力是不均匀的,对于水、油不可压缩流体,压降可视为线性,对于气体及粘稠流体(非牛顿流体),

压降不符合线性。对于端面来说,膜压属于正压力,会使端面打开。

3.3.2、膜压系数密封端面间流体膜平均压力与摩擦副内外侧压差的比值。一般的,对于平行端面,纯液相,如常温的水、油等,膜压系数取0.5;对于闪蒸烃类,如液化气,膜压系数取0.7,对于原油、胶类等非牛顿流体,可取0.35。

3.4、端面比压

3.4.1、端面贴合力作用在端面上的力F包括弹簧力,两端压差的有效作用面积,膜压力及惯性力和摩擦力(请参照顾永泉先生《密封技术》第75页,PDF第86页)。当外侧压力高于内测时:F=Ft+P2*A*K+P1*A*(1-K)-P1*A-Km*A ±Fg±Fm 整理为F=Ft+P2*A*K-P1*A*K-Km*(P2-P1)*A ±Fg±Fm F=Ft+Ps*A*(K-Km)±Fg ±Fm 其中Ft为弹簧力P2为外侧压力P1为内侧压力A为摩擦副面积K为面积比Km为膜压系数Fg为惯性力,Fm为摩擦力(当稳定工作时,此两项可忽略),Ps=P2-P1,为内外侧压差

3.4.2、端面比压端面比压Pb就是作用在端面上的力和摩擦副面积的比值,也称接触比压。Pb=Kt+Ps*(K-Km)任何时候,Pb必须大于0,否则断面变化打开。

3.5、平衡系数的取值对于非平衡型密封,因K一定比Km大,故考虑的不是端面如何打开,而是如何减小Pb以降低载荷。所以对于非平衡型密封,只要结构允许,摩擦副内径越小越好。

对于平衡性密封,理论上K可以比Km小已获得更高的承载能力,但考虑到非稳定工作状态,一般通用产品取在0.7~0.85间。因不存在摩擦力,金属波纹管密封比其它类型的可低些。

3.6、PV值当泄漏和寿命一定时,衡量密封性能的参数就是PV值,这是密封压力和端面平均速度的乘积,单位为Mpa.m/s。

3.6.1、PsV值机械密封性能参数。Ps为密封压差,目前单机密封超过1000Mpa.m/s。

3.6.2、PbV值机械密封端面载荷情况。Pb为端面比压,设计PbV值需小于许用【PbV】值。许用【PbV】值是按不同材料配对在一定条件下试验确定的,表明材料的摩擦及磨损特性,相同条件时,许用【PbV】值高,说明材料性能好。

3.6.3、一般的,供应商只提供密封产品的需用温度、压力和速度三个参数,但不表明这三个参数可以同时达到。这三个参数是相互影响的,除非每种情况都能得到实验,需更多实践验证,积累经验以补充,这也是机械密封技术专业性特点之一。

4、机械密封系统机械密封装系统指设备中与机械密封有关的设施。机械密封系统一般分为机械密封总成和冲洗及保护系统(通常也称作密封辅助系统)两大部分。

4.1、机械密封总成机械密封总成分为机械密封(主体)和连接部件两部分。机械密封总成即通常所说的集装密封。这里的集装是指产品范围而非产品结构。注意:美国石油协会标准API 682 《离心旋转泵的轴封系统》规定的可以作为一个整体进行安装的机械密封总成称为集装式密封不同,这种集装式密封的轴套和压盖间带有集成部件,如限位板或集成块,保证静止和旋转部分集成在一起。机械密封(主体)即通常所说的非集装密封,一般包含机械密封的四大功能部件——端面、辅助密封、弹性元件和传动部件,是机械密封实现其密封功能的核心部件。集装部分除非集装外的部件称为连接部件,主要为非集装在设备上定位和固定,类似设备基座功能。

4.2、冲洗及保护系统为式机械密封正常工作所配置的附属设施,如冲洗及冷却管线,双密封配置的储罐系统或液压站等。5、机械密封(主体)为方便起见,以下均称为非集装,并以我公司产品为例说明产品的特点(图形请参照我公司样本)。作为核心部分,非集装一般设计成独立部件,根据设备差异辅以不同安装部件,实现部分标准化及通用化。除此前的功能分类外,依据其使用特点还可继续区分。因侧重点不同,区分方法较杂乱,此处按较通用的分类。目前国内外机械密封标准中,涉及密封尺寸的均针对非集装,典型的标

准如德国DIN24960和我国GB/T6556(DIN24960的转化版)。当某种产品符合这些标准时,非集装可以互换。如我公司的DGT8U/B型可分别于约翰克兰的58/59的U/B型、伯格曼的M/H7型、克隆的C8U/B型互换。

5.1、具体结构

5.1.1、弹簧密封以DGT8U型为例说明,见下图。

(1)、静环/静止环工作时不旋转,为一个密封环,提供一个端面。DGT8U型静环为硬质环,故端面宽。(2)、动环/旋转环工作时旋转,另一个密封环,提供第二个端面。两密封环端面接触部分为摩擦副。(3)、弹簧DGT8U为多弹簧结构。(4)、弹簧盒容纳弹簧的基座,同时作为在轴上定位的部件。(5)、推环使弹簧力均匀的分布,避免点步损伤动环。DGT8U型密封未婚和传动结构,推环通过圆弧拨叉将扭矩均匀的传递到动环,降低传动力对端面的影响。(6)、传动螺钉将扭矩自弹簧盒传递到推环,同时将弹簧盒、弹簧和推环集成,并使弹簧形成与压缩。这个集成在一起的部件称为弹簧盒/座组件,减少了维护中实际零部件数量。(7)、动环密封圈动环与(12)轴或轴套间的密封圈。在DGT8U型中,因可在弹簧推动下移动,也为辅助密封。此型密封标准配置为橡胶“O”形圈。(8)、静环密封圈静环与(11)压盖间密封圈,因不能运动,为静密封。DGT8U静环通过密封圈悬挂在压盖上,属于柔性连接,降低密封环变形。此为DIN24960及GB/T6556标准结构。(9)、紧定螺钉固定弹簧盒,同时为旋转部分定位,并将扭矩自轴或轴套传递到弹簧盒。(10)、防转销防止静环旋转,固定在压盖上。(11)、压盖容纳静环,并为其定位和固定。压盖不属于非集装。(12)、轴或轴套固定旋转部分。轴套还要将扭矩通过紧定螺钉传递到弹簧盒,同时可保护轴。轴套不属于非集装。(13)、平衡直径轴或轴套与动环密封圈接触并密封的外圆,图中未标注。(14)、补偿环在弹簧力作用下可移动的密封环,DGT8U为动环。补偿环在工作中有位移,已补偿旋转运动、轴窜动及端面磨损。(15)、非补偿环不是补偿环的另一个密封环。DGT8U为静环非补偿环工作时只存在由于密封圈弹性变形的运动,实为振动,无法补偿运动误差,故其密封圈不是辅助密封。

(16)、补偿环组件包括补偿环、弹簧、辅助密封及为补偿环提供传动的零部件的组合。对与机械密封,补偿环组件实为非集装关键特征。因非补偿环只是提供另一个端面,故可可更换为其它结构,只要断面特征一致,并不影响非集装功能。

(17)、传动路径轴或轴套→紧定螺钉→弹簧座→传动销钉→推环→密封环至端面。较之单独的拨叉或销钉传动,DGT8U传动环节多。5.1.2、焊接金属波纹管密封以DGB01型为例说明。

(1)、动环/旋转环工作时旋转,提供一个端面。为非补偿环。DGB01型动环为硬质环,故端面宽;因为法兰连接,故采用镶装结构。

(2)、静环/静止环工作时不旋转,提供另一个端面。为补偿环。因为波纹管密封,故采用镶装结构。

(3)、波纹管DGB01型为焊接金属波纹管。

(4)、尾座也称波纹管座,为波纹管组件提供连接。波纹管为辅助密封,同时也是弹性元件,并将扭矩传递到静环。

(5)、波纹管组件静环、波纹管、尾座组焊在一起成为一个独立的部件。为补偿环组件。因波纹管同时具备三种功能,故波纹管密封整体结构较弹簧密封精简。

(6)、密封垫DGB01非集装采用平垫密封。

(7)、螺钉DGB01采用法兰结构连接。

(8)、水套也称折流套,可为波纹管组件提供支撑。不属于非集装。

(9)、压盖

(10)、轴套

(11)、泄漏点及泄漏量5.1.3、橡胶波纹管密封以DGE02型密封说明。(1)、静环/静止环工作时不旋转,提供一个端面。为非补偿环。DGE02型静环为硬质环,故端面宽。(2)、动环/旋转环工作时旋转,提供另一个端面。为补偿环。(3)、橡胶波纹管DGE02型为橡胶波纹管密封。橡胶波纹管只具备辅助密封功能。DGE02型波纹管左、右两端分别通过(5)固定在轴或轴套(10)及动环(2)上,以摩擦力将扭矩自轴或轴套(10)传递到左侧(5)、自右侧(5)传递到动环(2),但波纹管段(中间段并不参与扭矩传递。(4)、弹簧橡胶波纹管需单独弹簧作为弹性元件,同时为传动原件。DGE02型采用单弹簧传动结构,通过(5)上的止动块与弹簧两端头限制弹簧只能向一个方向转动。注意:图中所示弹簧为左旋,与轴旋向相同,有别于常见的弹簧与轴旋向相反的传动结构,在维护时须严格区分。(5)、弹簧座为弹簧定位并参与传动。传动功能参照前两条。DGE02型具有两个弹簧座,右侧具备推环功能,均布弹簧力。(6)、静环密封圈静密封,非辅助密封。(7)、防转销防止静环旋转,固定在压盖或设备壳体上。(8)、压盖(9)、轴或轴套(10)、补偿组件由动环、橡胶波纹管、弹簧座、弹簧组成。 5.1.4、其它结构请参照样本。5.2、结构类型前面已按功能类型对机械密封分类,依据具体结构还可分类,但这种分类有些不统一,仅介绍相对认同的内容。5.2.1、静止型和旋转型依据弹性元件工作时与设备基座的相对运动状态区分。DGB01型属于静止型。5.2.1.1、静止型工作时,弹性元件相对设备基座不旋转。一般的,当补偿组件安装在设备壳体上的为静止型。DGT8U型、DGE02型属于旋转型。5.2.1.2、旋转型工作时,弹性元件相对设备基座旋转。一般的,当补偿组件安装在轴上的为旋转型。 5.2.1.3、旋转型结构简单,尺寸紧凑,适合多种布置,为大多数设计所采用。但受离心力影响,不能用于高速,一般转速最高限制为5000rpm,摩擦副平均线速度限制为25m/s。静止型适合高速。API 682 规定高温泵首选金属波纹管静止型密封,认为静止型可降低因回转轴线偏斜时弹性元件的周期性疲劳,提高密封可靠性和耐久性,这也适合高速密封。 5.2.2、内流型和外流型依据端面内流动方向区分。 5.2.2.1、内流型工作时,被密封介质自外侧向内流动。或者说,密封承受外压。因泄漏方向和离心力方向相反,故内流型密封泄漏量相对低。DGB01、DGT8U、DGE02型均属内流型。

5.2.2.2、外流型,被密封介质内侧向外流动。或者说,密封承受内压。因泄漏方向和离心力方向相同,故外流型密封泄漏量相对高。DGF01型为外流型。 5.2.2.3、相同尺寸时,密封承受外压能力远高于内压,故设计首选内流型。但内流型密封观察泄漏及维护较外流型困难,且大部分零件都与介质接触,所以在酸碱泵上多采用外流型,如DGE01型。另外,在有压双封中,内密封设计为外流型的安全性高于内流型,且与无压双封通用性提高,目前应用也较多。5.2.3、弹簧外置型仅限制弹簧为弹性元件。将弹簧布置在非介质侧,消除介质对弹簧的影响。弹簧外置较正常布置结构复杂,一般的这种结构还将补偿环组件的传动路径也布置在外侧,进一步提高介质适应性。适合在火电脱硫、纸浆、渣浆方面。DGT02型为弹簧外置型。DGF01型也属于此类,但因为聚四氟乙烯波纹管型,故一般不称弹簧外置。 5.2.4、湿式和干式密封依据介质状态区分。液体介质称为湿式,气体(不含蒸汽)为干式。当介质中含有蒸汽时,除非接触式密封的许用【PbV】满足,需要去除蒸汽而转化为湿式或干式密封。 5.3、材料因为直接接触介质,还需耐磨,故密封材料相对多样,自普通碳钢直至最先进材料。

机械密封标准

机械密封标准 2009-9-9 0:30:37信息内容 序号; 标准号标准名称 1 GB 5894-1986 机械密封名词术语: 2 HB/T 4127.2-1999 机械密封分类方法: 3 GB 10444-89 机械密封产品型号编制方法: 4 GB 5661-8 5 轴向吸入离心泵机械密封和软填料用的空腔尺寸: 5 GB 6556-94 机械密封的型式、主要尺寸、材料和识别标志: 6 JB/T 8726-1998 机械密封腔尺寸; 7 HG3167-86 搅拌轴轴径系列: 8 HG2098-91 釜用机械密封系列及主要参数: 9 HG2264-92 釜用机械密封类型、主要尺寸及标志:{TodayHot} 10 JB/T1472-94 泵用机械密封; 11 HG21571-95 搅拌传动装置——机械密封: 12 JB/T4127.3-1999 机械密封技术条件; 13 JB/T6619.1-1999 轻型机械密封技术条件; 14 JB/T4127.3-1999 机械密封产品验收技术条件; 15 JB5086-91 内燃机陶瓷石墨系列水封技术条件; 16 HG/T2047-91 纯碱蒸汽煅烧炉旋转接头技术条件; 17 HG/T2269-92 釜用机械密封技术条件; 18 JB/T6373-92 焊接金属波纹管机械密封技术条件;

19 JB/T6614-93 锅炉给水泵用机械密封技术条件: 20 JB/T6616-93 橡胶波纹管机械密封技术条件; 21 HG/T2477-93 砂磨机用机械密封技术条件; 22 HG/T2478-93 搪玻璃泵用机械密封技术条件: 23 HG/T2734-95 中压反应釜用机械密封技术条件: 24 GB/T14211-93 机械密封试验方法: 25 HG/T2099-91 釜用机械密封试验规范: 26 JB/T5092-91 内燃机陶瓷石墨系列水封试验方法; 27 JB/T6619-93 轻型机械密封试验方法: 28 JB/T7369-94 机械密封端面平面度检验方法: 29 HG/T2122-91 釜用机械密封辅助装置: 30 JB/T6629-93 机械密封循环保护系统: 31 JB/T6630-93 机械密封系统用压力罐型式、主要尺寸和基本参数: 32 JB/T6631-93 机械密封系统用螺旋管式换热器: 33 JB/T6632-93 机械密封系统用过滤器: 34 JB/T6633-93 机械密封系统用旋液器: 35 JB/T6634-93 机械密封系统用孔板: 36 JB/T7055-93 机械密封系统用增压罐型式、主要尺寸和基本参数: 37 HG21572-95 搅拌传动装置-机械密封循环保护系统; 38 GB3345-88 船用泵轴的机械密封; 39 GB3346-88 船用泵轴的变压力机械密封:{HotTag} 40 HG/T2057-91 搪玻璃搅拌容器用机械密封: 41 HG/T2100-91 液环式氯气泵用机械密封:

API682机械密封分类编码

API 610标准的机械密封材料和分类编码 机械密封的材料和结构特点,必须根据下列分类系统来编码: 第一位字母:平衡型(B)或不平衡型(U) 第二位字母:单端面(S),无压的双重密封(T)——即第7版中称“串联密封”,或有压的双重密封(D)——即第7版中称“双端面密封” 第三位字母:密封板(即密封压盖)型式:P=普通式,不带节流衬套;T=节流衬套式,设有急冷、泄漏液接收孔和(或)排液接孔;A=辅助密封装置,型号需要加以规定。 第四位字母:垫(密封环)材料(见表1) 第五位字母:端面材料(见表2) 举例来说:一种编码为BSTFM的密封,就是一种平衡型、单端面的、装有带节流衬套的密封板的机械密封,静密封环垫材料为氟橡胶(FKM),动密封环与轴套之间的垫为氟橡胶(FKM),动静环端面副材料为碳对2型碳化钨,对以上材料以外的密封材料应当编码为X,并应在数据单上明确规定之。

机械密封的注解: 1、除非另有规定,采用多弹簧密封的弹簧材料必须采用哈斯特洛伊合金(Hastelloy C)。单弹簧密封的弹簧材料必须采用奥氏体不锈钢(AISI标准型316或同等材料)。其它金属零件也必须采用奥氏体不锈钢(AISI标准型316或同等材料)或适用于使用条件的其它耐腐蚀材料,但对金属波纹管除外,如果采用金属波纹管,其材料必须由密封制造厂根据使用条件推荐,金属波纹管的腐蚀速率应低于每年50μm(2mils,密耳)。 2、除非另有规定,密封板(即密封压盖)与密封室之间的密封应当采用氟橡胶的O形环,其使用温度低于150℃(300°F)。如果温度超过150℃以上或如果有规定,必须采用石墨充填的奥氏体不锈钢蜗形缠绕垫,此蜗形缠绕垫必须能够承受泵送液体的全温(即未采取冷却降温的)。 3、金属密封环不应当采用喷镀覆盖层来代替一体化的密封端面。 4、如果泵送温度超过175℃(350°F)时,泵制造厂和密封制造厂应当共同磋商对密封端面采取冷却冲洗液或对一头不通的密封室采用不断保持流通的冷却水室。 5、机械密封垫(密封圈)的温度极限应按下表的规定。 注a:其最低和最高的环境温度或泵送温度请询问制造厂。

机械密封材料和分类编码

机械密封材料和分类编码 机械密封的材料和结构特点,必须根据下列分类系统来编码: 第一位字母:平衡型(B)或非平衡型(U) 第二位字母:单端面(S);无压的双重密封(即第七版中称“串联密封”)(T);或有压的双重密封(即第七版中称“双端面密封”)(D) 第三位字母:密封板(即密封压盖)型式(P=普通式,不带节流衬套;T=节流衬套式,设有急冷、泄露液接孔和(或)排液接孔;A=辅助密封装置,型式需加以规定)。 第四位字母:垫(密封环)材料(见表1) 第五位字母:端面材料(见表2) 举例来说,一种编码为BSTFM的密封,就是一种平衡型的、单端面的、装有带节流衬套的密封板的机械密封,静密封环垫材料为氟橡胶(FKM),动密封环与轴套之间的垫为氟橡胶(FKM),动、静环端面副材料为碳对2型碳化钨。对上列材料以外的密封材料应当编码为X,并在数据表上明确规定之。 表1 机械密封分类编码的第四位字母 第四位字母静密封环垫动密封环与轴套之间的垫 E 氟橡胶聚四氟乙烯 F 氟橡胶氟橡胶 G 聚四氟乙烯聚四氟乙烯 H 丁晴橡胶丁晴橡胶 I 高氟橡胶(FFKM) 高氟橡胶(FFKM) R 石墨薄片石墨薄片 X 按规定按规定 Z 蜗形缠绕垫石墨薄片 表2 机械密封分类编码的第五位字母 第五位字母密封环端面副材料 环1 环2 L 碳碳化钨-1 M 碳碳化钨-2 N 碳碳化硅 O 碳化钨-2 碳化硅 P 碳化硅碳化硅 X 按规定按规定 表3 机械密封垫和波纹管的温度极限 密封垫材料环境温度或泵送温度 最低最高 (℃) (○F) (℃) (○F) 1. 聚四氟乙烯-75 -100 200 400 2. 丁晴橡胶-40 -40 120 250 3. 氯丁橡胶-20 0 90 200 4. 氟橡胶-20 0 200 400 5.金属波纹管a 6.高氟橡胶-12 10 260 500 7. 石墨薄片-240 -400 400b 750b 8.玻璃纤维填充的聚四氟乙烯-212 -350 230 450

机械密封的类型

机械密封的类型 1 按工作参数分类 机械密封按不同工作参数分类见表1 表1 机械密封按工作参数分类

满足下列条件: p<0.5MPa;0<t<80℃; υ<10m/s;d≤40mm 轻型机械密封不满足重型和轻型的其他密封中型机械密封 按使用介质分强酸、强碱及其他强腐蚀介质耐强腐蚀介质机械密封油、水、有机溶剂及其它弱腐 蚀介质 耐油、水及其它弱腐蚀性介质 机械密封 含磨粒介质耐磨粒介质机械密封 2 按结构型式分类 机械密封按结构型式分类,其基本类型有: (1)平衡式和非平衡式机械密封 能使介质作用在密封端面上的压力卸荷的为平衡式,不能卸荷的为非平衡式。按卸荷程度不同,前者又分为部分平衡式(部分卸荷)和过平衡式(全部卸荷)。平衡式密封(图29.7-2a)端面上所受的作用力随介质压力的升高而变化较小,因此适用于高压密封;非平衡式密封(图29.7-2b)密封端面所受的作用力随介质压力的变化较大,因此只适用于低压密封。平衡式密封能降低端面上的摩擦和磨损,减小摩擦热,承载能力大,但其结构较复杂,一般需在轴或轴套上加工出台阶,成本较高。后者结构简单,介质压力小于0.7MPa时广泛作用。 图29.7.2 平衡式与平衡式机械密封 a)平衡式;b)非平衡式

(2)内置式和外置式机械密封 弹簧和动环安装在密封箱内与介质接触的密封为内置(装)式密封(见图29.7-3a);弹簧和动环安装在密封箱外不与介质接触的密封为外置(装)式密封(见图29.7-3b)。前者可以利用密封箱内介质压力来密封,机械密封的元件均处于流体介质中,密封端面的受力状态以及冷却和润滑情况好,是常用的结构型式。 外置式机械密封的大部分零件不与介质接触,暴露在设备外,便于观察及维修安装。但是由于外置式结构的介质作用力与弹性元件的弹力方向相反,当介质压力有波动,而弹簧补偿量又不大时,会导致密封环不稳定甚至严重泄漏。外置式机械密封仅用于强腐蚀、高粘度和易结晶介质以及介质压力较低的场合。 图29.7-3 内置式和外置式机械密封 a)内置式;b)外置式 (3)内流式和外流式机械密封 介质泄漏方向与离心力方向相反的密封为内流式密封(见图29.7-4a);介质泄漏方向与离心力方向一致的密封为外流式密封(见图29.7-4b)。由于内流式密封中离心力阻止泄漏流体,其泄漏量较外流式少,前者适用于高压,速度高时,密封可靠。为加强端面润滑采用后者较合适,但介质压力不宜过高,一般为1~2MPa。

机械密封的优缺点和腐蚀类型

B 机械密封是靠一对或数对垂直于轴作相对滑动的端面,在流体压力和补偿机构的弹力(或磁力)作用下保持贴合,并配以辅助密封而达到阻漏的轴封装置。机械密封出现损坏的情况较多,常见的损坏形式主要有腐蚀损坏、热损坏和机械损坏。其中腐蚀损坏危害性较大,由于机械密封特殊的结构形式及工作环境和条件不同,腐蚀损坏的形态也多种多样。 机械密封的优缺点 机械密封与软填料密封比较,有如下优点:①机械密封可靠,在长周期的运行中,密封状态很稳定,泄漏量很小,按粗略统计,其泄漏量一般仅为软填料密封的1/100;②机械密封使用寿命长,在油、水类介质中一般可达1~2年或更长时间,在化工介质中机械密封通常也能达半年以上;③摩擦功率消耗小,机械密封的摩擦功率仅为软填料密封的10%~50%;④轴或轴套基本上不受磨损;⑤维修周期长,端面磨损后可自动补偿,一般情况下,毋需经常性的维修;⑥抗振性好,对旋转轴的振动、偏摆以及轴对密封腔的偏斜不敏感;⑦适用范围广,机械密封能用于低温、高温、真空、高压、不同转速以及各种腐蚀性介质和含磨粒介质等的密封。但其缺点有:①机械密封结构较复杂,对制造加工要求高; ②机械密封安装与更换比较麻烦,并要求工人有一定的安装技术水平;③发生偶然性事故时,机械密封处理较困难;④机械密封一次性投资高。 机械密封的腐蚀类型 (1)金属环腐蚀 ①表面均匀腐蚀。如果金属环表面接触腐蚀介质,而金属本身又不耐腐蚀,就会产生表面腐蚀,其现象是泄漏、早期磨损、破坏、发声等。②应力腐蚀破裂。金属在腐蚀和拉应力的同时作用下,首先在薄弱区产生裂缝,进而向纵深发展,产生破裂,称为应力腐蚀破裂,选用堆焊硬质合金及铸铁、碳化钨、碳化钛等密封环,容易出现应力腐蚀破裂。密封环裂纹一般是径向发散型的,可以是一条或多条。这些裂缝沟通了整个密封端面,加速了端面的磨损,使泄漏量增加。 (2)非金属环腐蚀 ①石墨环腐蚀。用树脂浸渍的不透性石墨环,它的腐蚀有3个原因:一是当端面过热,温度大于180℃时,浸渍的树脂要折离石墨环,使环耐磨性下降;二是浸渍的树脂若选择不当,就会在介质中发生化学变化,也使耐磨性下降;三是树脂浸渍深度不够,当磨去浸渍层后,耐磨性下降。所以密封冷却系统的建立,选择耐蚀的浸渍树脂,采用高压浸渍,增加浸渍深度是非常必要的。②石墨环的氧化。在氧化性的介质中,端面在干摩擦或冷却不良时,产生350℃~40℃的温度能使石墨环与氧发生反应,产生CO 2 气体,可使端面变粗糙,甚至破裂。非金属环在化学介质和应力的同时作用下,也会破裂。③聚四氟乙烯(F4)密封环的腐蚀。F4填充如玻璃纤维、石墨粉、金属粉等以提高其耐温性、耐磨性。填充F4环的腐蚀主要是指填充的选择性腐蚀、溶出或变质破坏。例如在氢氟酸中,玻璃纤维分子热腐蚀,所以填充何物应视具体情况而定。 (3)辅助密封圈及接触部位的腐蚀 ①辅助密封圈的腐蚀。橡胶种类不同,其耐蚀性亦不同。由于橡胶的腐蚀、老化,其失效的橡胶遭腐蚀后表面变粗糙且失去弹性,容易断裂。橡胶耐油性因品种而异,不耐油的橡胶易胀大、摩擦力增大,浮动性不好,使密封失效。橡胶与F4耐温性差,硅橡胶耐温性最好,可在200℃使用。②与辅助密封圈接触部位的腐蚀。机械密封动环、轴套、静环、静环座与橡胶或F4辅助密封圈接触处没有大的相对运动,该处相对静止易形成死角,给与之接触的金属轴套、动环、静环座及密封体等造成了特种腐蚀,主要有缝隙腐蚀、摩振腐蚀、接触腐蚀,三种腐蚀同时存在,交替进行,所以腐蚀面较宽、较深。观察其表面深度在1~1.5倍密封圈直径,蚀度不小于0.01mm时,密封泄漏就严重了。(作者单位:辽阳市产品质量监督检验所) □许晓红 机械密封的优缺点和腐蚀类型技术论文 64

机械密封常识

机械基础精品课程教案 9. 2 机械密封常识 【课题名称】 机械密封常识 【教学目标与要求】 一.知识目标 1.了解机械密封的作用、种类、性能和用途。 2.熟悉常用机械密封装置。 二.能力目标 能够根据工作条件正确使用密封装置。 三.教学要求 使学生了解机械密封的种类、特点及用途。 【教学重点】 机械密封的作用 【难点分析】 【教学方法】 讲授为主,配以课件或录像演示,与学生共同回忆实习中所见到的机械密封方式。【学生分析】 如果学生已有实习的经历,应发挥学生的积极性,一起分析学习本次课的内容,否则单纯讲授不会有兴趣,多设疑问?让学生积极参与到教学中来,多给互动的机会效果会更好些。 【教学安排】 1学时(45分钟) 【教学过程】 一.检查旧课掌握情况及讲评作业 二.导入新课 设问:机器为什么要加入润滑油?润滑剂有哪几种?各有什么特性?润滑的方法又有哪些?如何防止润滑油、脂外泄? 三.讲解新课 机械密封的目的是阻止润滑剂和工作介质泄漏,以及灰尘和水分侵入机器。 机械密封的方法有接触式和非接触式两种。接触式机械密封的轴与静止的机座之间相接触,但不是直接接触,而是通过其它密封件。按密封件的不同分为: 1.毡圈密封将毛毡制成密封条挤入轴承盖的密封凹槽圈内,靠毡圈贴紧贴转轴,由于毛毡较软,与轴之间不会形成摩擦,达到阻止润滑剂泄漏的作用。但只能应用在压力较小的场合,如常见的减速器的密封。其特点是结构简单,成本低,能起到密封的效果。 2.唇形密封圈密封在轴承盖内镶入橡胶密封圈,靠贴橡胶密封圈紧贴转轴,形成密封。由于橡胶密封圈具有一定的强度,能承受较大的压力,一般可达2.5MPa。 安装时需注意橡胶密封圈的唇口要对准压力较高的箱体内,才能起到密封的效果。相比之下,唇形密封圈密封的摩擦阻力要比毡圈密封大一些。 3.机械密封橡胶密封圈的动环和静环之间用弹簧支撑,使摩擦面保持一定的压力,防止润滑剂外泄。它所能承受的压力比唇形密封圈密封还要大一些。 4.非接触式密封轴与静止的机座之间不直接接触,存在一定的间隙。常用的方法有在轴承座内孔挖几个圆弧槽,形成油封;或选用端面曲路密封的方法。以圆弧槽密封为常用。

机械密封选型方法及使用要求

机械密封选型方法及使用要求 核心提示:机械密封件属于精密、结构较为复杂的机械基础元件之一,是各种泵类、反应合成釜、透平压缩机、潜水电机等设备的关键部件。其密封性能和使用寿命取决于许多因素,如选型、机器的精度、正确的安装使用等。 一、选型方法: 机械密封选型的主要参数:密封腔体压力(MPA)、流体温度(℃)、工作速度(M/S)、流体的特性以及安装密封的有效空间等。 机械密封按工作条件和介质性质的不同,有耐高温、耐低温机械密封,耐高压、耐腐蚀机械密封,耐颗粒介质机械密封和适应易汽化的轻质烃介质的机械密封等,应根据不同的用处选取不同结构型式和材料的机械密封。 选型的基本原则为: 1:根据密封腔体压力,确定密封结构采用平衡型或非平衡型,单端面或双端面等。 2:根据工作速度,确定采用旋转式或静止式,流体动压式或非接触型。 3:根据温度及流体性质,确定摩擦副和辅助密封材料,以及正确选择润滑、冲洗、保温、冷却等机械密封循环保护系统等。 4:根据安装密封的有效空间,确定采用多弹簧或单弹簧或波形弹簧,内装式或外装式。 二、机械密封的安装与使用要求: 1:机械密封对机器精度的要求(以泵用机械密封为例) (1)安装机械密封部位的轴(或轴套)的径向跳动公差最大不超过0:04~0:06MM。 (2)转子轴向窜动不超过0:3MM。 (3)密封腔体与密封端盖结合的定位端面对轴(或轴套)表面的跳动公差最大不超过0:04~0:06MM。 2:密封件的确认 (1)确认所安装的密封是否与要求的型号一致。

(2)安装前要仔细地与总装图对照,零件数量是否齐全。 (3)采用并圈弹簧传动的机械密封,其弹簧有左、右旋之分,须按转轴的旋向来选择。 3:安装 安装方法随机械密封型式、机器的种类不同而有所不同,但其安装要领几乎都相同,安装步骤和注意事项如下: (1)安装尺寸的确定 安装时,应按产品的使用说明书或样本,保证机械密封的安装尺寸。 (2)装入前,轴(轴套)、压盖应无毛刺,轴承状况良好;密封件、轴、密封腔、压盖都应该清洗干净。为减少摩擦阻力,轴上安装机械密封的部位要薄薄地涂上一层油,以进行润滑,考虑到橡胶O形圈的相溶性,若不宜用油,可涂肥皂水。浮装式静环不带防转销的结构,不宜涂油,应干式装入压盖。 (3)先将静环与压盖一起装在轴上,注意不要与轴相碰,然后将动环组件装入。弹簧座或传动座的紧定螺钉应分几次均匀拧紧。 在未固定压盖之前,用手推补偿环作轴向压缩,松开后补偿环能自动弹回无卡滞现象,然后将压盖螺拴均匀地锁紧。 4:使用 (1)当输送介质温度偏高、过低、或含有杂质颗粒、易燃、易爆、有毒时,必须采取相应的阻封、冲洗、冷却、过滤等措施。 (2)运转前用手盘车,注意转矩是否过大,有无擦碰及不正常的声音。 (3)注意旋向,联轴器是否对中,轴承部位的润滑油加法是否适当,配管是否正确。 (4)开车后工作是否正常稳定,有无因轴转动引起的异常转矩,以及异常响声和过热现象。 (5)运转前首先将介质、冷却水阀门打开,检查密封腔内的气体是否全排出,防止静压引起泄漏,然后开机运行。 文章来源:密封技术网https://www.doczj.com/doc/466957621.html,/Knowledge/Details.aspx?kid=25957 相关推荐:密封圈 https://www.doczj.com/doc/466957621.html, 密封论坛https://www.doczj.com/doc/466957621.html, 盘根https://www.doczj.com/doc/466957621.html,/topic/packing/

机械密封的基本知识

机械密封的基本知识 机械密封是一种依靠弹性元件对静、动环端面密封副的预紧和介质压力与弹性元件压力的压紧而达到密封的轴向端面密封装置,故又称端面密封。 其中动环和静环的端面组成一对摩擦副,动环靠密封室中液体的压力和弹性元件的推力使其压紧在静环端面上,并在两环端面上产生适当的比压和保持一层极薄的液体膜而达到密封的目的。 机械密封被广泛应用于工业泵产品中,尤其在石油化工领域的存在易燃、易爆、易挥发、剧毒等介质场所,在国选煤、选矿行业中泵上的应用也越来越普遍。 其主要有以下优点: ⑴.密封效果好,可达到介质无泄露; ⑵.寿命长,在普通泵中一般可运行1~2年或更长时间;MAAG 泵的机械密封在正常使用中寿命可达5~10年以上; ⑶.对轴(或轴套)无磨损; ⑷.适用围广,可在目前常用介质、转速、温度、压力及轴径条件下使用; 当然,机械密封之所以没有在其他泵中还没得到普及,是因为它存在以下一些不足: ⑴.结构复杂、零件多,对安装人员有技术要求; ⑵.对泵轴向及径向跳动有要求,增加了泵加工成本; ⑶.密封损坏后维修不便;

⑷.选型要求高,须根据介质的物理化学性质、工艺参数及泵安装密封空间来选择合适的结构形式及材质; ⑸.成本高。 虽然机械密封有以上不足,但其密封效果已逐步得到用户的肯定,如今,机械密封在泵上的应用越来越普遍。 密封的基本知识 泄露是机械设备常产生的故障之一。造成泄露的原因主要有两方面: 一是由于机械加工的结果,机械产品的表面必然存在各种缺陷和形状及尺寸偏差,因此,在机械零件联接处不可避免地会产生间隙; 二是密封两侧存在压力差,工作介质就会通过间隙而泄 露。减小或消除间隙是阻止泄露的主要途径。密封的作用就是将接合面间的间隙封住,隔离或切断泄露通道,增加泄露通道中的阻力,或者在通道中加设小型做功元件,对泄露物造成压力,与引起泄露的压差部分抵消或完全平衡,以阻止泄露。 对于真空系统的密封,除上述密封介质直接通过密封面泄露外,还要考虑下面两种泄露形式:

机械密封的种类及其特点分析

机械密封的种类及其特点分析 机械密封的种类及其特点分析 1、推压型机械密封和非推压型机械密封 推压型机械密封指辅助密封沿轴或轴套机械推压来补偿密封面磨损的机械密封,通常就是指弹簧压紧式机械密封。 非推压型机械密封用于辅助密封固定在轴上的机械密封,通常为波纹管机械密封。 推压型机械密封和非推压型机械密封特点的比较见下表。 表推压型密封和非推压型密封特点的比较 2、平衡型机械密封和非平衡型机械密封 机械密封密封腔中的压力作用在动环上形成了闭合力,端面间的液膜形成开启力。载荷系数K>1,密封为非平衡型机械密封。一般非平衡型机械密封只能用于低压。当压力大于一定的限度,密封面间的液膜就会被挤出。在丧失液膜润滑及高负荷的作用下,机械密封的密封端面会很快损坏。非平衡型机械密封不能平衡液体对端面的作用,端面比压随流体压力的上升而上升。 载荷系数K<1,密封为平衡型机械密封。平衡型机械密封内装式密封轴上的台阶使密封端面延径向内移但不减少密封面的宽度。密封的开启力不变,但由于动环有较大的面积暴露在液体中,因此,闭合力被平衡了相当一部分。平衡型机械密封外装式密封的平衡方法除作用力方向恰好相反外,其余与内装式机械密封相同。在这种情况下,要增加闭合力中的液压的份额,以抵销机械密封端面间液膜的开启力。平衡型机械密封能部分平衡液体对端面的作用,端面比压随流体压力的上升而缓慢上升。一般非平衡型机械密封只能用于低压,但对润滑性能差,低沸点,易汽化介质及高速工况,即使在低压下,也应选用平衡型机械密封。因为对于非平衡型机械密封,当机械密封腔压力上升时,会将密封端面间的液膜挤出,使机械密封的密封面很快损坏。平衡型机械密封能用于各种压力场合。 3、单端面机械密封、无压双重机械密封和有压双重机械密封 单端面机械密封是只有一对摩擦副,结构简单,制造、拆装容易,一般只需设置冲洗系统,不需要外供封液系统。 有压双重机械密封(原称为双端面机械密封)指有两对摩擦副,结构复杂,需要外供封液系统,有压双重机械密封密封腔内通入比介质压力高0.5~1.5bar的隔离液,起封堵、润滑等作用,隔离液对内侧密封起到润滑作用。无压双重密封(原称为串联密封)指有两对摩擦副,结构复杂,需要外供封液系统,无压双重密封密封腔内的缓冲液不加压,工艺介质对内侧密封起到润滑作用。 一般情况下,应优先选用单端面机械密封,因为单端面机械密封结构简单,使用方便,价格低。但在以下场合,优先选用双重机械密封。 有毒及有危险性介质。(1) (2) 高浓度的H2S。 (3) 易挥发的低温介质(如液化石油气等)。 随着社会对健康、安全和环境保护的愈来愈重视,无压双重机械密封的使用量逐年上升,该无压双重机械密封密封可广泛用于氯乙烯、一氧化碳、轻烃等有毒、易挥发、危险的介质。无压双重机械密封的内侧密封(第一道密封)是主密封,相当于一个单端面内装式机械密封,单端面机械密封润滑由被密封的介质担当。密封腔内注满来至封液罐的液体,未加压。无压双重机械密封内侧密封一旦失效,导致密封腔的压力提高,即能由封液罐的压力表显示、记录或报警。同时无压双重机械密封外侧密封就能在维修前起到密封和容纳泄漏液体的作用。 对一些有毒、含颗粒介质(或腐蚀性相当厉害的介质),一般可考虑以下方法: (1) 采用合适的环境控制措施,如外冲洗+带旋风分离器的管路冲洗系统。 (2) 采用有压双重机械密封。 有压双重机械密封隔离液的压力高于介质压力,因而泵送介质不会进入密封腔。有压双重机械密封内侧密封起到阻止隔离液进入泵腔的作用。因此当输送诸如粘性、磨蚀性及高温介质时,有压双重机械密封内侧密封由于没有暴露在介质中,因此可以不用昂贵的合金制作。有压双重机械密封外侧密封仅仅起到不使

动密封基础知识1

动密封基础知识 机械密封 1 机械密封的工作原理 机械密封是靠一对或数对垂直于轴作相对滑动的端面在流体压力 和补偿机构的弹力(或磁力)作用下保持贴合并配以辅助密封而达到阻漏的轴封装置。 图29.7-1 机械密封结构 常用机械密封结构如图29.7-1所示。由静止环(静环)1、旋转环(动环)2、弹性元件3、弹簧座4、紧定螺钉5、旋转环辅助密封圈6和静止环辅助密封圈8等元件组成,防转销7固定在压盖9上以防止静止环转动。旋转环和静止环往往还可根据它们是否具有轴向补偿能力而称为补偿环或非补偿还。 机械密封中流体可能泄漏的途径有如图29.7-1中的A、B、C、D 四个通道。 C、D泄漏通道分别是静止环与压盖、压盖与壳体之间的密封,二者均属静密封。B通道是旋转环与轴之间的密封,当端面摩擦磨损后,它仅仅能追随补偿环沿轴向作微量的移动,实际上仍然是一个相对静

密封。因此,这些泄漏通道相对来说比较容易封堵。静密封元件最常用的有橡胶O形圈或聚四氟乙烯V形圈,而作为补偿环的旋转环或静止环辅助密封,有时采用兼备弹性元件功能的橡胶、聚四氟乙烯或金属波纹管的结构。 A通道则是旋转环与静止环的端面彼此贴合作相对滑动的动密封,它是机械密封装置中的主密封,也是决定机械密封性能和寿命的关键。因此,对密封端面的加工要求很高,同时为了使密封端面间保持必要的润滑液膜,必须严格腔制端面上的单位面积压力,压力过大,不易形成稳定的润滑液膜,会加速端面的磨损;压力过小,泄漏量增加。所以,要获得良好的密封性能又有足够寿命,在设计和安装机械密封时,一定要保证端面单位面积压力值在最适当的范围。 机械密封与软填料密封比较,有如下优点:①密封可靠在长周期的运行中,密封状态很稳定,泄漏量很小,按粗略统计,其泄漏量一般仅为软填料密封的1/100;②使用寿命长在油、水类介质中一般可达1~2年或更长时间,在化工介质中通常也能达半年以上;③摩擦功率消耗小机械密封的摩擦功率仅为软填料密封的10%~50%;④轴或轴套基本上不受摩损;⑤维修周期长端面磨损后可自动补偿,一般情况下,毋需经常性的维修;⑥抗振性好对旋转轴的振动、偏摆以及轴对密封腔的偏斜不敏感;⑦适用范围广机械密封能用于低温、高温、真空、高压、不同转速,以及各种腐蚀性介质和含磨粒介质等的密封。但其缺点有:①结构较复杂,对制造加工要求高;②安装与更换比较麻烦,并要求工人有一定的安装技术水平;③发生偶然性事故时,处

机械密封的类型

机械密封的类型 2.1 按工作参数分类 机械密封按不同工作参数分类见表29.7-1。 表29.7-1 机械密封按工作参数分类

2.2 按结构型式分类 机械密封按结构型式分类,其基本类型有: (1)平衡式和非平衡式机械密封 能使介质作用在密封端面上的压力卸荷的为平衡式,不能卸荷的为非平衡式。按卸荷程度不同,前者又分为部分平衡式(部分卸荷)和过平衡式(全部卸荷)。平衡式密封(图29.7-2a)端面上所受的作用力随介质压力的升高而变化较小,因此适用于高压密封;非平衡式密封(图29.7-2b)密封端面所受的作用力随介质压力的变化较大,因此只适用于低压密封。平衡式密封能降低端面上的摩擦和磨损,减小摩擦热,承载能力大,但其结构较复杂,一般需在轴或轴套上加工出台阶,成本较高。后者结构简单,介质压力小于0.7MPa时广泛作用。 (2)内置式和外置式机械密封 弹簧和动环安装在密封箱内与介质接触的密封为内置(装)式密封(见图29.7-3a);弹簧和动环安装在密封箱外不与介质接触的密封为外置(装)式密封(见图29.7-3b)。前者可以利用密封箱内介质压力来密封,机械密封的元件均处于流体介质中,密封端面的受力状态以及冷却和润滑情况好,是常用的结构型式。

外置式机械密封的大部分零件不与介质接触,暴露在设备外,便于观察及维修安装。但是由于外置式结构的介质作用力与弹性元件的弹力方向相反,当介质压力有波动,而弹簧补偿量又不大时,会导致密封环不稳定甚至严重泄漏。外置式机械密封仅用于强腐蚀、高粘度和易结晶介质以及介质压力较低的场合。 图29.7.2 平衡式与非平衡式机械密封 a)平衡式;b)非平衡式 图29.7-3 内置式和外置式机械密封 a)内置式;b)外置式

机械密封资料

盛年不重来,一日难再晨。及时宜自勉,岁月不待人。 机械密封的工作原理 机械密封是靠一对或数对垂直于轴作相对滑动的端面在流体压力和补偿机构的弹力(或磁力)作用下保持贴合并配以辅助密封而达到阻漏的轴封装置。 常用机械密封结构 机械密封一般由静止环(静环)1.旋转环(动环)2.弹性元件3.弹簧座4.紧定螺钉5.旋转环辅助密封圈6和静止环辅助密封圈8等元件组成,防转销7固定在压盖9上以防止静止环转动。旋转环和静止环往往还可根据它们是否具有轴向补偿能力而称为补偿环或非补偿还。 机械密封中流体可能泄漏的途径有A、B、C、D四个通道。 C、D泄漏通道分别是静止环与压盖、压盖与壳体之间的密封,二者均属静密封。B通道是旋转环与轴之间的密封,当端面摩擦磨损后,它仅仅能追随补偿环沿轴向作微量的移动,实际上仍然是一个相对静密封。因此,这些泄漏通道相对来说比较容易封堵。静密封元件最常用的有橡胶O形圈或聚四氟乙烯V形圈,而作为补偿环的旋转环或静止环辅助密封,有时采用兼备弹性元件功能的橡胶、聚四氟乙烯或金属波纹管的结构。 A通道则是旋转环与静止环的端面彼此贴合作相对滑动的动密封,它是机械密封装置中的主密封,也是决定机械密封性能和寿命的关键。因此,对密封端面的加工要求很高,同时为了使密封端面间保持必要的润滑液膜,必须严格腔制端面上的单位面积压力,压力过大,不易形成稳定的润滑液膜,会加速端面的磨损;压力过小,泄漏量增加。所以,要获得良好的密封性能又有足够寿命,在设计和安装机械密封时,一定要保证端面单位面积压力值在最适当的范围。 机械密封与软填料密封比较,有如下优点: ①密封可靠在长周期的运行中,密封状态很稳定,泄漏量很小,按粗略统计,其泄漏量一般仅为软填

精编【机械制造行业】API机械密封分类编码

【机械制造行业】API机械密封分类编码 xxxx年xx月xx日 xxxxxxxx集团企业有限公司 Please enter your company's name and contentv

API 610标准的机械密封材料和分类编码 机械密封的材料和结构特点,必须根据下列分类系统来编码: 第一位字母:平衡型(B)或不平衡型(U) 第二位字母:单端面(S),无压的双重密封(T)——即第7版中称“串联密封”,或有压的双重密封(D)——即第7版中称“双端面密封” 第三位字母:密封板(即密封压盖)型式:P=普通式,不带节流衬套;T=节流衬套式,设有急冷、泄漏液接收孔和(或)排液接孔;A=辅助密封装置,型号需要加以规定。 第四位字母:垫(密封环)材料(见表1) 表1 机械密封分类编码的第四位字母 第五位字母:端面材料(见表2)

表2 机械密封编码的第五位字母 举例来说:一种编码为BSTFM的密封,就是一种平衡型、单端面的、装有带节流衬套的密封板的机械密封,静密封环垫材料为氟橡胶(FKM),动密封环与轴套之间的垫为氟橡胶(FKM),动静环端面副材料为碳对2型碳化钨,对以上材料以外的密封材料应当编码为X,并应在数据单上明确规定之。 机械密封的注解: 1、除非另有规定,采用多弹簧密封的弹簧材料必须采用哈斯特洛伊合金(Hastelloy C)。单弹簧密封的弹簧材料必须采用奥氏体不锈钢(AISI标准型316或同等材料)。其它金属零件也必须采用奥氏体不锈钢(AISI标准型316或同等材料)或适用于使用条件的其它耐腐蚀材料,但对金属波纹管除外,如果采

用金属波纹管,其材料必须由密封制造厂根据使用条件推荐,金属波纹管的腐蚀速率应低于每年50μm(2mils,密耳)。 2、除非另有规定,密封板(即密封压盖)与密封室之间的密封应当采用氟橡胶的O形环,其使用温度低于150℃(300°F)。如果温度超过150℃以上或如果有规定,必须采用石墨充填的奥氏体不锈钢蜗形缠绕垫,此蜗形缠绕垫必须能够承受泵送液体的全温(即未采取冷却降温的)。 3、金属密封环不应当采用喷镀覆盖层来代替一体化的密封端面。 4、如果泵送温度超过175℃(350°F)时,泵制造厂和密封制造厂应当共同磋商对密封端面采取冷却冲洗液或对一头不通的密封室采用不断保持流通的冷却水室。 5、机械密封垫(密封圈)的温度极限应按下表的规定。 机械密封垫和波纹管的温度极限

机封的种类和结构

机封的种类和结构

机械密封的种类和结构 1、内容提纲: ①机封的定义②机封的种类 ③机封的结构④典型机封及泄漏点分析 2、机械密封的定义 机械密封也称端面密封,主要用于泵、压缩机、液压传动和其他类似设备的旋转轴的密封。 机械密封是由一对或数对动环与静环组成的平面摩擦副构成的密封装置。 3、机械密封的种类 按弹簧元件旋转或静止可分为: 旋转式:旋转式内装内流非平衡型单端面密封 静止式:静止式外装内流平衡型单端面密封 按静环位于密封端面内侧或外侧可分为: 内装式和外装式。 按密封介质泄漏方向可分为: 内流失和外流式。 按介质在端面引起的卸载情况可分为: 平衡式和非平衡式。 按密封端面的对数可分为: 单端面和双端面。 按弹簧的个数可分为: 单弹簧式和多弹簧式。 按弹性元件分类: 弹簧压缩式和波纹管式。 按非接触式机械密封结构分类:流体静压式、流体动压式、干气密封式。 按密封腔温度分类:高、中、普、低温密封。 按密封腔压力分离:超高、高、中、低压机械密封。 4、机封的结构 从结构特点看,机械密封型式多种多样,但按组成讲,它主要由4个基本单元组成: ①密封单元②缓冲补偿单元 ③传动单元④辅助密封单元 ①密封单元:由动环和静环组成的密封端面,这是机械密封的核心。 ②缓冲补偿单元:以弹簧为主要元件而组成的缓冲补偿机构,它是维持机械密封正常工作的重要条件。 ③传动单元:由轴套、键或固定销钉组成的传动机构,它是实现动环随轴一起旋转的可靠保证,也是实现动密封的前提条件。 ④辅助密封单元:由动环密封圈和静环密封圈等元件组成,它是解决密封端面之外的、有泄漏可能的部位之辅助性密封机构,是机械密封不可缺少的组成要素。

常用机械密封分类及适用范围

机械密封分类 1.按用途分类 1)按应用的工业部门分类有运输机械制造业、家用电器制造业、动力机械和泵制造业、化学工业及石油工业、国防工业、船舶制造业等部门用的机械密封。 2)按应用的主机分类泵、釜、离心机、风机、潜水电机、冷冻机、内燃机、冷却水泵、船用泵以及其他主机用的机械密封。 2.按作用原理及结构分类 1)按密封端面的对数分,则有单端面机械密封,双端面机械密封和多端面机械密封.其中双端面机械密封又可分为轴向双端面机械密封及径向双端面机械密封。 2)按作用于密封端面流体压力为卸荷或不卸荷,可分为非平衡式机械密封、部分平衡式机械密封和全平衡式机械密封。 3)按静止环装于密封端面的内侧或外侧,分为内装式机械密封及外装式机械密封。 4)弹簧设置在流体之内为弹簧内置式机械密封,反之为弹簧外置式机械密封。 5)按补偿机构的弹簧数量分为单弹簧式机械密封及多弹簧式机械密封。 6)按弹性元件是否随轴旋转,则有旋转式机械密封及静止式机械密封。 7)密封流体在密封端面间的泄露方向如与轴旋转的离心力方向一致,则为内流式机械密封,否则为外流式机械密封。 8)按补偿环离密封端面最远的背面处于流体的低压侧或高压侧分为背面低压式机械密封及背面高压式机械密封。 9)密封端面直接接触为接触式机械密封,反之为非接触式,其又可分为流体静压式和流体动压式机械密封。 10)按有否波纹管零件分为非波纹管型及波纹管型机械密封、波纹管有液压成型金属波纹管、焊接金属波纹管、聚四氟乙烯波纹管和橡胶波纹管等几种。 3.按使用工况分类 1)由密封腔温度分为高温机械密封、中温机械密封、常温机械密封及低温机械密封.密封腔温度>200℃为高温机械密封;>80~200℃为中温机械密封;-50~80℃为常温机械密封;<-50℃则为低温机械密封。 2)按密封腔压力可进行如下分类:当密封腔压力>15Mpa时为超高压机械密封;密封腔压力>5~15Mpa为高压机械密封,压力>0.8~5Mpa为中压机械密封,常压至0.8Mpa为低压机械密封;当密封腔压力为负压时,则为真空机械密封。 3)由密封端面的线速度可分类如下:当端面平均线速度v>100m/s为超高速机械密封;v≥30~100m/s为高速机械密封;v=2.5~30m/s为中速机械密封,如端面平均线速度v<2.5m/s 则为低速机械密封。 4)按密封介质是否含有颗粒,分为不含颗粒介质用的机械密封及含颗粒介质用的机械密封。5)根据被密封介质的腐蚀性,则有耐强腐蚀介质机械密封、耐油、水及一般介质的机械密封。 6)按轴径尺寸分为大轴径机械密封,其轴径>120mm;一般轴径机械密封,其轴径为25~120mm;小轴径机械密封,轴径<25mm。 4.按使用参数分类 (1)满足下列参数之一或轴径尺寸则为重型机械密封: 密封腔压力:p≥5Mpa;

机械密封知识

密封知识 油封详解(一) 一、什么是油封 油封是用于密封机械设备中旋转轴的封油用密封元件,而腔体基本上是静止的(见下图),所以油封又称旋转轴唇形密封圈。 机械的摩擦部分由于在机械运转时有油进入,为防止这些油从机械的间隙中泄漏而使用油封,并且除了油以外还需要防止水与化学药液的泄漏以及尘埃及土砂从外部侵入,这时候也要用到油封 二、油封的主要用途 用于发动机曲轴和凸轮轴的密封 小汽车,摩托车和商用车辆等传动系统(如齿轮箱、轮毂、桥轴、差速器)的密封 铲车,挖掘机等农业机械和工程机械传动系统的密封 工业用齿轮箱的密封 液压元件(泵,马达)的密封 日用机械洗衣机的密封

广泛用于机械工程和设备加工工业 三、油封的主要特点 油封外部为圆筒形用来保证对腔体的静态密封-采用内包金属骨架的橡胶外缘;采用外露金属骨架的外缘,大多需要抛光和镀敷防腐涂层。 装有弹簧的密封唇保证轴的动态和静态密封的密封可靠性。经过长期开发研究的结果,油封的密封唇结构提高到极佳的性能,进而提高在 更宽的负荷范围内的密封可靠性 油封详解(二) 四、油封各部位的作用 油封主要由密封体、加强骨架和自紧螺旋弹簧等几部分组成。密封体按照不同部位又分为底部、腰部、刃口和密封唇等。下图是:带弹簧 并附有防尘唇的内包骨架油封各部位主要名称和术语。 金属骨架就如同混凝土构件里面的钢筋,起到加强的作用,并使油封能保持形状及张力。通常,在自由状态下的骨架油封,其内径比轴径 小,即具有一定的“过盈量”。因此,当油封装入油封座和轴上之后, 油封刃口的压力和自紧螺旋弹簧的收缩力对轴产生一定的径向紧力,经

过一段时间运行后,该压力会迅速减小乃至消失,因而,加上弹簧可以 随时补偿油封自紧力, 油封外缘使油封在腔体孔内固定的同时,起防止流体从油封外周面与腔体内表面的接触面之间泄漏及侵入的作用。另外金属骨架是当油封 固定在腔体内时,起保持配合力的作用。 五、油封的主要型式 油封的各种不同型式,请参见:常用油封结构型式;常见NOK标准油封型式。附图:油封外缘的各种设计型式 六、油封的密封机理 油封的密封机理涉及两个因素,一个是腔体的密封,主要是油封外缘(静态部件)在腔体中的定位;二是密封唇口与旋转轴表面接触的动 态密封,这是油封的最重要功能。附下图:油封密封唇口与旋转轴表面 接触区。

机械密封选型参数及分类

机械密封选型参数及分类 (2013-12-27 10:00:00) 转载▼ 标签: 机械密封 分类:车削密封件 一、机械密封选型参数 1.输送介质 输送介质的物理化学性质,如腐蚀性、固体颗粒含量和大小、密度、黏度、汽化压力,介质中的气体含量以及介质是否易燃、危险或易结晶等。 2.安装密封的有效空问 安装密封的有效空间包括D与L等。 3.工艺参数 (1)密封腔压力P 密封腔压力指密封腔内的流体压力,该参数是密封选用的主要参数。对新采购的泵,最方便、可靠的办法是向泵制造厂了解密封腔的压力数据;对现场在役设备,确定密封腔压力最简单的办法是在密封腔上装设压力表。 泵的类型估算公式 后盖板带背叶片、耐 磨环 Pm=Ps 0.25(Pd-Ps) 式中,Pm为泵进口压力,Pdo 为泵出口压力,下同 后盖板带平衡孔Pm=Ps 0.10(Pd - Ps)带背叶片和平衡孔Pm = Ps 后盖板有耐磨环,无 平衡孔 Pm = Ps 0.18MPa 开式叶轮,无后盖板 和平衡孔 Pm= Ps C(Pd - Ps) 注:C=0.1(最大叶轮直径),C=0.3(最小叶轮直径) 后盖板无耐磨环,无 平衡孔 Pm = Ps (大部分立式泵均如此) 多级泵需根据平衡管、平衡盘和平衡鼓的布置来分析,密封腔压力有时等于进口压力,有时是某一中间级出[1压力.有时是泵的出口压力 (2)流体温度T指密封腔内的流体温度。 (3)密封圆周速度V指密封处轴的周向速度,按下式计算:V=πnd/60 (1-6) 式中 d——轴径,m; n——泵轴转速,r/min。 二、机械密封的分类

1.推压型和非推压型密封 (1)推压型密封指辅助密封沿轴或轴套机械推压来补偿密封面磨损的机械密封,通常就是指弹簧压紧式密封。 (2)非推压型密封辅助密封固定在轴上的机械密封,通常为波纹管密封。 表推压型密封和非推压型密封特点的比较 项目推压型密封非推压型密封 压缩单元单弹簧或多弹簧金属波纹管或橡胶波纹管 轴的辅助密封动态静态 尺寸范围/ram13~50810~305 温度范围/℃-268~232-268~427 压力范围/MPa≤20.69≤4.5 特点尺寸范围大 高压 适宜于特殊设计 适宜于采用特殊金属 零部件少 固有的平衡型结构 静环磨损后,动环能自由前移 高温 价格一般较低 金属波纹管密封一般价格较高 橡胶波纹管密封一般价格较低

机械密封基本知识

一.机械密封基本知识: 1.机械密封的基本概念: 机械密封是指由至少一对垂直于旋转轴线的端面在流体压力和补偿机构弹力(或磁力)的作用下以及辅助密封的配合下保持贴合并相对滑动而构成的防止流体泄漏的装置。补偿环的辅助密封为金属波纹管的称为波纹管机械密封。 2.机械密封的组成: 主要有以下四类部件。a.主要密封件:动环和静环。b.辅助密封件:密封圈。c.压紧件:弹簧、推环。d.传动件:弹箕座及键或固定螺钉 二. 机封工作应注意问题: 1.安装时注意事项 a.要十分注意避免安装中所产生的安装偏差,(1)上紧压盖应在联轴器找正后进行,螺 栓应均匀上支,防止压盖端面偏斜,用塞尺检查各点,其误差不大于0.05毫米。(2)检查压盖与轴或轴套外径的配合间隙(即同心度),四周要均匀,用塞尺检查各点允差不大于0.01毫米。 b.弹簧压缩量要按规定进行,不允许有过大或过小现象,要求误差2.00毫米。过大会 增加端面比压,另速端面磨损。过小会造成比压不足而不能起到密封作用。 c.动环安装后髯保证能在轴上灵活移动,将动环压向弹簧后应能自动弹回来。 2.拆卸时注意事项 a.在拆卸机械密封时要仔细,严禁动用手锤和扁铲,以免损坏密封元件。可做一对钢丝 勾子,在对自负盈亏方向伸入传动座缺口处,将密封装置拉出。如果结垢拆卸不下时,应清洗干净后再进行拆卸。 b.如果在泵两端都用机械密封时,在装配,拆卸过程中互相照顾,防止顾此失彼。 c.对运行过的机械密封,凡有压盖松动使密封发生移动的情况,则动静环零件必须更换, 不应重新上紧继续使用。因为在之样楹动后,摩擦副原来运转轨迹会发生变动,接触面的密封性就很容易遭到破坏。 三. 机封正常运行和维护问题: 1. 启动前的准备工作及注意事项 a.全面检查机械密封,以及附属装置和管线安装是否齐全,是否符合技术要求。 b.机械密封启动前进行静压试验,检查机械密封是否有泄漏现象。若泄漏较多,应查清 原因设法消除。如仍无效,则应拆卸检查并重新安装。一般静压试验压力用2~3公斤/平方厘米。 c.按泵旋向盘车,检查是否轻快均匀。如盘车吃力或不动时,则应检查装配尺寸是否错

相关主题
文本预览
相关文档 最新文档