当前位置:文档之家› 初二证明(一)

初二证明(一)

初二证明(一)
初二证明(一)

如何证明存在一种不能表示为两个整数之比的数?

古希腊曾有“万物皆数”的思想,这种认为“大自然的一切皆为整数之比”的思想统治了古希腊数学相当长的一段时间,许多几何命题都是根据这一点来证明的。当时的很多数学证明都隐性地承认了“所有数都可以表示为整数之比”,“万物皆数”的思想是古希腊数学发展的奠基。直到有一天,毕达哥拉斯的学生Hippasus告诉他,单位正方形的对角线长度不能表示为两个整数之比。被人们公认的假设被推翻了,大半命题得证的前提被认定是错的,古希腊时代的数学大厦轰然倒塌,数学陷入了历史上的第一次危机。最后,Eudoxus的出现奇迹般地解决了这次危机。今天我们要看的是,为什么单位正方形的对角线长度不能表示为两个整数之比。

单位正方形的对角线长度怎么算呢?从上面的这个图中我们可以看到,如果小正方形的面积是1的话,大正方形的面积就是2。于是单位正方形的对角线是面积为2的正方形的边长。换句话说,Hippasus认为不可能存在某个整数与整数之比,它的平方等于2。

中学课程中安排了一段反证法。当时有个题目叫我们证根号2是无理数,当时很多人打死了也想不明白这个怎么可能证得到,这种感觉正如前文所说。直到看了答案后才恍然大悟,数学上竟然有这等诡异的证明。

当然,我们要证明的不是“根号2是无理数”。那个时候还没有根号、无理数之类的说法。我们只能说,我们要证明不存在一个数p/q使得它的平方等于2。证明过程地球人都知道:假设p/q已经不能再约分了,那么p^2=2*q^2,等式右边是偶数,于是p必须是偶数。p是偶数的话,p^2就可以被4整除,约掉等式右边的一个2,可以看出q^2也是偶数,即q是偶数。这样,p也是偶数,q也是偶数,那么p和q就还可以继续约分,与我们的假设矛盾。

根号2是无理数,我们证明到了。根号3呢?根号5呢?你可能偶尔看到过,Theodorus 曾证明它们也是无理数。但Theodorus企图证明17的平方根是无理数时却没有继续证下去了。你可以在网上看到,Theodorus对数学的贡献之一就是“证明了3到17的非平方数的根是无理数”。这给后人留下了一个疑问:怪了,为什么证到17就不证了呢?一个俄国的数学历史家“猜”到了原因。

他猜测,当时Theodorus就是用类似上面的方法证明的。比如,要证明根号x不是有理数,于是p^2=x*q^2。我们已经证过x=2的情况了,剩下来的质数都是奇数。如果x是奇数且p/q已经不能再约分,那么显然p和q都是奇数。一个奇数2n+1的平方应该等于4(n^2+n)+1,也即8 * n(n+1)/2 + 1,其中n(n+1)/2肯定是一个整数。如果p=2k+1,q=2m+1,把它们代进p^2=x*q^2,有8[k(k+1)/2 - x*m(m+1)/2] = x-1。于是x-1必须是8的倍数。如果当时Theodorus 是这么证明的,那么他可以得到这样一个结论,如果x-1不能被8整除,那么它不可能被表示成(p/q)^2。好了,现在3、5、7、11、13减去1后都不是8的倍数,它们的平方根一定不是有理数。在x=9时发生了一次例外,但9是一个平方数。而当x=17时这种证明方法没办

法解释了,于是Theodorus就此打住。

实际上,我们上面说的这么多,在古希腊当时的数学体系中是根本不可能出现的。毕达哥拉斯时代根本没有发展出代数这门学科来,它们掌握的只是纯粹的几何。因此,Hippasus 当时的证明不可能像我们现在这样搞点什么奇数x偶数y之类的高科技东西。事实上,Hippasus当时完全运用的平面几何知识来证明他的结论。有人觉得奇怪了,既然当时没有代数,古希腊人是怎么提出“所有数都可以表示为整数之比”的呢?其实古希腊人根本没有提出什么整数之比,这是后人的一个误解。当时毕达哥拉斯学派提出的,叫做“公度单位”。

两条线段的公度单位,简单的说就是找一个公度量,使得两条线段的长度都是这个公度量的整倍数(于是这个公度量就可以同时作为两条线段的单位长度并用于测量)。寻找公度量的方法相当直观,就是不断把较长的那个线段减去短的那个线段,直到两个线段一样长。熟悉数论的同学一下就明白了这就是欧几里德的辗转相除算法求最大公约数。第一次数学危机的根结就在于,古希腊人理所当然地相信不断地截取线段,总有一个时候会截到两个线段一样长。后来,Hippasus画了这么一张图,告诉大家了一个反例:有可能这个操作会无穷尽地进行下去。

现在看他怎么解释,在图中的BC和BD之间进行辗转相除为什么永远不能停止。把BD 减去BC,剩下一段DE。以DE为边做一个新的小正方形DEFG,那么显然DE=EF=FC(∵△EDF为等腰直角且△BEF≌△BCF)。接下来我们应该在BC和DE间辗转相除。BC就等于CD,CD减去一个DE相当于减去一个FC,就只剩下一段DF了。现在轮到DE和DF 之间辗转相除,而它们是一个新的正方形的边和对角线,其比例正好与最初的BC和BD相当。于是,这个操作再次回到原问题,并且无限递归下去。最后的结论用我们的话说就是,不存在一个数x使得BC和BD的长度都是x的整倍数。于是,BD/BC不能表示为两个整数之比p/q(否则BD/p=BC/q,这就成为了那个x)。

有发现上面的代数证明和几何证明之间的共同点吗?它们都是这样的一个思路:假设我已经是满足这个性质的最小的那个了,那么我就可以用一种方法找出更小的一个来,让你无限循环下去,数目越来越小,永无止境。严格的数学证明中你或许会看到这样一句话:“不失一般性,设n为最小的满足……”

这种证明方法应用很广。比如,证明3^n不能表示为两个正整数的平方和。我假设存在一个最小的n使得x^2+y^2=3^n,那么x^2+y^2可以被3整除,于是x和y也应该能被3整除(一个正整数的平方除以3,要么除尽,要么余1)。假如x=3p,y=3q,那么(3p)^2+(3q)^2=3^n,即9(p^2+q^2)=3^n,那么。p^2+q^2=3^(n-2),这和n最小的假设矛盾。换句话说,你永远找不到最小的,你必须一直递归下去。

对于根号2是无理数的问题,下面一个证明使用了与上例几乎相同的解决方法。

如果√N不是整数的话,假设√N=A/B(化到最简),那么NB/A=A/B。化成带分数后,NB/A 和A/B的分数部分是形如a/A和b/B的形式,其中a

接下来的两个证明才是我佩服的,真正的Very Simple & Very Tricky。

下面的这个证明曾经是我最喜欢的关于无理数的存在性的证明,它实在是太神奇了。

假设(p/q)^2=2,那么p^2=2q^2。我们将要证明,一个数的平方等于另一个数的平方的两倍是根本不可能的。如果对一个平方数分解质因数,它必然有偶数个因子(x^2的所有质因子就是把x的质因子复制成两份)。于是,p^2有偶数个质因子,q^2有偶数个质因子,2q^2有奇数个质因子。等号左边的数有偶数个质因子,等号右边的数有奇数个质因子,大家都知道这是不可能的,因为同一个数只有一种分解质因数的方法(唯一分解定理)。

这个证明还有一种更加神奇的变化。p^2和2q^2的质因子中,因子2的个数肯定是一奇一偶。那么它们转化成二进制后,末尾0的个数肯定也是一奇一偶。因此,这两个数不可能相等。

今天,我见到了一个更加简洁的证明。它就来源于哲牛介绍的那篇文章。这个证明虽然与前面的证明有些类似,但它的简洁性足以让我打算写下今天这篇4000字的文章。看后我大为折服,这真的叫做the power of simple ideas in mathematics。

同样是证明不存在整数p, q使得p^2=2q^2,这个证明只需要一句话。假如p、q是最小的正整数使得p^2=2q^2,看图,两个边长为q的小正方形放在一个边长为p的大正方形里,那么图中深灰色正方形的面积就等于两个白色正方形面积之和(面积守恒),于是我们就找到了具有同样性质的更小的整数p和q。仔细体会一下这个“面积守恒”,如果A+B=C,那么A和B重复计算了的必然是C里还没有算过的。很有意思。

初二数学压轴几何证明题含答案

1.四边形ABCD是正方形,△BEF是等腰直角三角形,∠BEF=90°,BE=EF,连接DF,G为DF的中点,连接EG,CG,EC. (1)如图1,若点E在CB边的延长线上,直接写出EG与GC的位置关系及的值; (2)将图1中的△BEF绕点B顺时针旋转至图2所示位置,请问(1)中所得的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由; (3)将图1中的△BEF绕点B顺时针旋转α(0°<α<90°),若BE=1,AB=,当E,F,D三点共线时,求DF的长及tan∠ABF的值. 解:(1)EG⊥CG,=, 理由是:过G作GH⊥EC于H, ∵∠FEB=∠DCB=90°, ∴EF∥GH∥DC, ∵G为DF中点, ∴H为EC中点, ∴EG=GC,GH=(EF+DC)=(EB+BC), 即GH=EH=HC, ∴∠EGC=90°, 即△EGC是等腰直角三角形, ∴=;

(2) 解:结论还成立, 理由是:如图2,延长EG到H,使EG=GH,连接CH、EC,过E作BC的垂线EM,延长CD,∵在△EFG和△HDG中 ∴△EFG≌△HDG(SAS), ∴DH=EF=BE,∠FEG=∠DHG, ∴EF∥DH, ∴∠1=∠2=90°-∠3=∠4, ∴∠EBC=180°-∠4=180°-∠1=∠HDC, 在△EBC和△HDC中 ∴△EBC≌△HDC. ∴CE=CH,∠BCE=∠DCH, ∴∠ECH=∠DCH+∠ECD=∠BCE+∠ECD=∠BCD=90°, ∴△ECH是等腰直角三角形, ∵G为EH的中点, ∴EG⊥GC,=, 即(1)中的结论仍然成立; (3) 解:连接BD,

初二数学几何证明初步练习题含答案

几何证明初步练习题 1、三角形的内角和定理:三角形的内角和等于180°. 推理过程: ○ 1 作CM ∥AB ,则∠A= ,∠B= ,∵∠ACB +∠1+∠2=1800( ,∴∠A+∠B+∠ACB=1800. ○ 2 作MN ∥BC ,则∠2= ,∠3= ,∵∠1+∠2+∠3=1800,∴∠BAC+∠B+∠C=1800 . 2.求证:在一个三角形中,至少有一个内角大于或者等于60°。 3、.如图,在△ABC 中,∠C >∠B,求证:AB >AC 。 4. 已知,如图,AE 5. 已知:如图,EF ∥AD ,∠1 =∠2. 求证:∠AGD +∠BAC = 180°. 反证法经典例题 6.求证:两条直线相交有且只有一个交点. 7.如图,在平面内,AB 是L 的斜线,CD 是L 的垂线。 求证:AB 与CD 必定相交。 8.2 一.角平分线--轴对称 9、已知在ΔABC 中,E为BC的中点,AD 平分BAC ∠,BD ⊥AD 于D .AB =9,AC=13 求DE的长 第9题图 第10题图 第11题图 分析:延长BD交AC于F.可得ΔABD ≌ΔAFD .则BD =DF .又BE =EC ,即D E为Δ BCF 的中位线.∴DE=12FC=12 (AC-AB)=2. 10、已知在ΔABC 中,108A ∠=,AB =AC ,分ABC ∠.求证:BD 平BC =AB +CD . 分析:在BC上截取BE=BA,连接D E.可得ΔBAD ≌ΔBED .由已知可得:18ABD DBE ∠=∠=,108A BED ∠=∠=, 36C ABC ∠=∠=.∴72DEC EDC ∠=∠=,∴CD =CE ,∴BC =AB +CD . 11、如图,ΔABC 中,E是BC 边上的中点,DE ⊥BC 于E ,交BAC ∠的平分线AD 于D , 过D 作DM ⊥AB 于M,作DN ⊥AC 于N .求证:BM =CN . 分析:连接DB 与DC .∵DE 垂直平分BC ,∴DB =DC .易证ΔAMD ≌ΔAND . ∴有DM =DN .∴ΔBMD ≌ΔCND (HL).∴BM =CN . 二、旋转 12、如图,已知在正方形ABCD 中,E在BC 上,F在DC 上,BE +DF =EF . 求证:45EAF ∠=. 分析:将ΔADF 绕A顺时针旋转90得ABG .∴GAB FAD ∠=∠.易 证ΔAGE ≌ΔAFE . ∴ 1452FAE GAE FAG ∠=∠=∠= 13、如图,点E 在ΔABC 外部,D 在边BC 上,DE 交AC 于F .若123∠=∠=∠, AC=AE.求证:ΔABC ≌ΔADE . C B A D E F D A B C B A E D N M B D A C 213E D B A

初二数学下册证明题

(1)求证:BG FG =; (2)若2 ==,求AB的长. AD DC 二:如图,已知矩形ABCD,延长CB到E,使CE=CA,连结AE并取中点F,连结AE并取中点F,连结BF、DF,求证BF⊥DF。 三:已知:如图,在矩形ABCD中,E、F分别是边BC、AB上的点,且EF=ED,EF⊥ED.

求证:AE平分∠BAD. 四、(本题7分)如图,△ABC中,M是BC的中点,AD是∠A的平分线,BD⊥AD于D,AB=12, AC=18,求DM的长。

五、(本题8分)如图,四边形ABCD 为等腰梯形,AD ∥BC ,AB=CD ,对角线AC 、BD 交于点O , 且AC ⊥BD ,DH ⊥BC 。 ⑴求证:DH=2 1(AD+BC ) ⑵若AC=6,求梯形ABCD 的面积。 六、(6分) 、如图,P 是正方形ABCD 对角线BD 上一点,PE ⊥DC ,PF ⊥BC ,E 、F 分别为垂足,若CF=3,CE=4,求AP 的长.

七、(8分)如图,等腰梯形ABCD 中,AD ∥BC ,M 、N 分别是AD 、BC 的中点,E 、F 分别是BM 、CM 的中点. (1)在不添加线段的前提下,图中有哪几对全等三角形?请直接写出结论; (2)判断并证明四边形MENF 是何种特殊的四边形? (3)当等腰梯形ABCD 的高h 与底边BC 满足怎样的数量关系时?四边形MENF 是正方形(直接写出结论,不需要证明). 选择题: 15、如图,每一个图形都是由不同个数的全等的小等腰梯形拼成的,梯形上、下底及腰长如 图,依此规律第10个图形的周长为 。 …… 第一个图 第二个图 第三个图 16、如图,矩形ABCD 对角线AC 经过原点O ,B 点坐标为 (―1,―3),若一反比例函数x k y 的图象过点D ,则其 解析式为 。 M F E N D C A B

青岛版初中数学八年级上册5.6几何证明举例

§5.6 几何证明举例(2) 教学目标: 1. 学生能够证明等腰三角形的性质定理和判定定理。 2. 会运用等腰三角形的性质和判定进行有关的证明和计算。 3. 应用等腰三角形的性质和判定进一步认识等边三角形。 4. 培养学生分析问题和逻辑推理的能力。 教学重、难点: 重点:会证明等腰三角形的性质定理和判定定理。 难点:等腰三角形的性质定理和判定定理的应用。 教学准备: 电子白板、直尺、圆规、直角三角板 教学过程 一、情境导入、复习回顾 1、等腰三角形的性质是什么,这个命题的逆命题是什么? 二、交流展示(鼓励学生自己写出证明的过程,注意几何证明的三步) (1)“等腰三角形的两个底角相等”是真命题吗?怎样证明。 证明:等腰三角形的两个底角相等。 已知:如图,在△ABC中,AB=AC 求证:∠B=∠C 法1 证明:过点A作∠BAC的角平分线交BC于点D ∴∠BAD = ∠CAD (角平分线定义) 在△BAD与△CAD中 ∵AB = AC (已知) ∠BAD = ∠CAD (已证) AD = AD (公共边) ∴△BAD≌△CAD(SAS) ∴∠ B = ∠ C (全等三角形对应角相等) 法2 证明:作BC边上的中线 AD ∴ BD = CD (中线定义) 在△BAD与△CAD中 ∵AB = AC (已知) BD = CD (已证) AD = AD (公共边) ∴△BAD≌△CAD( SSS )

∴∠B = ∠ C (全等三角形对应角相等) (2)“等腰三角形的两个底角相等”的逆命题是真命题吗,怎样证明它的正确性? 证明:有两个角相等的三角形是等腰三角形。 已知:如图,在如图,在△ABC中,∠B=∠C 求证:AB=AC 证明:作AD⊥BC,垂足为D 则∠ADB=∠ADC=90°(垂直的定义), 在△ABD和△ACD中, ∵∠B=∠C (已知), ∠ADB=∠ADC=90°(已证) AD=AD (公共边) ∴△ABD≌△ACD (AAS) ∴AB=AC(全等三角形的对应边相等) (3) 利用等腰三角形的性质定理和判定定理证明: (鼓励学生当老师讲给其他同学听) ①等边三角形的每个内角都是60° ②三个角都相等的三角形是等边三角形。 三、精讲点拨: 1、等腰三角形的性质: 性质1: 性质2: 2、数学语言表达: 性质1:性质2: 在△ABC ∵ AB=AC ∵ AB=AC ∴∠B= ∠C ① AD平分∠BAC (等边对等角) ②AD⊥BC ③ BD=DC ( ①,② ,③均可作为一个条件,推出其他两项 ) (三线合一) 四、典例精析 例1 已知,D是△ABC内的一点,且DE=DC,BD平分∠ABC,CD平分∠ACB 求证:AB=AC

八年级上册几何证明题专项练习

八年级上册几何证明题专项练习 1.如图,△ABC、△CDE均为等腰直角三角形,∠ACB=∠DCE=90°,点E在AB上.求证:△CDA≌△CEB. 2.如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD. 3.如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D. (1)求证:AC∥DE; (2)若BF=13,EC=5,求BC的长. 4.如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D. 5.如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB 求证:AE=CE.

6.如图,BE⊥AC,CD⊥AB,垂足分别为E,D,BE=CD.求证:AB=AC. 7.如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB. 8.如图,在△ABC中,AC=BC,∠C=90°,D是AB的中点,DE⊥DF,点E,F分别在AC,BC上,求证:DE=DF. 9.如图,点A、C、D、B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF,求证:DE=CF. 10.如图,已知∠CAB=∠DBA,∠CBD=∠DAC. 求证:BC=AD.

11.如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE. 12.如图,AB∥CD,E是CD上一点,BE交AD于点F,EF=BF.求证:AF=DF. 13.已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2. (1)求证:BD=CE; (2)求证:∠M=∠N. 14.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E. 求证:△ACD≌△CBE. 15.如图,四边形ABCD中,E点在AD上,∠BAE=∠BCE=90°,且BC=CE,AB=DE.求证:△ABC≌△DEC.

新人教版八年级数学《全等三角形基础证明题》练习

全等三角形的判定班级:姓名: 1.已知AD是⊿ABC的中线,BE⊥AD,CF⊥AD,求证BE=CF。2.已知AC=BD,AE=CF,BE=DF,求证AE∥CF 3.已知AB=CD,BE=DF,AE=CF,求证AB∥CD 4.已知在四边形ABCD中,AB=CD,AD=CB,求证AB∥CD 5.已知∠BAC=∠DAE,∠1=∠2,BD=CE,求证⊿ABD≌⊿ACE. 6.已知CD∥AB,DF∥EB,DF=EB,求证AF=CE 7.已知BE=CF,AB=CD,∠B=∠C,求证AF=DE A B C D F E C D E F D C F E A B A D E B C 1 2 A D C E F B A D

8.已知AD =CB , ∠A =∠C ,AE =CF ,求证EB ∥DF 9.已知M 是AB 的中点,∠1=∠2,MC =MD ,求证∠C =∠D 。 10.已知,AE =DF ,BF =CE ,AE ∥DF ,求证AB =CD 。 11.已知∠1=∠2,∠3=∠4,求证AC =AD 12.已知∠E =∠F ,∠1=∠2,AB =CD ,求证AE =DF 13.已知ED ⊥AB ,EF ⊥BC ,BD =EF ,求证BM =ME 。 14.在⊿ABC 中,高AD 与BE 相交于点H ,且AD =BD ,求证⊿BHD ≌⊿ACD 。 A C D B 1 2 3 4 A B C D E F 1 2 A E H A C M E F B D B A D F E C M A B C D 1 2 D C F E A B

15.已知∠A =∠D ,AC ∥FD ,AC =FD ,求证AB ∥DE 。 16.已知AC =AB ,AE =AD , ∠1=∠2,求证∠3=∠4。 17.已知EF ∥BC ,AF =CD ,AB ⊥BC ,DE ⊥EF ,求证⊿ABC ≌⊿DEF 。 18.已知AD =AE ,∠B =∠C ,求证AC =AB 。 19.已知AD ⊥BC ,BD =CD ,求证AB =AC 20.已知∠1=∠2,BC =AD ,求证⊿ABC ≌⊿BAD 。 A B C E F D A B C E D F A D E B C A B C D A D E B C 1 2 3 4

八年级(上)数学培优专题_如何做几何证明题(含答案)

如何做几何证明题 【知识精读】 1. 几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。 2. 掌握分析、证明几何问题的常用方法: (1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决; (2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止; (3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。 3. 掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。 【分类解析】 1、证明线段相等或角相等 两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。很多其它问题最后都可化归为此类问题来证。证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。 例1. 已知:如图1所示,?ABC 中,∠=?===C AC BC AD DB AE CF 90,,,。 求证:DE =DF C F B A E D 图1

分析:由?ABC 是等腰直角三角形可知,∠=∠=?A B 45,由D 是AB 中点,可考虑连结CD ,易得CD AD =,∠=?DCF 45。从而不难发现??DCF DAE ? 证明:连结CD AC BC A B ACB AD DB CD BD AD DCB B A AE CF A DCB AD CD =∴∠=∠∠=?=∴==∠=∠=∠=∠=∠=90,,,, ∴?∴=??A D E CDF DE DF 说明:在直角三角形中,作斜边上的中线是常用的辅助线;在等腰三角形中,作顶角的平分线或底边上的中线或高是常用的辅助线。显然,在等腰直角三角形中,更应该连结CD ,因为CD 既是斜边上的中线,又是底边上的中线。本题亦可延长ED 到G ,使DG =DE ,连结BG ,证?EFG 是等腰直角三角形。有兴趣的同学不妨一试。 例2. 已知:如图2所示,AB =CD ,AD =BC ,AE =CF 。 求证:∠E =∠F D B C F E A 图2 证明:连结AC 在?ABC 和?CDA 中, AB CD BC AD AC CA ABC CDA SSS B D AB CD AE CF BE DF ===∴?∴∠=∠==∴=,,,??() 在?BCE 和?DAF 中,

初二数学证明题的思路教学文案

证明题的思路 很多几何证明题的思路往往是填加辅助线,分析已知、求证与图形,探索证明。 对于证明题,有三种思考方式: (1)正向思维。对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。 (2)逆向思维。顾名思义,就是从相反的方向思考问题。在初中数学中,逆向思维是非常重要的思维方式,在证明题中体现的更加明显。 同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。 例如:可以有这样的思考过程:要证明某两条边相等,那么结合图形可以看出,只要证出某两个三角形相等即可;要证三角形全等,结合所给的条件,看还缺少什么条件需要证明,证明这个条件又需要怎样做辅助线,这样思考下去……这样我们就找到了解题的思路,然后把过程正着写出来就可以了。 (3)正逆结合。对于从结论很难分析出思路的题目,可以结合结论和已知条件认真的分析。 初中数学中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知条件中寻找思路,比如给我们三角形某边中点,我们就要想到是否要连出中位线,或者是否要用到中点倍长法。给我们梯形,我们就要想到是否要做高,或平移腰,或平移对角线,或补形等等。正逆结合,战无不胜。 证明题要用到的原理 要掌握初中数学几何证明题技巧,熟练运用和记忆如下原理是关键。 下面归类一下,多做练习,熟能生巧,遇到几何证明题能想到采用哪一类型原理来解决问题。 一、证明两线段相等 1.两全等三角形中对应边相等。 2.同一三角形中等角对等边。 3.等腰三角形顶角的平分线或底边的高平分底边。 4.平行四边形的对边或对角线被交点分成的两段相等。 5.直角三角形斜边的中点到三顶点距离相等。 6.线段垂直平分线上任意一点到线段两段距离相等。 7.角平分线上任一点到角的两边距离相等。 8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。

初二上几何证明题100题专题训练

C A B C D E P 图 ⑴八年级上册几何题专题训练100题 1、 已知:在⊿ABC 中,∠A=900 ,AB=AC ,在BC 上任取一点P ,作PQ ∥AB 交AC 于Q ,作PR ∥CA 交BA 于R ,D 是BC 的中点,求证:⊿RDQ 是等腰直角三角形。 C B 2、 已知:在⊿ABC 中,∠A=900 ,AB=AC ,D 是AC 的中点,AE ⊥BD ,AE 延长线交BC 于F ,求证:∠ADB=∠FDC 。 3、 已知:在⊿ABC 中BD 、CE 是高,在BD 、CE 或其延长线上分别截取BM=AC 、CN=AB ,求证:MA ⊥NA 。 4、已知:如图(1),在△ABC 中,BP 、CP 分别平分∠ABC 和∠ACB ,DE 过点P 交AB 于D ,交AC 于E ,且DE ∥BC .求证:DE -DB=EC .

5、在Rt△ABC中,AB=AC,∠BAC=90°,O为BC的中点。 (1)写出点O到△ABC的三个顶点A、B、C的距离的大小关系(不要求证明); (2)如果点M、N分别在线段AB、AC上移动,在移动中保持AN=BM,请判断△OMN的形状,并证明你的结论。 6、如图,△ABC为等边三角形,延长BC到D,延长BA到E,AE=BD, 连结EC、ED,求证:CE=DE 7、如图,等腰三角形ABC中,AB=AC,∠A=90°,BD平分∠ABC,DE⊥BC且BC=10,求△DCE的周长。 8. 如图,已知△EAB≌△DCE,AB,EC分别是两个三角形的最长边,∠A=∠C=35°,∠CDE=100°,∠DEB=10°,求∠AEC的度数. A B C O M N

初二数学下册证明题中等难题.doc含答案

一:已知:如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,DE ⊥AC 于点F ,交BC 于点G ,交AB 的延长线于点E ,且AE AC =. (1)求证:BG FG =; (2)若2AD DC ==,求AB 的长. 二:如图,已知矩形ABCD ,延长CB 到E ,使CE=CA ,连结AE 并取中点F ,连结AE 并取中点F ,连结BF 、DF ,求证BF ⊥DF 。 D C E B G A F

三:已知:如图,在矩形ABCD 中,E 、F 分别是边BC 、AB 上的点,且EF=ED,EF ⊥ ED.求证:AE 平分∠BAD. 四、(本题7分)如图,△ABC 中,M 是BC 的中点,AD 是∠A 的平分线,BD ⊥AD 于D , AB=12,AC=18,求DM 的长。 (第23题) E D B A F

五、(本题8分)如图,四边形ABCD 为等腰梯形,AD ∥BC ,AB=CD ,对角线AC 、BD 交 于点O ,且AC ⊥BD ,DH ⊥BC 。 ⑴求证:DH= 2 1 (AD+BC ) ⑵若AC=6,求梯形ABCD 的面积。 六、(6分) 、如图,P 是正方形ABCD 对角线BD 上一点,PE ⊥DC ,PF ⊥BC ,E 、F 分别为垂足,若CF=3,CE=4,求AP 的长.

七、(8分)如图,等腰梯形ABCD 中,AD ∥BC ,M 、N 分别是AD 、BC 的中点,E 、F 分别是BM 、CM 的中点. (1)在不添加线段的前提下,图中有哪几对全等三角形?请直接写出结论; (2)判断并证明四边形MENF 是何种特殊的四边形? (3)当等腰梯形ABCD 的高h 与底边BC 满足怎样的数量关系时?四边形MENF 是正方形(直接写出结论,不需要证明). 选择题: 15、如图,每一个图形都是由不同个数的全等的小等腰梯形拼成的,梯形上、下底及腰长如 M F E N D C A B

初二(上)几何证明专题复习精选

初二(上)几何证明专题复习1、如图,点D是△ABC的边AB上一点,点 E为AC的中点,过点C作CF∥AB交DE延 长线于点F.求证:AD=CF. 2、如图,AB=AE,∠1=∠2,∠C=∠D. 求证:△ABC≌△AED. 3、如图,点B、F、C、E在一条直线上,FB=CE AB∥ED,AC∥FD,求证:AC=DF. 4、如图,点B在AE上,点D在AC上, AB=AD.请你添加一个适当的条件,使△ABC ≌△ADE(只能添加一个). (1)你添加的条件是. (2)添加条件后,请说明△ABC≌△ADE的 理由. 5、如图,在△ABC中,∠C=90°,AD平分 ∠CAB,交CB于点D,过点D作DE⊥AB 于点E.(1)求证:△ACD≌△AED; (2)若∠B=30°,CD=1,求BD的长; (3)求△ADB的面积. P1

6、如图,在△ABC中,∠ACB=90°,AC=BC,延长AB至点D,使DB=AB,连接CD,以CD为直角边作等腰三角形CDE,其中∠DCE=90°,连接BE.求证:AD=BE. 7、如图,∠AOB=90°,OA=OB,直线l经过点O,分别过A、B两点作AC⊥l交l于点C,BD⊥l 交l于点D.求证:AC=OD. 8、(2013山西)如图,在△ABC中,AB=AC,D是BA延长线上的一点,点E是AC的中点。(1)实践与操作:利用尺规按下列要求作图,并在图中标明相应字母(保留作图痕迹,不写作法)。 ①作∠DAC的平分线AM。②连接BE并延长交AM于点F。②连接BE并延长交A (2)猜想与证明:试猜想AF与BC有怎样的位置关系和数量关系,并说明理由。 9、(2013?南京)如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.求证:PM=PN. P2

初二数学证明有答案证明题有过程定稿版

初二数学证明有答案证 明题有过程 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-

23.(本题8分).如图,已知:△ABC 中,AD 是∠BAC 的平分线,AD 的垂直平分线交AD 于E,交BC 的延长线于F.求证:FD 2=FB.FC. 24.(本题8分)已知ABC △,延长BC 到D ,使CD BC =.取AB 的中点F ,连结FD 交AC 于点E . (1)求AE AC 的值; (2)若AB a FB EC ==,,求AC 的长. 25.(本题8分)如图:已知△ABC 中,AB=5, BC=3,AC=4,PQ∥AB,P 点在AC 上(与A 、C 不重合),Q 在BC 上. (1) 当△PQC 的面积等于四边形PABQ 面积的3 1,求CP 的长. (2)当△PQC 的周长与四边形PABQ 的周长相等时,求CP 的长. (3)试问:在AB 上是否存在一点M ,使得△PQM 为等腰直角三角形,若不存在,请简要说明理由:若存在,请求出PQ 的长. 23、连接FA,证明FAC Δ∽FBA Δ,由于FD FA =,命题获证。 24、法一:连接AD FC ,;法二:过F E 或者 做平行线,命题获证,在命题获证的基础上第二问求出。 25、(1)用相似CPQ Δ∽CAB Δ

(2)设出x PC 表示出CQ,利用周长列出方程,求出PC (3)当∠PQM=90°时(画图) 过P作PN⊥AB于N 设PQ=QM=PN=MN=a ∠QMB=∠ANP=90° ∠B=90°-∠A=∠APN ∴△MQB∽△NAP∽△CAB ∴AN:PN=AC:BC,BM:QM=BC:BC ∴MB=3/4a,AN=4/3a ∵AB=AN+NM+MB ∴3/4a+4/3a+a=5 ∴PQ=a=60/37 当∠QPM=90°时 同理有PQ=60/37

初二上几何证明题 题专题训练 好题汇编

八年级上册几何题专题训练50题 1. 如图,已知△EAB ≌△DCE ,AB ,EC 分别是两个三角形的最长边,∠A =∠C =35°,∠CDE =100°,∠DEB =10°,求∠AEC 的度数. 2. 如图,点E 、A 、B 、F 在同一条直线上,AD 与BC 交于点O, 已知∠CAE=∠DBF,AC=BD.求证: ∠C=∠D 3.如图,OP 平分∠AOB ,且OA=OB . (1)写出图中三对你认为全等的三角形(注:不添加任何辅助线); (2)从(1)中任选一个结论进行证明. 4. 已知:如图,AB =AC ,DB =DC ,AD 的延长线交BC 于点E ,求证:BE =EC 。 5. 如图,在△ABC 中,AB=AD=DC ,∠BAD=28°,求∠B 和∠C 的度数。 7. 写出下列命题的逆命题, 并判断逆命题的真假.如果是真命题,请给予证明;?如果是假命题,请举反例说明. 命题:有两边上的高相等的三角形是等腰三角形. 8. 如图,在△ABC 中,∠ACB=90o , D 是AC 上的一点,且AD=BC ,DE AC 于D , ∠EAB=90o .求证:AB=AE . 9. 如图,等边△ABC 中,点P 在△ABC 内,点Q 在△ABC 外,B ,P ,Q 三点在一条直线上,且∠ABP =∠ACQ ,BP =CQ ,问△APQ 是什么形状的三角形试证明你的结论. 10. 如图,△ABC 中,∠C=90°,AB 的中垂线DE 交AB 于E ,交BC 于D ,若AB=13,AC=5,则△ACD 的周长为多少 11. 如图所示,AC ⊥BC ,AD ⊥BD ,AD =BC ,CE ⊥AB ,DF ⊥AB ,垂足分别是E ,F ,求证:CE =DF. 12. 如图,已知△ABC 中,∠ACB =90°,AC =BC ,BE ⊥CE ,垂足为E ,AD ⊥CE ,垂足为D. (1)判断直线BE 与AD 的位置关系是____;BE 与AD 之间的距离是线段____的长; (2)若AD =6 cm ,BE =2 cm ,求BE 与AD 之间的距离及AB 的长. 13. 如图,已知 △ABC 、△ADE 均为等边三角形,点D 是BC 延长线上一点,连结CE , 求证:BD=CE 14. 如图,△ABC 中,AB =AC ,∠BAC =120°,AD ⊥AC 交BC ?于点D ,求证:?BC =3AD . 15. 如图,四边形ABCD 中,∠DAB=∠BCD=90°,M 为BD 中点,N 为AC 中点,求证:MN ⊥AC . 16、已知:如图所示,在△ABC 中,∠ABC=45°,CD ⊥AB 于点D ,BE 平分∠ABC ,且BE ⊥AC 于点E ,与CD 相交于点F ,H 是BC 边的中点,连接DH 与BE 相交于点G . (1)求证:BF=A C ;? (2)求证:DG=DF . 6. 如图,B 、D 、C 、E 在同一直线上,AB=AC ,AD=AE ,求证:BD=CE 。 B A E D C

初二几何证明经典难题

初二几何证明经典难题 1、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形. 如下图做△DGC 使与△ADP 全等,可得△PDG 为等边△,从而可得 △DGC ≌△APD ≌△CGP,得出PC=AD=DC,和∠DCG=∠PCG =150 所以∠DCP=300 ,从而得出△PBC 是正三角形 2、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 如下图连接AC 并取其中点Q ,连接QN 和QM ,所以可得∠QMF=∠F ,∠QNM=∠DEN 和∠QMN=∠QNM ,从而得出∠DEN =∠F 。 A P C D B A N F E C D M B

P C G F B Q A D E 3 、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点. 求证:点P 到边AB 的距离等于AB 的一半. 3.过E,C,F 点分别作AB 所在直线的高EG ,CI ,FH 。可得PQ= 2 EG FH +。 由△EGA ≌△AIC ,可得EG=AI ,由△BFH ≌△ CBI ,可得FH=BI 。 从而可得PQ= 2 AI BI += 2AB ,从而得证。

4 、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F . 求证:CE =CF . 顺时针旋转△ADE ,到△ABG ,连接CG . 由于∠ABG=∠ADE=900+450=1350 从而可得B ,G ,D 在一条直线上,可得△AGB ≌△CGB 。 推出AE=AG=AC=GC ,可得△AGC 为等边三角形。 ∠AGB=300,既得∠EAC=300,从而可得∠A EC=750。 又∠EFC=∠DFA=450+300=750. 可证:CE=CF 。 5、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F . 求证:AE =AF . 连接BD 作CH ⊥DE ,可得四边形CGDH 是正方形。 由AC=CE=2GC=2CH , 可得∠CEH=300,所以∠CAE=∠CEA=∠AED=150, 又∠FAE=900+450+150=1500, A F D E C B E D A C B F

初二数学几何证明初步经典练习题含答案

几何证明初步练习题1、三角形的内角和定理:三角形的内角和等于180°. 推理过程: ○1作CM∥AB,则∠A= ,∠B= ,∵∠ACB +∠1+∠2=1800(,∴∠A+∠B+∠ACB=1800. ○2作MN∥BC,则∠2= ,∠3= ,∵∠1+∠2+∠3=1800,∴∠BAC+∠B+∠C=1800.2.求证:在一个三角形中,至少有一个内角大于或者等于60°。 3、.如图,在△ABC中,∠C>∠B,求证:AB>AC。 4. 已知,如图,AE 5. 已知:如图,EF∥AD,∠1 =∠2. 求证:∠AGD+∠BAC = 180°. 反证法经典例题 6.求证:两条直线相交有且只有一个交点. 7.如图,在平面内,AB是L的斜线,CD是L的垂线。 求证:AB与CD必定相交。 8.2 一.角平分线--轴对称

9、已知在ΔABC 中,E为BC的中点,AD 平分BAC ∠,BD ⊥AD 于D .AB =9,AC=13求DE的长 第9题图 第10题图 第11题图 分析:延长BD交AC于F.可得ΔABD ≌ΔAFD .则BD =DF .又BE =EC ,即D E为ΔBCF 的中位线.∴DE=12 FC=12 (AC-AB)=2. 10、已知在ΔABC 中,108A ∠=,AB =AC ,BD 平分ABC ∠.求证:BC =AB +CD . 分析:在BC上截取BE=BA,连接DE.可得ΔBAD ≌ΔBED .由已知可得: 18ABD DBE ∠=∠=,108A BED ∠=∠=,36C ABC ∠=∠=.∴72DEC EDC ∠=∠=,∴CD = CE ,∴BC =AB +CD . 11、如图,ΔABC 中,E是BC 边上的中点,DE ⊥BC 于E ,交BAC ∠的平分线AD 于D , 过D 作DM ⊥AB 于M,作 DN ⊥AC 于N .求证:BM = CN . 分析:连接DB 与DC .∵DE 垂直平分BC ,∴DB =DC .易证ΔAMD ≌ΔAND . ∴有DM =DN .∴ΔBMD ≌ΔCND (HL).∴BM =CN . 二、旋转 12、如图,已知在正方形ABCD 中,E在BC 上,F在DC 上,BE +DF =EF . B B

初二数学几何证明初步经典练习题(答案)

一、选择题(本大题共6小题,每小题2分,满分12分) 1.下列条件不能推出两个直角三角形全等的是--------------------------() (A)两条直角边对应相等(B)一个锐角和一条直角边对应相等 (C)一条直角边和斜边对应相等 (D)两个锐角对应相等 2.下列命题中, 逆命题正确的是--------------------------------------() (A)对顶角相等 (B)直角三角形两锐角互余 (C)全等三角形面积相等 (D)全等三角形对应角相等 3.如图,⊿ABC是等腰直角三角形,点D在边AC上,且2 =, BD AD 则CBD ∠是---------------------------------------------------- () (A)5(B)10(C)15(D)45 4.在直角三角形中,若有一个角等于45,那么三角形三边的比为------- () (A)1:2(B)1:2(C)3(D)1:1 5.下列各组数中不能作为直角三角形的三边长的是-------------------- () (A) 6、8、10(B)1、1、2(C)2、6D) 7、24、25 6.如图,AD是⊿ABC的中线,45 ∠=,将⊿ADC沿直线AD ADC

翻折,点C 落在点'C 的位置上,如果10BC =,求'BC 的长为---------( ) (A )10 (B )5( C )(D ) 二、填空题:(本大题共12小题,每小题3分,满分36分) 7.命题“等腰三角形两腰相等”的逆命题是____________ ___. 8.到定点A 的距离为9cm 的点的轨迹是____________ ____________. 9.如图,已知14AB BC cm ==, DE 是AB 的中垂线,则AE EC +是__________cm . 10.如图,已知点P 是ABC ∠的角平分线BD 上的点,PH BA ⊥,如果5PH cm =,那么点P 到BC 的距离是 cm . 11.若直角三角形的两个锐角的比是2:7,则这个直角三角形的较大的锐角是 ___________度. 12.若Rt ⊿ABC 的两条直角边分别为1和2,则斜边为___________. 13.在Rt ⊿ABC 中,90A ∠= ,30C ∠=,2AB cm =,则BC = cm . 14.已知点(3,4)P -,(3,4)Q -,则线段PQ 的长为_____________. 15.如果一个三角形的三条边长分别为5,12,13cm cm cm ,那么这个三角形的面积 为_____________2cm . D C B A 第3题图 C B A ' C 第6题图 E D C B A 第9题图 H P D C B A 第10题图

初二数学三角形全等证明题习题修订稿

初二数学三角形全等证 明题习题 集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]

探索三角形全等的条件练习题 1、已知AD 是⊿ABC 的中线,BE ⊥AD ,CF ⊥AD ,问BE =CF 吗?说明理由。 2 、已知AC =BD ,AE =CF ,BE =DF ,问AE ∥CF 吗? 3、已知AB =CD ,BE =DF ,AE =CF ,问AB ∥CD 吗? 4ABCD 中,AB =CD ,AD =CB ,问AB ∥CD 吗?说明理由。 5DAE ,∠1=∠2,BD =CE ,问ABD ≌⊿ACE .吗为什么 6、已知CD ∥AB ,DF ∥EB ,DF =EB ,问AF =CE 吗说明理由。 7、已知BE =CF ,AB =CD ,∠B =∠C .问AF =DE 吗 8、已知 AD =CB ,∠A =∠C ,AE =CF ,问EB ∥DF 吗?说明理由。 9、已知,M 是AB 的中点,∠1=∠2,MC =MD ,问∠C =∠D 吗?说明理由。 10、已知,AE =DF ,BF =CE ,AE ∥DF ,问AB =CD 吗说明理由。 11、已知∠1=∠2,∠3=∠4,问AC =AD 吗?说明理由。 12、已知∠E =∠F ,∠1=∠2,AB =CD ,问AE =DF 吗?说明理由。 13、已知ED ⊥AB ,EF ⊥BC ,BD =EF ,问BM =ME 吗?说明理由。 A C D B 1 2 3 4 A B C D E F 1 2 A C M E F B A B D E F B A D E B C 1 2 A D C E F B A C D B E F B A D F E C M A B C D 1 2 D C F E A B A B C D F E

初二上几何证明题50题专题训练(好题汇编)

1文档来源为: 从网络收集整理版本可编辑. 八年级上册几何题专题训练50题 1. 如图,已知△EAB ≌△DCE ,AB ,EC 分别是两个三角形的最长边,∠A =∠C =35°,∠CDE =100°,∠DEB =10°,求∠AEC 的度数. 2. 如图,点E 、A 、B 、F 在同一条直线上,AD 与BC 交于点O, 已知∠CAE=∠DBF,AC=BD.求证:∠C=∠D 3.如图,OP 平分∠AOB ,且OA=OB . (1)写出图中三对你认为全等的三角形(注:不添加任何辅助线); (2)从(1)中任选一个结论进行证明. 4. 已知:如图,AB =AC ,DB =DC ,AD 的延长线交BC 于点E ,求证:BE =EC 。 5. 如图,在△ABC 中,AB=AD=DC ,∠BAD=28°,求∠B 和∠C 的度数。 7. 写出下列命题的逆命题,并判断逆命题 的真假.如果是真命题,请给予证明;?如果是假命题,请举反例说明. 命题:有两边上的高相等的三角形是等腰三角形. 8. 如图,在△ABC 中,∠ACB=90o, D 是AC 上的一点,且AD=BC ,DE AC 于D , ∠EAB=90o.求证:AB=AE . 9. 如图,等边△ABC 中,点P 在△ABC 内,点Q 在△ABC 外,B ,P ,Q 三点在一条直线上,且∠ABP =∠ACQ ,BP =CQ ,问△APQ 是什么形状的三角形?试证明你的结论. 10. 如图,△ABC 中,∠C=90°,AB 的中垂线DE 交AB 于E ,交BC 于D ,若AB=13,AC=5,则△ACD 的周长为多少? 11. 如图所示,AC ⊥BC ,AD ⊥BD ,AD =BC ,CE ⊥AB ,DF ⊥AB ,垂足分别是E ,F ,求证:CE =DF. 12. 如图,已知△ABC 中,∠ACB =90°,AC =BC ,BE ⊥CE ,垂足为E ,AD ⊥CE ,垂足为D. (1)判断直线BE 与AD 的位置关系是____;BE 与AD 之间的距离是线段____的长; (2)若AD =6 cm ,BE =2 cm ,求BE 与AD 之间的距离及AB 的长. 求证:BD=CE 14. 如图,△ABC 中,AB =AC ,∠BAC =120°,AD ⊥AC 交BC ?于点D ,求证:?BC =3AD . 15. 如图,四边形ABCD 中,∠DAB=∠BCD=90°,M 为BD 中点,N 为AC 中点,求证:MN ⊥AC . 16、已知:如图所示,在△ABC 中,∠ABC=45°,CD ⊥AB 于点D ,BE 平分∠ABC ,且BE ⊥AC 于点E , 与CD 相交于点F ,H 是BC 边的中点,连接DH 与BE 相交于点G . (1)求证:BF=A C ; (2)求证:DG=DF . 17. 如图,点B ,D 在射线AM 上,点C ,E 在射线AN 上,且AB=BC=CD=DE ,已知∠EDM=84°,求∠A 的度数. 18. 如图所示,在△ABC 中,AB=AC ,BD ⊥AC 于点D ,CE ⊥AB 于点E ,BD ,CE 相交于F.求证:AF 平分∠BAC. 19. 如图所示,△ABC ≌△ADE ,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,求 ∠DFB 和∠DGB 的度数. 20. 已知:如图,在△ABC 中,AB=AC ,点D 在边BC 上,DE ⊥AB ,DF ⊥AC ,且DE=DF , 求证:△ABD ≌△ACD 21. 如图,一张直角三角形的纸片ABC ,两直角边AC=6cm ,BC=8cm .现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且AC 与AE 重合,求CD 的长. 22. 已知:如图,在△ABC 中,AB=AC ,BD 平分∠ABC ,E 是底边BC 的延长 6. 如图,B 、D 、C 、E 在同一直线上,AB=AC ,AD=AE ,求证:BD=CE 。 B A E D C

初二数学-全等三角形证明经典50题

初二数学 几何证明 1.已知:AB=4 , AC=2 , D是BC中点,AD是整数,求AD 2.已知:D 是AB 中点,/ ACB=90。,求证:CD -AB 2 A 3.已知:BC=DE,/ B= / E,Z C= / D, F 是CD 中点,求证: 4.已知:/ 仁/2, CD=DE , EF//AB,求证:EF=AC

已知:AD 平分/ BAC , AC=AB+BD ,求证:/ B=2 / C 7.已知:AB=4 , AC=2 , D 是BC 中点,AD 是整数,求 AD D 5. AE=AD+BE ,求证: O 6.

8.已知:D 是AB 中点,/ ACB=90 °,求证:CD 1 AB 2 9.已知:BC=DE,/ B= / E,/ C= / D, F 是CD 中点,求证: 12.已知:AC 平分/ BAD , CE丄AB , / B+ / D=180 °,求证:AE=AD+BE CD=DE , EF//AB,求证:EF=AC 10.已知:/ 1 = / 2,

c 12.如图,四边形ABCD中,AB // DC, BE、CE分别平分/ ABC、/ BCD,且点E在AD 上。求证: BC=AB+DC。 D 14.已知:AB=CD,/ A= / D,求证:/ B= / C B

15. P 是/ BAC 平分线 AD 上一点,AC>AB ,求证:PC-PB

相关主题
文本预览
相关文档 最新文档