当前位置:文档之家› 甘薯抗性淀粉理化性质研究_张芸

甘薯抗性淀粉理化性质研究_张芸

甘薯抗性淀粉理化性质研究_张芸
甘薯抗性淀粉理化性质研究_张芸

玉米淀粉基本知识

淀粉基本知识 1、淀粉合成、结构、成份 淀粉是纯碳水化合物,分子式可简写为(C6H10O5)n 淀粉颗粒按结构可分为: 支链淀粉:70~80% 支杈状结构粘性分子量32000~16000 直链淀粉:20~30% 直链状结构易和有机物或碘生成化合物,10~100万。 2、物理性质 ①外观:白色粉末(或微带浅黄色阴影)淀粉密度1.61 偏光十字:在偏光显微镜下观察,淀粉颗粒具有双折射性,在淀粉粒面上可以看到以粒径为中心的黑心十字形。 ②淀粉水份含量: 平衡水份:淀粉在不同温度和湿度的空气中含有的水份。 一般水份12~13%,受空气的温度和湿度影响较大。 ③糊化: 若将淀粉的悬浮液加热,达到一定温度时,淀粉颗粒突然膨胀,因膨胀的体积达到原来的数百倍之大,所以悬浮液变为粘稠的胶体溶液这种现象称为淀粉的糊化。 玉米淀粉在55℃开始膨胀,64℃开始糊化,72℃糊化完成。 淀粉糊化的本质(宏观): 三个阶段: A、吸水,淀粉粒内层膨胀,外形未变→可逆的润胀。 B、水温升高至糊化温度时突然膨胀,大量吸水,偏光十字消失,晶体解体→不可逆的溶胀。 C、温度升高,溶胀的淀粉粒继续分解,溶液黏度增高。晶体结构解体,无法恢复成原有的晶体结构。 (微观)本质:水分子进入淀粉颗粒的微晶体结构,拆散淀粉间的缔合状态,淀粉分子或其它集聚体经高度水化形成胶体体系。 ④淀粉遇碘变兰: 鉴别淀粉的存在:加热到70℃时兰色消失,故中和应冷却至70℃以下。 本质:这种反应不是化学反应,而是由于直链淀粉“吸附”碘形成的络合结构。 ⑤淀粉的凝沉作用: 淀粉的衡溶液在低温下静置一定时间后,溶液变浑浊,溶解度降低,而沉淀析出,如果浓度大时间长,则沉淀物可形成硬块不再溶解,也不易被酶作用,这种现象称为淀粉的凝沉作用,也叫老化作用。 凝沉本质:在温度逐渐降低的情况下,溶液中淀粉分子的运动减弱后,

木薯淀粉生产工艺及其特性

木薯淀粉主要用作食品、制糖、医药、饲料、纺织、造纸、化工等工业部门的原料。 木薯淀粉生产过程,是物理分离过程,即是将木薯原料中的淀粉与纤维素、白、无机等其它物质分开。在生产过程中,根椐淀粉不溶于冷水和比重大于水的性质,用水及专用机械设备,将淀粉从水的悬浮液中分离出来,从而达到回收淀粉的目的。其生产工艺流程分为输送、清洗、碎解、浸渍、筛分、漂白、除砂、分离、脱水、干澡、风冷、包装等工序。 2 原料 木薯淀粉的原料包括鲜木薯和木薯干片,它们是生产的主要物质,必须确保质量,要求鲜木薯新鲜,当天采购,当天进厂,当天加工,无泥、沙、根、须、木质部分及其它杂质混入;木薯干片要求干爽、不霉、不变质、无虫蛀。 鲜木薯的平均成分如下: 淀粉 27% 纤维素 4% 蛋白质 1% 其它 3% 水分 65% 木薯干片的平均成分为: 淀粉 68% 纤维素 8% 蛋白质 3%

水分 13% 由于木薯品种、采收时间、自然条件、生产水来不同,原料的淀粉含量有所差异。 3 辅料(加工木薯干片淀粉用) 硫酸 2KG/T淀粉 漂白粉 0.5kg/t淀粉 高锰酸钾 0.1kg/t淀粉 4 工艺路线 木薯淀粉的湿法加工工艺,包括滚筒清洗、二次碎解、浓浆筛分、逆流洗涤、氧化还原法漂白 (以新鲜木薯为原料才需漂白)、旋流除砂、浓浆分离、溢浆法脱水、一级负压脉冲气流干燥。 5 工艺流程 6 主要工艺过程 (1)原料准备 原料是生产的物质基础,原料的质量直接关系到产品的质量。木薯淀粉厂的原料有鲜木薯和木薯 干片两种。 鲜木薯采收后,应及时除去泥土、根、须及木质部分、堆放在干净的地面,避免混入铁块、铁钉、石头、木头等杂物,要求当天采收,当天进厂、当天加工,以保证原料的新鲜度,从而提高抽提 率及产品的质量。 木薯干片应干爽,不霉,不变质,无虫蛀,以保证产品质量。

抗性淀粉研究进展

抗性淀粉研究进展 摘要:抗性淀粉是膳食纤维的一种,对于人体健康具有重要的食用价值和保健作用。本文就抗性淀粉的分类、制备方法、对人体的生理功能、及其在食品中的应用进行综述。 关键词:抗性淀粉;生理功能;食品应用 抗性淀粉(resistant starch,RS)是膳食纤维的一种,是人类小肠内不能消化吸收,但能在结肠发酵的淀粉及其分解产物[1]。1982年,英国生理学家Englyst发现并非所有淀粉都能被α-淀粉酶水解,由此提出抗性淀粉这一概念[2]。因为抗性淀粉在小肠内不被消化吸收,而是进入结肠被肠道微生物利用发酵产生短链脂肪酸再被吸收,有利于其能量缓慢释放,此外,还能产生二氧化碳、甲烷等气体维持结肠良好的微生态环境,有研究发现短链脂肪酸还能降低人体的胆固醇,这些功能都改善了人体健康。抗性淀粉的热量较低,热值一般不超过10.0-10.5KJ/g[3],具有膳食纤维的功能特性,但在食品加工能克服膳食纤维的某些缺点,改善食品品质。目前,人们已经将抗性淀粉应用在面条、饼干、酸奶等食品中。本文主要从抗性淀粉的分类、制作方法、健康特性、食品应用方面进行阐述。 1 抗性淀粉的分类 普通淀粉的形状为圆形或椭圆形轮廓,光滑平整;抗性淀粉为不规则的碎石状,表面鳞状起伏[4]。高直连淀粉(如玉米、大麦)是RS的主要来源,一般来说,直链淀粉与支链淀粉的比例比值越大,抗性淀粉的含量越高[5]。此外,抗性淀粉的颗粒大,因其体面积比大,与酶接触机会小,水解速度慢。宾石玉[2]等的研究测定高直连玉米淀粉、玉米、早籼稻糙米、糯米的抗性淀粉的含量分别为44.98%、3.89%、1.52%和0。 1.1 物理包埋淀粉(RS1) 因淀粉包埋在食物基质(蛋白质、细胞壁等)中,这种物理结构阻碍了淀粉与淀粉酶的接触而阻碍淀粉的消化,一般通过碾磨、破碎等手段可破坏包埋体系而转变为易消化淀粉。典型代表:谷粒、种子、豆类。 1.2 抗性淀粉颗粒(RS2) 主要存在水分含量较低的天然淀粉颗粒中,由于淀粉颗粒结构排列规律,晶体结构表面致密使得淀粉酶不易作用,从而对淀粉酶产生抗性,可通过热处理如蒸煮使其糊化失去抗性。典型代表:生的薯类、青香蕉淀粉颗粒。 1.3 回生淀粉(RS3) 食品加工过程中发生回生作用而形成的抗性淀粉。因淀粉颗粒在大量水中加热膨胀最终崩解,在冷却过程中,淀粉链重新靠近、缠绕折叠,定向排列成的紧密的淀粉晶体结构,而不易与淀粉酶结合。典型代表:加热放冷的马铃薯、红薯以及过夜的米饭。 1.4 化学改性淀粉(RS4) 通过化学改性(酯化、醚化、交联作用)或基因改良而引起淀粉分子结构发生变化而不利于淀粉酶作用的淀粉。典型代表:交联淀粉、基质改良粘大米。 1.5 淀粉脂质复合物(RS5) 当淀粉与脂质之间发生相互作用时,直连淀粉和支链淀粉的长链部分与脂肪醇或脂肪酸结合形成的复合物称RS5。脂质存在于RS5淀粉链中的双螺旋中,使得淀粉结构发生改变,不溶于水,且具热稳定性,不易与淀粉酶反应[6]。典型代表:含有淀粉和脂质的谷物和食品。 2 抗性淀粉的制备 从抗性的制备工艺方面,RS3 型抗性淀粉具有生产安全、易于控制及热稳定性好的优点,因此是最具有工业化生产与广阔的应用前景的一类抗性淀粉。抗性淀粉的产率与原料中的直链淀粉含量成正比,随着直链淀粉与支链淀粉的比例增高,抗性淀粉产率由7.61%增大至

变性淀粉理化性质

变性淀粉的理化性质 淀粉的可利用性取决于淀粉颗粒的结构和淀粉中直链淀粉和支链淀粉的含量,不同种类的淀 粉其分子结构和直链淀粉、支链淀粉的含量不相同。直链淀粉和支链淀粉在若干性质方面存在很大差异,直链淀粉与碘能形成螺旋络合结构,呈现深蓝色,支链淀粉与碘液呈现紫红色,故常用碘液鉴定淀粉。因此,不同来源的淀粉原料具有不同的可利用性。如薯类淀粉,颗粒大而松,易让水分子进去,糊化温度低,峰黏高,分子量大且直链淀粉少,不易分子重排,另外含有0·07% ~0·09%的磷,析水性强,不易回生。谷类淀粉,颗粒小而紧,水分子难进入,糊化温度高,峰黏低,分子小且直链淀粉多,易重排;另外还含有脂肪,直链淀粉与脂肪结合不易吸收,故易胶凝回生,透明性差。天然淀粉在广泛采用新工艺、新设备的现代工业生产中应用是有限的,大多数的天然淀粉都不具备能被有效的、很好的利用性能,因此在保持原淀粉基本性质的基 础上,变性淀粉具有了以下性质:如1)具有了耐酸性;2)耐热性;3)抗剪切等性能。这些性能都使得变性淀粉更适应现代生产工艺的要求。淀粉糊化后具有增稠、凝胶、粘合、成膜及其它功能,不同品种淀粉的特性存在着差别。表1列出各类淀粉的性能,并对其进行比较。这些都是影响淀粉应用的特性。

马铃薯、木薯淀粉、玉米和小麦淀粉糊化后,其黏度存在很大差别(如图1所示)。马铃薯、木薯淀粉较玉米、小麦淀粉易糊化,在较低温度开始糊化,黏度上升快,达到最高值,继续搅拌受热,黏度快速降低,在95℃继续保温1 h,黏度缓慢降低,继续降温至50℃,黏度有所回升;相反玉米、小麦淀粉较难糊化,在降温过程中黏度出现最大峰值,这也说明玉米、小麦淀粉的凝沉性要强于马铃薯和木薯淀粉[2]。

魔芋粉特性

魔芋葡甘聚糖?魔芋的有效成分为葡甘聚糖(Konjac Glucomannan 简称为 KGM)。葡甘聚糖是一种非离子型水溶性高分子多糖。它是由D-葡萄糖和D-甘露糖按1:1.6的分子比例,以β-(1-4)糖苷键聚合而成。在某些糖残基C-3位上存在由β-(1-3)糖苷键组成的支链,主链上每3280个糖残基处有一个支链,每条支链有几个至几十个糖残基,大约每19个糖残基上有一个以酯键结合的乙酰基。魔芋葡甘聚糖的分子量为200000-2000000。工业生产的商品粘度可达20000mpa•S(毫帕斯卡秒),是目前所发现植物类水溶性食用胶中粘度最高的一种。魔芋葡甘聚糖确切的分子结构,至今尚无统一的完善定论。?由以下魔芋葡甘聚糖的独特组份和分子结构就可以看出,它的理化性质:流变性、增稠性、增效性、胶凝性、粘结性、吸水性、成膜性、衍生性的实质内函,这是魔芋葡甘聚糖在食品和食品添加剂工业中应用的硬件。?葡甘聚糖的流变性 葡甘聚糖容易分散于水,不溶于甲醇、乙醇、乙酸乙酯、丙酮、乙醚等有机溶剂,其水溶胶为非牛顿型流体,即有剪切变稀的性质,魔芋葡甘聚糖水溶胶的表观粘度随剪切速率的增加而降低,因此稠度系数值和流动指数值是评价魔芋葡甘聚糖质量的两个重要指标,稠度系数值越大,流动指数值越小,其质量越好。?魔芋葡甘聚糖的稳定性?魔芋葡甘聚糖的粘度随温度的上升而下降,但温度下降时,粘度可以又上升,但无论怎么上升也上升不到原来粘度的水平。魔芋葡甘聚糖不能长时间耐80℃以上高温,如魔芋葡甘聚糖在121℃温度下经30分钟粘度将下降50%。?PH值对魔芋葡甘聚糖的粘度有下降的影响,但当PH 3—9之间还是比较稳定的。?魔芋葡甘聚糖纯度越高,其溶胶稳定性越强。?魔芋葡甘聚糖的增稠性?魔芋葡甘聚糖是一种十分优良的增稠剂,这是由魔芋葡甘聚糖分子质量大,水合能力强,不带电荷等特性所决定的,它属于非离子型,受盐的影响很小。?魔芋葡甘聚糖与XG和淀粉有协同增稠作用; 在1%的黄原胶溶液中加入0.02—0.03%的魔芋胶,粘度可增加2—3倍。 当增稠剂总量为5%时,4.5%玉米变性淀粉加入0.5%魔芋胶糊化后的粘度,比5%变性淀粉的粘度高出4.6—8.6倍。?魔芋胶的吸水性 这是由魔芋胶纯度决定的,纯度越高吸水性越强,一般吸水性都在80—110倍。 魔芋胶的凝胶性?热稳定性凝胶:魔芋胶溶液与碱凝胶后形成的凝胶遇到再高的温度如100℃,150℃,200℃时都不能恢复原来的溶液状态,称热不可逆凝胶。但魔芋葡甘聚糖凝胶的形成必需在碱性条件下,碱的种类对魔芋胶的凝胶强度影响不完全相同,凝胶强度与体系中PH相关的规律也不强,不同碱、碱性盐类,PH值对魔芋胶凝胶强度的影响如下表:

小麦抗性淀粉的研究进展

小麦抗性淀粉的研究进展 摘要:该文主要阐述了抗性淀粉的理化性质、制备工艺和遗传特性的研究现状,最后简介其其在食品工业中应用前景。 关键词:小麦、抗性淀粉、RS3 1983 年,英国生理学家 Hans Englyst 首先将一部分在人体肠胃中不被淀粉酶消化的淀粉定义为抗性淀粉(Resistant Starch,简称 RS)[1]。近年来碳水化合物与健康关系的研究发现,抗性淀粉具有提供能量,降低食物热效应[2],调节、保护小肠, 防止糖尿病和脂肪堆积以及促进锌、钙、镁离子的吸收[3]等功能, 因此 RS 已成为近年来碳水化合物研究的热点之一。 抗性淀粉是一种无异味、持水性低、多孔性白色粉末,抗性淀粉至今尚无化学上精确分类,目前大多根据淀粉来源和人体试验结果,将抗性淀粉分为4种类型:RS1(物理包埋淀粉)、RS2(抗性淀粉颗粒)、RS3(回生淀粉)、(化学改性淀粉),其中 RS3是研究和应用最广泛一种。RS3是指糊化后的淀粉在冷却或储存过程中部分重结晶,由于结晶区的出现,阻止淀粉酶靠近结晶区域的葡萄糖苷键,并阻止淀粉酶活性基团中的结合部位与淀粉分子结合,造成不能完全被淀粉酶作用而产生抗酶解性。 小麦是当今产量最大的粮食作物之一。随着小麦深加工的发展,小麦淀粉工业在我国发展迅速,但由于小麦淀粉加工适应性差,其在实际领域中并未得到很好的应用。因此选择以小麦淀粉为原料开发抗性淀粉产品,具有理论和实际上的重大意义。 一、小麦抗性淀粉的理化性质研究 小麦抗性淀粉的数均分子量为3198,重均分子量为7291,抗性淀粉形成过程中,其分子结构特征没有变化[4]。 Behall 等[5]对 RS 的理化特性进行了分析,表明 RS 为白色无异味的多孔性粉末,平均聚合度在 30-200 之间,在 100-165℃之间直链淀粉晶体熔融,产生吸热反应;耐热性高,持水性低,含热量低。X-衍射表明, RS 在空间上形成双螺旋结构,分离的 RS 的衍射图谱显示其为 B 型晶体结构[6]。 邵秀芝等[7]采用微波—酶法制备小麦抗性淀粉,并对其物理性质惊醒了研究。发现其与原小麦淀粉相比,小麦抗性淀粉表面粗糙,形状变得不规则,结晶结构为B 型和 V 型结合体,持水性大于原淀粉,而乳化能力和乳化稳定性均低于原淀粉;在相同溶液浓度条件下,抗性淀粉粘度比原淀粉低得多。 王娟等等[8]利用压热法制备小麦抗性淀粉 RS3,并考察其部分理化性质及结构性质。结果表明,该产品含抗性淀粉 13.89%,透光率较好,持水力、溶解度和膨胀度都随水浴加热温度的升高而上升。其淀粉-碘复合物最大吸收波长为 594 nm,碘吸收曲线在 580~610 nm之间呈较宽的吸收峰。该产品颗粒形状大部分为圆形,偏光十字明显,多呈十字型,且交叉点均位于颗粒中心;起糊温度为68.7 ℃,糊化不易发生,但较易老化。淀粉颗粒结晶结构为 C 型,仍保留了小麦淀粉红外光谱的特征吸收峰。

抗性淀粉对血脂调节的研究近况

收稿日期:2010-11-15 基金项目:广州医学院学生课外学术科技项目(2008年);广州市属高校科技计划基金项目(08A059) 作者简介:区满春(1986-),女,临床医学系在校学生,研究方向: 中西医结合 膳食调理。通讯作者、指导老师:翁志强,副教授。 抗性淀粉对血脂调节的研究近况 区满春1,刘广琨1,樊 妮1,麦紫欣1,翁志强2 (1.广州医学院06级临床医学系双语2班,广州 510180;2.广州医学院第二附属医院,广州 510260) 摘要:目的:综述近年抗性淀粉降脂作用及其机制的研究进展。方法:以国内外研究抗性淀粉降脂作用及其机制的代表性论文为依据,进行分析、整理和归纳。结果:抗性淀粉能降低血清中胆固醇、甘油三酯的水平,增加粪便中类固醇的排泄。其主要机制为通过减少膳食中胆固醇的吸收、影响机体中胆固醇的代谢、促进胆固醇的排泄等降低血浆中胆固醇水平;与短链脂肪酸(SCFA)通过血循环进入肝脏增强肝组织胆固醇代谢相关基因表达水平有关。食物中某些物质能与抗性淀粉相互作用,互相影响吸收或生理功能。结论:抗性淀粉能针对高血脂这个高危因素,通过一系列机制降血脂,有助于预防高脂血症、心血管疾病、脑血管意外等的发病。关键词:抗性淀粉;高脂血症;预防医学 中图分类号:R552 文献标识码:A 文章编号:1005-5320(2011)02-0058-03 Research of resistant starch on blood -fat regulating today OU Man -chun 1,LIU Guang -kun 1,F AN N i 1,MAI Zi -xin 1,WEN G Zhi -qiang 2 (1.Faculty of Clinical medcine,Grade 2006,Bilingual Class 2,Guangzhou Medical Colle ge ,Guangzhou 510180;2.The Second Af f iliated H ospital of Guangzhou Medical Colle ge,Guangzhou 510260,China) Abstract:Objective:In order to review the role of resi stant starch on blood-fat reducing and the mechani sm in recent years.Methods:T o analyze,summarize and organize the representative papers abroad and internal,that the role of resistant starch on blood-fat reducing and the mechani sm.Results:Resistant starch could reduce the level of serum cholesterol,tri glyceride and increase the discharge of steroids.The main mechanism in low ing the level of serum cholesterol i s through by decreasing the absorption of cholesterol for meals,affecting the body metabolism,promoting the discharge of cholesterol ;It compares with short chain fatty acid(SCFA )which can come into liver to promote the level of hepatic cholesterol metabolism correlative gene expression through by blood circulation.Resistant starch and some substances in food can affect the absorption or physiologic function of each other.Conclusion:Resistant starch can reducing blood-fat in some mechani sms and contribute to preventing the onset of hyperlipemia,cardiovascular disease?and cerebral vascular accident. Key Words:Resistant starch;Hyperlipemia;Preventive medicine 抗性淀粉!(resistant starch RS)的概念引发了人们对淀粉生物利用度新的研究兴趣,并成为国际上新兴的食品研究领域。1992年世界粮农组织将其定义为健康者小肠中不吸收的淀粉及其降解产物。其具有降低餐后血糖和胰岛素反应;降低血浆甘油三酯和胆固醇,抑制结肠蛋白发酵、降低肠内胺和酚类浓度,增加粪便体积并酸化粪便;抑制结肠细胞增生,减少次级胆酸的分泌,促进结肠炎性溃疡的愈合,增加肠道镁和钙的吸收;增加饱腹感和抑制食欲等功效。笔者就抗性淀粉对血脂的调节作用研究 近况作一综述。 1 抗性淀粉简介[1~ 4] 定义:世界粮农组织将抗性淀粉定义为健康者小肠中不吸收的淀粉及其降解产物。 分类:淀粉是人类膳食中主要的碳水化合物,按不同标准可分为不同的类别。根据淀粉在小肠内的生物利用度将其分为3类:快速消化淀粉(Rapidly Digestible Starch,RDS)、缓慢消化淀粉(Slow ly Digestible Starch,SDS )和抗性淀粉(RS)。其中RS 不同于前两者,它不能被小肠中的淀粉酶水解,本身或其降解产物能原封不动地到达结肠并被其中的微生物菌群发酵,继而发挥有益的生理作用,因此曾被看作是膳食纤维(Dietary Fiber,DF)的组成成分之一。根据抗性淀粉的来源和人体试验的 ? 58?

淀粉分类

二、淀粉的分类 淀粉是指以谷类、薯类、豆类及各种植物为原料,不经过化学方法处理而生产的原淀粉,以及经过某种方法处理,改变其原来的物理或化学特性的变性淀粉。 (一)原淀粉是不经过任何化学方法处理,也不改变淀粉内在的物理和化学特性而生产的各类淀粉。 原淀粉可分为四大类:谷类淀粉、薯类淀粉、豆类淀粉和其他类淀粉。原淀粉可作为各种浆料、添加剂、施胶剂、填充剂、粘胶剂等,也可作为各种变性淀粉、淀粉糖以及淀粉衍生物的原料。 1 谷类淀粉大米淀粉(糯米淀粉、粳米淀粉、籼米淀粉)、玉米淀粉(白玉米淀粉、黄玉米淀粉、黄玉米湿淀粉)、高粱淀粉、小麦淀粉(小麦淀粉、小麦湿淀粉、大麦淀粉、黑麦淀粉)。在食品中可作为增稠剂胶体生成剂、保潮剂、乳化剂、粘合剂;在纺织中可作浆料;在造纸中可作上胶料和涂料等。当原淀粉的部分特性不能满足生产要求,可以利用变性淀粉。 2 薯类淀粉木薯淀粉、甘薯淀粉、马铃薯淀粉、豆薯淀粉、竹芋淀粉、山药淀粉、蕉芋淀粉。可作为食品的添加剂、填充剂、粘胶剂等。 3 豆类淀粉绿豆淀粉、蚕豆淀粉、豌豆淀粉、豇豆淀粉、混合豆淀粉。可制作粉丝、粉条等。 4 其他类淀粉菱粉、藕粉、荸荠淀粉、橡子淀粉、百合淀粉、慈姑淀粉、西米淀粉。 (二)变性淀粉原淀粉经加工处理,使淀粉分子异构,改变其原有的化学物理特性的淀粉。 变性淀粉的品种、规格达两千多种,变性淀粉分类一般是根据处理方式来进行,主要有: 1.物理变性:预糊化(α-化)淀粉、γ射线、超高频辐射处理淀粉、机械研磨处理淀粉、湿热处理淀粉等。 2.化学变性:用各种化学试剂处理得到的变性淀粉。其中有两大类:一类是使淀粉分子量下降,如酸解淀粉、氧化淀粉、焙烤糊精等;另一类是使淀粉分子量增加,如交联淀粉、酯化淀粉、醚化淀粉、接枝淀粉等。 3.酶法变性(生物改性):各种酶处理淀粉。如α、β、γ-环状糊精、麦芽糊精、直链淀粉等。 4.复合变性:采用两种以上处理方法得到的变性淀粉。如氧化交联淀粉、交联酯化淀粉等。采用复合变性得到的变性淀粉具有两种变性淀粉的各自优点。另外,变性淀粉还可按生产工艺路线进行分类,有干法(如磷酸酯淀粉、酸解淀粉、阳离子淀粉、羧甲基淀粉等)、湿法、有机溶剂法(如羧基淀粉制备一般采用乙醇作溶剂)、挤压法和滚筒干燥法(如天然淀粉或变性淀粉为原料生产预糊化淀粉)等。 三、淀粉产品的加工方向 1.物理化学方法转化制取的产品:变性淀粉有α-淀粉、氧化淀粉、酯化淀粉、醚化淀粉、交联淀粉、接枝淀粉;淀粉酸催化产品有糊精、酸处理淀粉、不同DE值糖浆;糖氢化

木薯淀粉的理化性质

木薯淀粉的理化性质 淀粉是绿色植物通过光合作用合成的,它储存于植物的种子、块茎和块根中。植物所含淀粉的多少与品种、生长周期、繁殖与种植方法、收获方法、抗病抗灾性能、日照的时间与强度、环境的温度与湿度、降水量、地形和土壤条件等因素有密切的关系。在稻、麦、玉米、高粱的种子颗粒中含有70%左右的淀粉,在马铃薯的块茎中含有18%左右的淀粉,在木薯的块根中含有25%左右的淀粉。我们就是利用这些含淀粉高的种子、块茎、块根作为原料来生产淀粉。 淀粉是可再生资源,也是产量仅次于纤维素的第二大可再生资源。它取之不尽,用之不竭,是人类赖以生存和发展的最基本和最重要的资源。 为区别淀粉品种,一般加用原料名称,如玉米淀粉、木薯淀粉、马铃薯淀粉、甘薯淀粉、小麦淀粉等等。 木薯淀粉玉米淀粉、马铃薯淀粉、小麦淀粉等一样,都是重要的工业原料,用途极其广泛。 一、木薯淀粉的化学组成和结构 淀粉主要由碳、氢、氧三种元素组成。淀粉是在水介质中光合作用合成,即植物的绿叶以叶绿素为催化剂,通过将二氧化碳和水合成为葡萄糖,其反应式为: 日光 ↓ 6CO2+6H2O ─→ C6H12O6+6O2 ↑ 叶绿素 燃烧 ↓ (C6H10O5)n+6nO2 ─→ 5nH2O+6nCO2+Q(热) ↑ △ 木薯淀粉为多聚葡萄糖,属于碳水化合物中的多糖类。多糖类又叫高聚糖,是许多单糖的聚合物,即许多葡萄糖分子连接起来成为淀粉分子。工业生产葡萄糖就是以淀粉作原料,将聚合状态的葡萄糖经水解转变成为游离状态的葡萄糖。这个反应过程称为“糖化”,其反应式如下: 酸或酶

直链淀粉是由葡萄糖单位通过α××105。此值相当于分子中有200-980个葡萄糖单位。木薯淀粉的直链淀粉,其含量(干基)为17%,平均聚合度为2600,平均聚合度质量为6700,表现的聚合度分布为580-2200。 支链淀粉具有高度分支结构,由线型直链淀粉短链组成,其分子较直链淀粉大,相对分子

魔芋开发利用研究综述_尉芹

魔芋开发利用研究综述 尉 芹1) 马希汉2)(1)西北林学院园林系,712100陕西杨陵; 2)西北林学院基础课部;第一作者:女,39岁,副教授) 摘 要 魔芋被认为是人类优质碳水化合物的来源之一,并在医药、保健和工业上有着广阔的应用前景。本文对魔芋的理化特性、药理作用、加工利用等方面的研究进行了评述。关键词 魔芋;开发;利用 分类号 S567 魔芋又名、鬼芋、花梗莲、蛇玉米、土星楠、蛇头草等〔1〕,是天南星科(Araceae )魔芋属(Amorphophallus Blume )的多年生草木植物。主要分布在东经65°~140°,北纬35°~南纬10°,包括中国、日本及越南等东南亚国家。全世界有魔芋品种260种以上,我国有25种,其中花魔芋 (A .konjac 或rivieri )是广泛栽培的一个品种〔2〕。魔芋在我国已有二千多年的栽培历史,长期以来都是自生自长和零星种植,开发利用范畴仅限于民间传统食用方法和疗伤治病的土验方。系统地进行人工栽培和加工利用则始于50~60年代,80年代以来开始进行大规模的魔芋食品的开发和研究。 日本在魔芋研究方面起步较早,在本世纪20年代,日本就开始对魔芋的栽培、成分、加工进行研究〔3〕,特别是80年代以来,日本在魔芋研究的广度和深度方面均处于世界领先地位,开发出的各种魔芋食品和药品的奇特保健功效正迎合了现代人们对快速减肥、健美的需要,以致现在“魔芋热”风靡整个日本乃至西方发达国家。因此,国外把魔芋食品的兴起称为“新兴食品工业的革命”。我国许多地区已把魔芋的综合利用列为重点开发项目之一。有关魔芋的研究主要集中在对魔芋的理化特性、药理作用和加工利用等方面。 1 魔芋的物理化学特性 魔芋干物质的主要成分为葡甘聚糖,其中粗粉中含36%~42%,精粉中含55%~66%,块茎含少量的蛋白质、16种氨基酸、维生素A 、维生素B 及铁、钙、磷等矿物质〔4〕。魔芋葡甘聚糖为白色粉末,加水可溶胀,溶于水形成溶胶,不溶于丙酮、氯仿等有机溶剂。其分子是由许多D -葡萄糖和D -甘露糖以1: 1.6的摩尔比通过β-1.4甙键结合形成的复合多糖。分子量因品种而异〔5〕,是一种天然高分子化合物,因此它具有高分子化合物的一般特性。 魔芋葡甘聚糖具有高吸水性、高膨胀性。溶于冷水后,会形成一种粘稠的溶胶,可起增稠、乳化和悬浮的作用;若加入碱使其p H 值小于12.2,则可形成可逆性的凝胶,具有成膜、成型和西北林学院学报 1998,13(3):62~67 Jour na l o f No r th west For estry Colleg e 收稿日期1997-12-26

魔芋飞粉干燥剂的制备及性能研究

魔芋飞粉干燥剂的制备及性能研究 耿胜荣 1,白婵 1,吴平 2,何臻 1,范春相 2,邱建辉 1,王俊 1,廖涛 1【摘要】摘要:以干燥剂最大吸湿量为标准,优化魔芋飞粉、丙烯酸、水反应物、氢氧化钠的比例,并研究最佳配比制备的干燥剂与5种常用吸湿剂的复合效果,研究魔芋飞粉辐照接枝改性干燥剂的制备条件、干燥剂的吸湿性能及结构。结果表明,氢氧化钠与丙烯酸的最佳中和比例为120%,即32.10%NaOH 体积30 mL。吸湿时间192 h内,在29%和97%相对湿度环境下、再生前干燥剂吸湿量分别达0.132、1.188 g/g,再生后的吸湿量分别为0.095 73、0.990 8 g/g。在29%和97%相对湿度环境下,平均吸湿速度分别为 0.000 687 5、0.006 186 g/(g·h),在168 h后达到最大吸湿量。该干燥剂性能效果优于5种常用吸湿剂,与5种常用吸湿剂复合后均没有增加吸湿能力。经扫描电镜观察发现,冻干干燥剂呈现网孔的微观结构,复合后网孔拉长变扁。用魔芋飞粉制备的干燥剂具有良好的吸湿性能和再生能力。 【期刊名称】湖北农业科学 【年(卷),期】2017(056)023 【总页数】5 【关键词】魔芋飞粉;干燥剂;辐照改性;性能 【文献来源】https://https://www.doczj.com/doc/465168201.html,/academic-journal-cn_hubei-agricultural-sciences_thesis/0201234039500.html 干燥剂通过物理或化学方式将外界环境中的水气吸入并锁住,达到干燥防潮的目的。常用干燥剂主要有蒙脱石、活矿、硅胶、分子筛、氯化钙等。这些干燥剂在各自应用领域发挥重要作用,但也存在一定局限性[1-3]。分子筛、硅

木薯淀粉的理化性质定稿版

木薯淀粉的理化性质 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

木薯淀粉的理化性质 淀粉是绿色植物通过光合作用合成的,它储存于植物的种子、块茎和块根中。植物所含淀粉的多少与品种、生长周期、繁殖与种植方法、收获方法、抗病抗灾性能、日照的时间与强度、环境的温度与湿度、降水量、地形和土壤条件等因素有密切的关系。在稻、麦、玉米、高粱的种子颗粒中含有70%左右的淀粉,在马铃薯的块茎中含有18%左右的淀粉,在木薯的块根中含有25%左右的淀粉。我们就是利用这些含淀粉高的种子、块茎、块根作为原料来生产淀粉。 淀粉是可再生资源,也是产量仅次于纤维素的第二大可再生资源。它取之不尽,用之不竭,是人类赖以生存和发展的最基本和最重要的资源。 为区别淀粉品种,一般加用原料名称,如玉米淀粉、木薯淀粉、马铃薯淀粉、甘薯淀粉、小麦淀粉等等。 木薯淀粉玉米淀粉、马铃薯淀粉、小麦淀粉等一样,都是重要的工业原料,用途极其广泛。 一、木薯淀粉的化学组成和结构 淀粉主要由碳、氢、氧三种元素组成。淀粉是在水介质中光合作用合成,即植物的绿叶以叶绿素为催化剂,通过将二氧化碳和水合成为葡萄糖,其反应式为: 日光 ↓ 6CO2+6H2O ─→ C6H12O6+6O2

↑ 叶绿素 葡萄糖又经一系列的生物化学反应,最后生成淀粉、纤维素等多聚糖。淀粉的分子式为(C6H10O5)n,光合作用分子量是n(162.14)。n是一个不定数,表示淀粉分子是由许多个葡萄糖单位组成。组成淀粉分子的葡萄糖单位数量称为聚合度,聚合度乘以葡萄糖单位分子量162.14便得淀粉分子量〔为了与游离葡萄糖(C6H12O6)区别,通常称 (C6H10O5)为葡萄糖单位〕。在组成淀粉的元素中,碳占44.5%,氢占6.2%,氧占 49.3%。干淀粉燃烧生成二氧化碳和水,并放出大量的热,其反应式为: 燃烧 ↓ (C6H10O5)n+6nO2 ─→ 5nH2O+6nCO2+Q(热) ↑ △ 木薯淀粉为多聚葡萄糖,属于碳水化合物中的多糖类。多糖类又叫高聚糖,是许多单糖的聚合物,即许多葡萄糖分子连接起来成为淀粉分子。工业生产葡萄糖就是以淀粉作原料,将聚合状态的葡萄糖经水解转变成为游离状态的葡萄糖。这个反应过程称为“糖化”,其反应式如下: 酸或酶

抗性淀粉

抗性淀粉的制备与功能 摘要:本文综述抗性淀粉的研究进展,并介绍对抗性淀粉的认识、抗性淀粉的制备及其功能 关键字:抗性淀粉;制备;功能 一、抗性淀粉的定义及其分类 Enlyst[1]和Baghurst[2]等人根据淀粉在小肠内生物可利用性,将淀粉分为三类:一类是快速消化淀粉(Ready digertible starch,RDS)指那些在小肠内迅速消化吸收的淀粉颗粒;另类是缓慢消化淀粉(Slowly digestible starch,SDS)指那些在小肠内消化吸收比较慢的淀粉颗粒;第三类便是抗性淀粉(Resistant starch,RS)指不被小肠消化吸收,但能在大肠内进行发酵的淀粉。1985年,当从AOAC之酶-重力法进行膳食纤维定量时,发现有淀粉成分会被包埋在不溶性膳食纤维中(IDF)。Englyst等学者首先将此部分定义为抗性淀粉。后来Asp等人研究以为,加工食品中所含的抗性淀粉成分,在体外试验中无法被淀粉酶水解且在人体小肠内也无法被水解。据此,在1993年将抗性淀粉定义为:不能再健康人体小肠中消化吸收的淀粉及其降解物的总称。[3]但是由于影响淀粉在小肠内消化吸收的因素很多:如淀粉的糊化和凝沉程度、淀粉颗粒的大小和形态、其他膳食的消化能力也有所不同,因此抗性淀粉和可消化淀粉之间并无严格区分,对抗性淀粉的定义还需进一步研究,采用多数人均值测定体内的抗性淀粉含量将会是一种行之有效的方法。 食物中存在的抗性淀粉可分为四种类型:即RSI,RS2,RS3,RS4 。 RS1:物理包埋淀粉,指那些因细胞壁的屏障作用或蛋白质的隔离作用而不能被淀粉酶接近的淀粉。如部分研磨的谷物和豆类中,一些淀粉被裹在细胞壁里,在水中不能充分膨胀和分散,不能被淀粉酶接近,因此不能被消化。但是在加工和咀嚼之后,往往变得可以消化。 RS2:抗性淀粉颗粒,指那些天然具有抗消化性的淀粉。主要存在于生的马铃薯、香蕉和高直链玉米淀粉中。其抗酶解的原因是具有致密的结构和部分结晶结构,其抗性随着糊化完成而消失。 根据X一射线衍射图像的类型,RS2可分为三类 A类:这类淀粉即使未经加热处理也能消化,但在小肠中只能部分被消化,主要包括小麦、玉米等禾谷类淀粉; B类:这类淀粉即使经加热处理也难以消化,包括未成熟的香蕉、芋类和高直链玉米淀

抗性淀粉生理功能的研究

抗性淀粉生理功能的研究 孙金辉 (西南大学食品科学学院,重庆,400715) 摘要:抗性淀粉作为一种新的膳食纤维已经引起了越来越多人的关注和研究。它的生理功能也受到人们的广泛关注。抗性淀粉是一种逃逸小肠消化,在大肠发酵的膳食纤维。目前研究认为,它能降低血糖、胆固醇、甘油三酯,增加胰岛素敏感性,减轻体重,对糖尿病有防治作用。 关键词抗性淀粉膳食纤维生理功能 Abstract Resistant starch as a new kind of dietary fibers has attracted more and more people,attentions and research.Its physiological functions also be paid much attention to by the people .Resistant starch is a kind of dietary fiber which can escape intestinal digestion and ferment in the intestine. According to current studies, it can reduce the concentration of blood glucose,cholesterol and triglyceride;increases insulin sensitivity, reduce weight, have prevention and curable function for diabetes. Keywords:Resistant starch ;dietary fibers;physiological functions 0 引言 抗性淀粉( resistant starch.RS ) 是一种新型的膳食纤维,是科研人员对膳食纤维进行定量分析时,在不溶性膳食纤维中发现的淀粉成分。1 9 9 2年世界粮农组织FAO根据Englys和欧洲抗性淀粉协会( European flair concerted action on resistan starch,EURESTA) 的建议将抗性淀粉定义为不被健康人体小肠所吸收的淀粉及其降解物的总称。研究发现,抗性淀粉在肠道代谢、改善血糖和血脂水平等方面发挥了有益的健康作用,能降低一些慢性病( 如糖尿病、大肠癌、肥胖等) 的发病风险,本文就目前对抗性淀粉生理功能的研究进展综述如下【1】。 1 抗性淀粉的分类 抗性淀粉又称抗酶解淀粉及难消化淀粉,这种淀粉较其他地方难降解,在体内消化缓慢。根据抗性淀粉的物理和化学特性可以将抗性淀粉分为可分为RS l、RS2、RS3、RS4四类4类【2,19】: RS l:物理包埋淀粉,指那些因细胞壁障碍作用或蛋白质隔离作用而不能被淀粉酶接近的淀粉。加工时的粉碎、碾磨及饮食时的咀嚼等物理动作可改变其含量。 RS2:抗性淀粉颗粒,指没有被糊化的生淀粉和未成熟的大的淀粉粒,常存

最新淀粉行业现状

淀粉行业现状 14182030 李翔宇 摘要:本文通过对马铃薯淀粉行业的分析,指出了马铃薯淀粉主要的作用和其未来日益重要的趋势;着重就马铃薯淀粉的加工现状和产业现状等内容作了阐述。 关键词:马铃薯;淀粉行业;加工现状;产业现状 Status of starch industry ABSTRACT: Based on the analysis of potato starch industry,this paper points out the main effect of potato starch and its future trend.In this paper,the processing status of potato starch and the status of industry are discussed. KEYWORD: Potato;Starch industry;Processing status;Industry status quo 淀粉的品种包括玉米、小麦、马铃薯、红薯、木薯淀粉等,除以上主要品种外,还有橡子、芭蕉芋、葛根、首乌淀粉等。近年来,马铃薯产业在我国发展迅速。马铃薯,属茄科多年生草本植物,块茎可供食用,是全球第四大重要的粮食作物,仅次于小麦、稻谷和玉米。马铃薯又称地蛋、土豆、洋山芋等,其营养价值丰富,且具有很强的适用性,是十分重要的粮食作物。马铃薯用途十分广泛,生产产业链条比较长,在农业生产中属于一种极为丰富的原料作物[1]。 1. 淀粉行业的加工现状 1.1淀粉基本特性 淀粉特性包括支链淀粉含量、直链淀粉含量、糊化特性(低谷黏度、最终黏度、回升值、峰值黏度、降落值、起始糊化温度)、结晶度、分子质量大小及分布、磷含量、颗粒大小等。马铃薯淀粉质量分数为15% 左右(湿基),其中支链淀粉质量分数高达80%以上,其直链淀粉的聚合度也较高。马铃薯淀粉糊的黏度峰值平均达3000 BU,明显高于玉米淀粉(600 BU)、木薯淀粉(1 000 BU)和小麦淀粉(300BU)的糊浆黏度峰值。马铃薯淀粉由于具有较大的颗粒(平均粒径为30 ~ 40 μm)而具有较高的膨胀力[2]。其内部结构较弱,分子结构中含有磷酸基团,几乎百分之百以共价键结合于淀粉中,磷酸基电荷间相互排斥,利于胶化,从而促进了膨胀作用,并具有较高的透明度[3]。 1.2 国内现状 目前,关于不同品种马铃薯性质的研究主要集中在马铃薯加工产品的品质和马铃薯 淀粉的结构分析[4],以及淀粉的应用研究[5]。 马铃薯淀粉是在所有马铃薯加工产品中,占比最大的一种。通过相关数据了解到,2015 年,我国各个企业所生产的马铃薯淀粉总量已经达到了 48.779 万t,相比2014年度增长了 41.56% 左右。马铃薯淀粉生产工艺与鲜甘薯生产淀粉工艺过程基本相同,但工业生产马铃薯淀粉比手工生产简单。主要是由原料的洗涤、磨碎、筛分、分离蛋白质、清洗、脱水和干燥等工序组织。一般传统生产方法和现代化生产方法的主要区别,在于后者使用碟式离心机或旋液分离器代替流槽分离杂质,使操作能够自动化和连续化进行更大规模生产。 陈代园[6]对马铃薯淀粉添加量对面包的烘焙特性、质构特性及感官特性的影响进行分析,结果表明添加 15% 左右的马铃薯粉制作马铃薯面包,可获得较为理想的产品。 马铃薯精制淀粉主要起源于饲料加工、方便食品及养殖业,尤其是 20 世纪 90 年代,

魔芋粉特性

魔芋葡甘聚糖 魔芋的有效成分为葡甘聚糖(Konjac Glucomannan 简称为KGM)。葡甘聚糖是一种非离子型水溶性高分子多糖。它是由D-葡萄糖和D-甘露糖按1:1.6的分子比例,以β-(1-4)糖苷键聚合而成。在某些糖残基C-3位上存在由β-(1-3)糖苷键组成的支链,主链上每3280个糖残基处有一个支链,每条支链有几个至几十个糖残基,大约每19个糖残基上有一个以酯键结合的乙酰基。魔芋葡甘聚糖的分子量为200000-2000000。工业生产的商品粘度可达20000mpa•S(毫帕斯卡秒),是目前所发现植物类水溶性食用胶中粘度最高的一种。魔芋葡甘聚糖确切的分子结构,至今尚无统一的完善定论。 由以下魔芋葡甘聚糖的独特组份和分子结构就可以看出,它的理化性质:流变性、增稠性、增效性、胶凝性、粘结性、吸水性、成膜性、衍生性的实质内函,这是魔芋葡甘聚糖在食品和食品添加剂工业中应用的硬件。 葡甘聚糖的流变性 葡甘聚糖容易分散于水,不溶于甲醇、乙醇、乙酸乙酯、丙酮、乙醚等有机溶剂,其水溶胶为非牛顿型流体,即有剪切变稀的性质,魔芋葡甘聚糖水溶胶的表观粘度随剪切速率的增加而降低,因此稠度系数值和流动指数值是评价魔芋葡甘聚糖质量的两个重要指标,稠度系数值越大,流动指数值越小,其质量越好。 魔芋葡甘聚糖的稳定性 魔芋葡甘聚糖的粘度随温度的上升而下降,但温度下降时,粘度可以又上升,但无论怎么上升也上升不到原来粘度的水平。魔芋葡甘聚糖不能长时间耐80℃以上高温,如魔芋葡甘聚糖在121℃温度下经30分钟粘度将下降50%。 PH值对魔芋葡甘聚糖的粘度有下降的影响,但当PH 3—9之间还是比较稳定的。 魔芋葡甘聚糖纯度越高,其溶胶稳定性越强。 魔芋葡甘聚糖的增稠性 魔芋葡甘聚糖是一种十分优良的增稠剂,这是由魔芋葡甘聚糖分子质量大,水合能力强,不带电荷等特性所决定的,它属于非离子型,受盐的影响很小。 魔芋葡甘聚糖与XG和淀粉有协同增稠作用; 在1%的黄原胶溶液中加入0.02—0.03%的魔芋胶,粘度可增加2—3倍。 当增稠剂总量为5%时,4.5%玉米变性淀粉加入0.5%魔芋胶糊化后的粘度,比5%变性淀粉的粘度高出4.6—8.6倍。 魔芋胶的吸水性 这是由魔芋胶纯度决定的,纯度越高吸水性越强,一般吸水性都在80—110倍。 魔芋胶的凝胶性 热稳定性凝胶:魔芋胶溶液与碱凝胶后形成的凝胶遇到再高的温度如100℃,150℃,200℃时都不能恢复原来的溶液状态,称热不可逆凝胶。但魔芋葡甘聚糖凝胶的形成必需在碱性条件下,碱的种类对魔芋胶的凝胶强度影响不完全相同,凝胶强度与体系中PH相关的规律也不强,不同碱、碱性盐类,PH值对魔芋胶凝胶强度的影响如下表:

相关主题
文本预览
相关文档 最新文档