当前位置:文档之家› 第五讲 平面几何中的重要命题

第五讲 平面几何中的重要命题

第五讲 平面几何中的重要命题
第五讲 平面几何中的重要命题

平面几何中的重要命题

在初等几何的平面部分,所涉及到的证明题分为两大类:证度量关系和证位置关系.证明位置关系中有一类问题比较棘手,即点共线、线共点和四点共圆的证明.常用的证明方法是利用梅涅劳斯(Menelaus)定理、赛瓦(Ceva)定理、西姆松定理和托勒密定理来证.这是一种表达形式简洁又非常实用的方法.特别是在点、线处于位置任意,无法确定具体度量或角度的情况下,使用如上定理证明问题时,往往能得心应手,起到事半功倍的作用.一般地,把梅涅劳斯(Menelaus)定理、赛瓦(Ceva)定理、西姆松定理和托勒密定理称为平面几何四大定理。

定理1(梅涅劳斯定理) 设A '、B '、C '是ABC ?的边BC 、CA 、AB 所在直线上的点,则A '、B '、C '共线的充要条件是

1AC BA CB C B A C B A

'''

??='''. 证明:(必要性)

AC A BC A S AC C B S ''

?''

?'=' BA C A CC S BA A C S ''?''?'=

' A C C

A C A

S CB B A S ''?''?'=

'由上面三式相乘即得 1AC BA CB C B A C B A '''??='''. (充分性)延长A B ''交AB 于点P ,下证P 与C '重合。

∵1AC BA CB C B A C B A '''??=''' 及 1A P B

A C

B P B A

C B A ''??='' 故AC AP

C B PB

'=',由点内分线段AB 成定比的点的惟一性知,P C '≡,故A '、B '、C '共线。■

例1 如图,AD 是ABC ?的中线,F 是AD 的中点,求FE

FB

的值。

解:直线AEC 截BDF ?,则

1BC DA FE

CD AF EB

??=,因为 2BC DC =,2DA AF =,所以 14FE EB =,于是1

3

FE FB =。

例2 如图,在ABC ?中,//DE BC ,BE 、CD 交于O ,AO 交DE 于N ,交BC 于M 。 求证:BM CM =。

证明:直线BOE 截AMC ?的三边,则

1AO MB CE

OM BC EA ??=, 直线COD 截ABM ?的三边,则

1MO AD BC

OA DB CM

??=, 上两式相乘得

1BM CE AD

CM EA DB

??= 又由 //DE BC ,知 AD AE

DB EC

=, 从而

1MB

CM

=,即 BM CM =。

定理2(笛沙格Desargues 定理)两三角形对应顶点的连线共点,则对应边的交点共线。 (笛沙格定理的逆定理)两三角形对应边的交点共线,则对应顶点的连线共点或平行。

笛沙格定理的证明:设AA '、BB '、CC '交于点O ,BC 交B C ''于L ,CA 交C A ''于M ,AB 交A B ''于N 。OBC ?被直线LB C ''所截,OCA ?和OAB ?被直线MA C ''及NB A ''所截,有等式

1BL CC OB LC C O B B ''??='', 1CM AA OC MA A O C C ''??='', 1AN BB OA NB B O A A

''??=''

上三式相乘得

1BL CM AN LC MA NB

??=,故L 、M 、N 共线。 ■ 笛沙格定理的逆定理的证明:设O 为AA '与CC '的交点,下面证明BB '也通过点O 。 在LCC '?和NAA '?中,对应顶点的连线共点于M ,由笛沙格定理知对边交点B 、O 、B '必共线,即BB '通过点O. 若//AA CC '',则//AA BB '',否则由上面的证明知CC '应通过它

们的交点,与假设矛盾。 ■

定理3(塞瓦Ceva 定理)设P 、Q 、R 分别是△ABC 的边BC 、CA 、AB 上的点,则AP 、BQ 、CR 相交于一点M 的充要条件是1BP CQ AR

PC QA RB

??=。

证明:(1)必要性

CMA CMB S AR RB S ??=, AMB AMC S BP PC S ??=, BMC

BMA

S CQ QA S ??=

由上三式相乘即得

1BP CQ AR

PC QA RB

??=。 (2)充分性 设AP 与BQ 相交于M ,边CM 交AB 于R ', 因为

1BP CQ AR PC QA R B '??=' 及 1B P C Q

A R P C Q A A B

?

?= 知

AR AR

R B AB

'=',由点内分AB 成定比的点的惟一性知R R '≡,得证。 ■

例3 以ABC ?各边为底向形外作相似的等腰三角形BCE 、CAF 、ABG 。 求证:AE 、BF 、CG 交于一点。

证明:设相似等腰三角形的底角为θ,ABC ?的三个内角记为A 、B 、C 。

(1/2)sin()

(1/2)sin()

ABE ACE S BL AB BE B LC S AC CE C θθ????+==

??+ 由CE BE = 知

sin()

sin()

BL AB B LC AC C θθ?+=

?+ 同理

sin()sin()CM BC C MA AB A θθ?+=?+,sin()

sin()

AN AC A NB BC B θθ?+=

?+, 上三式相乘得,

1BL CM AN LC MA NB

??=, 由Ceva 定理有AE 、BF 、CG 交于一点。

定理4(西姆松Simson 定理) 三角形外一点在三角形外接圆上的充要条件是该点在三角形三边所在直线上的射影(垂足)共线。

证明:设△ABC 外一点P ,P 在三边BC 、CA 、AB 的垂足分别是L 、M 、N 。由P 、B 、L 、N 及P 、N 、A 、M 共圆知12,34∠=∠∠=∠。

P 、B 、C 、A 共圆?2413PBC PAM ∠=∠?∠=∠?∠=∠?L 、N 、M 共线。■

注:西姆松定理把四点共圆及三点共线联系在一起,直线LNM 叫△ABC 关于点P 的西姆松线。

例4 设ABC ?的三条高为AD 、BE 、CF ,过D 作直线AB 、BE 、CF 、CA 的垂线,垂足

分别为P 、Q 、R 、S ,则P 、Q 、R 、S 共线。

证明:设AD 交BE 于H ,则B 、D 、H 、F 共圆,BHF ?在其外接圆上一点D 在三边的垂足分别为P 、Q 、R ,由西姆松定理知P 、Q 、R 共线。

同理,EHC ?在其外接圆上一点D 在三边的垂足分别为Q 、R 、S 且三点共线, 故P 、Q 、R 、S 共线。

定理5(托勒密定理) 凸四边形ABCD 内接于圆的充要条件是

AB CD BC AD AC BD ?+?=?.

证明:①必要性 如图,四边形ABCD 内接于O ,在BD 上取点P ,使P A B C A D ∠=∠,则ABP

ACD ??,于是AB CD AC BP ?=?,又A B C A P D ??,有B

C A

D A C P D ?=?,

故 ()AB CD BC AD AC BP PD AC BD ?+?=+=?.

②)充分性 在凸四边形ABCD 内取点E ,使,BAE CAD ABE ACD ∠=∠∠=∠,则

ABE

ACD ??,即

A D

A C C D

A E A B

B E

==,即 AB CD AC BE ?=?。

又注意 DAE CAB ∠=∠及上述比例式,有 ADE ACB ??,从而

AD BC AC ED ?=?,于是 ()AB CD BC AD AC BE ED AC BD ?+?=+≥?

其中等号成立当且仅当E 在BD 上,即ABD ACD ∠=∠时成立,即A 、B 、C 、D 四点共圆时成立。 证毕 ■

例5 一个内接于圆的六边形的五条边的长都为81,只有第六边AB 的长为31,求从B 出发

的三条对角线长的和。

解: 如图,设,,BD a BE b BF c ===,连AC 、CE 、AE ,则

AE CE BD a ===,AC BF c ==.

在四边形ABCE 、ABEF 和BCDE 中,应用托勒密定理,得

3181a a bc +=,813181b ac +?=,2818181b a +?=,

解得 135,144,105a b c ===

故 384a b c ++=.

定理6(九点圆定理) 任意三角形三条高的垂足、三边的中点以及垂心与顶点的三条连线的中点,这九点共圆。

注:此圆叫费尔巴哈圆,早年为欧拉所知。费尔巴哈于1822年再度发现后,通常都称其为费尔巴哈圆。

证明:

证法一:如图,设AD 、BE 、CF 为△ABC 的高,垂心为H ,L 、M 、N 分别是BC 、CA 、

AB 的中点,P 、Q 、R 分别为AH 、BH 、CH 的中点。由1////2

NM QR BC ,1

////2

NQ MR AH ,

而 AH BC ⊥,从而 NQRM 为矩形。同理,QLMP 为矩形。 于是QM ,LP ,NR 是同一个圆的三条直径,故有六点共圆。

又90PDL ∠=,故点D 在此圆上。同理E ,F 在此圆上。 故九点共圆。

证法二:分两步:①证各边中点构成的三角形的外接圆过三角形三边的垂足,如下图

显然,11

//,2

2

ML AB ND AB =(Rt ?斜边的中线),MNDL 为等腰梯形,必共圆。同理

可证另外的垂足E 、F 也在△MNL 所决定的外接圆上。

② 证三个高的垂足决定的三角形外接圆通过垂心到各顶点线段的中点。如图

研究△BCH ,各边垂足D 、E 、F 所决定的三角形外接圆过三边的中点(由①),即R 、Q 在该圆上。同理P 也在该圆上。

由①②知:D 、E 、F 、M 、N 、L 、P 、Q 、R 九点共圆。 证毕。 ■

定理7(四心共线定理) 三角形的外心、垂心、重心、九点圆圆心共线;且九点圆心在外心与垂心连线的中点,重心在外心与垂心的三分点处。

注:该定理也称为欧拉定理,四心所决定的线称为欧拉线。该定理是欧拉一篇论文的成果。

证明:设△ABC 的外心、、重心、垂心、九点圆圆心分别为O 、G 、H 、P ,下证O 、G 、H 、P 共线,且1

,2

OG GH OP PH ==. 分两步:

(1)证明O 、G 、H 共线且1

2

OG GH =

。如下图 ,延长AH 、AG 交BC 于D 、M ,则,AD BC OM BC ⊥⊥,从而//AD OM ,OMG GAH ∠=∠. 延长CO 交外接圆于Q ,连QA 、QB ,则QC 为外接圆的直径,,QB BC QA AC ⊥⊥。又由AD BC ⊥及BE AC

⊥知//,//QB AD QA BE 。四边形QBHA 为平行四边形,从而QB =QH ,

11

22

OM QB AH ==,

12GM AG =

,故OMG HAG ??,于是O 、G 、H 共线且1

2

OG GH =。 (2)O 、P 、H 共线且PH OP =. 如图,O 为外心,M 、N 为BC 、AC 之中点,H 为垂心,则,AD BC OM BC ⊥⊥(圆心与弦的中点连线垂直于弦),所以//AD OM 。

作DM 的中垂线PF 交OH 于P ,则////MO PF HD ,故P 是OH 的中点。

同理AC 边上的中点N 与H 在AC 边上的射影E 之间的中垂线也交OH 于点P ,故P 为九点圆圆心。(DM 、EN 分别是九点圆的弦,弦的中垂线过九点圆圆心)且P 平分OH 。 ■

定理8(斯特瓦尔特定理)设B ,P ,C 分别为从A 点引出的三条射线AB ,AP ,AC 上的点,B ,P ,C 共线的充要条件是

222PC BP

AP AB AC BP PC BC BC

=?

+?-?. 证明:如图,设12,APB APC θθ∠=∠=. 不失一般性,设290θ<.

对于△ABP 和△APC 分别应用余弦定理有

22212cos AB AP BP AP BP θ=+-?? 22222cos AC AP CP AP CP θ=+-??

将上述两式分别乘以PC ,PB 后相加,得

22AB CP AC BP ?+?

212()()2(cos cos )AP BP CP BP CP BP CP AP BP CP θθ=++?+-??+ (*)

于是B 、P 、C 共线?(*)式右边2

AP BC BP CP BC =?+??

?222PC BP

AP AB AC BP PC BC BC

=?

+?-?. ■

注:定理的必要性即为斯特瓦尔特定理,充分性即为斯特瓦尔特定理的逆定理。斯特瓦尔特定理还有如下一系列有趣推论:

(1) 若AB AC =,则22

AP AB BP PC =-?;

(2) 若P 为BC 中点,则2

222111

224

AP AB AC BC =

+-; (3) 若AP 平分BAC ∠,则2

AP AB AC BP PC =?-?; (4) 若AP 平分BAC ∠的外角,则2

AP BP PC AB AC =?-?.

例6 设M 是123A A A ?的重心,P 是三角形内任意一点,则有

22222221231233PA PA PA MA MA MA PM ++=+++

即 到三角形三个顶点的距离的平方和为极小的点是三角形的重心。

证明:(1)由2

222

1231111224m a a a =

+-, 22222312111

224m a a a =+-,

22223123111

224

m a a a =+-,

得 222222

1231233()4m m m a a a ++=++

∴ 222222

123123222()()()333

MA MA MA m m m ++=++

22222212312341

()()93

m m m a a a =++=++ (2)1PO 是23PA A ?的中线,则 222

2

2311122

PA PA PO a +=+, ① 在11PAO ?中,有 11:2:1A M MO =,所以 2

2

2

111112213

333

PM PA PO m m =?+?-? 即 2

2

2

21112323

PM PA PO m =+- ② 由式①+②得

222

2

22123

11

12

323

PA PA PA PM a m ++=++ 22222123112111323224PM a a a a ??

=+++-????

222212313()3PM a a a =+++

2

2221233PM MA MA MA =+++

高中数学竞赛平面几何中的几个重要定理

平面几何中几个重要定理及其证明 一、 塞瓦定理 1.塞瓦定理及其证明 定理:在?ABC 内一点P ,该点与?ABC 的三个顶点相连所在的三条直线分别交?ABC 三边AB 、BC 、CA 于点D 、E 、F ,且D 、E 、F 三点均不是?ABC 的顶点,则有 1AD BE CF DB EC FA ??=. 证明:运用面积比可得ADC ADP BDP BDC S S AD DB S S ????==. 根据等比定理有 ADC ADC ADP APC ADP BDP BDC BDC BDP BPC S S S S S S S S S S ??????????-=== -, 所以APC BPC S AD DB S ??=.同理可得APB APC S BE EC S ??=,BPC APB S CF FA S ??=. 三式相乘得 1AD BE CF DB EC FA ??=. 注:在运用三角形的面积比时,要把握住两个三角形是“等高” A B C D F P

还是“等底”,这样就可以产生出“边之比”. 2.塞瓦定理的逆定理及其证明 定理:在?ABC 三边AB 、BC 、CA 上各有一点D 、E 、F ,且D 、 E 、 F 均不是?ABC 的顶点,若1AD BE CF DB EC FA ??=,那么直线CD 、AE 、BF 三线共点. 证明:设直线AE 与直线BF 交于点P ,直线CP 交AB 于点D /,则据塞瓦定理有 / / 1AD BE CF D B EC FA ??=. 因为 1AD BE CF DB EC FA ??=,所以有/ /AD AD DB D B =.由于点D 、D /都在线段AB 上,所以点D 与D /重合.即得D 、E 、F 三点共线. 注:利用唯一性,采用同一法,用上塞瓦定理使命题顺利获证. 二、 梅涅劳斯定理 A B C D E F P D /

人教版数学七年级上册《几何图形初步》知识讲解

《几何图形初步》全章知识讲解 【学习目标】 1.认识一些简单的几何体的平面展开图及三视图,初步培养空间观念和几何直观;2.掌握直线、射线、线段、角这些基本图形的概念、性质、表示方法和画法; 3.初步学会应用图形与几何的知识解释生活中的现象及解决简单的实际问题; 4.逐步掌握学过的几何图形的表示方法,能根据语句画出相应的图形,会用语句描述简单的图形. 【知识网络】 【要点梳理】 要点一、多姿多彩的图形 1.几何图形的分类 要点诠释:在给几何体分类时,不同的分类标准有不同的分类结果. 2.立体图形与平面图形的相互转化 (1)立体图形的平面展开图: 把立体图形按一定的方式展开就会得到平面图形,把平面图形按一定的途径进行折叠就会得到相应的立体图形,通过展开与折叠能把立体图形和平面图形有机地结合起来. 要点诠释: 立体图形:棱柱、棱锥、圆柱、圆锥、球等. ? ? ?平面图形:三角形、四边形、圆等. 几何图形

? ? ?①对一些常见立体图形的展开图要非常熟悉,例如正方体的 11种展开图,三棱柱,圆柱等的展开图; ②不同的几何体展成不同的平面图形,同一几何体沿不同的棱剪开,可得到不同的平面图形,那么排除障碍的方法就是:联系实物,展开想象,建立“模型”,整体构想,动手实践. (2)从不同方向看: 主(正)视图---------从正面看 几何体的三视图 (左、右)视图-----从左(右)边看 俯视图---------------从上面看 要点诠释: ①会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图. ②能根据三视图描述基本几何体或实物原型. ( 3)几何体的构成元素及关系 几何体是由点、线 、面构成的.点动成线,线与线相交成点;线动成面,面与面相交成线;面动成体,体是由面组成. 要点二、直线、射线、线段 1. 直线,射线与线段的区别与联系 2. 基本性质 (1)直线的性质:两点确定一条直线. (2)线段的性质:两点之间,线段最短. 要点诠释: ①本知识点可用来解释很多生活中的现象. 如:要在墙上固定一个木条,只要两个钉子就可以了,因为如果把木条看作一条直线,那么两点可确定一条直线. ②连接两点间的线段的长度,叫做两点的距离. 3.画一条线段等于已知线段 (1 )度量法:可用直尺先量出线段的长度,再画一条等于这个长度的线段. (2)用尺规作图法:用圆规在射线AC 上截取AB=a,如下图:

平面几何基本定理

. 一.平面几何 1. 勾股定理(毕达哥拉斯定理)(广义勾股定理)(1)锐角对边 的平方,等于其他两边之平方和,减去这两边中的一边和另一边在这边上的射影乘积的两倍. (2)钝角对边的平方等于其他两边的平方和,加上这两边中的一边与另一边在这边上的射影乘积的两倍. 2. 射影定理(欧几里得定理) 3. 中线定理(巴布斯定理)设△ABC 的边BC 的中点为P ,则 有)(22222BP AP AC AB +=+; 中线长:2 222 22a c b m a -+= 4. 垂线定理:2 2 2 2 BD BC AD AC CD AB -=-?⊥ 高 线 长 : C b B c A a bc c p b p a p p a h a sin sin sin ))()((2===---= 5. 角平分线定理:三角形一个角的平分线分对边所成的两条线 段与这个角的两边对应成比例. 如△ABC 中,AD 平分∠BAC ,则AC AB DC BD =;(外角平分线定 理) 角平分线长:2 cos 2)(2A c b bc a p bcp c b t a +=-+= (其中 p 为周长一半) 6. 正弦定理: R C c B b A a 2sin sin sin ===, (其中R 为三角形外接圆半径) 7. 余弦定理:C ab b a c cos 2222 -+= 8. 张角定理:AB DAC AC BAD AD BAC ∠+∠=∠sin sin sin 9. 斯特瓦尔特(Stewart )定理:设已知△ABC 及其底边上B 、C 两点间的一点D ,则有AB 2 ·DC +AC 2 ·BD -AD 2 ·BC =BC ·DC ·BD 10. 圆周角定理:同弧所对的圆周角相等,等于圆心角的一 半.(圆外角如何转化?) 11. 弦切角定理:弦切角等于夹弧所对的圆周角 12. 圆幂定理:(相交弦定理:垂径定理:切割线定理(割线定 理):切线长定理:) 13. 布拉美古塔(Brahmagupta )定理: 在圆内接四边形ABCD 中,AC ⊥BD ,自对角线的交点P 向一边作垂线,其延长线必平分对边 14. 点到圆的幂:设P 为⊙O 所在平面上任意一点,PO =d ,⊙ O 的半径为r ,则d 2-r 2就是点P 对于⊙O 的幂.过P 任作 一直线与⊙O 交于点A 、B ,则PA ·PB = |d 2 -r 2 |.“到两圆等幂的点的轨迹是与此二圆的连心线垂直的一条直线,如果此二圆相交,则该轨迹是此二圆的公共弦所在直线”这个结论.这条直线称为两圆的“根轴”.三个圆两两的根轴如果不互相平行,则它们交于一点,这一点称为三圆的“根心”.三个圆的根心对于三个圆等幂.当三个圆两两相交时,三条公共弦(就是两两的根轴)所在直线交于一点. 15. 托勒密(Ptolemy )定理:圆内接四边形对角线之积等于两 组对边乘积之和,即AC ·BD =AB ·CD +AD ·BC ,(逆命题成立) .(广义托勒密定理)AB ·CD +AD ·BC ≥AC ·BD 16. 蝴蝶定理:AB 是⊙O 的弦,M 是其中点,弦CD 、EF 经过 点M ,CF 、DE 交AB 于P 、Q ,求证:MP =QM . 17. 费马点:定理1等边三角形外接圆上一点,到该三角形较近 两顶点距离之和等于到另一顶点的距离;不在等边三角形外接圆上的点,到该三角形两顶点距离之和大于到另一点的距 离.定理2 三角形每一内角都小于120°时,在三角形内必存在一点,它对三条边所张的角都是120°,该点到三顶点距离和达到最小,称为“费马点”,当三角形有一内角不小于120°时,此角的顶点即为费马点 18. 拿破仑三角形:在任意△ABC 的外侧,分别作等边△ABD 、 △BCE 、△CAF ,则AE 、AB 、CD 三线共点,并且AE =BF = CD ,这个命题称为拿破仑定理. 以△ABC 的三条边分别向 外作等边△ABD 、△BCE 、△CAF ,它们的外接圆⊙C 1 、⊙ A 1 、⊙ B 1的圆心构成的△——外拿破仑的三角形,⊙ C 1 、 ⊙A 1 、⊙B 1三圆共点,外拿破仑三角形是一个等边三角形;△ABC 的三条边分别向△ABC 的内侧作等边△ABD 、△BCE 、△CAF ,它们的外接圆⊙C 2 、⊙A 2 、⊙B 2的圆心构成的△——内拿破仑三角形,⊙C 2 、⊙A 2 、⊙B 2三圆共点,内拿破仑三角形也是一个等边三角形.这两个拿破仑三角形还具有相同的中心 19. 九点圆(Nine point round 或欧拉圆或费尔巴赫圆):三角形 中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,九点圆具有许多有趣的性质,例如: (1)三角形的九点圆的半径是三角形的外接圆半径之半 (2)九点圆的圆心在欧拉线上,且恰为垂心与外心连线的中点 (3)三角形的九点圆与三角形的内切圆,三个旁切圆均相切〔费尔巴哈定理〕 20. 欧拉(Euler )线:三角形的外心、重心、九点圆圆心、垂心 依次位于同一直线(欧拉线)上. 21. 欧拉(Euler )公式:设三角形的外接圆半径为R ,内切圆半 径为r ,外心与内心的距离为d ,则d 2 =R 2 -2Rr . 22. 锐角三角形的外接圆半径与内切圆半径的和等于外心到各 边距离的和. 23. 重心:三角形的三条中线交于一点,并且各中线被这个点分 成2:1的两部分;)3 ,3(C B A C B A y y y x x x G ++++ 重心性质:(1)设G 为△ABC 的重心,连结AG 并延长交BC

《几何图形初步》单元教学计划

《几何图形初步》单元计划 本章教材分析: 本章是从我们熟悉的生活中的物体开始,主要介绍了多姿多彩以及最基本的图形----点、线、角等,并在自主探究的过程中结合丰富的实例,探索两点确定一条直线和两点之间线段最短的性质,认识角以及角的表示方法,角的度量,角的画法,角的比较和补角、余角等内容,本章出现的最基本的几何概念是使我们认识复杂图形的基础,由实物形状抽象出几何图形,或由几何图形想出实物形状,进行立体图形与平面图形的相互转化,培养我们的空间想象能力和抽象的思维能力。 教学内容:1、几何图形; 2、直线、射线、线段、3、角 教学目标: 知识与技能: 认识常见的几何图形,并能用自己的语言描述常见几何图形的特征。 过程与方法: 1.经历从现实世界中抽象几何图形的过程,通过对比,概括出几何研究的对象 2.在实物与几何图形之间建立对应关系,在复习小学学过的平面图形的基础上,建立几何图形的概念,发展空间观念情感态度价值观:体验数学学习的乐趣,提高数学应用意识。

情感态度价值观: 体验数学学习的乐趣,提高数学应用意识。 教学重点: 通过观察,讨论,思考和实践等活动,让学生会辨识几何体。教学难点: 从具体实物中抽象出几何体的概念 教具学具: 实物模型等 教学方法 自主探究、实物展示 课时安排: 4.1 几何图形-------------------------------------约4课时4.2直线、射线、线段------------------------------约3课时4.3角--------------------------------------------约5课时4.4课题学习--------------------------------------约2课时小结----------------------------------------------约2课时

图形的初步认识知识点

? ? ? ? ? ?图形的初步认识 一、本章的知识结构图 一、立体图形与平面图形 立体图形:棱柱、棱锥、圆柱、圆锥、球等。 1、几何图形 平面图形:三角形、四边形、圆等。 主(正)视图---------从正面看 2、几何体的三视图侧(左、右)视图-----从左(右)边看 俯视图---------------从上面看 (1)会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图。 (2)能根据三视图描述基本几何体或实物原型。 3、立体图形的平面展开图 (1)同一个立体图形按不同的方式展开,得到的平现图形不一样的。 (2)了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型。 4、点、线、面、体 (1)几何图形的组成 点:线和线相交的地方是点,它是几何图形最基本的图形。 线:面和面相交的地方是线,分为直线和曲线。 面:包围着体的是面,分为平面和曲面。 体:几何体也简称体。 (2)点动成线,线动成面,面动成体。 例1 (1)如图1所示,上面是一些具体的物体,下面是一些立体图形,试找出与下面立体图形相类似的物体。 (2)如图2所示,写出图中各立体图形的名称。 图 1 图2 解:(1)①与d类似,②与c类似,③与a类似,④与b类似。 (2)①圆柱,②五棱柱,③四棱锥,④长方体,⑤五棱锥。 例2 如图3所示,讲台上放着一本书,书上放着一个粉笔盒,指出右边三个平面图形分别是左边立体图形的哪个视图。 图3 解:(1)左视图,(2)俯视图,(3)正视图 练习 1.下图是一个由小立方体搭成的几何体由上而看得到的视图,小正方形中的数字表示该位置小立方块的个数,则从正面看它的视图为()

专题平面几何的四个重要定理

专题平面几何的四个重 要定理 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

竞赛专题讲座06 -平面几何四个重要定理 四个重要定理: 梅涅劳斯(Menelaus)定理(梅氏线) △ABC的三边BC、CA、AB或其延长线上有点P、Q、R,则P、 Q、R共线的充要条件是。 塞瓦(Ceva)定理(塞瓦点) △ABC的三边BC、CA、AB上有点P、Q、R,则AP、BQ、CR共点 的充要条件是。 托勒密(Ptolemy)定理 四边形的两对边乘积之和等于其对角线乘积的充要条件是该 四边形内接于一圆。 西姆松(Simson)定理(西姆松线) 从一点向三角形的三边所引垂线的垂足共线的充要条件是 该点落在三角形的外接圆上。 例题: 1.设AD是△ABC的边BC上的中线,直线CF交AD于F。求 证:。

【分析】CEF截△ABD→(梅氏定理) 【评注】也可以添加辅助线证明:过A、B、D之一作CF的平行线。 2.过△ABC的重心G的直线分别交AB、AC于E、F, 交CB于D。 求证:。 【分析】连结并延长AG交BC于M,则M为BC的 中点。 DEG截△ABM→(梅氏定理) DGF截△ACM→(梅氏定理) ∴===1 【评注】梅氏定理 3. D、E、F分别在△ABC的BC、CA、AB边上, ,AD、BE、CF交成△LMN。 求S△LMN。 【分析】 【评注】梅氏定理 4.以△ABC各边为底边向外作相似的 等腰△BCE、△CAF、△ABG。求证:AE、 BF、CG相交于一点。

【分析】 【评注】塞瓦定理 5.已知△ABC中,∠B=2∠C。求证:AC2=AB2+AB·BC。 【分析】过A作BC的平行线交△ABC的外接圆于D,连结BD。则 CD=DA=AB,AC=BD。 由托勒密定理, AC·BD=AD·BC+CD·AB。 【评注】托勒密定理 6.已知正七边形A 1A2A3A4A5A6A7。 求证:。(第21届全苏数学竞赛) 【分析】 【评注】托勒密定理 7.△ABC的BC边上的高AD的延长线交 外接圆于P,作PE⊥AB于E,延长ED交 AC延长线于F。 求证:BC·EF=BF·CE+BE·CF。 【分析】 【评注】西姆松定理(西姆松线) 8.正六边形ABCDEF的对角线AC、CE分别被内分点M、N分成的 比为AM:AC=CN:CE=k,且B、M、N共 线。求k。(23-IMO-5) 【分析】 【评注】面积法 9. O为△ABC内一点,分别以d a、d b、d c表示O到BC、CA、AB的距离,以R a、 R b、R c表示O到A、B、C的距离。

第十九讲平面几何中的几个著名定理

第十九讲平面几何中的几个著名定理 几何学起源于土地测量,几千年来,人们对几何学进行了深入的研究,现已发展成为一门具有严密的逻辑体系的数学分支.人们从少量的公理出发,经过演绎推理得到不少结论,这些结论一般就称为定理.平面几何中有不少定理,除了教科书中所阐述的一些定理外,还有许多著名的定理,以这些定理为基础,可以推出不少几何事实,得到完美的结论,以至巧妙而简捷地解决不少问题.而这些定理的证明本身,给我们许多有价值的数学思想方法,对开阔眼界、活跃思维都颇为有益.有些定理的证明方法及其引伸出的结论体现了数学的美,使人们感到对这些定理的理解也可以看作是一种享受.下面我们来介绍一些著名的定理. 1.梅内劳斯定理 亚历山大里亚的梅内劳斯(Menelaus,约公元100年,他和斯巴达的Menelaus是两个人)曾著《球面论》,着重讨论球面三角形的几何性质.以他的名子命名的“梅内劳斯定理”现载在初等几何和射影几何的书中,是证明点共线的重要定理. 定理一直线与△ABC的三边AB,BC,CA或延长线分别相交于X,Y,Z,则 证过A,B,C分别作直线XZY的垂线,设垂足分别为Q,P,S,见图3-98.由△AXQ∽△BXP得

同理 将这三式相乘,得 说明(1)如果直线与△ABC的边都不相交,而相交在延长线上,同样可证得上述结论,但一定要有交点,且交点不在顶点上,否则定理的结论中的分母出现零,分子也出现零,这时定理的结论应改为 AX×BY×CZ=XB×YC×ZA, 仍然成立. (2)梅内劳斯定理的逆定理也成立,即“在△ABC 的边AB和AC上分别取点X,Z,在BC的延长线上取点Y,如果 那么X,Y,Z共线”.梅内劳斯定理的逆定理常被用来证明三点共线. 例1 已知△ABC的内角∠B和∠C的平分线分别为BE和CF,∠A的外角平分线与BC的延长线相交于D,求证:D,E,F共线. 证如图3-99有 相乘后得

初中平面几何四个重要定理

初中数学知识重点整理 -平面几何四个重要定理 四个重要定理: 梅涅劳斯(Menelaus)定理(梅氏线) △ABC的三边BC、CA、AB或其延长线上有点P、Q、R,则P、Q、 R共线的充要条件是。 塞瓦(Ceva)定理(塞瓦点) △ABC的三边BC、CA、AB上有点P、Q、R,则AP、BQ、CR共点的 充要条件是。 托勒密(Ptolemy)定理 四边形的两对边乘积之和等于其对角线乘积的充要条件是该 四边形内接于一圆。 西姆松(Simson)定理(西姆松线) 从一点向三角形的三边所引垂线的垂足共线的充要条件是 该点落在三角形的外接圆上。 例题: 1.设AD是△ABC的边BC上的中线,直线CF交AD于F。求证: 。

【分析】CEF截△ABD→(梅氏定理) 【评注】也可以添加辅助线证明:过A、B、D之一作CF的平行线。 2.过△ABC的重心G的直线分别交AB、AC于E、F, 交CB于D。 求证:。 【分析】连结并延长AG交BC于M,则M为BC的中 点。 DEG截△ABM→(梅氏定理) DGF截△ACM→(梅氏定理) ∴===1 【评注】梅氏定理 3. D、E、F分别在△ABC的BC、CA、AB边上, ,AD、BE、CF交成△LMN。 求S△LMN。 【分析】 【评注】梅氏定理 4.以△ABC各边为底边向外作相似的 等腰△BCE、△CAF、△ABG。求证:AE、BF、 CG相交于一点。

【分析】 【评注】塞瓦定理 5.已知△ABC中,∠B=2∠C。求证:AC2=AB2+AB·BC。 【分析】过A作BC的平行线交△ABC的外接圆于D,连结BD。则 CD=DA=AB,AC=BD。 由托勒密定理, AC·BD=AD·BC+CD·AB。 【评注】托勒密定理 6.已知正七边形A 1A2A3A4A5A6A7。 求证:。(第21届全苏数学竞赛) 【分析】 【评注】托勒密定理 7.△ABC的BC边上的高AD的延长线交 外接圆于P,作PE⊥AB于E,延长ED交 AC延长线于F。 求证:BC·EF=BF·CE+BE·CF。 【分析】 【评注】西姆松定理(西姆松线) 8.正六边形ABCDEF的对角线AC、CE分别被内分点M、N分成的比 为AM:AC=CN:CE=k,且B、M、N共线。 求k。(23-IMO-5) 【分析】 【评注】面积法 9. O为△ABC内一点,分别以d a、d b、d c表示O到BC、CA、AB的距离,以R a、R b、R c表示O到A、B、C的距离。

几何图形初步知识点总结

几何图形初步 第一节几何图形 认识立体图形 (1 )几何图形:从实物中抽象出的各种图形叫几何图形.几何图形分为立体图形和平面图形. (2)立体图形:有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一个平面内,这就是立体图形. (3)重点和难点突破: 结合实物,认识常见的立体图形,如:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等.能区分立体图形与平面图形,立体图形占有一定空间,各部分不都在同一平面内. 点、线、面、体 1 )体与体相交成面,面与面相交成线,线与线相交成点. (2)从运动的观点来看点动成线,线动成面,面动成体?点、线、面、体组成几何图形,点、线、面、体的运动组成了多姿多彩的图形世界. (3)从几何的观点来看点是组成图形的基本元素,线、面、体都是点的集合. (4)长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体,几何体简称体. (5)面有平面和曲面之分,如长方体由6个平面组成,球由一个曲面组成. 欧拉公式 (1)简单多面体的顶点数V、面数F及棱数E间的关系为:V+F-E=2 ?这个公式叫欧拉公式?公式描述了简单多面体顶点数、面数、棱数特有的规律. (2)V+F-E=X (P) , V是多面体P的顶点个数,F是多面体P的面数,E是多面体P的棱的条数,X ( P)是多面体P的欧拉示性数. 几何体的表面积 (1)几何体的表面积=侧面积+底面积(上、下底的面积和) (2)常见的几种几何体的表面积的计算公式 ①圆柱体表面积:2nR2+2 n Rh ( R为圆柱体上下底圆半径,h为圆柱体高) ②圆锥体表面积:n r+n n ( h2+r2 ) 360 (r为圆锥体低圆半径,h为其高,n为圆锥侧面展开图中扇形的圆心角) ③长方体表面积:2 (ab+ah+bh ) (a为长方体的长,b为长方体的宽,h为长方体的高) ④正方体表面积:6a2( a为正方体棱长 认识平面图形 (1)平面图形:一个图形的各部分都在同一个平面内,如:线段、角、三角形、正方形、圆等. (2 )重点难点突破: 通过以前学过的平面图形:三角形、长方形、正方形、梯形、圆,了解它们的共性是在同一平面内. 几何体的展开图 (1)多数立体图形是由平面图形围成的.沿着棱剪开就得到平面图形,这样的平面图形就是相应立体图形的展开图.同一个立体图形按不同的方式展开,得到的平面展开图是不一样的,同时也可看出,立体图形的展开图是平面图形. (2)常见几何体的侧面展开图: ①圆柱的侧面展开图是长方形.②圆锥的侧面展开图是扇形.③正方体的侧面展开图是长方形.④三棱柱的侧面展开图是长方形. (3 )立体图形的侧面展开图,体现了平面图形与立体图形的联系.立体图形问题可以转化为平面图形问题解决. 从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键. 展开图折叠成几何提体 通过结合立体图形与平面图形的相互转化,去理解和掌握几何体的展开图,要注意多从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形 正方体相对两个面上的文字

认识平面几何的61个著名定理

【认识平面几何的61个著名定理,自行画出图形来学习,★部分要求证明出来】 ★1、勾股定理(毕达哥拉斯定理) ★2、射影定理(欧几里得定理) ★3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分 4、四边形两边中心的连线和两条对角线中心的连线交于一点 5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。 ★6、三角形各边的垂直平分线交于一点。 ★7、从三角形的各顶点向其对边所作的三条垂线交于一点 8、设三角形ABC 的外心为O ,垂心为H ,从O 向BC 边引垂线,设垂足不L ,则AH=2OL 9、三角形的外心,垂心,重心在同一条直线上。 10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上, 11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上 12、库立奇大上定理:(圆内接四边形的九点圆) 圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。 ★13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式: ()()()s c s b s a s r ---=,s 为三角形周长的一半 ★14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点 15、中线定理:(巴布斯定理)设三角形ABC 的边BC 的中点为P ,则有AB 2+AC 2=2(AP 2+BP 2) 16、斯图尔特定理:P 将三角形ABC 的边BC 分成m 和n 两段,则有n×AB 2+m×AC 2=BC×(AP 2+mn ) 17、波罗摩及多定理:圆内接四边形ABCD 的对角线互相垂直时,连接AB 中点M 和对角线交点E 的直线垂直于CD 18、阿波罗尼斯定理:到两定点A 、B 的距离之比为定比m:n (值不为1)的点P ,位于将线段AB 分成m:n 的内分点C 和外分点D 为直径两端点的定圆周上 ★19、托勒密定理:设四边形ABCD 内接于圆,则有AB×CD+AD×BC=AC×BD

平面几何的几个重要定理--托勒密定理

托勒密定理:圆内接四边形中,两条对角线的乘积(两对角线所包矩形的面积)等于两组 对边乘积之和(一组对边所包矩形的面积与另一组对边所包矩形的面积之 和). 即:ABCD AB CD AD BC AC BD ?+?≥? 定理:在四边形中,有: ABCD 并且当且仅当四边形内接于圆时,等式成立; () ABCD E BAE CAD ABE ACD AB BE ABE ACD AB CD AC BE AC CD AB AE BAC EAD ABC AED AC AD BC ED AD BC AC ED AC AD AB CD AD BC AC BE ED AB CD AD BC AC BD E BD A B C ∠=∠∠=∠ ??∴=??=? =∠=∠∴?? ∴=??=? ∴?+?=?+ ∴?+?≥? 证:在四边形内取点,使, 则:和相似 又且和相似 且等号当且仅当在上时成立,即当且仅当、、、 一、直接应用托勒密定理 例1如图2,P是正△ABC外接圆的劣弧上任一点(不与B、C重合), 求证:PA=PB+PC. 分析:此题证法甚多,一般是截长、补短,构造全等三角形,均为 繁冗.若借助托勒密定理论证,则有PA·BC=PB·AC+PC·AB, ∵AB=BC=AC.∴PA=PB+PC. 二、完善图形借助托勒密定理 例2证明“勾股定理”:在Rt△ABC中,∠B=90°,求证:AC2=AB2+BC2 证明:如图,作以Rt△ABC的斜边AC为一对角线的矩形ABCD,显然ABCD是 圆内接四边形. 由托勒密定理,有AC·BD=AB·CD+AD·BC.① 又∵ABCD是矩形,∴AB=CD,AD=BC,AC=BD.② 把②代人①,得AC2=AB2+BC2. 例3如图,在△ABC中,∠A的平分线交外接∠圆于D,连结BD, 求证:AD·BC=BD(AB+AC). 证明:连结CD,依托勒密定理,有AD·BC=AB·CD+AC·BD. ∵∠1=∠2,∴BD=CD. 故AD·BC=AB·BD+AC·BD=BD(AB+AC). 三、构造图形借助托勒密定理 例4若a、b、x、y是实数,且a2+b2=1,x2+y2=1.求证:ax+by≤1. 证明:如图作直径AB=1的圆,在AB两边任作Rt△ACB和Rt△ADB, 使AC=a,BC=b,BD=x,AD=y. 由勾股定理知a、b、x、y是满足题设条件的. 据托勒密定理,有AC·BD+BC·AD=AB·CD. ∵CD≤AB=1,∴ax+by≤1. 四、巧变原式妙构图形,借助托勒密定理 例5已知a、b、c是△ABC的三边,且a2=b(b +c),求证:∠A=2∠B. 分析:将a2=b(b+c)变形为a·a=b·b+bc,从而联想到托勒密定理,进 而构造一个等腰梯形,使两腰为b,两对角线为a,一底边为c. 证明:如图,作△ABC 的外接圆,以A为圆心,BC为半径作弧交圆于 D,连结BD、DC、DA.∵AD=BC,ACD BDC =∴∠ABD=∠BAC. 又∵∠BDA=∠ACB(对同弧),∴∠1=∠2. 依托勒密定理,有BC·AD=AB·CD+BD·AC.① 而已知a2=b(b+c),即a·a=b·c+b2.② ∴∠BAC=2∠ABC. 五、巧变形妙引线 借肋托勒密定理 例6在△ABC中,已知∠A∶∠B∶∠C=1∶2∶4, 分析:将结论变形为AC·BC+AB·BC=AB·AC,把三角形和圆联系起 来,可联想到托勒密定理,进而构造圆内接四边形. 如图,作△ABC的外接圆,作弦BD=BC,边结AD、CD. 在圆内接四边形ADBC中,由托勒密定理, 有AC·BD+BC·AD=AB·CD 易证AB=AD,CD=AC,∴AC·BC+BC·AB=AB·AC, 1.已知△ ABC 中,∠ B=2∠ C。求证:AC2=AB2+AB·BC。 【分析】过A作BC的平行线交△ABC的外接圆于D,连结BD。 则CD=DA=AB,AC=BD。由托勒密定理,AC·BD=AD·BC+CD·AB。 2.ABC BC P BC AC AB PK PL PN BC AC AB PK PL PM ? =+ 由外接圆的弧上一点分别向边、与作垂线、和, 求证:

人教版七年级上数学第四章-几何图形初步认识

启航学校几何图形初步复习汇编 第一板块:《几何图形初步》知识聚焦 第二板块:《几何图形初步》考点解析 第三板块:《几何图形初步》试题荟萃 第四板块:《几何图形初步》解题宝贝 第一板块:《几何图形初步》知识聚焦 4.1多姿多彩的图形 1.?? ? ??????? ??平面图形球体椎体(棱锥、圆锥)柱体(棱柱、圆柱)立体图形几何图形 2.研究立体图形的方法 (1)平面展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形。这样的平面图形称为相应立体图形的展开图。 (2)从不同的方向看(“三视图”) 3.几何图形的形成:点动成线,线动成面,面动成体。 4.几何图形的结构:点、线、面、体组成几何图形。点是构成图形的基本元素。 4.2直线、射线、线段 1.点:表示一个物体的位置,通常用一个大写字母表示,如点A 、点B 。 2.直线 (1)直线的表示方法:①可以用这条直线上任意两点的字母(大写)来表示;②用一个小写字母来表示。 (2)直线的基本性质:经过两点有一条直线,并且只有一条直线。简述为,两点确定一条直线。 (3)直线的特征: ①直线没有端点,不可度量,向两方无限延伸; ②直线没有粗细; ③两点确定一条直线; ④两条直线相交有唯一一个交点。 (4)点与直线的位置关系: ①点在直线上(也可以说这条直线经过这个点); ②点在直线外(也可以说直线不经过这个点)。 (5)两条直线的位置关系有两种——相交、平行 3.射线:直线上一点和它一旁的部分叫做射线。 (1)射线的表示方法: ①用两个大写字母表示,表示端点的字母写在前面,在两个字母前加上“射线”; ②用一个小写字母表示。 (2)射线的性质: ①射线是直线的一部分; ②射线只向一方无限延伸,有一个端点,不能度量、不能比较长短; ③射线上有无穷多个点; ④两条射线的公共点可能没有,可能只有一个,可能有无穷多个。 4.线段:直线上两点和它们之间的部分叫做线段。 (1)线段的特点:线段是直的,它有两个端点,它的长度是有限的,可以度量,可以比较长短。 (2)线段的表示方法: ①用两个端点的大写字母表示;

平面几何的几个重要的定理

平面几何的几个重要的定理 一、梅涅劳斯定理: 1=??=??B A A C C B C B A h h h h h h RB AR QA CQ PC BP l C B A h h h 的垂线的长度,则:到直线 、、分别是、、证:设 注:此定理常运用求证三角形相似的过程中的 线段成比例的条件; 。 的交点,证明:与是的中点,是上,在点 的平分线,是是斜边上的高,中,:若直角例CE //BF CK DE F AC D AK E ACK CE CK ABC ∠?11PC BP R Q P AB CA BC ABC ABC l 1=??RB AR QA CQ ,则 、、的延长线分别交于或它们、、的三边的顶点,并且与不经过:若直线定理??CE //BF CKE FKB KE BK KC KF BE BK FC KF BE BK BC BP AC EP AC CK AE EK FC KF 1FC KF EK AE DA CD F E D ACK EP CK EP BC EBC CE BH 90HCB ACE HCB HBC ACE HBC ACK EBC BH B EBC ∴?∴= ====??=∴⊥?=∠+∠=∠+∠∠=∠∠=∠∠?????= 依分比定理有:=即:=于是依梅涅劳斯定理有:、、和三点对于,则:上的高作为等腰三角形 即:则:的平分线中,作在证:Θ

1 11 111111111D B D A : C B C A B D AD :BC AC D C B A D C B A K 1=,试证:、、、和、、、线分别交这四条直线于引四条直线,另两条直】从点【练习 注:此定理常用于证明三点共线的问题,且常需要多次使用 再相乘; 共线; 、、证明点引的垂线的垂足, 、、向是从点、、的外接圆上;位于点例111111C B A AB CA BC P C B A ABC P .2? 三点共线; 、、综上可得:也重合与的延长线上时,同在与类似地可证得当矛盾=这与于是可得即这时设必定重合,不然的话,与线段上,则同在与若的延长线上; 线段上,或者同在或者同在与因此,或边上的点的个数也为三点中,位于、、由于在同一直线上的= ,则:又得: ,于是由定理交于与直线证:设直线R Q P R R AB R R BR AR BR AR BR AR BR AR ,BR BR ,AR AB AR AB ,AR AR R R AB R R AB AB R R 20ABC R Q P RB AR B R AR 1RB AR QA CQ 1B R AR QA CQ 1R AB PQ ''' ' ' ' ' ' ''''''''' '> <-<->=??=???PC BP PC BP Θ三点共线; 、、求证:, ,这时若或边上的点的个数为三点中,位于、、三点,并且 上或它们的延长线上的、、的三边分别是、、:设定理R Q P PC BP 20ABC R Q P AB CA BC ABC R Q P 21RB AR QA CQ =???? C B A 1 A 1 B 1 C 三点共线; 、、依梅涅劳斯定理可知,=可得 且将上面三条式子相乘, 证:易得:1111 1 1111111111C B A 1BC AC AB CB CA BA 180PBA PCA ,PCB PAB ,PBC PAC PBA cos PB PAB cos AP BC AC PAC cos AP PCA cos CP AB CB , PCB cos CP PBC cos BP CA BA ???=∠+∠∠=∠∠=∠∠?∠?-=∠?∠?-=∠?∠?-=Θ

第四章几何图形初步教案.doc

第四章几何图形初步 4.1几何图形 4. 1.1立体图形与平面图形( 3 课时 ) 第 1 课时认识几何体 1.通过实物和具体模型,了解从物体外形抽象出来的几何体、平面、直线和点的概念. 2.能识别一些基本几何体. 3.初步了解立体图形和平面图形的概念. 重点 识别一些基本几何体. 难点 了解从物体外形抽象出来的几何体、平面、直线和点的概念. 活动 1:创设情境,导入新课 1.打开电视,播放一个城市的现代化建筑,学生认真观看. 2.提出问题: 在同学们所观看的电视片中,有哪些是我们熟悉的几何图形? 活动 2:探究新知 1.学生在回顾刚才所看的电视片后,充分发表自己的意见,并通过小组交流,补充自己的意见,积累小 组活动经验.b5E2RGbCAP 2.指定一名学生回答问题,并能正确说出这些几何图形的名称. 学生回答:有圆柱、长方体、正方体等等. 教师活动:纠正学生所说几何图形名称中的错误,并出示相应的几何体模型让学生观察它们的特征. 3.立体图形的概念. (1)长方体、正方体、球、圆柱、圆锥等都是立体图形. (2) 学生活动:看课本图 4.1 - 3 后学生思考:这些物体给我们什么样的立体图形的形象?( 棱柱和棱锥 ) (3)用幻灯机放映课本 4.1 - 5 的幻灯片. ( 或用教学挂图 ) (4)提出问题:在这个幻灯片中,包含哪些简单的平面图形? (5)探索解决问题的方法.①学生进行小组交流,教师对各小组进行指导,通 过交流,得出问题的答案.②学生回答:包含的平面图形有长方形、圆、正方 形、多边形和三角形等. 4.平面图形的概念. 长方形、正方形、三角形、圆等都是我们十分熟悉的平面图形. 注:对立体图形和平面图形的概念,不要求给出完整的定义,只要求学生能够正确区分立体图形和平面 图形. 活动 3:课堂小结

七年级数学几何图形的初步认识知识点

第二章 几何图形的初步认识 2.1从生活中认识几何图形 知识点: 一、认识几何图形 几何图形 二、几何图形的构成 1、面与面相交成___,线与线相交成___。 2、点动成___,___动成面,面动成___。 3、___、___、___是构成几何图形的基本要素,体是由___围成的。 4、面有___面和___面,线有___线和___线。 引申探讨:n 棱柱有几个顶点、几条棱、几个面 2.2 点和线

1、点的表示: A B 用一个大写的字母,例如:点A、点B 2、线段的表示: 方法一:用表示端点的两个大写字母(没有次序). 例如:线段AB、线段BA. 方法二:用一个小写字母.例如线段a. 3、射线的表示: 用表示端点的大写字母和其余任一点的字母(表示端点的大写字母必须写在前). 例如:射线AB 4、直线的表示: 方法一:用表示任两点的两个大写字母(没有次序). 例如:直线AB、直线BA. 方法二:用一个小写字母.例如直线a. 5、线段、射线、直线的比较: 6、直线的性质:经过两点有一条直线,并且只有一条直线(简记为:两点确定一条直线) 7、点与直线的位置关系:点在直线上(直线经过点);点在直线外(直线不经过点) 引申探讨:1、一条直线上有n个点,会有几条线段? 2、握手问题、票价问题、车票问题。 2.3线段的长短

1、线段长短的比较方法:(两种) (1)度量法:是从数量的角度来比较 (2)叠合法:是从图形的角度来比较 另外了解估测法:依据已有的经验来判断 2、线段的画法: 3、线段的性质:两点之间的所有连线中,线段最短。 (简记为:两点之间,线段最短。) 引申探讨:蚂蚁爬行问题 2.4 线段的和与差 知识点: 一、线段的和与差的概念及作图方法 二、线段的和与差的计算 三、线段的中点 几何图形初步 一、本节学习指导 本节知识点比较简单,都是基础,当看书应该就能理解。 二、知识要点 1、几何图形

平面几何四个重要定理

竞赛专题讲座-平面几何四个重要定理 重庆市育才中学瞿明强 四个重要定理: 梅涅劳斯(Menelaus)定理(梅氏线) △ABC的三边BC、CA、AB或其延长线上有点P、Q、R,则P、Q、R共线的充要条件是四个重要定理: 。 塞瓦(Ceva)定理(塞瓦点) △ABC的三边BC、CA、AB上有点P、Q、R,则AP、BQ、CR共点的充要条件是 。 托勒密(Ptolemy)定理 四边形的两对边乘积之和等于其对角线乘积的充要条件是该四边形内接于一圆。 西姆松(Simson)定理(西姆松线) 从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接圆上。 例题:

1.设AD是△ABC的边BC上的中线,直线CF交AD于F。求证:。 【分析】CEF截△ABD→(梅氏定理) 【评注】也可以添加辅助线证明:过A、B、D之一作CF的平行线。 2.过△ABC的重心G的直线分别交AB、AC于E、F,交CB于D。 求证:。 【分析】连结并延长AG交BC于M,则M为BC的中点。DEG截△ABM→(梅氏定理) DGF截△ACM→(梅氏定理) ∴===1 【评注】梅氏定理

3.D、E、F分别在△ABC的BC、CA、AB边上, ,AD、BE、CF交成△LMN。 求S△LMN。 【分析】 【评注】梅氏定理 4.以△ABC各边为底边向外作相似的等腰△BCE、△CAF、△ABG。求证:AE、BF、CG相交于一点。 【分析】 【评注】塞瓦定理 5.已知△ABC中,∠B=2∠C。求证:AC2=AB2+AB·BC。 【分析】过A作BC的平行线交△ABC的外接圆于D,连结BD。则CD=DA=AB,AC=BD。由托勒密定理,AC·BD=AD·BC+CD·AB。 【评注】托勒密定理

几何图形的初步认识要点总结

《几何图形的初步认识》的认识 在宇宙的空间存在着千姿百态,丰富多彩的图形,这些图形与我们的生活息息相关,了解和掌握这些图形的特性,对我们了解宇宙空间,更好地生活和生产是大有帮助的.《几何的初步认识》这一章的内容为我们认识一些常见的图形提供了一个良好的平台.见议同学们在学习中注意以下几点: 一、了解生活中的空间图形 上图(1)—(8)是我们所熟悉的空间图形,也叫做立体图形,图(1)叫做圆锥,它是由一个底面为圆和一个侧面组成的,多么象我国北方草原上牧民们的居住的蒙古包,冰凉爽口的冰激凌最常用的一种包装就是它;图(2)叫做棱锥,价值连城的珠宝钻石就是这种样子;图(3)叫做圆柱,它是由两个底面大小一样的圆和一个侧面组成的,我们每天刷牙用的牙杯假如没有把柄,外加一个圆形的盖子,它就变成了圆柱;图(4)这不就是篮球吗?不错,它是在几何中叫做球;图(5)叫做长方体,许多建筑物的造型都采用了它;图(6)叫做正方体,它比长方体美观多了,其用途当然也更广泛了,你看那魔方就是由27个小正方体组成的正方体;图(7)叫做棱柱,它有棱有角,多象那晶莹剔透的水晶啊!图(8)叫做圆台,它是由上下两个大小不一的圆和一个侧面组成的,你看把它作为椅子坐在上面多稳当啊!图(8)称做棱台,它是由上下两个大小不一的多边形和若干个侧面组成的,大型建筑物的底座大多采用此结构,显得特别雄伟而庄重。 上述图(1)、(2)统称为锥体,(3)、(5)、(6)、(7)统称为柱体,(8),(9)统称为台体。你有没有发现锥、柱、台分别有何共同点? 二、了解空间图形与平面图形的关系 许多空间图形是由平面图形的旋转或折叠而成的,同时,也有许多空间图形可以展开成平面图形,当然也有些是不能这样做,象球就不可能展开成平面图形. 1.常见可由平面图形旋转而成的空间图形: (1)圆柱可由长方形绕它的一条边旋转一周而成; (2)圆锥可由直角三角形绕它的一条直角边旋转一周而成; (3)球是半圆绕它的直径旋转一周而成; (4)圆台是直角梯形绕直角腰旋转一周而成; 请同学们探讨一下:如图(10)旋转一周所成的图形是什么形状?你能把它画出来吗? 2.常见可用平面图形折叠而成的空间图形: 图(10) 图(3)图(4)图(6) 图(5) 图(8) 图(7)图(9) 1

相关主题
文本预览
相关文档 最新文档