当前位置:文档之家› 2011-Discrete particle simulation of gas fluidization of ellipsoidal particles

2011-Discrete particle simulation of gas fluidization of ellipsoidal particles

2011-Discrete particle simulation of gas fluidization of ellipsoidal particles
2011-Discrete particle simulation of gas fluidization of ellipsoidal particles

Discrete particle simulation of gas?uidization of ellipsoidal particles

Z.Y.Zhou a,D.Pinson b,R.P.Zou a,A.B.Yu a,n

a Laboratory for Simulation and Modelling of Particulate Systems,School of Materials Science and Engineering,The University of New South Wales,Sydney,NSW2052,Australia

b BlueScope Steel Research,P.O.Box202,Port Kembla,NSW2505,Australia

a r t i c l e i n f o

Article history:

Received25February2011

Received in revised form

6August2011

Accepted24August2011

Available online1September2011

Keywords:

Fluidization

Ellipsoid

Computational?uid dynamics

Discrete element method

Granular materials

Simulation

a b s t r a c t

Fluidization is widely used in industries and has been extensively studied,either experimentally or

theoretically,in the past decades.In recent years,a coupled simulation approach of discrete element

method(DEM)and computational?uid dynamics(CFD)has been successfully developed to study the

gas–solid?ow and heat transfer in?uidization at a particle scale.However,to date,such studies mainly

deal with spherical particles.The effect of particle shape on?uidization is recognized but not properly

quanti?ed.In this paper,the CFD–DEM approach is extended to consider the?uidization of ellipsoidal

particles.In the simulation,particles used are either oblate or prolate,with aspect ratios varying from

very?at(aspect ratio?0.25)to elongated(aspect ratio?3.5),representing cylinder-type and disk-type

shaped particles,respectively.The commonly used correlations to determine the?uid drag force acting

on a non-spherical particle are compared?rst.Then the model is veri?ed in terms of solid?ow patterns.

The effect of aspect ratio on the?ow pattern,the relationship between pressure drop and gas

super?cial velocity,and microscopic parameters such as coordination number,particle orientation and

force structure are investigated.It is shown that particle shape affects bed permeability and the

minimum?uidization velocity signi?cantly.The coordination number generally increases with aspect

ratio deviating from 1.0.The analysis of particle orientations shows that the bed structures for

ellipsoids are not random as that for spheres.Oblate particles prefer facing upward or downward while

prolate particles prefer horizontal orientation.Spheres have the largest particle–particle contact force

and?uid drag force under the comparable conditions.With aspect ratio deviating from1.0,particle–

particle interaction and?uid drag become relatively weak.The proposed model shows a promising

method in examining the effect of particle shape on different?ow behaviour in gas?uidization.

&2011Elsevier Ltd.All rights reserved.

1.Introduction

Fluidization is widely used in industries and as a typical gas–

solid two-phase?ow system,has been extensively studied,both

experimentally and theoretically,in the past.Generally speaking,

two approaches are available for the modelling of solid phase:

continuum at a macroscopic level and discrete at a microscopic

level.Continuum modelling,based on local average principles,

has been widely used in gas?uidization(for example,Anderson

and Jackson,1967;Gidaspow,1994;Enwald et al.,1996).How-

ever,its effective use depends on reliable constitutive or closure

relations which are generally not available yet.Alternatively,

discrete simulation,based on the analysis of the motion of

individual particles,can overcome this dif?culty.In this connec-

tion,the so called combined approach of computational?uid

dynamics(CFD)and discrete element method(DEM)has been

increasingly used in the study of gas–solid?ow in?uidization,as

recently reviewed by Zhu et al.(2007,2008).This approach can

generate detailed dynamic information such as the trajectories of

and transient forces on individual particles,which is extremely

dif?cult,if not impossible,to obtain experimentally.Such infor-

mation is important to depict the particle–particle and particle–

?uid interactions and hence understand the fundamentals of

particle–?uid?ow under different conditions.

To date,the particles dealt with in the CFD–DEM modelling of

?uidization are spherical particles,which cannot fully represent

the reality.In practice,most particles are non-spherical,of either

regular or irregular shapes.Particle shape is one of the most

important particle properties,and affects the packing/?ow struc-

tures that are critical to transport properties such as permeability

related to pore connection and thermal conductivity related to

particle connection.For example,studies on how particle shape

affects porosity(1-packing fraction)have been done by some

researchers(for example,Yu and Standish,1993;Zou and

Yu,1996;Yu et al.,1996;Donev et al.,2004;Guises et al.,2009;

Jia et al.,2010).Generally speaking,porosity will decrease to a

minimum and then increase when particles become more non-

spherical.Correspondingly,this will affect the bed permeability

Contents lists available at SciVerse ScienceDirect

journal homepage:https://www.doczj.com/doc/4c7512278.html,/locate/ces

Chemical Engineering Science

0009-2509/$-see front matter&2011Elsevier Ltd.All rights reserved.

doi:10.1016/j.ces.2011.08.041

n Corresponding author.Tel.:t61293854429;fax:t61293855956.

E-mail address:a.yu@https://www.doczj.com/doc/4c7512278.html,.au(A.B.Yu).

Chemical Engineering Science66(2011)6128–6145

signi?cantly,as re?ected by the Ergun equation(1952).In the past,some work has also been done experimentally to investigate the effect of particle shape on?ow behaviour.For example, Liu and Litster(1991)investigated how particle shape affects the minimum spouting velocity and fountain height in a spouted bed,revealing that the predicted fountain heights are much lower than the experimental values if particle shape is ignored.Dolejs and Machac(1995)presented a method for estimating the pressure drop for the?ow of Newtonian?uids through?xed beds of spherical and non-spherical particles.Liu et al.(2008) observed that non-spherical particles give poor?uidizing quality as compared to spherical particles.With the same volume-equivalent diameter,non-spherical particles have a lower mini-mum?uidization velocity than spheres.Escudie et al.(2006) investigated the effect of particle shape on segregation in liquid-?uidized beds,revealing that segregation can occur according to shape.Clearly,experimental studies have provided some useful data to understand how particle shape affects the?ow behaviour

at a macroscopic scale.However,the results are often not so quantitative and lack of microscopic details.

DEM has recently been applied to study the granular?ow of non-spherical particles at a particle scale(for example,Vu-Quoc et al.,2000;Cleary and Sawley,2002;Langston et al.,2004; Lia et al.,2004;Fraige et al.,2008).In particular,the shapes considered can be regular or irregular.Due to the dif?culty and complexity in representing the irregular shapes and heavy com-putational requirement,to date,such studies are largely limited to regular shape.Particularly,ellipsoidal particles are commonly used because of its diversity in representing particle shapes varying from oblate to prolate ellipsoids.Recently,attempts have also been made to extend the CFD–DEM approach to modelling the?uidization of ellipsoidal particles(for example,Zhou et al., 2009a;Hilton et al.,2010).Some important aspects are discussed, such as the drag force,local and overall porosity and pressure drop.However,these studies are largely preliminary,without much detailed microscopic information.There are many issues to study here.For example,particle orientation is an important aspect,which probably represents the major difference between spherical and ellipsoidal particles.To date,it is not clear how aspect ratio affects particle orientation and its related parameters such as coordination number and forces.

In this work,the CFD–DEM approach is extended to describe the?uidization of ellipsoidal particles.In the simulation,particles used are either oblate or prolate,with aspect ratio varying from 0.25to3.5.The effect of aspect ratio on dynamic behaviour such as solid?ow pattern,the relationship between pressure drop and gas super?cial velocity,particle contacts and orientation and force structures are investigated in details.

2.Model description

2.1.DEM for ellipsoidal particles

Techniques for DEM modelling of non-spherical particles have been reported in the literature,as,for example,reviewed by Dziugys and Peters(2001).In particular,a number of investiga-tors have contributed to the modelling of ellipsoidal particles (Rothenburg and Bathurst,1991;Ting,1992;Ting et al.,1993; Lin and Ng,1995,1997;Vu-Quoc et al.,2000;Dziugys and Peters, 2001).The present DEM model is largely developed on this basis. For completeness,a brief description of the DEM method used is given below.

As originally proposed by Cundall and Strack(1979),a particle can have two types of motion:translational and rotational. Accordingly,the governing equations for particle i with mass m i and moment of inertia I i can be written as

m i

d v i

?f pf,it

X k i

j?1

ef c,ijtf d,ijTtm i ge1T

and

I i

d x i

dt

?

X k i

j?1

eM t,ijtM n,ijtM r,ijTe2T

where v i and x i are the translational and angular velocities of the particle,respectively,and k i is the number of particles interacting with the particle.As shown in Fig.1,the forces involved are: particle–?uid interaction force f pf,i,the gravitational force m i g, and inter-particle forces between particles,which include elastic force f c,ij and viscous damping force f d,ij.The torques acting on particle i by particle j include:M t,ij generated by the tangential force,M r,ij commonly known as the rolling friction torque,and also the torque M n,ij generated by the normal force when the normal force does not pass through the particle centre.

Equations used to calculate the interaction forces and torques between two spheres have been well-established in the literature (Zhu et al.,2007).In this work,we simply extend the non-linear model to ellipsoids,and those equations are listed in Table1.This approach was also used by other investigators(Langston and Tuzun,1994,1995;Zhou et al.,1999;Zhu and Yu,2002).It should be noted that an additional torque is introduced,which is caused by the normal force.This is because the normal direction of contact force does not necessarily pass through the centre of an ellipsoid,which,together with the tangential forces and rolling torque,governs the rotational motion of the particle.Another parameter is the so called reduced radius R n in the calculation of the contact forces between particles i and j.For spheres, R n?R i R j=eR itR jT,But for ellipsoidal particles,R n?1=e2

?????????

A0B0

p

Twhere R i and R j are radii of particle i and j,respectively,where A0and B0can be obtained by solving the following two equations (Dziugys and Peters,2001):

2eA0tB0T?

1

i

t

1

i

t

1

j

t

1

j

e3T4eA0àB0T2?

1

R i

à

1

R j

2

t

1

R0

i

à

1

R0

j

!2

t2cose2bT

1

R i

à

1

R j

1

R0

i

à

1

R0

j

!

e4Twhere1/R i and1/R0i are two curvatures of the contact point on the surface of ellipsoid i(the same concept is applied to particle j), and b is the angle between the normal sections whose radii of curvatures are1/R i and1/R0i(or1/R j and1/R0j for particle j

). Fig.1.Two-dimensional illustration of the forces acting particle i in contact with particle j.

Z.Y.Zhou et al./Chemical Engineering Science66(2011)6128–61456129

The method to determine the curvature in any direction at any point on the surface of an ellipsoid is well described by Harris (2006),and hence used in our work.2.2.CFD for ?uid phase

The continuum ?uid is calculated from the continuity and Navier–Stokes equations based on the local mean variables over a computational cell.In the CFD–DEM modelling,there are different model formulations as recently discussed by Zhou et al.(2010).Generally,three sets of governing equations exist for CFD–DEM model:type I,type II and type III,with the last two corresponding to the so called model A and model B (Bouillard et al.,1989;Gidaspow,1994).Each type of model has its own advantages and disadvantages.Type I is,however,the most rational,and is employed in the present work.Thus,the governing equations can be written as @e f

@t tr U ee f u T?0e5T

@er f e f u T@t

tr U er f e f uu T?àr p àF pf tr U s tr f e f g

e6T

where u ,r f and p are the ?uid velocity,density and pressure,

respectively.(F pf ?eP k c

i ?1f pf ,i T=D V )is the volumetric particle–?uid interaction force in a computational CFD cell of volume D V ;s and e f are the ?uid viscous stress tensor and local porosity,

which are given as s ?m e ?er u Tter u Tà1

,and e f ?1àeP k c

i ?1V p ,i T=D V ,respectively,where V p,i is the volume of particle i (or part of the volume if the particle is not fully in the cell),and k c is the number of particles in the computational cell.m e is the ?uid effective viscosity determined by the standard k-e turbulent model (Launder and Spalding,1974),which has been used in our previous work (Zhang et al.,1998;Zhou et al.,2009b ).2.3.Particle–?uid interaction force for non-spherical particles According to Crowe et al.(1998),particle–?uid interaction force f pf is the sum of all types of particle–?uid interaction forces acting on individual particles by ?uid.In gas ?uidization,the dominant forces are the drag force f d ,pressure gradient force f r p ,and viscous force f r s due to the ?uid shear stress or deviatoric stress tensor.So the total particle–?uid interaction force on a particle can be written as f p f ,i ?f d ,i tf r p ,i tf r s ,i

e7T

It should be noted that ellipsoidal particles can rotate by the torque caused by the non-uniform gas ?ow.As pointed out by Hilton et al.(2010),due to the approximately parallel ?ow of

?uid,the rotation motion of particles caused by ?uid can be neglected.For simplicity,it is thus not considered in the present work.

Many correlations have been proposed to calculate the ?uid drag for spherical particles (for example,Crowe et al.,1998;Zhu et al.,2007).Among those force models,the scheme proposed by Di Felice (1994)is one of the most popular ones,because it is based on individual particles.It has been widely used in our previous studies (for example,Xu and Yu,1997;Xu et al.,2000;Feng and Yu,2004,2007;Zhou et al.,2009b ,2010).In this work,this scheme is extended to ellipsoidal particles,so that f d ,i ?0:5?C D r f A ?e 2f 9u i àv i 9eu i àv i Te àw

f ,i

e8T

where w ?3:7à0:65exp ?àe1:5àlog 10Re i T2=2 ,A ?is the cross-sec-tional area perpendicular to the ?uid ?ow,Re i is the relative Reynolds number,which is de?ned as Re p ,i ?r f d v e f 9u i àv i 9=m f ,where d v is the equivalent diameter de?ned as the diameter of a sphere with the same volume as the ellipsoidal particle.C D is the drag coef?cient,which can be determined by different correlations.

Various efforts have been made to determine the ?uid drag coef?cient C D on non-spherical particles.The Ergun equation (1952)considered the effect of particle shape using the concept of sphericity (j ).But it may have a large deviation when applied to non-spherical particles as demonstrated by some researchers (Wu,2001;Nemec and Levec,2005;Ozahi et al.,2008).Some attempts have been made to modify the Ergun equation,as reviewed by Ganser (1993)and Loth (2008).In particular,Haider and Levenspiel (1989)established a four-parameter correlation for C D ,but ignored the effect of orientation.Ganser (1993)proposed a drag correlation using correction factors (Stokes factor and Newton’s factor),and claimed that it is general and accurate to determine C D .More recently,Holzer and Sommerfeld (2008)proposed a new correlation considering both the shape and the orientation of a non-spherical particle.Table 2lists these correlations whose applications are examined in this work.

It should be noted that the correlations listed in Table 2are developed based on macroscopic observations.In recent years,the lattice Boltzmann method is increasingly used aiming to derive equations to determine the particle–?uid drag for spherical particles (for example,Van der Hoef et al.,2005;Beetstra et al.,2006;Leboreiro et al.,2008;Sarkar et al.,2009;Yin and Sundaresan,2009;Holloway et al.,2010).Attempts have also been made for ellipsoidal particles (for example,Holzer and Sornmerfeld,2009;Guo et al.,2011).To date,however,it is still a challenging area to formulate,at a particle level,reliable equations to determine the ?uid drag on spherical particles with multi-sized system,or non-spherical particles with irregular or

Table 1

Components of particle–particle interaction forces and torques acting on particle i .Forces

Equations

Normal elastic force (f cn,ij )à4=3E n ?????R n p d 3=2

n n

Normal damping force (f dn,ij )àc n e8m ij E n ??????????

R n d n p T1=2v n ,ij

Tangential elastic force (f ct,ij )àm s 9f cn ,ij 9e1àe1àd t =d t ,max T3=2T^d

t Tangential damping force (f dt,ij )àc t e6m s m ij 9f cn ,ij 9??????????????????????????

1àd t =d t ,max p =d t ,max T1=2v t ,ij

Coulomb friction force (f t,ij )àm s

9f cn ,ij

9^d

t Torque by tangential forces (M t,ij )R c ,ij ef ct ,ij tf dt ,ij T

Torque by normal force (M r,ij )R c ,ij ef cn ,ij tf dn ,ij TRolling friction torque (M r,ij )

m r ,ij

9f n ,ij

9_x n

ij

where 1=m ij ?1=m i t1=m j ,E n ?E =2e1àn 2T,_x n ij ?x n ij =9x n ij 9,^d t ?d t =d t ,d t ,max ?m s e2àv T=2e1àv Td n ,v ij ?v j àv i tx j R c ,ji àx i R c ,ij ,v n ,ij ?ev ij :n T:n ,

v t ,ij ?ev ij :n T:n .Note that tangential forces (f ct,ij tf dt,ij )should be replaced by f t,ij when d t Z d t ,max .

Z.Y.Zhou et al./Chemical Engineering Science 66(2011)6128–6145

6130

regular shapes.The present work has to be based on those more generally acceptable in problem solving.

2.4.Solution technique

The explicit time integration method is widely used to solve the translational and rotational motions of a system of discrete particles in the DEM simulations(Cundall and Strack,1979). Although it is established for spheres,such a method can also be extended to ellipsoids.The dif?culties in association with the extension mainly lie in two aspects:particle–particle detection and particle orientation.The methods to overcome the dif?culties are described as follows.

The detection of particle contacts for non-spherical particles is much more complicated than spherical particles.Various analy-tical methods have been proposed to detect the contacts between ellipses or ellipsoids,including the so called intersection algo-rithm(Rothenburg and Bathurst,1991),geometric potential algorithm(Ting,1992;Lin and Ng,1995),and common normal algorithm(Lin and Ng,1995).As noted by Dziugys and Peters (2001),the geometric potential algorithm is more reliable.There-fore,it is used in the present work.It should be pointed out that the computational time for contact detection is huge.This is largely because the algorithm used to determine one contact point involves the numerical solution of a sixth-order polynomial equation(Lin and Ng,1995).For a system with a large number of particles,millions of contact points are required to be determined at each time step, which signi?cantly extends the simulation time.

Particle orientation is another parameter that must be con-

sidered for non-spherical particles.It is generally described by three Euler angles(f,y,c)(Goldstein,1980).Brie?y,at each time step,for the convenience to determine the inertia tensor I i of an ellipsoid,the rotational equation expressed by Eq.(2)in the space-?xed coordinate system(x,y,z)is converted to the body-?xed coordinate system(x0,y0,z0),which is a moving Cartesian coordinate system?xed with the particle and whose axes are superposed by the principal axes of inertia.Thus,in this con-verted coordinate system,the angular velocities o0i of particles can be calculated as used for spheres;they are then used to determine the new three Euler angles on the basis of the so-called quaternion method.More details about the method can be found elsewhere(for example,Goldstein,1980;Dziugys and Peters, 2001).

The modelling of solid?ow by DEM is at the individual particle level,whilst the?uid?ow by CFD is at the computational cell level.The CFD–DEM coupling methodology for spherical particles has been well documented elsewhere(Xu and Yu,1997;Xu et al., 2000;Zhu et al.,2007).It is also used by other investigators (see,for example,Hoomans et al.,2000;Kafui et al.,2002;Li et al., 2004;Di Renzo and Di Maio,2007).Such a methodology is extended to non-spherical particles,and hence only brie?y described here.At each time step,DEM will give information such as the positions and velocities of individual particles.From these,the porosity and volumetric?uid–particle interaction force in each computational cell are calculated.CFD will then use the information to determine the gas?ow?eld,from which the?uid drag forces acting on individual particles are calculated.Incor-poration of the resulting forces into DEM will produce informa-tion about the motion of the individual particles for the next time step.

3.Simulation conditions

The bed geometry used in this work is a slot model with periodic boundary conditions applied to the front and rear direction.For such a geometry,two-dimensional CFD and three-

Table2

Typical correlations to determine the drag force on non-spherical particles. Force models Equations

Ergun(1952)D P

?k1

m

f

U g

ed vT

e1àe fT2

e

f

tk2

r

f

U2

g

j v

e1àe fT

e

f

where both k1and k2are functions of particle sphericity j.

Haider and Levenspiel (1989)C D?

24

e1tA Re BTt

C

where A,B,C and D are functions of particle sphericity j.

Ganser(1993)C D

2?

24

12

e1t0:1118eRe K1K2T0:6567Tt

0:4305

12

where K1and K2are Stokes correction factor and Newton’s correction factor,respectively.

Holzer and Sommerfeld (2008)C D?

81

??????j

:

pt

161

????j

pt

3

??????

Re

p

1

jt0:42?10

0:4eàlog jT0:2

1

j

?

j is the sphericity of an ellipsoid de?ned as the ratio of surface area of a sphere being equivalent volume of the ellipsoid to the surface area of the ellipsoid,j?is crosswise sphericity,and j99is lengthwise sphericity.

Table3

Various parameters used in the CFD–DEM

simulation.

Variable Values

Bed geometry:

Bed width(x)600mm

Bed thickness(y)60mm

Bed height(z)3600mm

CFD cells(x,z)15?90cells

CFD cell size(D x?D z)20mm

Particle properties:

Particle density,r p2500kg/m3

Particle–particle sliding

friction,m s

0.4

Particle–wall sliding friction,

m s

0.4

Particle–particle rolling

friction,m r

0.1mm

Particle–wall rolling friction,

m r

0.1mm

Young’s modulus,E1?108Pa

Poisson ratio,n0.3

Time step,D t10à6s

Gas properties

Density 1.2kg/m3

Viscosity 1.8?10à5Pa s

Z.Y.Zhou et al./Chemical Engineering Science66(2011)6128–61456131

dimensional DEM are employed as used elsewhere (for example,Feng and Yu,2004;Zhou et al.,2010).The bed is generated under the so-called poured packing condition (Zhang et al.,2001).Ellipsoids with the same size are poured from a certain height,with randomly generated initial velocities and orientations.Dur-ing this process,ellipsoids may collide with each other or with walls,and bounce back and forth.The dynamic process proceeds until all ellipsoids reach their stable positions.The bed is then ?uidized by gas uniformly introduced from the bottom.Table 3lists the parameters including the physical properties of particles and ?uid used in the simulation.Note that the bed geometry and particle properties used for testing the drag force models and model validation purpose are slightly different from those in Table 3,and will be described respectively for each case reported.

The particle shapes considered are spheroids,with its aspect ratio varying from 0.25to 3.5.Here,as shown in Fig.2,the aspect ratio is de?ned as the ratio of diameter 2a in the polar direction to the diameter 2b (?2c )of the equatorial plane.OA is the vector from the particle centre to the polar apex.It can represent how the spheroid is oriented.For this purpose,during the DEM simulation,OA is traced all the time.

In the present work,nine cases corresponding to nine aspect ratios of ellipsoids are selected.The formed bed properties for the nine cases are listed in Table 4.The properties of the initial beds for different shaped particles are mainly re?ected by porosity (1-packing density),coordination number and orientations.Gen-erally speaking,it can be seen that a bed with spherical particles

has the highest porosity and the least particle–particle contact number.Beds with prolate/oblate particles have a lower porosity and higher particle–particle contact number,indicating a

denser

Fig.2.Illustration of (a),a prolate spheroid with aspect ratio Z ?2;and (b)an oblate spheroid with aspect ratio Z ?0.5.The vector OA is used to represent particle orientation (O,particle mass centre;A,polar apex).Table 4

Particle and bed properties used in the simulation cases.Cases

Particle shape

Size (mm),(2a ,2b ?2c ),(d v ?10mm)a Aspect ratio b (Z ?a/b )Sphericity c (j )

Number of particles Porosity

Average CN

Case 1Oblate 3.969,15.87,15.870.250.69630,0000.3858.10Case 2Oblate 6.3,1.26,1.26

0.50.91230,0000.3378.42Case 3Oblate 8.255,11.01,11.010.750.98530,0000.3377.73Case 4Spherical 10,10,10

1.0 1.030,0000.382 6.29Case 5Prolate 13.10,8.736,8.736 1.50.96930,0000.3258.31Case 6Prolate 15.87,7.937,7.937

2.00.91230,0000.3278.97Case 7Prolate 18.42,7.368,7.368 2.50.85030,0000.3399.16Case 8Prolate 2.08,6.934,6.934

3.00.79330,0000.3559.11Case

9Prolate 23.05,6.586,6.586

3.5

0.74230,000

0.3728.92

a

a is the principal radius in the polar direction,

b and

c are principal radii in the equatorial plane.In the present work,b ?c.

d v is th

e equivalent volume diameter,set to 10mm in this work.So that all the particles with different aspect ratios have the same volume.

b

For a prolate spheroid,aspect ratio Z 41;for a sphere,Z ?1;for an oblate spheroid,Z o 1.c

See Table 2for its de?nition.

Gas superficial velocity (m/s)

P r e s s u r e d r o p , Δp /(L U g )

2000

4000

6000

8000Fig.3.The relationship between pressure drop D p =LU g and gas super?cial velocity for different drag correlations.

Z.Y.Zhou et al./Chemical Engineering Science 66(2011)6128–6145

6132

packing structure for ellipsoidal particles,which is consistent with these reported (for example,see Zou and Yu,1996;Donev et al.,2004;Jia et al.,2010).

4.Results and discussion

4.1.Analysis of the drag force correlations

There are various correlations proposed to determine the particle–?uid drag coef?cient,with the typical ones listed in Table 2.In order to quantitatively test these correlations,CFD–DEM simulations are performed to determine the bed pressure drop and compare with the measurements.Wu (2001)measured the bed pressure drop using particles with different shapes,and then modi?ed the Ergun equation on this basis.The particles used in his experimental work vary from disk-shaped to cylinder-shaped,and from mono-sized to multi-sized particles.One of the cases is for a kind of oblate particles made of plastics (2a ?2b ?2c ?1.682mm ?5.5mm ?5.5mm,r p ?950kg/m 3,and j ?0.764).The measured data is shown in Fig.3by solid squares ?tted by a solid line.It should be noted that the vertical axis in the ?gure represents D p =LU g ,which can be equal to K 1U g tK 2according to the Ergun equation.Here K 1?k 2r f e1àe f T=ed v e 3f T?5945:2and K 2?k 1m f

e1àe f T2

=ed v 2e 3f T?4369:7.Hence k 1and k 2in the Ergun equation can be determined,and are,respectively,102.93and 2.5(Wu,2001).This correlation will be used in the CFD–DEM simulation as shown below.This also illustrates that to be accurate,the original Ergun equation has to be modi?ed for non-spherical particles.

In the present CFD–DEM simulation,the above experimental case is ?rst considered.For convenience,instead of the cylinder

container in the experiment,the geometry used in the simulation is a 2D slot model with periodic boundary conditions applied in the front and rear direction:240mm in length,30mm in width and 480mm in height.Totally 30,000particles and 20?40CFD cells are used.The ?uid drag coef?cient C D acting on individual plastic particles is calculated by the three correlations listed in Table 2.The obtained pressure drop D p =LU g against gas super?cial velocity is also shown in Fig.3.It can be observed that there is no signi?cant difference between the correlation of Holzer and Sommerfeld (2008)and that of Ganser (1993),but the correlation of Haider and Levenspiel (1989)signi?cantly under-estimates the pressure drop for this case.We also used the modi?ed Ergun equation (k 1?102.93and k 2?2.5)to estimate the pressure drop at a macroscopic level for the bed generated by DEM,showing consistent results with the correlation of Holzer and Sommerfeld,or Ganser.Thus,it is considered that all the three correlations except for that of Haider and Levenspiel can be used in the CFD–DEM modelling as demonstrated for the present case.However,it is not clear if such a conclusion is applicable to other cases with particles of different shapes.

On the other hand,it is noted that to date,a general and reliable correlation to determine the ?uid drag on non-spherical particles is not available yet.Hence,we have to choose a proper one from those in the existing literature for the present CFD–DEM model.It is noted that the Ergun equation or its modi?ed version is based on the macroscopic observation,and does not consider particle orientation.Moreover,ellipsoids of different aspect ratios will lead to different k 1and k 2;such quanti?cation is not yet available.The correlation of Holzer and Sommerfeld (2008)considers the effects of both shape and orientation,and is hence more preferable.It is also simpler

than

https://www.doczj.com/doc/4c7512278.html,parison of snapshots of solid ?ow patterns observed in the experiments (the top ?gures)and CFD–DEM simulations (the bottom ?gures)when the gas super?cial velocity is 3.0m/s.

Z.Y.Zhou et al./Chemical Engineering Science 66(2011)6128–61456133

the correlation of Ganser.Thus,in the present work,the correla-tion of Holzer and Sommerfeld,although not perfect,is used in all the later simulations.

4.2.Simulated macroscopic?ow behaviour

To verify the applicability of the proposed CFD–DEM approach to?uidization,experiments are carried out using a small2D slot model,with bed width of200mm,thickness of50mm and height of900mm.Wall boundary conditions are applied in each direc-tion.The experimental materials used are commercial Smarties s Chocolate Candies:2a?6.53mm,2b?2c?14.67mm;aspect ratio?0.445;and density?1349kg/m3.

Fig.4shows some snapshots observed in the experiments. Once?uidized,?ow patterns vary vigorously.The?gure just shows the typical ones at one single gas velocity.It can be seen that voids may occur on the left or right side,and particles show different orientations during?uidization.The?gure also shows the simulated results.Qualitatively,the?ow patterns observed from the experiments can all be reasonably reproduced by the CFD–DEM modelling.Note that the times for taking the snapshots are different,so quantitative comparison is not adequate.Also, there are various uncertainties in such a quantitative comparison because there are some variables beyond our control,such as particle properties,force models and so on.Nonetheless,Fig.4 clearly demonstrates that the proposed CFD–DEM model is reasonable and can capture the?ow features of ellipsoidal ?uidization.

The CFD–DEM simulations are further carried out on the basis of conditions listed in Tables2and3.Fig.5shows the early response

of

Fig.5.Snapshots of solid?ow patterns observed in the CFD–DEM simulations for small and large aspect ratios:(a)aspect ratio?0.25,and gas super?cial velocity U/U mf?2.0;and(b)aspect ratio?3.5,and gas super?cial velocity U/U mf?2.0.

Z.Y.Zhou et al./Chemical Engineering Science66(2011)6128–6145

6134

particle bed to the gas introduction for two cases with aspect ratio ?0.25and 3.5.The colour of particles in the ?gure represents the particle vertical velocity.It can be observed that particles are initially lifted up by gas with positive velocity.The lifted particles then descend due to the gravity with negative velocities.After the initiation of ?uidization,different cavities or bubbles are formed producing different complicated ?ow patterns.

The macroscopic behaviour of the bed can be re?ected by the bed pressure drop,which here is the pressure difference between the bed bottom inlet and the bed top outlet at the bed centre.Its temporal variation can indicate the state of bed or ?ow regimes to some degree.Fig.6shows the variation of the pressure drop with time for the cases in Fig.5but with different gas super?cial velocities.It can be seen that when aspect ratio is 0.25,the corresponding minimum ?uidization velocity is around 1.1m/s (Fig.6(a)).Below this value,the pressure drop is a constant.This is also the case when aspect ratio is 3.5(Fig.6(b)).The predicted minimum ?uidization velocity is around 1.2m/s.The observed features are consistent with the general understanding of ?uidization.

Fig.7shows the relationship between pressure drop and gas super?cial velocity.The pressure drop shown here is dimension-less,de?ned by S D p =emgN T,where S is the cross-sectional area

of

Fig.6.Variation of bed pressure drop with time at different gas super?cial velocities:(a)oblate spheroids with aspect ratio 0.25;and (b)prolate spheroids with aspect ratio 3.5.

0.00.10.20.30.40.50.60.70.80.91.01.11.2D i m e n s i o n l e s s p r e s s u r e d r o

p

Gas superficial velocity (m/s)

D i m e n s i o n l e s s p r e s s u r e d r o p

Gas superficial velocity (m/s)0.00.10.20.30.40.50.60.70.80.91.01.11.2Fig.7.The relationship between dimensionless pressure drop and gas super?cial velocities for particles with different aspect ratios:(a)oblate spheroids;and (b)prolate spheroids.

Aspect ratio

M i n i m u m f l

u i d i z a t i o n v e l o c i t y (m /s )

1.11.21.31.41.51.61.71.81.9

2.02.1Fig.8.Effect of aspect ratio on the minimum ?uidization velocity.

Z.Y.Zhou et al./Chemical Engineering Science 66(2011)6128–61456135

the bed,mgN is the bed weight,which is a constant for all the cases.For comparison,the pressure drop determined by the Ergun equation is also calculated for the case of spherical particles.As shown in Fig.7(a),the prediction by the CFD–DEM is consistent with that calculated by the Ergun equation for spherical particles, further con?rming the validity of the proposed model.The?gure also shows cases for oblate particles with aspect ratios varying from0.25to0.75.It can be observed that,in the?xed bed,under the same gas super?cial velocity,the bed with spherical particles has the lowest pressure drop,indicating the highest bed perme-ability.With decreasing aspect ratio from1.0,the bed perme-ability becomes worse,although the bed porosity is slightly higher than spherical particles for the case of aspect ratio?0.25. This indicates that the bed permeability is determined by not only the bed porosity but also particle shape(particle sphericity), which can be clearly seen in the Ergun equation.When the bed is?uidized,the bed pressure drops for the?ve cases are similar,?uctuating around the bed weight.Fig.7(b)shows the case for prolate particles with aspect ratios ranging from 1.0to 3.5. Interestingly,the relationships are similar when aspect ratios are larger than1.5.They have the similar bed permeability,but much less than spherical particles.

Fig.7also shows that the minimum?uidization velocities for different aspect ratios are different.The minimum?uidization velocity corresponds to the velocity at which the maximum pressure drop occurs before the bed is?uidized.The variation of the minimum?uidization velocity against aspect ratio is shown in Fig.8.It can be seen that when aspect ratio decreases from1.0, the minimum?uidization velocity decreases.Such a trend is qualitatively consistent with that observed in the literature (Liu et al.,2008).When aspect ratio increases from 1.0,the minimum?uidization velocity deceases?rst and then increases. The lowest minimum?uidization velocity occurs at aspect ratio around1.75,which indicates the lowest bed permeability.

4.3.Analysis of some microscopic behaviour

The so-called microscopic analysis is a particle scale analysis on the basis of the trajectories or velocities of particles and their corresponding transient forces.Such microscopic information is dif?cult to obtain experimentally but can be readily generated from the CFD–DEM simulation.Its analysis is of importance to elucidating the mechanisms of particle–?uid?ow as

demonstrated

Fig.9.Spatial distributions of some typical results about?ow structures when aspect ratio is0.25(top)at time4.29s and3.5(bottom)at time3.64s:(a)and(e)?ow pattern with coordination number;(b)and(f)?uid?ow?eld and porosity distribution;(c)and(g)particle velocity?eld;and(d)and(h)particle orientation.

Z.Y.Zhou et al./Chemical Engineering Science66(2011)6128–6145

6136

by Zhu et al.(2008).Porosity and coordination number (the number of particles in contact with a given particle)have been widely used to examine the ?ow structure of particles in the study of,for example,particle packing (Liu et al.,1999;Yang et al.,2000)and granular ?ow (Zhu and Yu,2004;Yang et al.,2003;Zhou et al.,2004).As an example,Fig.9shows a snapshot of solid ?ow pattern with the microscopic properties for cases 1and 9.Here the microscopic information includes the spatial distribution of coordination numbers (Fig.9(a)and (e)),porosity distribution and ?uid ?ow ?eld (Fig.9(b)and (f)),particle velocity ?eld (Fig.9(c)and (g)),and particle orientation (Fig.9(d)and (h)),which is here represented by the vectors OA as indicated in Fig.2.The detailed analysis of such microscopic information has been carried out,in order to understand how particle shape affects the ?ow behaviour of ellipsoids in a ?uidized bed,as given below.

Coordination number (CN)is the number of contacts for a given particle.It varies with the de?nition of critical separation less than which two particles are de?ned in contact.Ideally,the critical separation is zero to represent a real contact between particles.But in practical application,it is often slightly larger than zero.This treatment does not affect the analysis as long as the analysis is consistent.In this work,the critical separation is set to 1%d v ,as used by Yang et al.(2000).As an example,Fig.9(a)and (e)shows the CN spatial distribution in ?uidized beds.It can be observed that large CN mainly exists in dense regions while small CN in the regions with voids.This is consistent with the general understanding from the ?uidization of spheres (Kunii and Levenspiel,1991).

To illustrate the effect of aspect ratio on CN,Fig.10shows the variations of bed averaged CN,i.e.,the average CN for all particles in a bed,with time in ?uidized beds for prolate and oblate spheroids,respectively.It can be seen that CN ?uctuates around a certain value,as a result of the appearance and disappearance of voids.Overall,spheres have the lowest CN among the nine cases at U /U mf ?2.0.The averaged value of CN over a certain time for different aspect ratios is further shown in Fig.11,together with the CN in ?xed or packed beds shown in Table 3.Clearly,the trends are qualitatively comparable.However,minor difference can also be identi?ed.For example,oblate spheroids with aspect ratio 0.5have a higher CN in ?xed beds but it is not the case for ?uidized beds.This is because that the ?ow patterns are not certain in ?uidized bed,which may affect the CN signi?cantly.But

generally speaking,when aspect ratio decreases from 1.0for oblate spheroids,or increases from 1.0for prolate spheroids,CN increases.Spheres have the smallest CN in all the cases.Such a feature indicates that the large number of particle–particle con-tacts for prolate/oblate spheroids may lead to the large particle–particle heat transfer.This may be signi?cant for the thermal behaviour in ?uidized beds when the particle–particle conduction is important,which happens to particles with high thermal conductivity (Zhou et al.,2009b ).Further studies should be carried out on how particle shape affects the ?ow and thermal behaviour in a ?uidized bed.

Orientation is one of the most important properties for non-spherical particles.It is known that there is no preferred orienta-tion for spheres,because they are homogeneous in all directions.But this is not the case for non-spherical particles,particularly for very platy or elongated particles.The examination of particle orientation in a ?uidized bed would provide some useful informa-tion about its structure.In the present DEM simulation,the initial

0Time (s)

1

2345678A v e r a g e C N

0.20.50.751.0

1

2345678A v e r a g e C N

1.01.5

2.5

3.5

51015200Time (s)

5101520

Fig.10.Variation of bed averaged CN with time for different aspect ratios when gas super?cial velocity U /U mf ?2.0:(a)oblate spheroids;and (b)prolate spheroids.

Aspect ratio

B e d -a v e r a g e d

C N

0.0

0.5

1.0

1.5

2.0 2.5

3.0

3.5

4.0

3.04.05.06.07.08.09.010.0Fixed bed (no gas)Fluidized bed (U/U mf =2.0)

Fig.11.Bed averaged CN for different aspect ratios respectively for ?xed beds when U /U mf ?0,and ?uidized beds when U /U mf ?2.0.

Z.Y.Zhou et al./Chemical Engineering Science 66(2011)6128–61456137

orientation of a particle is randomly assigned,then its orientation in a packing and then ?uidized process is traced by the vector OA .As an example,Fig.9(d)and (h)shows the spatial distributions of OA .To be more quantitative,the concept of longitude as used in the world map is used here.In particular,OA longitude a is de?ned against an equatorial plane.The equatorial planes can be the horizontal X –O –Y plane,or the vertical X –O –Z or Y –O –Z planes.OA longitude can vary from 01to 3601.01is de?ned at the positive X or Y axis,and then increases in the anticlockwise direction.An example of OA longitude a against the horizontal X –O –Y plane is shown in the inset ?gure in Fig.12(a),where OA 00is the projected vector of OA on the X –O –Y plane.

Fig.12(a)shows the orientation information for spheres at different times in a ?uidized bed.The horizontal axis is OA longitude a ,and the vertical axis is the number of particles countered with similar OA longitudes (D a ?31).As expected,the distribution of a on the horizontal X –O –Y plane is uniform.Note that distributions of a on the vertical X –O –Z and Y –O –Z planes are not shown here due to their similarity to Fig.12(a).It shows that the orientation for spheres is isotropic at any time during the ?uidization process.For further quanti?cation,longitude a vary-ing from 01to 3601can be transformed to an orientation angle less than 901.For example,the orientation angle is calculated as 1801àa if a A (901,1801),or a à1801if a A (1801,2701),or 3601àa if a A (2701,3601).Then the variations of the bed-averaged orientation angles against the time on different equatorial planes can be plotted,and shown in Fig.12(b).As expected,the orientation angles slightly ?uctuate around 451because of the isotropic nature of orientation of spheres.

However,it is not the case for oblate and prolate particles.Fig.13shows the distribution of OA longitude for oblate particles when aspect ratio is 0.25.It can be seen from Fig.13(a)that the OA longitude distribution on the X –O –Y plane is relatively uni-form before ?uidization.This is because OA can theoretically point to any direction during the formation of a packed bed.Due to the small thickness of the bed,OA longitude distribution could be slightly non-uniform as illustrated in the ?gure.However,when the bed becomes ?uidized,the longitude changes signi?-cantly,and ?nally ?uctuates at a W shaped distribution.OA prefers pointing to 01and 1801,i.e.the X axis.Particles do not tend to be along the Y axis.Such a feature is mainly caused by the bed geometry as mentioned above.Fig.13(b)and (c)shows the longitude distribution on the vertical X –O –Z and Y –O –Z planes,respectively.It can be seen that the distribution is non-uniform at the beginning (t ?0s),where most of the particles are at 901and 2701,less particles at 01and 1801.It indicates that oblate particles prefer facing upward or downward,forming an ordered structure to some degree.It is consistent with the general understanding that such a structure is stable for platy particles,with a minimum potential energy of the system.Such a structure usually generates a relatively large resistance to ?uid ?ow,giving a large pressure drop and low permeability,as demonstrated in Fig.7.The lower the aspect ratio,the more signi?cant the effect.But when the bed becomes ?uidized by gas,the degree of non-uniformity is reduced.This is because there exist strong particle–particle collisions,which will affect the particle orientation.Fig.13(d)further shows the variations of bed-averaged orientation angles,which ?uctuate around a certain value.This is mainly caused by the periodic ?ow patterns formed in ?uidized beds,as the case for other parameters,e.g.the bed pressure drop or CN.

Fig.14shows the distribution of orientations of prolate particles when aspect ratio is 3.5.The OA longitude distribution on the horizontal X –O –Y plane is shown in Fig.14(a).Its distribution is similar to the oblate particles shown in Fig.13(a),indicating that in ?uidized beds,OA prefers pointing to the X axis at 01or 901.Such a distribution is mainly caused by the bed with a small thickness.Fig.14(b)and (c)shows the OA longitude distribution respectively on the vertical X –O –Z and Y –O –Z planes.It can be observed that the distribution is non-uniform but the degree of non-uniformity is reduced when the bed is ?uidized.Most of particles are at 01and 1801,less particle at 901and 2701.It indicates that prolate particles prefer oriented horizontally.This is because prolate particles at high aspect ratios,e.g.3.5in this case,can obtain the stable structure for such an orientation.This is particularly true for particles,which are not ?uidized.Such a feature is consistent with the general understanding of stability of elongated particles.Fig.14(d)illustrates the variations of bed-averaged orientation angles against time,revealing that particle orientations change more signi?cantly than oblate particles shown in Fig.13(d).

To be more quantitative and general,the relationship between bed-averaged orientation angle and aspect ratio is established and shown in Fig.15for both ?xed beds and ?uidized beds.In ?xed beds,orientation angles on the horizontal X –O –Y plane are all at 451,independent of aspect ratios.This is because particles can point to any direction on this plane.With aspect ratio increasing from 0.25to 3.5,orientation angles on the vertical X –O –Z and Y –O –Z planes decrease gradually.However,once

beds

Time (s)

O r i e n t a t i o n a n g l e (d e g r e e )

4041424344454647484950Fig.12.(a)Distributions of particle orientations for spheres by OA longitude a on the horizontal X –O –Y plane;and (b)variation of bed averaged orientation angle on different planes.

Z.Y.Zhou et al./Chemical Engineering Science 66(2011)6128–6145

6138

are ?uidized,the variation of orientation angles with aspect ratio changes as shown in Fig.15(b).The angles on the X –O –Y plane ?rst increase and then decrease with aspect ratio but all less than 451,indicating the effect of bed geometry and gas ?ow.The orientations for both oblate and prolate particles are re-constructed and their OA longitude prefers pointing to the X axis.The variation of orientation angle on the X –O –Z plane is consis-tent with that in ?xed beds,indicating a strong non-uniformity,particularly for low (e.g.0.25)and high (e.g.3.5)aspect ratios.However,the trend of orientation angle on the Y –O –Z plane is quite different from the ?xed bed,particularly for prolate parti-cles.When aspect ratio is between 1.0and 2.5,the orientation angle is almost a constant around 451,which indicates a more uniform distribution of orientations.With further increase of aspect ratio,the orientation angle decreases a little.The features shown in this ?gure suggests that strong gas ?ow and geometry used in this work cause signi?cant changes in particle orientation.In the ?uidized bed,inter-particle forces cause particles rotating signi?cantly,and hence their orientations change correspond-ingly.In the dense regions,as seen in Fig.9(a)and (e),the orientations of particles behave similar to that in the ?xed bed.Thus,the orientation of particles in a ?uidized bed is complicated,affected by gas ?ow rate and bed geometry.

The ?ow behaviour of particles in gas ?uidization is controlled by the interactions between particles,between particles and gas,and between particles and wall,in addition to the gravitational force.The analysis of these interaction forces is therefore the key to developing a better understanding of the underlying mechan-isms.CFD–DEM approach has shown its unique advantages for such research (Zhu et al.,2008).Here we apply such analysis to ellipsoidal particles.Fig.16shows the spatial distributions of those interaction forces for aspect ratios 0.25and 3.5.The drag force acting on individual particles varies spatially,largely depending on the motion direction of particles.The vertical drag force is always positive,dragging particles moving upward (Fig.16(a)and (d)),as a results of the continuous up?ow of gas.The horizontal drag force can be positive or negative,pushing particles rightward or leftward (Fig.16(b)and (e))depending on the location of varying voids.Generally,the drag force in a dense region is larger than that in a loose region due to the difference in porosity and permeability.Fig.16(c)and (f)shows the spatial distributions of the normal contact particles between particles.It can be observed that large contact forces are found mainly in the region where particles are crowded.

To quantify the effect of aspect ratio on force structures,the probability density distributions of the magnitudes of normal contact forces and ?uid drag force in ?uidized beds are plotted in Fig.17when U /U mf ?2.0.It can be seen that for the normal contact forces,aspect ratio does not affect the distribution much (Fig.17(a)and (b)).But it affects the drag force distributions (Fig.17(c)and (d)).It can be observed that there are two peaks when aspect ratio is close to 1.0,e.g.0.75,1.0and 1.50.If aspect

Longitude at the horizontal X-O-Y plane

N u m b e r o f p a r t i c l e s

Longitude at the vertical X-O-Z plane

N u m b e r o f p a r t i c l e s

0200

400

600

8001000

Longitude at the vertical Y-O-Z plane

N u m b e r o f p a r t i c l e

s

Time (s)

O r i e n t a t i o n a n g l e (d e g r e e )

Fig.13.Distributions of particle orientations (OA longitudes on different planes)for oblate particles when aspect ratio is 0.25:(a),horizontal X –O –Y plane;(b),vertical Y –O –Z plane;(c),vertical Y –O –Z plane;and (d),variation of bed averaged orientation angles on different planes.

Z.Y.Zhou et al./Chemical Engineering Science 66(2011)6128–61456139

ratio further decreases from 0.75or increases from 1.5,the two peaks gradually disappear.For example,only one peak can be observed for aspect ratios of 0.25and 3.5.The inter-particle contact forces can be time-bed averaged

de?ned by 1=et 1àt 0TR t 1t 0ee1=N c TP

9f n ,ij 9Tdt ,where N c is the total number of contacts in the bed,f n is the normal contact force

Longitude at the horizontal X-O-Y plane

N u m b e r o f p a r t i c l e s

Longitude at the vertical X-O-Z plane

N u m b e r o f p a r t i c

l e s

100

200

300

400

500600

Longitude at the vertical Y-O-Z plane

N u m b e r o f p a r t i c

l e s

100

200

300

400

500600

Time (s)

O r i e n t a t i o n a n g l e (d e g r e e )

2025

30

35404550Fig.14.Distributions of particle orientations (OA longitude on different planes)for prolate particles when aspect ratio is 3.5:(a),horizontal X –O –Y plane;(b),vertical X –O –Z plane;(c),vertical Y –O –Z plane;and (d),variation of bed averaged orientation angle on different planes.

0.5

1

1.52

2.53

3.5

4

Aspect ratio

2025303540455055606570

7580O r i e n t a t i o n a n g l e (d e g r e e )

On X-O-Y plane On X-O-Z plane On Y-O-Z plane

Aspect ratio

303540455055606570O r i e n t a t i o n a n g l e (d e g r e e )

On X-O-Y plane On X-O-Z plane On Y-O-Z plane

Fig.15.Bed averaged orientation angles for different aspect ratios for:(a),?xed beds when U /U mf ?0;and (b),?uidized beds when U /U mf ?2.0.

Z.Y.Zhou et al./Chemical Engineering Science 66(2011)6128–6145

6140

between particle i (A (1,N ))and particle j (A (1,N )),where N is the number of particles in the bed and i o j ,(t 1àt 0)is the time duration for average.Fig.18(a)shows the variation of time-bed averaged normal contact force against aspect ratio.It can be seen that spheres have the strongest particle–particle interaction force.This could be explained by the different R n calculated at the contact point for different shaped particles.The curvature at the contact point for prolate or oblate particles can be very large,corresponding to a small radius.However,it is interesting to note that for oblate particles,there is a minimal averaged normal contact force at aspect ratio 0.5.For prolate particles,the minimum occurs at aspect ratio 1.5.Such a feature is quite different from the CN variation with aspect ratio shown in Fig.11.It indicates that in ?uidized beds,spheres have the smallest CN but the strongest interaction for a given U /U mf .The ?gure also shows that prolate particles have weaker inter-particle interaction than oblate particles under comparable conditions (U /U mf ?2.0).

The time-bed averaged ?uid drag force for different aspect ratios is also examined and shown in Fig.18(b).It shows the similar feature to the effect of aspect ratio on the normal contact force.Under the comparable conditions of U /U mf ?2.0,spheres have the largest ?uid drag force.For oblate particles,the drag force is the smallest when aspect ratio is around 0.75.For prolate

particles,the smallest occurs at aspect ratio around 2.0.Interest-ingly,the trend shown is similar to the bed porosity variation against aspect ratio shown in Table 4or those reported in the literature (Donev et al.,2004;Guises et al.,2009;Jia et al.,2010).But it should be noted that the drag force is signi?cantly affected by ?uid velocity,local porosity and the cross-sectional area A ?as indicated in Eq.(8).As the drag force increases with the increase of porosity,the dominant factors for the effect of aspect ratio on the drag force should be the ?uid velocity and cross-sectional area A ?,which is closely related to particle orientation.This also illustrates that particle orientation in gas ?uidization of ellipsoids is an obvious feature different from spheres.

5.Conclusions

The CFD–DEM approach is extended in this work to study gas ?uidization of ellipsoidal particles,and shown to be promising to generate particle scale information to develop better understand-ing of this complicated ?ow system.The following conclusions can be drawn from the current study:

Particle shape affects the bed permeability.The bed perme-ability is worsened signi?cantly for oblate particles.

Prolate

Fig.16.Snapshots of solid ?ow pattern with different forces when aspect ratio is 0.25(top)and 3.5(bottom):(a)and (d),drag force in the vertical direction;(b)and (e),drag force in the horizontal direction;and (c)and (f),particle–particle contact force.

Z.Y.Zhou et al./Chemical Engineering Science 66(2011)6128–61456141

Particle-pa rticle contact force (log10(f n ))

Particle-pa rticle contact force (log10(f n ))

P r o b a b i l i t y d e n s i t y

P r o b a b i l i t y d e n s i t y

Fluid drag (log10(f d ))Fluid drag (log10(f d ))

P r o b a b i l i t y d e n i s t y

P r o b a b i l i t y d e n i s t y

-4.0

-3.5

-3.0-2.5-2.0-1.5

0.00.20.40.60.81.01.21.41.6

1.8

2.00.250.500.751.0

-4.0

-3.5-3.0-2.5-2.0-1.5

0.00.2

0.40.60.81.01.21.41.6

1.8

2.0 1.01.52.5

3.5

Fig.17.Probability density distributions of the magnitudes of the normal contact forces between particles (top)and ?uid drag on particles (bottom)in ?uidized beds when U /U mf ?2.0:(a)and (c),oblate spheroids;and (b)and (d),prolate

spheroids.

Aspect ratio

T i m e -a v e r a g e d n o r m a l c o n t a c t f o r c e (N )

0.03

0.040.050.060.070.08

0.09Aspect ratio

T i m e -a v e r a g e d d r a g f o r c e o n a p a r t i c l e (N )

0.0030

0.0032

0.0034

0.0036

0.0038

Fig.18.Effect of aspect ratio on the time-bed averaged forces under the condition of U /U mf ?2.0:(a),particle–particle normal contact force;and (b)?uid drag force.

Z.Y.Zhou et al./Chemical Engineering Science 66(2011)6128–6145

6142

particles do not affect the bed permeability much for the cases considered in the present work.For oblate particle,the mini-mum?uidization velocity decreases with aspect ratio decreas-ing from 1.0.But for prolate particles,the minimum ?uidization velocity decreases?rst then increases.

Spheres have the smallest coordination number in both?xed and?uidized beds.With aspect ratio deviating from1.0,the coordination number generally increases.

The analysis of particle orientations shows that the bed structures for ellipsoids are not random as that for spheres.

To obtain their stable structure,oblate particles prefer facing upward or downward while prolate particles prefer horizontal orientation.With the bed becoming?uidized,the non-uni-formity of the distribution of particle orientations is reduced. Spheres have the largest particle–particle contact force under the comparable conditions.With aspect ratio deviating from

1.0,particle–particle interaction becomes relatively weak.The

minimum exists at aspect ratio0.5for oblate particles and

1.5for prolate particles.The effect of aspect ratio on the drag

force shows the similar feature.It indicates that the particle orientation is one of the dominant factors in affecting the drag force for the gas?uidization of ellipsoids.

Finally,it should be pointed out that the proposed CFD–DEM model is not perfect and requires further developments.For example,particle–particle interaction force models used for ellipsoids are simply extended from spheres.The particle–?uid drag force is determined based on the available correlations in the literature.Their accuracy and applicability are questionable. Moreover,to be general,there may be a need to consider other particle–?uid interaction forces.Nonetheless,the results clearly indicate that this model can capture the key packing and?ow features of ellipsoidal particles.While offering a solid basis for further developments,the model can be used to describe?ow and related behaviour in?uidization.

As clearly demonstrated in this study,this technique can provide detailed dynamic information at a particle scale,includ-ing not only the velocity but also the transient local structures and forces of various types.Previous studies have a dif?culty in obtaining information about the last two.Consequently,there have been problems in probing the underlying mechanics and solving practical problems reliably.In fact,it has been known for years that particle shape plays a signi?cant role in governing the behaviour of particles.Its quanti?cation is however dif?cult, particularly at a microscopic level.Here by the use of an extended CFD–DEM model,we have examined some of the key dynamics of ellipsoids in?uidization.The resulting information should be useful.For example,the structural results about CN and particle orientation can be used in the determination of transport proper-ties such as permeability related to pore connection and thermal conductivity related to particle connection.The force results are useful in understanding why particle shape matters in the?ow of ellipsoidal particles;they can also be used in assessing the possible breakage of particles.Practical particles are often not spherical,so there is a need to extend the CFD–DEM technique to describe the behaviour of such particles more generally.We believe such a development is important not only to fundamental research but also practical problem solving.

Nomenclature

a,b,c Principal semi-diameters of an ellipsoid,m

A0,B0De?ned in Eqs.(3)and(4),m

A?Cross-sectional area of an ellipsoid perpendicular to the ?uid?ow,m2C D Fluid drag coef?cient,dimensionless

c n Normal damping coef?cient,dimensionless

c t Tangential damping coef?cient,dimensionless

d ij Distanc

e between the centres o

f particle i and j,m

d p Particl

e diameter,m

d v Equivalent volum

e diameter,m

E Young’s modulus,Pa

f c,ij Particle–particle contact force,N

f d,ij Particle–particle dampin

g force,N

f d,i Fluid dra

g force on particle i,N

F pf Volumetric?uid–particle interaction force,N/m3

f pf,i Particle–?uid interaction force on particle i,N

g Gravitational acceleration,m/s2

I Moment of inertia of particle,kg m2

k Turbulence kinetic energy,m2/s2

k1,k2Coef?cients in the Ergun equation,dimensionless

K1Stokes correction factor,dimensionless

K2Newton’s correction factor,dimensionless

k c Number of particles in a computational cell,dimensionless k i Number of particles in interaction with particle i, dimensionless

L Bed height,m

M n Torque generated by the normal force,Nám

M r Rolling torque,Nám

M t Tangential torque,Nám

m Mass of particles,kg

N Number of particles in a bed,dimensionless

N c Number of particle–particle contacts in a bed, dimensionless

p Fluid pressure,Pa

R Vector from the mass centre of the particle to the contact point,m

R Particle radius,m

Re Reynolds number,dimensionless

S Cross-sectional area of a bed,m2

t Time,s

u Fluid velocity,m/s

U Gas super?cial velocity,m/s

U mf Minimum?uidization velocity,m/s

v Particle translational velocity,m/s

V Volume of particle,m3

D V Volume of a computational cell,m3

x X direction in a coordinate system,m

D x Width of a computational cell,m

z Z direction in a coordinate system,m

D z Height of a computation cell,m

Greek

a OA longitude on different equatorial planes,degree

w Empirical coef?cient de?ned in Table1,dimensionless d t,max Maximum d t when sliding starts,m

d n Relativ

e normal displacement at contact,m

d t Relativ

e tangential displacement at contact,m

^d

t

Unit vector of d t,dimensionless

e f Porosity,dimensionless

e Dissipation rate o

f turbulent kinetic energy,m2/s3

f,y,c Euler angles,degree

Z Aspect ratio,dimensionless

j Particle sphericity,dimensionless

m f Fluid molecular viscosity,kg/(m s)

m e Fluid effective viscosity,kg/(m s)

m r Rolling friction coef?cient,m

m s Sliding friction coef?cient,dimensionless

Z.Y.Zhou et al./Chemical Engineering Science66(2011)6128–61456143

n Poisson ratio,dimensionless

r Density,kg/m3

s Stress tensor,Pa

x Angular velocity,1/s

^x Unit vector of x,dimensionless

Subscripts

c Contact

d Damping or drag

f Fluid

i Particle i

ij Between particles i and j

j Particle j

n Normal component

p Particle

r Rolling

t Tangential component

w Wall

Acknowledgements

The authors are grateful to the Australian Research Council (ARC)and BlueScope Steel Research for the?nancial support of this work,and the NCI National Facility for the support in computation.

References

Anderson,T.B.,Jackson,R.,1967.Fluid mechanical description of?uidized beds-equations of motion.Ind.Eng.Chem.Fundam.6,527–539.

Beetstra,R.,van der Hoef,M.A.,Kuipers,J.A.M.,2006.A lattice-Boltzmann simulation study of the drag coef?cient of clusters of https://www.doczj.com/doc/4c7512278.html,put.Fluids 35,966–970.

Bouillard,J.X.,Lyczkowski,R.W.,Gidaspow,D.,1989.Porosity distributions in a ?uidized-bed with an immersed obstacle.AIChE J.35,908–922.

Cleary,P.W.,Sawley,M.L.,2002.DEM modelling of industrial granular?ows:3D case studies and the effect of particle shape on hopper discharge.Appl.Math.

Model.26,89–111.

Crowe,C.T.,Sommerfeld,M.,Tsuji,Y.,1998.Multiphase Flow with Droplets and Particles.CRC Press,Boca Raton FL.

Cundall,P.A.,Strack,O.D.L.,1979.A discrete numerical-model for granular assemblies.Geotechnique29,47–65.

Di Felice,R.,1994.The voidage function for?uid particle interaction systems.Int.J.

Multiphase Flow20,153–159.

Di Renzo,A.,Di Maio,F.P.,2007.Homogeneous and bubbling?uidization regimes in DEM-CFD simulations:hydrodynamic stability of gas and liquid?uidized beds.Chem.Eng.Sci.62,116–130.

Dolejs,V.,Machac,I.,1995.Pressure-drop during the?ow of a Newtonian?uid through a?xed-bed of particles.Chem.Eng.Process.34,1–8.

Donev,A.,Cisse,I.,Sachs,D.,Variano,E.,Stillinger,F.H.,Connelly,R.,Torquato,S., Chaikin,P.M.,2004.Improving the density of jammed disordered packings using ellipsoids.Science303,990–993.

Dziugys,A.,Peters,B.,2001.An approach to simulate the motion of spherical and non-spherical fuel particles in combustion chambers.Granular Matter3, 231–265.

Enwald,H.,Peirano, E.,Almstedt, A.E.,1996.Eulerian two-phase?ow theory applied to?uidization.Int.J.Multiphase Flow22,21–66.

Ergun,S.,1952.Fluid?ow through packed columns.Chem.Eng.Prog.48,89–94. Escudie,R.,Epstein,N.,Grace,J.R.,Bi,H.T.,2006.Effect of particle shape on liquid-?uidized beds of binary(and ternary)solids mixtures:segregation vs.mixing.

Chem.Eng.Sci.61,1528–1539.

Feng,Y.Q.,Yu, A.B.,2004.Assessment of model formulations in the discrete particle simulation of gas–solid?ow.Ind.Eng.Chem.Res.43,8378–8390. Feng,Y.Q.,Yu,A.B.,2007.Microdynamic modelling and analysis of the mixing and segregation of binary mixtures of particles in gas?uidization.Chem.Eng.Sci.

62,256–268.

Fraige,F.Y.,Langston,P.A.,Chen,G.Z.,2008.Distinct element modelling of cubic particle packing and?ow.Powder Technol.186,224–240.

Ganser,G.H.,1993.A rational approach to drag prediction of spherical and nonspherical particles.Powder Technol.77,143–152.

Gidaspow,D.,1994.Multiphase Flow and Fluidization.Academic Press,San Diego. Goldstein,H.,1980.Classical Mechanics.Addison-Wesley Publishing Company.Guises,R.,Xiang,J.,Latham,J.-P.,Munjiza,A.,2009.Granular packing:numerical simulation and characterization of the effect of particle shape.Granular Matter 11,281–292.

Guo,X.H.,Lin,J.Z.,Nie,D.M.,2011.New formula for drag coef?cient of cylindrical particles.Particuology9,114–120.

Haider,A.,Levenspiel,O.,1989.Drag coef?cient and terminal velocity of spherical and nonspherical particles.Powder Technol.58,63–70.

Harris,W.F.,2006.Curvature of ellipsoids and other surfaces.Ophthalmic Physiol.

Opt.26,497–501.

Hilton,J.E.,Mason,L.R.,Cleary,P.W.,2010.Dynamics of gas–solid?uidised beds with non-spherical particle geometry.Chem.Eng.Sci.65,1584–1596. Holloway,W.,Yin,X.L.,Sundaresan,S.,2010.Fluid–particle drag in inertial polydisperse gas–solid suspensions.AIChE J.56,1995–2004.

Holzer,A.,Sommerfeld,M.,2008.New simple correlation formula for the drag coef?cient of non-spherical particles.Powder Technol.184,361–365. Holzer,A.,Sornmerfeld,M.,https://www.doczj.com/doc/4c7512278.html,ttice Boltzmann simulations to determine drag,lift and torque acting on non-spherical https://www.doczj.com/doc/4c7512278.html,put.Fluids38, 572–589.

Hoomans,B.P.B.,Kuipers,J.A.M.,van Swaaij,W.P.M.,2000.Granular dynamics simulation of segregation phenomena in bubbling gas-?uidised beds.Powder Technol.109,41–48.

Jia,X.,Caulkin,R.,Williams,R.A.,Zhou,Z.Y.,Yu,A.B.,2010.The role of geometric constraints in random packing of non-spherical particles.EPL92,68005. Kafui,K.D.,Thornton, C.,Adams,M.J.,2002.Discrete particle–continuum?uid modelling of gas–solid?uidised beds.Chem.Eng.Sci.57,2395–2410. Kunii,D.,Levenspiel,O.,1991.Fluidization Engineering.Butterworth-Heinemann, Boston.

Langston,P.A.,Al-Awamleh,M.A.,Fraige,F.Y.,Asmar,B.N.,2004.Distinct element modelling of non-spherical frictionless particle?ow.Chem.Eng.Sci.59, 425–435.

Langston,P.A.,Tuzun,U.,1994.Continuous potential discrete particle simulations of stress and velocity-?elds in hoppers—transition from?uid to granular?ow.

Chem.Eng.Sci.49,1259–1275.

Langston,P.A.,Tuzun,U.,Heyes, D.M.,1995.Discrete element simulation of granular?ow in2d and3d hoppers—dependence of discharge rate and wall stress on particle interactions.Chem.Eng.Sci.50,967–987.

Launder,B.E.,Spalding,D.B.,1974.The numerical computation of turbulent?ows.

Comput.Methods Appl.Mech.Eng.3,269–289.

Leboreiro,J.,Joseph,G.G.,Hrenya,C.M.,Snider,D.M.,Banejee,S.S.,Galvin,J.E., 2008.The in?uence of binary drag laws on simulations of species segregation in gas-?uidized beds.Powder Technol.184,275–290.

Li,J.H.,Zhang,J.Y.,Ge,W.,Liu,X.H.,2004.Multi-scale methodology for complex systems.Chem.Eng.Sci.59,1687–1700.

Lia,J.T.,Langston,P.A.,Webb,C.,Dyakowski,T.,2004.Flow of sphero-disc particles in rectangular hoppers—a DEM and experimental comparison in3D.Chem.

Eng.Sci.59,5917–5929.

Lin,X.,Ng,T.T.,1995.Contact detection algorithms for three-dimensional ellipsoids in discrete element modelling.Int.J.Numer.Anal.Methods Geomech.19,653–659.

Lin,X.,Ng,T.T.,1997.A three-dimensional discrete element model using arrays of ellipsoids.Geotechnique47,319–329.

Liu,B.Q.,Zhang,X.H.,Wang,L.G.,Hong,H.,2008.Fluidization of non-spherical particles:sphericity,Zingg factor and other?uidization parameters.Particuol-ogy6,125–129.

Liu,L.X.,Litster,J.D.,1991.The effect of particle-shape on the spouting properties of nonspherical particles.Powder Technol.66,59–67.

Liu,L.F.,Zhang,Z.P.,Yu,A.B.,1999.Dynamic simulation of the centripetal packing of mono-sized spheres.Phys.A Stat.Mech.Appl.268,433–453.

Loth,E.,2008.Drag of non-spherical solid particles of regular and irregular shape.

Powder Technol.182,342–353.

Nemec,D.,Levec,J.,2005.Flow through packed bed reactors:1.Single-phase?ow.

Chem.Eng.Sci.60,6947–6957.

Ozahi,E.,Gundogdu,M.Y.,Carpinlioglu,M.O.,2008.A modi?cation on Ergun’s correlation for use in cylindrical packed beds with non-spherical particles.

Adv.Powder Technol.19,369–381.

Rothenburg,L.,Bathurst,R.J.,1991.Numerical simulation of idealized granular assemblies with plane elliptical https://www.doczj.com/doc/4c7512278.html,put.Geotech.11,315–329. Sarkar,S.,van der Hoef,M.A.,Kuipers,J.A.M.,2009.Fluid–particle interaction from lattice Boltzmann simulations for?ow through polydisperse random arrays of spheres.Chem.Eng.Sci.64,2683–2691.

Ting,J.M.,Khwaja,M.,Meachum,L.R.,Rowell,J.D.,1993.An ellipse-based discrete element model for granular-materials.Int.J.Numer.Anal.Methods Geomech.

17,603–623.

Ting,J.M.,1992.A robust algorithm for ellipse-based discrete element modelling of granular https://www.doczj.com/doc/4c7512278.html,put.Geotech.13,175–186.

Van der Hoef,M.A.,Beetstra,R.,Kuipers,J.A.M.,https://www.doczj.com/doc/4c7512278.html,ttice-Boltzmann simulations of low-Reynolds-number?ow past mono-and bidisperse arrays of spheres: results for the permeability and drag force.J.Fluid Mech.528,233–254.

Vu-Quoc,L.,Zhang,X.,Walton,O.R.,2000.A3-D discrete-element method for dry granular?ows of ellipsoidal https://www.doczj.com/doc/4c7512278.html,put.Methods Appl.Mech.Eng.J.

187,483–528.

Wu,S.M.,2001.Permeability and Minimum Fluidization Velocity of Non-spherical Particle Mixtures.Master Thesis,The University of New South Wales.

Xu,B.H.,Yu,A.B.,1997.Numerical simulation of the gas–solid?ow in a?uidized bed by combining discrete particle method with computational?uid dynamics.Chem.Eng.Sci.52,2785–2809.

Z.Y.Zhou et al./Chemical Engineering Science66(2011)6128–6145 6144

Xu,B.H.,Yu,A.B.,Chew,S.J.,Zulli,P.,2000.Numerical simulation of the gas–solid ?ow in a bed with lateral gas blasting.Powder Technol.109,13–26.

Yang,R.Y.,Zou,R.P.,Yu,A.B.,2003.Microdynamic analysis of the?ow of particles in horizontal rotating drum.Powder Technol.130,138–146.

Yang,R.Y.,Zou,R.P.,Yu,A.B.,https://www.doczj.com/doc/4c7512278.html,puter simulation of the packing of?ne particles.Phys.Rev.E62,3900–3908.

Yin,X.L.,Sundaresan,S.,2009.Drag law for bidisperse gas–solid suspensions containing equally sized spheres.Ind.Eng.Chem.Res.48,227–241.

Yu,A.B.,Standish,N.,1993.Characterization of nonspherical particles from their packing behavior.Powder Technol.74,205–213.

Yu,A.B.,Zou,R.P.,Standish,N.,1996.Modifying the linear packing model for predicting the porosity of nonspherical particle mixtures.Ind.Eng.Chem.Res.

35,3730–3741.

Zhang,S.J.,Yu,A.B.,Zulli,P.,Wright,B.,Tuzun,U.,1998.Modelling of the solids ?ow in a blast furnace.ISIJ Int.38,1311–1319.

Zhang,Z.P.,Liu,L.F.,Yuan,Y.D.,Yu,A.B.,2001.A simulation study of the effects of dynamic variables on the packing of spheres.Powder Technol.116,23–32. Zhou,Y.C.,Wright,B.D.,Yang,R.Y.,Xu,B.H.,Yu,A.B.,1999.Rolling friction in the dynamic simulation of sandpile formation.Phys.A Stat.Mech.Appl.269, 536–553.

Zhou,Y.C.,Yu,A.B.,Stewart,R.,Bridgwater,J.,2004.Microdynamic analysis of particle?ow in a bladed mixer.Chem.Eng.Sci.59,1343–1364.Zhou,Z.Y.,Pinson, D.,Zou,R.P.,Yu, A.B.,2009a.CFD–DEM simulation of gas ?uidization of ellipsoidal particles.In:Proceedings of the Seventh Interna-tional Conference on CFD in the Minerals and Process Industries CSIRO.9–11 December,Melbourne,Australia.

Zhou,Z.Y.,Yu,A.B.,Zulli,P.,2009b.Particle scale study of heat transfer in packed and bubbling?uidized beds.AIChE J.55,868–884.

Zhou,Z.Y.,Kuang,S.B.,Chu,K.W.,Yu,A.B.,2010.Discrete particle simulation of particle–?uid?ow:model formulations and their applicability.J.Fluid Mech.

661,482–510.

Zhu,H.P.,Yu,A.B.,2002.Averaging method of granular materials.Phys.Rev.E66, 021302-1–021302-10.

Zhu,H.P.,Yu, A.B.,2004.Steady-state granular?ow in a three-dimensional cylindrical hopper with?at bottom:microscopic analysis.J.Phys.D Appl.

Phys.37,1497–1508.

Zhu,H.P.,Zhou,Z.Y.,Yang,R.Y.,Yu,A.B.,2007.Discrete particle simulation of particulate systems:theoretical developments.Chem.Eng.Sci.62,3378–3396. Zhu,H.P.,Zhou,Z.Y.,Yang,R.Y.,Yu,A.B.,2008.Discrete particle simulation of particulate systems:a review of major applications and?ndings.Chem.Eng.

Sci.63,5728–5770.

Zou,R.P.,Yu,A.B.,1996.Evaluation of the packing characteristics of mono-sized non-spherical particles.Powder Technol.88,71–79.

Z.Y.Zhou et al./Chemical Engineering Science66(2011)6128–61456145

人教版八年级物理上册单元测试题及答案全套

一、选择题(共9小题) 1.全国各地频发雾霾天气(如图),河北各地市多次启动重污染天气Ⅱ级橙色预警。雾霾主要由一氧化硫、氮氧化物和可吸入颗粒物这三项组成,前两者为气态污染物,可吸入颗粒物才是加重雾霾天气污染的罪魁祸首。它们与雾气结合在一起,让天空瞬间变得灰蒙蒙的,对人体健康危害极大。的微粒直径小于或等于 A.nm B.μm C.mm D.cm 2.周末,小明乘坐“今世缘”号有轨电车去周恩来纪念馆参观,在有轨电车行驶过程中,小明觉得自己是静止的,他选取的参照物是 A.轨道旁的行道树 B.沿途的路灯杆 C.有轨电车的车厢 D.迎面来的轿车 3.用刻度尺测量物理课本的长,以下哪个是产生误差的原因 A.观察刻度尺时,视线没有跟刻度尺尺面垂直 B.读数时,最小刻度的下一位数值估计不准确 C.刻度尺没有跟课本的长边平行 D.刻度尺的刻度线没有紧贴课本 4.某同学用刻度尺测量标准化考试文具中的碳素笔的长度,测得的结果是:cm,cm,cm,cm,则此笔的长度应取 A.cm B.cm

C.cm D.cm 5.在一次军训越野跑中,一个长200米的队伍以4米/秒的速度穿过一个长1 200米的山谷,请问队伍完全通过山谷需要多少时间 A.300秒B.350秒 C.400秒D.250秒 6.湛江首条高铁将于2018年6月开通,广州—湛江3小时可达!如果假期到了,同学们送小明乘列车回家。几个同学看着列车徐徐地向前开动了,小明坐在窗边,却看到同学们渐渐向后退去,原因是几个同学和小明所选择的参照物分别是 A.地面、列车B.列车、地面 C.列车、列车D.地面、地面 7.两辆汽车在平直公路上运动,甲车内一人看见乙车没有运动,而乙车内一人看见路旁的树木向西移动,如果以大地为参照物,上述观察说明 A.甲车不动,乙车向东运动 B.乙车不动,甲车向东运动 C.甲车向西运动,乙车向东运动 D.甲乙两车以相同速度都向东运动 8.甲、乙两物体同时同地向东做匀速直线运动,它们的s﹣t图象如图所示。由图象可知 A.甲的速度小于乙的速度 B.经过6 s,甲在乙前面m处 C.以甲为参照物,乙向东运动 D.以乙为参照物,甲向东运动 9.在研究水滴下落规律的实验中,打开水龙头让水一滴一滴下落,并用频闪照相机每隔s拍摄了同一水滴下落时的不同位置,如图所示,由图可知,水滴下落s内的平均速度是

面试情景模拟对话

面试情景模拟对话 LEKIBM standardization office【IBM5AB- LEKIBMK08- LEKIBM2C】

一、场景:三个面试,一个面试者。 应征职位:服装外贸公司业务员工作。 所需道具:应征者的着装及道具:简历(能处理一般的文件、单证就行)面试者的着装及道具:文件夹 二、流程: 开场简介 三位面试者应征者介绍“我是应征者,应征服装外贸公司业务员工作”这是复试阶段。 敲门(走进面试官): 第一个问题 第二个问题 第三个问题 三、对话设计 应征者:各位面试官好 面试者一:你好,请坐。在初试中你表现得很好,我们又仔细看了一遍你的简历。如你所知,我们是一家外贸服装公司,产品主要出口欧美,自然要和国外客户谈生意,所以我们要求业务员的口语表达要相当流利。那么请用英语阐述一下你的优势。 应征者:It is really a great honor to have this opportunity, and I believe I can make good performance today. Firstly, I am a person with great persistence and if I determine to do something, I will devote myself deeply in it. I will try my best to make it , I have a comparative good command of communication skills. I am open-

minded ,quick in action. And thirdly,I am able to operate the computer am skillful in searching information on the Internet. Actually, I take great interest in fashion you very much. 面试者二:你最后说你对时尚很感兴趣,那么新潮外贸服装的货源地有哪些? 应征者:据我所知,广州天河城后面有很多做外贸服装的,产品看上去都很好,价格也合适。还有就是上海七浦路服装批发市场也很好,服装新潮,是个不错的地方。此外,像北京,深圳等城市也是很好的选择。 面试者二:你有去过其中一个地方吗? 应征者:在大三实习的时候,我在一个外贸公司当助理,他们也是做服装生意。有一次和主管去采购,去的是上海七浦路服装批发市场,觉得那的服装很时尚,虽然价格比较高一点。其他的地方虽然没去过但也了解一点。 面试者二:对于你的回答我很满意,觉得你各方面条件和我们的职位要求还是比较符合的。 面试者三:最后我想请问一下,你对薪资的要求是什么 应征者:虽然薪资不是我的首要考虑因素,但我希望不少于3000,我很看重贵公司的发展前景。如果有幸能得到这份工作,我会尽全力做好。另外,我希望知道贵公司的试用期是多长时间。

精选-几种典型的面试方法情景模拟面试

几种典型的面试方法情景模拟面试 情景模拟面试也是人才测评中应用较广的一种方法,它主要测试应试者的各种实际操作能力。 一、情景模拟面试的特点 情景模拟面试,是设置一定的模拟情况,要求被测试者扮演某一角色并进入角~景中,去处理各种事务及各种问题和矛盾。考官通过对考生在情景中所表现出来的行为,进行观察和记,以测评其素质潜能,或看其是否能适应或胜任工作。 情景模拟测试有以下特点: 1.针对性 由于模拟测试的环境是拟招岗位或近似拟招岗位的环境,测试内容又是拟招岗位的某项实际工作,因而具有较强的针对性。例如: 西安市财政局在模拟测试中,给了应试者有关财务资料,要求应试者据此写出一份财务分析报告,内容包括数据计算、综合分析、个人的观点、意见和建议。 西安市审计局给应试者提供了某单位的原始凭证和记好的 账目,要求应试者据此检查出错误,并定行为、定性质、改错账。 上述模拟测试就是针对财政工作和审计工作的需要和现实 问题设计的。 2.直接性 中共西安市委宣传部将一篇成文信息抽取观点,颠倒次序后,

由一位主考官语无伦次地口头叙述,让应试者记录并据此写出一份“简报”。 西安市检察院用中速放了一名犯罪分子的犯罪证词录音,要求应试者做笔录,并据此撰写“起诉书”,还放了一个举报电话录音,让应试者当即处理。 这样的测试,不仅测试内容与拟招岗位业务有直接关系,而且使考评人员能够直接观察应试者的工作情况,直接了解应试者的基本素质及能力,所以更具有直接性。 3.可信性 由于模拟测试接近实际,考察的重点是应试者分析和解决实际工作问题的能力,加之这种方式又便于观察、了解应试者是否具备拟任岗位职务的素质,因此普遍反映模拟测试比笔试和其他面试形式更具有可信性。 西安市广播电视局在招聘编辑、记者时,组织应试者参观了西安无线电一厂生产车间,请厂长介绍了该厂搞活企业经营,狠抓产品质量,改进政治思想工作等情况,并以记者招待会的形式,由厂长解答了应试者提出的各种问题。随后让应试者根据各自的“采访记录”分别撰写新闻综述和工作通讯。 通过这种测试观察了解应试者是否具备编辑、记者的基本素质,是十分可靠的。 总的来讲,和其他考试形式相比,情景模拟测试的特点主要表现在针对性、真实性和开放性等方面。针对性表现在测试的环

八年级物理上册练习题

八年级(上)物理练习一基础概念 填空: 1,一切物质都是由__________和__________组成的。 2,科学探究的环节包括7个步骤:观察思考,提出问题——__________与__________——指定计划,设计实验——__________——收集证据,分析论证——__________与__________。3,国际单位制,用符号【__________】表示。长度的国际单位是__________。 1km=__________m,1dm=__________m,1cm=__________m, 1mm=__________m,1μm=__________m,1nm=__________m。 4,常用的长度测量工具是__________。 5,分度值是测量仪器的__________。 6,测量结果包括准确值和估读值,估读到最小刻度值的下__________位。 7,量程是测量工具所能测量的______________________________。 8,误差__________消灭,__________减小。(能或不能)减小误差的方法:______________________________。 9,自然界一切物体都在__________。 10,运动时__________的,静止是__________的。(相对或绝对) 11,机械运动是指物体__________的变化。 12,参照物是假定__________的标准物。(运动或不动)通常不提时,常选__________为参照物。 13,判断物体运动的快慢必须考虑__________和__________两个因素。 14,匀速直线运动是指一个物体沿着__________运动,在相同时间内,通过的__________相同。 15,速度是做匀速直线运动的物体在__________内通过的__________。速度的物理意义:______________________________。 16,速度的公式:____________________。速度符号__________,单位__________。路程符号__________,单位__________。时间符号__________单位__________。 17,平均速度是指________________________________________。常用符号__________表示。18,能量是与物体__________有关的物理量。不同形式的能量__________相互转化。(能或不能) 19,发声的物体都在__________。声音是由于物体的__________产生的。 20,正在发声的物体叫做__________。 21,声音向周围扩散,形成__________,它必须借助于__________才能传播,声音的传播需要__________。

大学生求职面试英语情景对话(留着面试用)必备学习

美式论文、报告写作技巧 编者按:美式教育的特点即是课程内容强调学生参与及创新运用,因此,报告便成了常见的 考核学生学习成果的方式,比如实验报告、学期报告、专题报告、研究报告及论文(含毕业论文)等。研究生prese ntation 及semi nar的机会更是占很大的比重,有些甚至占学期成绩很大比例。如何完成报告、论文同时得到良好的成绩,是本文提供给有志留学的有心人 参考的目的。 美国大学生由於自小已养成自动寻找答案习惯,在启发式的教育环境下,写报告、论文对他们来说比较不陌生,虽然专业知识上美国学生不见得比外籍学生强,但是表达能力由於自小 培养,力口上英语能力的优势,常比外籍学生在报告、论文方面有较隹的利基。反之中国学生比较缺乏报告写作的训练,因此如果在留学过程中无法适应美式教育会比较辛苦,其实论文、报告的写作要领其实不难,只要把握技巧就可水到渠成。 通常论文由篇首(Preliminaries) ,本文(Texts)以及参考资料(References)三部分构成;而 这三大部分各自内容如下: (一) 篇首: 封面(Title) 序言(Preface) 谢词(Acknowledge) 提要(Summary) 目录(Tables and Appendixes) (二) 本文: 弓I言(Introduction)

主体,含篇(Part)、章(Chapter)、节(Section)、以及注释(Footnotes)

(三)参考资料: 参考书目(References or Bibliography) 附录资料(Appendix)。 进行论文或报告写作之前,先要确定想要表达的主题,主题确定后,将其具体表达,即为题 目。题目可以提供研究者: 一.研究的方向 二.研究的范围 三.资料搜集的范围 四.预期研究成果 通常在确定题目之後就开始找资料从事研究,建议在找资料之前最好去问教授有哪些参考资 料来源可供参考引用。构思为确定写作大纲或Proposal的先前步骤,大纲是论文、报告 的骨干,Proposal是研究的架构、流程及范围的说明书。如何构思大纲或Proposal为论文、报告写作前的必要准备工作。好的论文或研究报告,要基于在完整、详实的资料上,而参考资料除了和教授商借之外,最主要的来源就是图书馆了,一般参考资料来源可分成教科 书或手册、政府机构的报告、科技或商业方面的杂志,及会议性质的资料。此外现代的电脑 资料库也可帮助收集资料,在国外可利用学校的电脑连线资料库寻找自己需要的资料。当一切准备就绪,即可开始着手写报告,一般报告还分大报告如期末、专题等报告,及小报告如Seminar式的报告。 就算是小报告,也至少应含 (一)TITLE PAGES :包含主题名称、作者、日期 (二[Summary:即主要的结论 (三) In troduction :包括理论背景及内容 (四) Technical Sections :是论文的主体,为最重要的部份应再细分为几个片断。

模拟英语面试场景对话

外资企业面试英语情景对话模拟,喜欢的就进来看看! 1.how did you come? a very heavy traffic? yes, it was very heavy but since i came here, i found out the direct line from my home to your company through the network,and of course. i left my home very early so it does not matter to me. 2.do you know anything about this company? yes, a little,as you mentioned just now , yours is an america-invested company,as far as i know, yours is a world-famous company in Electronics(電子) Manufacturing Services (EMS-Electronic Manufacturing Service),which design and engineering solutions that are combined(合并) with core(核心) electronics manufacturing and logistics(物流) services. 3.introduce yourself ,please? i was admitted by east china jiaotong university in 2006,My specialty is design and manufacture of machinery and automation. in 2006, my first work in GEMS PLASTIC COMPANY LIMITED as a Project Engineer,responsible for mobile phone shell project managment. in 2007, my second work in BYD COMPANY LIMITED as a Project manager, ALSO responsible for mobile phone shell project managment. the several years working experience give me full play to my creativity,diligence(勤奋),and intelligence(智慧),i believe i can do my job well. i developed several professional interests, like study japanese, making the e-magazine,hitting snooker at my spare time. 4.give me a summary of your current job description? i have been working as a mobile phone shell Project manager for 3 years, to be specific is: Responsible for insertion and progress that new event develops in charge of accusing of meeting customer's demand. Responsible for writing the project and producing BOM. In charge of accusing of the project and developing the cost of course and in charge of accusing of. In charge of accusing of the project and developing the course problem to track

人教版八年级物理上册测试题及答案

人教版八年级物理上册测试题及答案 标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

第一章:机械运动单元测试题 一.选择题(每小题3分,共36分) 1.观察身边的物理现象——下列估测最接近实际的是() A.演奏中华人民共和国国歌所需的时间约为47s B.我们所用物理教材的宽度约为25cm C.初中物理课本一页纸的厚度约为 D.课桌的高度约为 m 2. 晓燕在学校春季运动会百米赛跑中以16s的成绩获得冠军,测得她在50m处的速度是 6m/s,到终点时的速度为s,则全程内的平均速度是() s B. s C. s D. s 3. 汽车速度是36km/h,运动员速度是10m/s,自行车1min通过的路程,则 A.自行车的速度最大B.短跑运动员速度最大 C.汽车速度最大 D.三者速度一样大 4. 甲、乙两小车同时同地同方向做匀速直线运动,它们的s-t图像如图所示。经过6 秒,两车的位置关系是( ) A.甲在乙前面0.6米处 B.甲在乙前面1.2米处 C.乙在甲前面0.6米处 D.乙在甲前面1.2米处

5. 有位诗人坐船远眺,写下了着名诗词:“满眼风光多闪烁,看山恰似走来迎;仔细看 山山不动,是船行”,诗人在诗词中前后两次对山的运动的描述,所选择的参照物分别是() A.风和水 B、船和地面 C、山和船 D、风和地面 6. 使用一个刚从冰箱里拿出来的毫米刻度尺去测量一个机器零件的长度,这样测量的结 果将会() A.偏大 B.偏小 C.正常 D.无法比较 7. 从匀速直线运动的速度公式 v = s/ t得出的结论,正确的是() A.速度与路程成正比 B.速度与时间成反比 C.速度不变,路程与时间成正比 D.速度与路程成反比 8.课外活动时,小明和小华均在操作上沿直线进行跑步训练。在某次训练中,他们通过的 路程和时间的关系如图2所示,则下列说法中正确的是( ) A.两人都做匀速直线运动 B.两人都不是做匀速直线运动 C.前2s内,小明跑得较快 D.全程中,两人跑步的平均速度相同 9.甲图是某物体运动的s-t图像,则图(乙)中能与之相对应的v-t图像是() 10某同学先后三次测量同一物体的宽度,测得的数据分别是、 cm、 cm,则测得该物体宽度为() A、 B、 C、 D、 11.一列队伍长50m,跑步速度是s,队伍全部通过一长100m的涵洞,需耍的时间是()

面试情景对话

面试情景模拟对话 角色设定:主考官-- ? 副考官1 -- ? 副考官2 -- ? 经理-- ? 面试者1 -- ? 面试者2 -- ? 场景设定:室内面试 模拟A 面试者1:(缓节奏地敲门) 主考官:请进! 面试者1:(慢步走进考场)各位考官下午好!(鞠躬) 主考官:(微笑)嗯,你好,请坐下回答问题吧。 面试者1:(微笑)谢谢!不用了,我还是站着比较放松。(注意仪态,站姿) 主考官:好的。 副考官1:你能简单介绍下自己吗? 面试者1:我叫?,来自?,毕业于?,在校期间认真学习,勤奋务实,具备广泛的兴趣和丰富的知识,适应能力强,能够在很短段时间内融入一个新的领域,适应它并且把它做好。此外,勇于挑战自我,工作积极热情,为了完成自己的目标能够努力投入力量。同时,我也是个乐于与人沟通,具有较强的团队管理能力和协作能力的人。 主考官:你的简历上写了你大学三年学的是营销连锁专业,那你可以告诉我,你学到了哪些知识? 副考官2:或者说你认为你有哪些技能可以让你的销售成果更显著? 面试者1:说实话刚开始到这个专业时我是拒绝的,因为我觉得营销专业就是简单的卖东西,不学也能做好,后来我发现并不是这样的。这个专业不仅仅让我学会了推销技术,更学会了与人沟通和管理方面的知识,学习这个专业让我从一个内向的男生,变得擅于与人沟通。同时我们的专业老师更加注重实践,我们大学期间对于Excel,Word,PPT的运用十分熟系,同时我不断要求自己学习英语,英语达到四级水平。我想这些对于未来的工作都是有着绝对的益处的。 主考官:假设你在工作中,成绩比较突出,得到领导的肯定。但同时,你发现同事们越来越孤立你,你怎么看这个问题?你准备怎么办? 面试者1:成绩比较突出,得到领导的肯定是件好事情,我会以后更加努力。对于同事们的态度,我会检讨一下自己是不是对工作的热心度超过同事间交往的热心了,并加强同事间的交往和共同的兴趣爱好的培养。在工作中,尽量不伤害到别人的自尊心,也避免在领导前拨

八年级上册物理 全册全套试卷专题练习(解析版)

八年级上册物理全册全套试卷专题练习(解析版) 一、初二物理机械运动实验易错压轴题(难) 1.物理实验课上,某实验小组利用带有刻度尺的斜面、小车和数字钟测量小车的平均速度,如图所示,图中显示的是他们测量过程中的小车在甲、乙、丙三个位置及其对应时刻的情形,显示时间的格式是“时:分:秒”。 (1)本实验的原理是___; (2)实验时应保持斜面的倾角较小,这是为了减小测量_____(填“路程”或“时间”)时造成的误差; (3)斜面倾角不变,小车由静止释放运动到底端,则小车前半程的平均速度____小车后半程的平均速度(选填“大于”、“等于”或“小于”); (4)由图观察可知,小车从乙位置运动至丙位置时,所测量的路程是____cm,平均速度____m/s; (5)物体的运动常常可以用图像来描述,下图中能反映本实验中小车运动情况的是 ______(选填“A”或“B”) 【来源】福建省三明市大田县2019-2020学年八年级(上)期中物理试题 【答案】v=s t 时间小于 65.0 0.1625 B 【解析】【分析】【详解】 (1)[1]测量小车的平均速度需要用到速度的公式v=s t 。 (2)[2]斜面坡度越大,小车沿斜面向下加速运动越快,所用时间会越短,计时会越困难,所以为使计时方便,减小测量时间的误差,斜面坡度应小些。 (3)[3]小车由静止释放,做加速运动,小车通过前半程的平均速度小于小车通过后半程的平均速度。 (4)[4][5]由图可知,小车从乙位置运动至丙位置时的路程是65.0cm,运动的时间是4s,平

均速度 v= 65.0cm 4s s t ==16.25cm/s=0.1625m/s (5)[6] A图为s-t图象,是一过原点的直线,说明做匀速直线运动,通过的距离与时间成正比,故A不符合题意;而B图为v-t图象,表示随着时间的增长,速度逐渐变大,故图B 中能反映小车运动情况。 2.在“探究纸锥下落的快慢”的活动中,小明制作了一个直径8.0cm的纸锥,某次实验用频闪照相机拍摄得到如图所示的照片,已知:频闪照相机每隔0.25s曝光一次,照片中纸锥的直径是0.8cm,照片中A到G的长度L=8.4cm。 照片中A到G的长度L/cm ①③ 纸锥的平均速度 v/(m·s-1) 8.4②④ (1)为了能够从已知的信息计算得出纸锥从A下落到G点的平均速度,请你在设计的表格中将空缺的①②③④部分补充完整: ①________________;②________;③__________;④________。 (2)观察纸锥下落的照片,可以得出纸锥从A到G过程中,下落速度的变化情况是 _________。 【来源】江苏省南京市鼓楼区2019-2020学年八年级(上)期末考试物理试题 【答案】从A到G的下落实际高度H/m 0.84 从A到G的下落时间t/s 1.5 先加速后匀速(速度先增加后不变) 【解析】 【分析】 【详解】 (1) [1][2]由表格可知,要计算纸锥的平均速度,需知道纸锥从A到G的下落实际高度,纸锥的实际直径为8.0cm,照片中纸锥的直径是0.8cm,因此照片中纸锥和实际纸锥的比例是1:10,故从A到G的下落实际高度H为照片中A到G的长度的10倍,即: H=8.4cm?10=84cm=0.84m,

面试情景对话

面试情景对话 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

面试情景模拟对话 角色设定:主考官 -- 副考官1 -- 副考官2 -- 经理 -- 面试者1 -- 面试者2 -- 场景设定:室内面试 模拟A 面试者1:(缓节奏地敲门) 主考官:请进! 面试者1:(慢步走进考场)各位考官下午好!(鞠躬) 主考官:(微笑)嗯,你好,请坐下回答问题吧。 面试者1:(微笑)谢谢!不用了,我还是站着比较放松。(注意仪态,站姿) 主考官:好的。 副考官1:你能简单介绍下自己吗? 面试者1:我叫,来自,毕业于,在校期间认真学习,勤奋务实,具备广泛的兴趣和丰富的知识,适应能力强,能够在很短段时间内融入一个新的领域,适应它并且把它做好。此外,勇于挑战自我,工作积极热情,为了完成自己的目标能够努力投入力量。同时,我也是个乐于与人沟通,具有较强的团队管理能力和协作能力的人。 主考官:你的简历上写了你大学三年学的是营销连锁专业,那你可以告诉我,你学到了哪些知识? 副考官2:或者说你认为你有哪些技能可以让你的销售成果更显著?

面试者1:说实话刚开始到这个专业时我是拒绝的,因为我觉得营销专业就是简单的卖东西,不学也能做好,后来我发现并不是这样的。这个专业不仅仅让我学会了推销技术,更学会了与人沟通和管理方面的知识,学习这个专业让我从一个内向的男生,变得擅于与人沟通。同时我们的专业老师更加注重实践,我们大学期间对于Excel,Word,PPT的运用十分熟系,同时我不断要求自己学习英语,英语达到四级水平。我想这些对于未来的工作都是有着绝对的益处的。 主考官:假设你在工作中,成绩比较突出,得到领导的肯定。但同时,你发现同事们越来越孤立你,你怎么看这个问题你准备怎么办 面试者1:成绩比较突出,得到领导的肯定是件好事情,我会以后更加努力。对于同事们的态度,我会检讨一下自己是不是对工作的热心度超过同事间交往的热心了,并加强同事间的交往和共同的兴趣爱好的培养。在工作中,尽量不伤害到别人的自尊心,也避免在领导前拨弄是非。 主考官:嗯,我很赞同你的做法! 经理:在未来的五年内,你有怎样的规划呢? 面试者1:未来五年内,我会从基层做起,一到两年内熟悉所有基层工作,学习各个岗位基本技能,三到五年内进入基层管理,学习工作中管理方面的知识,让自己更加适合管理工作,为以后发展打好基础。 经理:好的,谢谢你的回答!你有什么问题想问我们的吗? 面试者1:没有了。 副考官1:好的。如果你被最终录取的话,我们将会以电话形式通知你。现在,你可以离开了。 面试者1:各位考官辛苦啦!谢谢!(缓步离开,并将门带上) 模拟B 面试者2:(缓节奏地敲门) 主考官:请进! 面试者2:(慢步走进考场)各位考官下午好!(鞠躬) 主考官:(微笑)嗯,你好,请坐吧! 面试者2:(微笑)谢谢!(注意仪态,端坐) 副考官2:请简单介绍下自己! 面试者2:我叫,来自,今年20岁,我想应聘的职位是营销助理或是酒店管理,本人比较乐观开朗,平常喜欢听音乐,跳舞。在大学期间担任学习委一职,曾获得优秀学生干部和二等奖学金。通过英语四级考试和计算机考证等,成绩优异,希望各位主考官给我次机会,谢谢! 副考官1:你对我们公司有了解吗是什么原因让你选择来应试我们公司的 面试者2:贵公司是世界一百强中有数一数二的,公司福利好,管理制度优越,如果我能够进入贵公司,那么对该公司就更有所了解。因为我所学的专业

八年级物理上册复习题及答案

八年级物理上册期末考试题试卷 一、选择题 1、流星落在地球上会产生巨大的声音,但它落在月球上,即使宇航员就在附近也听不到声音,这是因为() A.月球表面受到撞击时不发声B.撞击声太小,人耳无法听到 C.月球表面没有空气,声音无法传播D.撞击月球产生的是超声波 2.下面是一些正在振动的物体:甲:手臂以每秒1次的频率上下挥动;乙:蝙蝠的嘴发出频率为105Hz的振动;丙:用小锤敲音叉,音叉发生256Hz的振动,以下说法正确的是() A.我们只能听见音叉发出的声音,所以丙是声源,其他不是声源 B.甲、乙、丙都是声源,我们都能听到它们发出的声音 C.甲、乙、丙都是声源,我们只能听到丙发出的声音 D.甲和丙是声源,我们能看见振动或听到声音;乙不是声源,因为我们既看不见振动,也听不到声音 3.下列关于声音的说法中不正确的是() A.俗话说“隔音有耳”,说明固体也能传声B.“震耳俗聋”主要说明声音的音调高C.“闻其声而知其人”主要根据音色来判断的D.声音在真空中不可以传播 4.下列说法不正确的是() A.镜面反射遵从光的反射规律B.平行光束经平面镜反射后,仍然是平行光束 C.漫反射不遵从光的反射规律D.漫反射中入射的平行光束经反射后,不再是平行光束5.潜望镜观察的像是下列情况中的哪一种() A.正立缩小的实像B.正立等大的实像C.倒立放大的虚像D.正立等大的虚像 6.下列说法中正确的是() A.月亮是一个巨大的光源B.光在真空中的速度是340m/s C.影子的形成是由于光的直线传播D.漫反射不遵守光的反射规律 7.下列说法中正确的是() A.猴子看见水中的“月亮”,水中的“月亮”到水面的距离等于井中水的深度 B.利用照相机照相时,人离镜头的距离应在一倍焦距到两倍焦距之间 C.幻灯机投影灯片时,银幕到镜头的距离应大于两倍焦距 D.用焦距为10cm的放大镜去观察邮票。想看清楚邮票上的细微之处,这时放大镜与邮票间的距离应等于10cm。 8.下列关于成像问题的说法不正确的是() A.利用针孔照相机能得到倒立的像B.站在岸边能看到水里的物体,其实都是物体的虚像C.有时摄影师让我们离他近些,是想让底片中的像更大

求职面试英语情景对话王04-2

求职面试英语情景对话王04-2 Lesson 2 杰克和玛丽在讨论如何在面试中做一个善于倾听的人 Jack: It is quite important to be a good listener in the interview. 杰克:在面试中做一个善于倾昕的人是很重要的。 Mary: Listening carefully can show you understand and respect the speaker. 玛丽:认真聆听,能够体现出你对谈话者的理解与尊重。 Jack: It can show your good attainment as well. 杰克:也是个人良好素养的体现。 Mary: Besides, you can pick up some helpful information from the talk. 玛丽:此外,你也能够从对方的谈话中得到一些有用的信息。 Jack: First of all, you should keep proper posture and make eye contact with the speaker with a smile. 杰克:首先,要端正坐姿,面带微笑地注视对方。 Mary: To show that you have understood what is said, you can nod or ask simple questions at the right time. 玛丽:能够在适当的时候,点头或是简单地发问,表示你已经明白谈话内容。 Jack: And your statement should be clear and brief to the point.

面试情景模拟

情景对话一 下面是一场模拟面试。-Q- ,.A,,分别代表"question”“answer",意思是‘.提问”和“回答”。 情景对话二 背景:校园招聘会中某出口外贸公司招聘启示 职位:会计 招聘人数:1名 职位要求:大学英语4级,动手能力 强,能吃苦耐劳。有一定 的专业知识。 角色扮演:

旁白:A(萍) 面试官:B(冰)、C(靖)、D(芳)求职者:E(敏)、F(琪)、G(莹)萍(旁白):某出口外贸公司在东莞理工学院里正在进行校园招聘,招聘的职位是会计,招聘人数1名。今天有3位求职者进行面试。 面试正式开始: (第一位面试者请进,第一位面试者靖穿着牛仔裤和长靴坐下) 旁白:第一位面试者张东敏请进。敏:有! 芳:这里不是学校,不用喊有。敏:各位,你们好。我叫张东敏,我

是来应聘贵单位所招聘的会计职位的。这是我的个人简历,请过目。(冰接过简历看) 敏:咦,这位面试官很面熟喔?好像在哪见过。请问你是何艳冰,艳冰师姐吗? 冰:是啊。 敏:怪不得那么眼熟,我是小你2届的师妹啊。你还记得我吗?我们当时还是同一个英语老师教的呢。原来师姐在这里上班啊好厉害啊。前几天我去探望她时还提起你,她说你是她的得意门生,还说起读书时候的事……(敏很兴奋地说着) 冰:咳咳,好了,我们说回正题吧。

请你简略地介绍一下会计的主要工作吧。 敏:哦,是是,呃……会计的主要工作应该是计计数,做做账吧。 靖:你就读的是金融专业,为什么会选择会计职位呢? 敏:在当今社会,工作压力如此大,当然要先就业再择业。而且我觉得虽然会计职位比较基层,但是却给予了我一个学习的机会。 芳:那请问一下我们为什么要给予机会你,而不是给予别人呢? 敏:这这这……因为我个性开朗活泼,又没有不良嗜好,为人友善,肯定不会与人发生争执的。

职场情景模拟面试题及答案(2)

职场情景模拟面试题及答案(2) 准备1:调研必不可少。情境模拟对话设置的场景通常是与拟招岗位或近似拟招岗位的环境相近的,了解所报考的单位(系统)、岗位职责、工作内容、相关法律法规等,做到心中有数。 准备2:注重基础题型的演练。通过有针对性的现场模拟演练,考生可以身临其境,体会现场的紧张感,在实战中对题目有较好的把握,能力有较大提升。 二、情境模拟对话四大高分技巧 在应对情境模拟对话时,专家认为掌握好以下4技巧,定能问鼎面试苍穹。 技巧1:进入角色是关键。考生应该有意识提高自己的角色适应度,进入角色,以拟定的身份在特定的情境中才能清楚自己需要做什么、能做什么,怎样做才能合理有效的解决问题,以便恰当运用现场语言,充分运用现场资源,顺利完成任务。 技巧2:运用人际交往意识与技巧类的解题思路进行解答。情境模拟对话往往需要考生具备一定的组织协调能力,因此,考生可以考虑运用人际交往意识与技巧类题目的解题思路来解答情境模拟对话类题目。 技巧3:语言是武器,注重沟通技巧。在回答过程中,考生一定要明确:针对不同的对话对象,其语言的特点也是各异的,在情境

模拟过程中,要重点突出沟通的技巧性。特别要注重肢体语言。在答题过程中,可以适当加入肢体语言,特别是眼神交流。这样可以让你显得更加投入,形象更加逼真。 技巧4:勇于创新。考生在遇到情境模拟对话类试题时,不能仅限于简单地演示平常工作中的方法,而应对事务进行灵活处理,以平时的经验为基础,根据情境模拟中的条件探索解决问题的新思路与新方法。这种突破常规的做法和勇气,往往会给主考官留下深刻的印象。 怎样应战情景面试情景面试是面试形式发展的新趋势,在情景面试中,突破了常规面试即主考官和应试者一问一答的模式,引入了无领导小组讨论、公文处理、角色扮演、演讲、答辩、案例分析等人员甄选中的情景模拟方法。在这种面试形式下,面试的具体方法灵活多样,面试的模拟性、逼真性强,应试者的才华能得到更充分、更全面的展现,主考官对应试者的素质也能作出更全面、更深入、更准确的评价。在情景面试中,应试者应落落大方,自然和谐地进入情景,进入角色,去除不安和焦灼的心理,才能发挥出最佳效果。 (一)当你处在舌战群儒的时候 专家点评:你一个人面对多个考官时,最先需要的是冷静,沉着。当应聘者与面试官直接接触、对面回答的场面,多数人会感到紧张、慌乱,临场发挥不好,因为平时大学生应聘的机会很少,再加上希望成功的心情迫切,所以,见了面试官后,心跳加快、举足无措。智商、口才、形象、仪态都大打折扣。其实这大可不必,你研究好面

八年级上册物理练习题及答案

八年级上册物理练习题及答案 初二物理 一、选择题 1、人们在远近不同处听到同一声音的大小不同,是因为声音从声源发出后在空气中传播时 A、振幅不断减小 B、速度不断减小 C、频率不断减小 D、音调不断减小 2、以下各种声音中属于噪声的是 A、观众在剧院里听到的音乐声 B、升旗仪式上的国歌声 C、某同学听到的音乐声影响了他的学习 D、大型乐队中利用锣的声音烘托演出的效果 3、甲同学把耳朵贴在一根注满水的自来水管的一端,当乙同学用力敲击一次水管的另一端时,甲同学会听到几次敲击声 A、一次 B、两次 C、三次 D、以上都有可能 4、蝴蝶飞行时翅膀振动的频率为5~6Hz,苍蝇飞行时翅膀振动的频率约为300~400Hz,当他们从你身边飞过时,你将 A、只能听到苍蝇的声音 B、只能听到蝴蝶的声音 C、苍蝇和蝴蝶的声音都能听到 D、都听不到 5、科学家发现,人体上的“身份证”不仅限于指纹,

在眼睛、嘴唇、大脑、血液等各部位都有“身份证”,其中有一种“身份证”叫做声纹。由于人的发音器官有微小的差异,科学家就可以利用这种差异分辨出不同的人。这种声纹即声音的 A、响度 B、音调 C、音色 D、频率 6、在月球表面有岩石和尘埃,流星打在月球表面的岩石上,就像演无声电影一样,在其附近听不到一点声音,这是因为 A、月球表面的岩石受到流星的撞击不发出声音 B、流星撞击岩石的声音太小,人耳无法听到 C、月球表面附近的空间没有空气,缺少声音传播的介质 D、原因不明 7、人耳听到声音的响度 A、只与声源的振幅有关 B、只与声源振动的频率有关 C、与声源的振幅和声源到人耳的距离等因素都有关 D、与声源的振幅和振动的频率都有关 8、敞口烧杯中装有水,加热到沸腾后再用大火继续对烧杯加热,这时水的温度 A、迅速升高 B、慢慢升高 C、不变 D、无法判断 9、文艺演出时,舞台上往往要用弥漫的白烟雾,给人

外企英语面试的情景对话

外企英语面试的情景对话 人物介绍: Cindy是应届毕业的大学生,她成功通过校园招聘的环节,来到梦寐以求的这家外企,这是她的第二轮面试,与人力资源部总监Caroline的对话就此展开。 场景一:见面问好。 Caroline: Nice to meet you, Cindy. I’m Caroline, HRD of the pany. Please have a seat. Caroline: 很高兴认识你Cindy。我是人力资源总监Caroline,请坐。 Cindy: Nice to meet you, Ms. Caroline. Cindy: 你好Caroline女士。 场景二:测试应聘者对公司的了解程度。 Caroline: From reviewing your resume, I can see that you performed excellently in school.What I want to know is why you think you’re right for this job.

Caroline: 从你的,我可以看出你在校时很优秀。我想知道为什么你认为你适合这份工作。 Cindy: I am always interested in news ing from your industry, and I’m deeply impressedby your pany’s sales performance. To have risen 200-percent in the domestic market overjust the past three years is an incredible feat. I also admire and agree with the employeedevelopmental values that the pany has adopted. I find that my personal goals and ideasabout business operations fit perfectly with the panys goals and mission statement. Cindy: 我一直关注你们行业的新闻,公司在过去三年里中国市场的业绩增长了两倍,这给我留下了很深的.印象。同时我也很喜欢贵公司培养员工的企业文化。我觉得我的个人发展目标、商业理念和公司的目标完全吻合。 Caroline: So you are well aware of our pany. It appears that you have done your fairshare of research. Caroline: 你对我们公司很了解,看来你提前做了很多功课啊。

几种典型的面试方法情景模拟面试

几种典型的面试方法:情景模拟面试 情景模拟面试也是人才测评中应用较广的一种方法,它主要测试应试者的各种实际操作能力。一、情景模拟面试的特点 情景模拟面试,是设置一定的模拟情况,要求被测试者扮演某一角色并进入角色情景中,去处理各种事务及各种问题和矛盾。考官通过对考生在情景中所表现出来的行为,进行观察和记,以测评其素质潜能,或看其是否能适应或胜任工作。 情景模拟测试有以下特点: 1.针对性 由于模拟测试的环境是拟招岗位或近似拟招岗位的环境,测试内容又是拟招岗位的某项实际工作,因而具有较强的针对性。例如: 西安市财政局在模拟测试中,给了应试者有关财务资料,要求应试者据此写出一份财务分析报告,内容包括数据计算、综合分析、个人的观点、意见和建议。 西安市审计局给应试者提供了某单位的原始凭证和记好的账目,要求应试者据此检查出错误,并定行为、定性质、改错账。

上述模拟测试就是针对财政工作和审计工作的需要和现实问题设计的。 2.直接性 中共西安市委宣传部将一篇成文信息抽取观点,颠倒次序后,由一位主考官语无伦次地口头叙述,让应试者记录并据此写出一份“简报”。 西安市检察院用中速放了一名犯罪分子的犯罪证词录音,要求应试者做笔录,并据此撰写“起诉书”,还放了一个举报电话录音,让应试者当即处理。 这样的测试,不仅测试内容与拟招岗位业务有直接关系,而且使考评人员能够直接观察应试者的工作情况,直接了解应试者的基本素质及能力,所以更具有直接性。 3.可信性 由于模拟测试接近实际,考察的重点是应试者分析和解决实际工作问题的能力,加之这种方式又便于观察、了解应试者是否具备拟任岗位职务的素质,因此普遍反映模拟测试比笔试和其他面试形式更具有可信性。 西安市广播电视局在招聘编辑、记者时,组织应试者参观了西安无线电一厂生产车间,请厂长介绍了该厂搞活企业经营,狠抓产品质量,改进政治思想工作等情况,并以记者招待会的形式,由厂长解答了应试者提出的各种问题。随后

相关主题
文本预览
相关文档 最新文档