当前位置:文档之家› 化工原理实验报告

化工原理实验报告

化工原理实验报告
化工原理实验报告

实验一 伯努利实验

一、实验目的

1、熟悉流体流动中各种能量和压头的概念及相互转化关系,加深对柏努利方程式的理解。

2、观察各项能量(或压头)随流速的变化规律。

二、实验原理

1、不可压缩流体在管内作稳定流动时,由于管路条件(如位置高低、管径大小等)的变化,会引起流动过程中三种机械能——位能、动能、静压能的相应改变及相互转换。对理想流体,在系统内任一截面处,虽然三种能量不一定相等,但能量之和是守恒的(机械能守恒定律)。

2、对于实际流体,由于存在内磨擦,流体在流动中总有一部分机械能随磨擦和碰撞转化为热能而损失。故而对于实际流体,任意两截面上机械能总和并不相等,两者的差值即为机械损失。

3、以上几种机械能均可用U 型压差计中的液位差来表示,分别称为位压头、动压头、静压头。当测压直管中的小孔(即测压孔)与水流方向垂直时,测压管内液柱高度(位压头)则为静压头与动压头之和。任意两截面间位压头、静压头、动压头总和的差值,则为损失压头。

4、柏努利方程式

∑+++=+++f h p

u gz We p u gz ρ

ρ2222121122

式中:

1Z 、2Z ——各截面间距基准面的距离 (m ) 1u 、2u ——各截面中心点处的平均速度(可通过流量与其截面

积求得) (m/s)

1P 、2p ——各截面中心点处的静压力(可由U 型压差计的液位

差可知) (Pa )

对于没有能量损失且无外加功的理想流体,上式可简化为

ρ

ρ2

2

22121122p u gz p u gz +

+=++ 测出通过管路的流量,即可计算出截面平均流速ν及动压g 22

ν,从而可得到各截面测管水头和总水头。

三、实验流程图

泵额定流量为10L/min,扬程为8m,输入功率为80W. 实验管:内径15mm。

四、实验操作步骤与注意事项

1、熟悉实验设备,分清各测压管与各测压点,毕托管测点的对应关系。

2、打开开关供水,使水箱充水,待水箱溢流后,检查泄水阀关闭时所有测压管水面是否齐平,若不平则进行排气调平(开关几次)。

3、打开阀5,观察测压管水头和总水头的变化趋势及位置水头、压强水头之间的相互关系,观察当流量增加或减少时测压管水头的变化情况。

4、将流量控制阀开到一定大小,观察并记录各测压点平行与垂直流体流动方

向的液位差△h

1…△h

4

。要注意其变化情况。继续开大流量调节阀,测压孔正对

水流方向,观察并记录各测压管中液位差△h

1…△h

4

5、实验完毕停泵,将原始数据整理。

实验二离心泵性能曲线测定

一、实验目的

1.了解离心泵的构造和操作方法

2.学习和掌握离心泵特性曲线的测定方法

二、实验原理

离心泵的主要性能参数有流量Q(也叫送液能力)、扬程H(也叫压头)、轴功率 N和效率η。离心泵的特性曲线是Q-H、Q-N及Q-η之间的关系曲线。

泵的扬程用下式计算:

He=H

压力表+H

真空表

+H

+(u

2-u

2)/2g

式中:H 压力表——泵出口处压力

H 真空表——泵入口处真空度

H 0——压力表和真空表测压口之间的垂直距离

泵的总效率为:

Na

Ne =η 其中,Ne 为泵的有效功率:

Ne=ρ●g ●Q ●He

式中:ρ——液体密度 g ——重力加速度常数 Q ——泵的流量

Na 为输入离心泵的功率:

Na=K ●N 电●η电●η转

式中:K ——用标准功率表校正功率表的校正系数,一般取1 N 电——电机的输入功率 η电——电机的效率

η转——传动装置的传动效率 三、实验设备及流程:

设备参数:

泵的转速:2900转/分 额定扬程:20m

水温:25℃ 泵进口管内径:41mm

泵出口管内径:35.78mm 两测压口之间的垂直距离:0.35m 四、实验操作

1.灌泵

因为离心泵的安装高度在液面以上,所以在启动离心泵之前必须进行灌泵。 2.开泵

注意:在启动离心泵时,主调节阀应关闭,如果主调节阀全开,会导致泵启动时功率过大,从而可能引发烧泵事故。

3.建立流动

4.读取数据

等涡轮流量计的示数稳定后,即可读数。注意:务必要等到流量稳定时再读数,否则会引起数据不准。

五、作业

实验三过滤实验

一、实验目的

1.了解板框过滤机的构造和操作方法。

2.掌握恒压过滤常数的测定方法测定恒压过滤常数;虚拟滤液体积;虚拟过

滤时间。

二、基本原理

对于不可压缩滤渣,在恒压过滤情况下,滤液量与过滤时间的关系可用下式表示:

(V+Ve)2=KS2(t+te)

上式也可写成:

(q+q

e )2=K(t+t

e

)

微分后得到:

dt / dq= 2q / K+2q

e

/ K

该微分式为一直线方程,其斜率为2/K,截距为2q

e

/K。实验中△t/△q代替dt/dq,通过实验测定一系列的△t与△q值,用作图的方法,求出直线的斜率、

截距,进而求出恒压过滤常数K,虚拟滤液体积q

e

只考虑介质阻力时:qe2=Kte

将q

e 代入上式可求出虚拟过滤时间t

e

三、实验设备

板框过滤机的过滤面积为0.12m2。由空压机提供压力,并恒压可调。以碳酸钙和水混合成悬浮液,可完成过滤常数的测定实验。孔板孔口径:8mm,文丘里

管喉径:8mm,φ20×2不锈钢管。

四、实验步骤

1、先将板框过滤机的紧固手柄全部松开,将板、框清洗干净。

2、将干净滤布安放在滤板两侧,注意必须将滤布四角的圆孔与滤板四角的圆

孔中心对正,以保证滤液和清洗液流道的畅通。

3、安装时应从左至右进行,装好一块,用手压紧一块。请特别注意板框的顺序和方向,所有板框有圆点的一侧均应面向安装者,板框过滤机共有4块板(带奇数点),3块框(带偶数点),以确保流道的畅通。

4、装完以后即可紧固手柄至人力转不动为止。

5、松开混合釜上加料口的紧固螺栓,打开加料口,加水至视镜的水平中心线,打开控制屏上的电源,启动搅拌机,再加入碳酸钙3kg,任其自行搅拌。

6、约5min后,检查所有阀门看是否已关紧?确保全部关紧后,同时注意在搅拌过程中混合釜的压力,控制混合釜压力表的指示值在0.1~0.2MPa范围,并一直维持在恒压条件下操作,如果压力过大也可通过混合釜右侧的放空阀调节。

(1)、打开过滤机的出料阀,并准备好秒表,做好过滤实验的读数和记录准备,再打开控制屏上板框过滤机的进料阀,开始过滤操作。

(2)、注意看看板框是否泄漏(大量液体冲出,少量漏液无妨)?确认正常后,观察滤液情况,一般开始出来的比较浑浊,待滤液变清后,立即开始读取计量槽的数据,并同时开始计时和记录相关实验数据。

(3)、装置的计量槽分左右计量筒计量,左侧计滤液量,右侧计洗水量左右两筒有过滤液孔连通,需要时两筒可串联使用,以便连续实验需要。读取5组以上的实验数据后,即可关闭进料阀和出料阀结束过滤实验。

(4)、如果需要做滤饼洗涤实验,则在结束过滤实验之后,关闭混合釜的进气阀。然后关闭进水阀,打开进气阀,恒压在0.16~0.2MPa范围,按过滤实验相同的方法操作,完成实验后,关闭进水阀和出水阀结束滤饼洗涤实验。(5)、如果改变操作压力,还可进行过滤速率方程压缩指数的测定实验。

实验四传热实验

一、实验目的

测定对流传热系数的准数关联式。

二、实验原理

对流传热的核心问题是求算传热系数α,当流体无相变时对流传热准数关联式的一般形式为:

对于强制湍流而言,Gr准数可以忽略,故

m

n

=

?

Nu Pr

Re?

A

用图解法对多变量方程进行关联时,要对不同变量Re和Pr分别回归。本实

验简化上式,即取n=0.4(流体被加热)。这样,上式即变为单变量方程,再两边取对数,即得到直线方程:

在双对数坐标中作图,找出直线斜率,即为方程的指数m 。在直线上任取一点的函数值代入方程中,则可得到系数A ,即:

对于方程的关联,首先要有Nu 、Re 、Pr 的数据组。其准数定义式分别为: λ

αλ

μ

μ

ρ

d

Nu Cp u d ?=

?=

??=,Pr ,Re 牛顿冷却定律:

传热量Q 可由下式求得:

3600/)(3600/)(1212t t C V t t C W Q p p -???=-??=ρ

三、 实验设备流程

设备参数:

孔板流量计:流量计算关联式:V=4.49●R 0.5

式中:R ——孔板压差,[mmH 2O]

V ——水流量,[m 3 /h]

换热套管:

套管外管为玻璃管,内管为黄铜管。

套管有效长度:1.25m ,内管内径:0.022m 四、实验操作

1.启动水泵

2.打开进水阀

3.打开蒸汽发生器

4.打开放汽阀

5.读取水的流量

6.读取温度

7.实验结束后,先停蒸汽发生器,再关进水阀。

五、数据处理

实验五精馏实验

一、试验目的

1.掌握精馏塔的结构

2.测定精馏塔的理论板数及塔效率

二、实验原理

1.理论板

2.作图法求理论板数

3.精馏塔的全塔效率E

t

为理论塔板数与实际塔板数N之比,即:

E t =N

t

/ N

精馏塔的单板效率E

m

可以根据气相(或液相)通过测定塔板的浓度变化进行计算。

若以液相浓度变化计算,则为:

E

ml =(X

n-1

-X

n

) / (X

n-1

- X

n

*)

若以气相浓度变化计算,则为:

E

mv =(Y

n

-Y

n+1

) / ( Y

n

*-Y

n+1

)

式中:

X

n-1

-----第n-1块板下降的液体组成,摩尔分率;

X

n

-------第n块板下降的液体组成,摩尔分率;

X

n *------第n块板上与升蒸汽Y

n

相平衡的液相组成,摩尔分率;

Y

n+1

-----第n+1块板上升蒸汽组成,摩尔分率;

Y

n

-------第n块板上升蒸汽组成,摩尔分率;

Y

n *------第n块板上与下降液体X

n

相平衡的气相组成,摩尔分率。

三、实验设备及流程简介

本实验进料的溶液为乙醇—水体系,其中乙醇占20%(摩尔百分比)。

精馏塔:采用筛板结构,塔身用直径Φ57X3.5mm的不锈钢管制成,设有两个进料口,共15块塔板,塔板用厚度1mm的不锈钢板,板间距为10cm;板上开孔率为4%,孔径是2mm,孔数为21;孔按正三角形排列;降液管为Φ14X2mm的不锈钢管;堰高是10mm。

四、实验步骤

1.全回流进料

打开泵开关,再打开进料的管线。

2.塔釜加热升温

全回流进料完成后,开始加热。

3.建立全回流

注意恒压,回流开始以后就不能再打开衡压排气阀,否则会影响结果。

4.读取全回流数据

5.逐步进料,开始部分回流

逐渐打开塔中部的进料阀和塔底的排液阀以及产品采出阀,注意维持塔的物

料平衡、塔釜液位和回流比。

6.记录部分回流数据 五、作业

写出精馏段操作线方程、提馏段操作线方程、加料线方程。

实验六、吸收实验

一、实验原理

本实验是用水吸收空气-氨混合气体中的氨。混合气体中氨的浓度很低。吸收所得的溶液浓度也不高。气液两相的平衡关系可以认为服从亨利定律(即平衡线在x-y 坐标系为直线)。故可用对数平均浓度差法计算填料层传质平均推动力,相应的传质速率方程式为:

m p a Y A Y V K G ???=

所以 )/(m p A a Y Y V G K ??= 其中

2

3112311ln

)

()(e e e e m Y Y Y Y Y Y Y Y Y -----=

?

式中

G A —单位时间内氨的吸收量[kmol/h]。 K Ya —总体积传质系数[kmol/m 3·h]。 V p —填料层体积[m 3]。

△Y m —气相对数平均浓度差。 Y 1—气体进塔时的摩尔比。

Y e1—与出塔液体相平衡的气相摩尔比。 Y 2—气体出塔时的摩尔比。

Y e2—与进塔液体相平衡的气相摩尔比。

3、计算方法、公式:

(1)氨液相浓度小于5%时气液两相的平衡关系:

温度 [℃]: 0 10 20 25 30 40

亨利系数E[atm]:0.293 0.502 0.778 0.947 1.250 1.938 (2)总体积传质系数K Ya 及气相总传质单元高度H og 整理步骤

m p A Ya Y V G K ??=/

a 、标准状态下的空气流量V 0:

2

1210010T T P

P P T V V ????

= [m 3/h] 式中:

V 1——空气转子流量计示值 [m 3/h]

T 0、P 0——标准状态下的空气的温度和压强

T 1、P 1——标定状态下的空气的温度和压强 T 2、P 2——使用状态下的空气的温度和压强

b 、标准状态下的氨气流量V 0’

2

1022

1010010''T T P P P T V V ?????

?

=ρρ [m 3/h] 式中:

V 1’——氨气转子流量计示值 [m 3 / h]

ρ01——标准状态下氨气的密度1.293 [kg / m 3] ρ02——标定状态下氨气的密度0.7810 [kg / m 3]

如果氨气中纯氨为98%,则纯氨在标准状态下的流量V 0’’为:

V 0’’=0.98●V 0’

c 、惰性气体的摩尔流量G :

G=V 0 / 22.4

d 、单位时间氨的吸收量G A :

G A =G ●(Y 1-Y 2)

e 、进气浓度Y 1:

2

1

1n n Y =

f 、尾气浓度Y 2:

4

.22/0

2T

T V V N Y s

s ??=

式中:

N s ——加入分析盒中的硫酸当量浓度 [N] V s ——加入分析盒中的硫酸溶液体积 [ml] V ——湿式气体流量计所测得的空气体积 [ml] T 0——标准状态下的空气温度 [K]

T ——空气流经湿式气体流量计时的温度 [K]

g 、对数平均浓度差(ΔY )m :

2

12

1)()(ln

)()()(e e e e m Y Y Y Y Y Y Y Y Y -----=

?

Y e2=0 Y e1=m x1*

P=大气压+塔顶表压+(填料层压差)/2

m=E / P x 1=G A / Ls

式中:

E ——亨利常数

Ls ——单位时间喷淋水量 [kmol / h]

P ——系统总压强

h 、气相总传质单元高度:

a Y OG K G H /'

式中:

G ’——混合体气通过塔截面的摩尔流速

二、实验设备及流程 设备参数:

基本数据:塔径Φ0.10m ,填料层高0.75m

填料参数:12×12×1.3[mm]瓷拉西环,a 1—403[m-1],ε—0.764,a 1/ε3—903[m-1]

尾气分析所用硫酸体积:1ml ,浓度:0.00968N

上图是吸收实验装置界面,氨气钢瓶来的氨气经缓冲罐,转子流量计与从风机来经缓冲罐、转子流量计的空气汇合,进入吸收塔的底部,吸收剂(水)从吸收塔的上部进入,二者在吸收塔内逆向流动进行传质。

从塔顶出来的尾气进到分析装置进行分析,分析装置由稳压瓶、吸收盒及湿式气体流量计组成。稳压瓶是防止压力过高的装置,吸收盒内放置一定体积的稀硫酸作为吸收液,用甲基红作为指示剂,当吸收液到达终点时,指示剂由红色变为黄色。 三、实验步骤

建议的实验条件:

水流量:80 l/h 空气流量:20 m 3/h 氨气流量:0.5 m 3/h 注意气量和水量不要太大,氨气浓度不要过高,否则引起数据严重偏离。

1、通入氨气

打开钢瓶阀门,氨气流量计前有压差计和温度计,用氨气调节阀调节氨气流量(实验建议流量: 0.5 m 3/h )。

2、进行尾气分析

通入氨气后,让尾气流过吸收盒,同时湿式气体流量计开始计量体积。当吸收盒内的指示剂由红色变成黄色时,立即关闭考克,记下湿式气体流量计转过的体积和气体的温度。

3、读取数据

实验七 干燥实验

一、实验目的

1.了解气流干燥设备基本流程和工作原理

2.测定物料在一定干燥条件下的干燥速率曲线及传质系数 二、实验原理

1.干燥特性曲线

干燥过程分为三个阶段:物料预热阶段、恒速干燥阶段和降速干燥阶段。

]/[2s m kg Ad dw u ?=τ

1]2[21

1-+=+=

++c

i i i i G Gs Gs x x x 平 式中:x 平—某干燥速率下湿物料的平均含水量 [kg]

Gs i ,Gs i+1—分别为△τ时间间隔内开始和终了时湿物料重量 [kg]。 G c —湿物料中绝对干物料的重量 [kg]。

2.传质系数 恒速阶段:恒速阶段的干燥速率u 仅由外部干燥条件决定,物料表面温度近于空气湿球温度t w 。在恒定的干燥条件下,物料表面与空气之间的传热和传质速率分别用于下面式子表示:

)(w t t Ad dQ

-=ατ )(H H K Ad dw

W H -=τ

降速阶段:降速干燥阶段中干燥速率曲线的形状随物料内部结构以及所含水分性质不同而异,因而干燥曲线只能通过实验得到,降速阶段干燥时间的计算可以根据速率曲线数据图解求得,当降速阶段的干燥速率近似看作与物料的自由含

水量(x-x*)成正比时干燥速率曲线可简化为直线。

即为:u=k

(x-x*)

x

=u / (x-x*)

k

x

式中:k

—以含水量差△x为推动力的比例系数 [kg/m2·s·△x];u—物料含水x

量为x时的干燥速率 [kg/m2·s];

x—在τ时的物料含水量 [kg/kg绝干物料];

x*—物料的平衡含水量 [kg/kg绝干物料];

三、实验装置及流程简介

主要设备规格:

孔板流量计:管径D=106mm,孔径d=68.46mm

=0.6655

孔流系数 C

干燥室尺寸:0.15[m]×0.20[m]

四、实验步骤

1.启动风机

注意:禁止在启动风机以前加热,这样会烧坏加热器。

2.开始加热

3.进行干燥实验

化工原理实验报告

化工原理实验报告 Prepared on 22 November 2020

实验一 伯努利实验 一、实验目的 1、熟悉流体流动中各种能量和压头的概念及相互转化关系,加深对柏努利方程式的理解。 2、观察各项能量(或压头)随流速的变化规律。 二、实验原理 1、不可压缩流体在管内作稳定流动时,由于管路条件(如位置高低、管径大小等)的变化,会引起流动过程中三种机械能——位能、动能、静压能的相应改变及相互转换。对理想流体,在系统内任一截面处,虽然三种能量不一定相等,但能量之和是守恒的(机械能守恒定律)。 2、对于实际流体,由于存在内磨擦,流体在流动中总有一部分机械能随磨擦和碰撞转化为热能而损失。故而对于实际流体,任意两截面上机械能总和并不相等,两者的差值即为机械损失。 3、以上几种机械能均可用U 型压差计中的液位差来表示,分别称为位压头、动压头、静压头。当测压直管中的小孔(即测压孔)与水流方向垂直时,测压管内液柱高度(位压头)则为静压头与动压头之和。任意两截面间位压头、静压头、动压头总和的差值,则为损失压头。 4、柏努利方程式 式中: 1Z 、2Z ——各截面间距基准面的距离 (m ) 1u 、2u ——各截面中心点处的平均速度(可通过流量与其截面积求得) (m/s)

1P 、2p ——各截面中心点处的静压力(可由U 型压差计的液位差可 知) (Pa ) 对于没有能量损失且无外加功的理想流体,上式可简化为 ρ ρ2 222121122p u gz p u gz + +=++ 测出通过管路的流量,即可计算出截面平均流速ν及动压g 22 ν,从而可得到各截面测管水头和总水头。 三、实验流程图 泵额定流量为10L/min,扬程为8m,输入功率为80W. 实验管:内径15mm 。 四、实验操作步骤与注意事项 1、熟悉实验设备,分清各测压管与各测压点,毕托管测点的对应关系。 2、打开开关供水,使水箱充水,待水箱溢流后,检查泄水阀关闭时所有测压管水面是否齐平,若不平则进行排气调平(开关几次)。 3、打开阀5,观察测压管水头和总水头的变化趋势及位置水头、压强水头之间的相互关系,观察当流量增加或减少时测压管水头的变化情况。 4、将流量控制阀开到一定大小,观察并记录各测压点平行与垂直流体流动方向的液位差△h 1…△h 4。要注意其变化情况。继续开大流量调节阀,测压孔正对水流方向,观察并记录各测压管中液位差△h 1…△h 4。 5、实验完毕停泵,将原始数据整理。 实验二 离心泵性能曲线测定 一、实验目的 1. 了解离心泵的构造和操作方法 2. 学习和掌握离心泵特性曲线的测定方法

化工原理实验思考题答案

化工原理实验思考题答案

化工原理实验思考题 实验一:柏努利方程实验 1. 关闭出口阀,旋转测压管小孔使其处于不同方向(垂直或正对流向),观测并记录各测压管中的液柱高度H 并回答以下问题: (1) 各测压管旋转时,液柱高度H 有无变化?这 一现象说明了什么?这一高度的物理意义是什么? 答:在关闭出口阀情况下,各测压管无论如何旋转液柱高度H 无任何变化。这一现象可通过柏努利方程得到解释:当管内流速u =0时动压头02 2 ==u H 动 ,流 体没有运动就不存在阻力,即Σh f =0,由于流体保持静止状态也就无外功加入,既W e =0,此时该式反映流体静止状态 见(P31)。这一液位高度的物理意义是总能量(总压头)。 (2) A 、B 、C 、D 、E 测压管内的液位是否同一高度?为什么? 答:A 、B 、C 、D 、E 测压管内的液位在同一高度(排除测量基准和人为误差)。这一现象说明各测压管总能量相等。

2. 当流量计阀门半开时,将测压管小孔转到垂直或正对流向,观察其的液位高度H /并回答以下问题: (1) 各H /值的物理意义是什么? 答:当测压管小孔转到正对流向时H /值指该测压点的冲压头H /冲;当测压管小孔转到垂直流向时H /值指该测压点的静压头H /静;两者之间的差值为动压头H /动=H /冲-H /静。 (2) 对同一测压点比较H 与H /各值之差,并分析 其原因。 答:对同一测压点H >H /值,而上游的测压点H /值均大于下游相邻测压点H /值,原因显然是各点总能量相等的前提下减去上、下游相邻测压点之间的流体阻力损失Σh f 所致。 (3) 为什么离水槽越远H 与H /差值越大? (4) 答:离水槽越远流体阻力损失Σh f 就越大, 就直管阻力公式可以看出2 2 u d l H f ? ?=λ与管长l 呈 正比。 3. 当流量计阀门全开时,将测压管小孔转到垂直或正对流向,观察其的液位高度H //并回答以下问题: (1) 与阀门半开时相比,为什么各测压管内的液

化工原理实验报告

化工原理实验报告

————————————————————————————————作者:————————————————————————————————日期: ?

实验一 伯努利实验 一、实验目的 1、熟悉流体流动中各种能量和压头的概念及相互转化关系,加深对柏努利方程式的理解。 2、观察各项能量(或压头)随流速的变化规律。 二、实验原理 1、不可压缩流体在管内作稳定流动时,由于管路条件(如位置高低、管径大小等)的变化,会引起流动过程中三种机械能——位能、动能、静压能的相应改变及相互转换。对理想流体,在系统内任一截面处,虽然三种能量不一定相等,但能量之和是守恒的(机械能守恒定律)。 2、对于实际流体,由于存在内磨擦,流体在流动中总有一部分机械能随磨擦和碰撞转化为热能而损失。故而对于实际流体,任意两截面上机械能总和并不相等,两者的差值即为机械损失。 3、以上几种机械能均可用U 型压差计中的液位差来表示,分别称为位压头、动压头、静压头。当测压直管中的小孔(即测压孔)与水流方向垂直时,测压管内液柱高度(位压头)则为静压头与动压头之和。任意两截面间位压头、静压头、动压头总和的差值,则为损失压头。 4、柏努利方程式 ∑+++=+++f h p u gz We p u gz ρ ρ2222121122 式中: 1Z 、2Z ——各截面间距基准面的距离 (m) 1u 、2u ——各截面中心点处的平均速度(可通过流量与其截 面积求得) (m/s) 1P 、2p ——各截面中心点处的静压力(可由U型压差计的液位 差可知) (Pa ) 对于没有能量损失且无外加功的理想流体,上式可简化为 ρ ρ2 2 22121122p u gz p u gz + +=++ 测出通过管路的流量,即可计算出截面平均流速ν及动压g 22 ν,从而可得到各截面测管水头和总水头。 三、实验流程图

2017化工课程设计心得体会范文

2017化工课程设计心得体会范文 2017化工课程设计心得体会范文一 化工原理课程设计是综合运用化工原理及相关基础知识的实践性教学环节。设计过程中指导教师指引学生在设计过程中既要考虑理论上的可行性,还要考虑生产上的安全性和经济合理性。通过课程设计使我们初步掌握化工设计的基础知识、设计原则及方法。 本次化工原理课程设计历时两周,是上大学以来第一次独立的工业化设计。从老师以及学长那里了解到化工原理课程设计是培养我们化工设计能力的重要教学环节,通过课程设计使我们初步掌握化工设计的基础知识、设计原则及方法;学会各种手册的使用方法及物理性质、化学性质的查找方法和技巧;掌握各种结果的校核,能画出工艺流程、塔板结构等图形;在设计过程中不仅要考虑理论上的可行性,还要考虑生产上的安全性和经济合理性。由于第一次接触课程设计,起初心里充满了新鲜感和期待,因为自我认为在大学里学到的东西终于可以加以实践了。可是当老师把任务书发到手里是却是一头雾水,完全不知所措。可是在这短短的三周里,从开始的一无所知,到同学讨论,再进行整个流程的计算,再到对工业材料上的选取论证和后期的程序的编写以及流程图的绘制等过程的培养,我真切感受到了理论与实践相结合中的种种困难,也体会到了利用所学的有限的理论知识去解决实际中各种问题的不易。我的课程设计题目是苯――氯苯筛板式精馏塔设计图。在开始时,我们不知道如何下手,虽然有课程设计书作为参

考,但其书上的计算步骤与我们自己的计算步骤有少许差异,在这些差异面前,我们显得有些不知所措,通过查阅《化工原理》,《化工工艺设计手册》,《物理化学》,《化工原理课程设计》等书籍,以及在网上搜索到的理论和经验数据。我们慢慢地找到了符合自己的实验数据。并逐渐建立了自己的模版和计算过程。在这三周中给我印象最深的是我们这些“非泡点一族”在计算进料热状况参数q时,没有任何参考模板,完全靠自己捉摸思考。起初大家都是不知所措,待冷静下来,我们仔细结合上课老师讲的内容,一步一步的讨论演算,经大家一下午的不懈努力,终于把q算出来了。还有就是我们在设计换热器部分,在试差的过程中,我们大部分人都是经历了几乎一天多的时间才选出了合适的换热器型号,现在还清楚的记得我试差成功后那激动的心情,因为我尝到了自己在付出很多后那种成功的喜悦,因为这些都是我们的“血泪史”的见证哈。 在此感谢我们的杜治平老师.,老师严谨细致、一丝不苟的作风一直是我工作、学习中的榜样;老师循循善诱的教导和不拘一格的思路给予我无尽的启迪;这次课程设计的细节和每个数据,都离不开老师您的细心指导。而您开朗的个性和宽容的态度,帮助我能够很顺利的完成了这次课程设计。同时感谢同组的同学们,谢谢你们对我的帮助和支持,让我感受到同学的友谊。由于本人的设计能力有限,在设计过程中难免出现错误,恳请老师们多多指教,我十分乐意接受你们的批评与指正,本人将万分感谢。 2017化工课程设计心得体会范文二

化工原理实验思考题答案

化工原理实验思考题 实验一:柏努利方程实验 1.关闭出口阀,旋转测压管小孔使其处于不同方向(垂直或正对流向),观测并记录各测压管中的液柱高度H并回答以下问题: (1)各测压管旋转时,液柱高度H有无变化?这一现象说明了什么?这一高 =, ( 。2 (1)各H/值的物理意义是什么? 答:当测压管小孔转到正对流向时H/值指该测压点的冲压头H/冲;当测压管小孔转到垂直流向时H/值指该测压点的静压头H/静;两者之间的差值为动压头H/ 动=H / 冲-H / 静。 (2)对同一测压点比较H与H/各值之差,并分析其原因。

答:对同一测压点H >H /值,而上游的测压点H /值均大于下游相邻测压点H /值,原因显然是各点总能量相等的前提下减去上、下游相邻测压点之间的流体阻力损失Σh f 所致。 (3) 为什么离水槽越远H 与H /差值越大? (4) 答:离水槽越远流体阻力损失Σh f 就越大,就直管阻力公式可以看出 2 ( (能ρcd p <ρab p 。此外从2 2 u d l H f ??=λ直管阻力公式可以看出, l 、d 产生的阻力 损失Σh f 对C 、D 两点的静压能也有一定的影响。 4. 计算流量计阀门半开和全开A 点以及C 点所处截面流速大小。 答:注:A 点处的管径d=0.0145(m) ;C 点处的管径d=0.012(m) A 点半开时的流速:

135.00145 .036004 08.0360042 2=???=???= ππd Vs u A 半 (m/s ) A 点全开时的流速: 269.00145.036004 16.0360042 2=???=???= ππd Vs u A 全 (m/s ) C 点半开时的流速: 1965.0012 .036004 08.0360042 2=???=???=ππd Vs u c 半 (m/s ) 3600s 流速: )/(29269.00145 .04 1083.42 5s m A V u s =???==-π 雷诺准数: 381510111.173 .99829269.00145.0Re 3 =???= = -μ ρ du 同理,根据雷诺实验测定的读数计算其余各点的流量、流速和雷诺准数如原始数据表所述。

化工原理实验实验报告

篇一:化工原理实验报告吸收实验 姓名 专业月实验内容吸收实验指导教师 一、实验名称: 吸收实验 二、实验目的: 1.学习填料塔的操作; 2. 测定填料塔体积吸收系数kya. 三、实验原理: 对填料吸收塔的要求,既希望它的传质效率高,又希望它的压降低以省能耗。但两者往往是矛盾的,故面对一台吸收塔应摸索它的适宜操作条件。 (一)、空塔气速与填料层压降关系 气体通过填料层压降△p与填料特性及气、液流量大小等有关,常通过实验测定。 若以空塔气速uo[m/s]为横坐标,单位填料层压降?p[mmh20/m]为纵坐标,在z ?p~uo关系z双对数坐标纸上标绘如图2-2-7-1所示。当液体喷淋量l0=0时,可知 为一直线,其斜率约1.0—2,当喷淋量为l1时,?p~uo为一折线,若喷淋量越大,z ?p值较小时为恒持z折线位置越向左移动,图中l2>l1。每条折线分为三个区段, 液区,?p?p?p~uo关系曲线斜率与干塔的相同。值为中间时叫截液区,~uo曲zzz ?p值较大时叫液泛区,z线斜率大于2,持液区与截液区之间的转折点叫截点a。 姓名 专业月实验内容指导教师?p~uo曲线斜率大于10,截液区与液泛区之间的转折点叫泛点b。在液泛区塔已z 无法操作。塔的最适宜操作条件是在截点与泛点之间,此时塔效率最高。 图2-2-7-1 填料塔层的?p~uo关系图 z 图2-2-7-2 吸收塔物料衡算 (二)、吸收系数与吸收效率 本实验用水吸收空气与氨混合气体中的氨,氨易溶于水,故此操作属气膜控制。若气相中氨的浓度较小,则氨溶于水后的气液平衡关系可认为符合亨利定律,吸收姓名 专业月实验内容指导教师平均推动力可用对数平均浓度差法进行计算。其吸收速率方程可用下式表示: na?kya???h??ym(1)式中:na——被吸收的氨量[kmolnh3/h];?——塔的截面积[m2] h——填料层高度[m] ?ym——气相对数平均推动力 kya——气相体积吸收系数[kmolnh3/m3·h] 被吸收氨量的计算,对全塔进行物料衡算(见图2-2-7-2): na?v(y1?y2)?l(x1?x2) (2)式中:v——空气的流量[kmol空气/h] l——吸收剂(水)的流量[kmolh20/h] y1——塔底气相浓度[kmolnh3/kmol空气] y2——塔顶气相浓度[kmolnh3/kmol空气] x1,x2——分别为塔底、塔顶液相浓度[kmolnh3/kmolh20] 由式(1)和式(2)联解得: kya?v(y1?y2)(3) ??h??ym 为求得kya必须先求出y1、y2和?ym之值。 1、y1值的计算:

化工原理实验—超全思考题答案

实验6 填料吸收塔流体力学特性实验 ⑴ 流体通过干填料压降与式填料压降有什么异同? 答:当气体自下而上通过填料时产生的压降主要用来克服流经填料层的形状阻力。当填料层上有液体喷淋时, 填料层内的部分空隙为液体所充满,减少了气流通道截面,在相同的条件下,随液体喷淋量的增加,填料层所持有的液量亦增加,气流通道随液量的增加而减少,通过填料层的压降将随之增加。 ⑵ 填料塔的液泛和哪些因素有关? 答:填料塔的液泛和填料的形状、大小以及气液两相的流量、性质等因素有关。 ⑶ 填料塔的气液两相的流动特点是什么? 答:填料塔操作时。气体由下而上呈连续相通过填料层孔隙,液体则沿填料表面 流下,形成相际接触界面并进行传质。 ⑷ 填料的作用是什么? 答:填料的作用是给通过的气液两相提供足够大的接触面积,保证两相充分接触。 ⑸ 从传质推动力和传质阻力两方面分析吸收剂流量和吸收剂温度对吸收过程的影响? 答:改变吸收剂用量是对吸收过程进行调节的最常用的方法,当气体流率G 不变时,增加吸收剂流率,吸收速率A N 增加,溶质吸收量增加,则出口气体的组成2y 减小,回收率增大。当液相阻力较小时,增加液体的流量,传质总系数变化较小或基本不变,溶质吸收量的增加主要是由于传质平均推动力m y ?的增大引起,此时吸收过程的调节主要靠传质推动力的变化。当液相阻力较大时,增加液体的流量,传质系数大幅度增加,而平均推动力可能减小,但总的结果使传质速率增大,溶质吸收量增加。对于液膜控制的吸收过程,降低操作温度,吸收过程的阻力a k m a K y y = 1将随之减小,结果使吸收效果变好,2y 降低,而平均推动力m y ?或许会减小。对于气膜控制的过程,降低操作温度,过程阻力a k m a K y y = 1不变,但平均推动力增大,吸收效果同样将变好 ⑹ 从实验数据分析水吸收氨气是气膜控制还是液膜控制、还是兼而有之? 答:水吸收氨气是气膜控制。 ⑺ 填料吸收塔塔底为什么要有液封装置? 答:液封的目的是保证塔内的操作压强。 ⑻ 在实验过程中,什么情况下认为是积液现象,能观察到何现象? 答:当气相流量增大,使下降液体在塔内累积,液面高度持续上升,称之为积液。 ⑼ 取样分析塔底吸收液浓度时,应该注意的事项是什么? 答:取样时,注意瓶口要密封,避免由于氨的挥发带来的误差。 ⑽ 为什么在进行数据处理时,要校正流量计的读数(氨和空气转子流量计)? 答:流量计的刻度是以20℃,1atm 的空气为标准来标定。只要介质不是20℃,

化工原理精馏实验报告

北京化工大学 实验报告 精馏实验 一、摘要 精馏是实现液相混合物液液分离的重要方法,而精馏塔是化工生产中进行分离过程的主要单元,板式精馏塔为其主要形式。本实验用工程模拟的方法模拟精馏塔在全回流的状态下及部分回流状态下的操作情况,从而计算单板效率和总板效率,并分析影响单板效率的主要因素,最终得以提高塔板效率。 关键词:精馏、板式塔、理论板数、总板效率、单板效率 二、实验目的 1、熟悉精馏的工艺流程,掌握精馏实验的操作方法。 2、了解板式塔的结构,观察塔板上气- 液接触状况。 3、测测定全回流时的全塔效率及单板效率。 4、测定部分回流时的全塔效率。 5、测定全塔的浓度或温度分布。 6、测定塔釜再沸器的沸腾给热系数。 三、实验原理 在板式精馏塔中,由塔釜产生的蒸汽沿塔逐板上升与来自塔顶逐板下降的回流液,在塔 板上实现多次接触,进行传热和传质,使混合液达到一定程度的分离。 回流是精馏操作得以实现的基础。塔顶的回流量和采出量之比,称为回流比。回流比是精馏操作的重要参数之一,其大小影响着精馏操作的分离效果和能耗。 回流比存在两种极限情况:最小回流比和全回流。若塔在最小回流比下操作,要完成分离任务,则

需要有无穷多块塔板的精馏塔。当然,这不符合工业实际,所以最小回流比只是 一个操作限度。若操作处于全回流时,既无任何产品采出,也无原料加入,塔顶的冷凝液全部返回塔中,这在生产中无实验意义。但是,由于此时所需理论板数最少,又易于达到稳定,故常在工业装置开停车、排除故障及科学研究时采用。 实际回流比常取用最小回流比的倍。在精馏操作中,若回流系统出现故障,操作情况会急剧恶化,分离效果也将变坏。 板效率是体现塔板性能及操作状况的主要参数,有以下两种定义方法。 (1)总板效率E N e 式中E —总板效率;N—理论板数(不包括塔釜);Ne —实际板数。 2)单板效率E ml E x n 1 x n E ml * x n 1 x n* 式中E ml—以液相浓度表示的单板效率; x n,x n-1—第n 块板的和第(n-1 )块板得液相浓度; x n*—与第n 块板气相浓度相平衡的液相浓度。 总板效率与单板效率的数值通常由实验测定。单板效率是评价塔板性能优劣的重要数据。物系性质、板型及操作负荷是影响单板效率的重要因素。当物系与板型确定后,可通过改变气液负荷达到最高的板效率;对于不同的板型,可以在保持相同的物系及操作条件下,测定其单板效率,已评价其性能的优劣。总板效率反映全塔各塔板的平均分离效果,常用于板式塔设计中。 若改变塔釜再沸器中电加热器的电压,塔板上升蒸汽量将会改变,同时,塔釜再沸器电加热器表面的温度将发生变化,其沸腾给热系数也将发生变化,从而可以得到沸腾给热系数也加热量的关系。由牛顿冷却定律,可知 Q A t m

化工原理实验答案

(一)流体流动阻力测定 1.是否要关闭流程尾部的流量调节 不能关闭流体阻力的测定主要是根据压头来确定的;尾部的流量调解阀;起的作用是调解出流量;由于测试管道管径恒定;根据出流量可以确定管道内流体流速;而流速不同所测得的阻力值是不同的;这个在水力计算速查表中也有反映出的。你在实际测试的时候是要打开流量调解阀的;肯定在尾部会有一个流量计;当出溜一段时间后; 管内流体流态稳定后;即可测试。在测试前;校核设备和仪表时;流量调解阀是关闭的; 当测试时肯定是打开的 2.怎样排除管路系统中的空气?如何检验系统内的空气已经被排除干净? 答:启动离心泵用大流量水循环把残留在系统内的空气带走。关闭出口阀后,打开U形管顶部的阀门,利用空气压强使U形管两支管水往下降,当两支管液柱水平,证明系统中空气已被排除干净。 3.本实验用水为工作介质做出的λ-Re曲线,对其它流体能否使用?为什么? 答:能用,因为雷诺准数是一个无因次数群,它允许d、u、、变化。 4.在不同设备上 ( 包括不同管径 ) ,不同水温下测定的λ~ Re 数据能否关联同一条曲 答:一次改变一个变量,是可以关联出曲线的,一次改变多个变量时不可以的。 5.如果测压口,孔边缘有毛刺或安装不垂直,对静压的测量有何影响? 没有影响.静压是流体内部分子运动造成的.表现的形式是流体的位能.是上液面和下液面的垂直高度差.只要静压一定.高度差就一定.如果用弹簧压力表测量压力是一样的.所以没有影响. (二)离心泵特性曲线的测定 1.为什么离心泵启动时要关闭出口阀门? 答:防止电机过载。因为电动机的输出功率等于泵的轴功率N。根据离心泵特性曲线,当Q=0时N最小,电动机输出功率也最小,不易被烧坏。 2.为什么启动离心泵前要向泵内注水?如果注水排气后泵仍启动不起来,你认为可能是什 么原因? 答:为了防止打不上水、即气缚现象发生。如果注水排完空气后还启动不起来。①可能是泵入口处的止逆阀坏了,水从管子又漏回水箱。②电机坏了,无法正常工作。 3.为什么调节离心泵的出口阀门可调节其流量?这种方法有什么优缺点?是否还有其它 方法调节泵的流量? 答:调节出口阀门开度,实际上是改变管路特性曲线,改变泵的工作点,可以调节其流量。这种方法优点是方便、快捷、流量可以连续变化,缺点是阀门关小时,增大流动阻力,多消耗一部分能量、不很经济。也可以改变泵的转速、减少叶轮直径,生产上很少采用。还可以用双泵并联操作。 4.离心泵启动后,如果不开出口阀门,压力表读数是否会逐渐上升?为什么? 答:不会,也就能升到额定扬程的1.1至1.3倍。二力平衡 5.正常工作的离心泵,在其进口管上设置阀门是否合理,为什么? 答:不合理,因为水从水池或水箱输送到水泵靠的是液面上的大气压与泵入口处真空度产生的压强差,将水从水箱压入泵体,由于进口管,安装阀门,无疑增大这一段管路的阻力而使流体无足够的压强差实现这一流动过程。

化工原理实验报告-离心泵试验

化工原理实验报告-离心泵试验

化工原理 实 验 报 告 班级: XXXXXX 指导老师: XXX 小组: XXX

组员:XXX XXX XXX XXX 实验时间: X年X月X日 目录 一、摘要 (2) 二、实验目的及任务 (3) 三、基本原理 (3) 1.泵的扬程He (4) 2.泵的有效功率和效率 (4) 四、实验装置和流程 (5) 五、操作要点 (6) 六、实验数据记录与处理 (7) 1.泵的扬程与流量关系曲线的测定(H e~Q) (7) 2.泵的轴功率与流量关系曲线的测定(N轴~Q) (8) 3.泵的总效率与流量关系曲线的测定(η~Q) (10)

4.计算示例 (13) (1)泵的扬程与流量关系曲线的测定(H e~Q) (13) (2)泵的轴功率与流量关系曲线的测定(N 轴~Q) (13) (3)泵的总效率与流量关系曲线的测定(η~Q) (13) 七、实验结果及分析 (14) 八、误差分析 (15) 九、思考题 (16) 实验二离心泵性能试验 一、摘要 本实验以水为工作流体,使用WB70/055型离心泵实验装置。通过调节阀门改变流量,测得不同流量下离心泵的各项性能参数,流量通过涡轮流量计测量。实验中直接测量量有P真空表、P压力表、电机功率N电、水流量Q、水温℃。根据上述测量量来计算泵的扬程He、泵的有效功率Ne、泵的总效率η。从而绘制He-Q、N e-Q和η-Q三条曲线即泵的特性曲线图,并根据此图求出泵的最佳操作

范围。 关键词:离心泵特性曲线 二、实验目的及任务 ①了解离心泵的构造,掌握其操作和调节方法。 ②测定离心泵的扬程与流量关系曲线。 ③测定离心泵的轴功率与流量关系曲线。 ④测定离心泵的总效率与流量关系曲线。 ⑤综合测定离心泵在恒定转速下的特性曲线,并确定泵的最佳工作范围。 三、基本原理 离心泵的性能参数取决于泵的内部结构、叶轮形式及转速。其中理论压头与流量的关系,可通过对泵内液体质点运动的理论分析得到。由于流体流经泵时,不可避免地会遇到各种阻力,产生能量损失,诸如摩擦损失、环流损失等,因此,实际压头比理论压头笑,且难以通过计算求得,因此通常采用实验方法,直接测定其参数间的关系,并将测出的He-Q、N-Q和η-Q三条曲线称为离心泵的特性曲线。另外,曲线也可以求出泵的最佳操作范围,作为选泵的依据。

化工原理实验心得体会

化工原理实验心得体会 这个学期我们学习了《化工原理》这门课,在学习了部分理论知识后,我们进入了实验室,开始学习《化工原理实验》并分组进行了实验。和前几个学期类似,大家先要进行实验的预习,在了解和熟悉实验的要求和操作的基础上,然后在老师提问检查每一组各位组员对实验过程的预习程度后,对各位组员的预习情况进行点评,并指出其中的不足和缺漏。然后在指导老师的悉心讲解后,对实验有一个新的、更全面的认识后进行实验。通过动手实验,我更加深刻的理解了化工原理课上老师讲解的知识,增强了动手能力,对理论知识有了形象化的认识。 本学期我们共学习了五个实验,分别是: 实验一、离心泵的特性曲线实验; 实验二、流体流动阻力的测定; 实验三、空气—蒸汽对流传热系数的测定; 实验四、恒压过滤常数的测定; 实验五、填料塔的精馏实验, 通过对实验的学习并亲手操作,我掌握了许多知识。 这几个实验中我印象最深刻的是恒压过滤常数的测定,实验以生活中常见的碳酸钙的水浆液位测定原料。这个实验和空气—蒸汽对流传热系数的测定实验一起分组进行。老师讲解完实验原

理并强调了注意事项后,我们开始实验。我们小组先进行了恒压 过滤常数测定实验,首先我们对两个小组的成员进行了各项职责 的分配分别是:两位同学负责碳酸钙水浆液的搅拌和回收,由一 位同学负责数据的采集和记录的工作。每个三分钟记录床层温度 一次,取样一次,并由同组同学进行含水量的测定,由两位同学 负责装好板框,最后分别由其他两位同学负责压力阀的控制和滤 液进口阀、滤液出口阀的控制。这样一来整个实验的分工工作就 已经完成了。实验过程中,我们互相配合,进行的很顺利。但是 在第一次实验时由于我们的粗心大意,我们将四块滤板中的一块 方向装反了,使得我们第一次采集的数据无效了,因此指导老师 还对我们实验时的粗心大意进行了严厉的批评教育,这些批评教 育使我们牢记在这是一个教训,实验中细心认真完成每一步,我 们的动手能力才会在这个过程中得到提升。 在这一个学期短暂的实验学习过程中,使我们重新认识了在 大学学习生活中,在实验过程中一个实验者的认真预习和摈弃粗 心大意,认真、谨慎的进行好每一步的操作、合理的分工协同工 作对于一个实验的成败与否是至关重要的。或许在将来生活工作 中也一样,俗话说得好,所谓“细节决定成败”。一个做事粗心 大意,做事前从不做准备的人不管他将来从事什么样的工作都无 法取得好的成绩,因为在他的心理或许压根就没有重视过自己所 从事的事情或者是行业。俗话说“机遇永远是给有准备的人的”。 化工原理实验的任务主要是了解一些典型化工设备的原理和

化工原理实验思考题答案

化工原理实验思考题 实验一:柏努利方程实验 1. 关闭出口阀,旋转测压管小孔使其处于不同方向(垂直或正对流向),观测并记录各测 压管中的液柱高度H 并回答以下问题: (1) 各测压管旋转时,液柱高度H 有无变化这一现象说明了什么这一高度的物理意义是 什么 答:在关闭出口阀情况下,各测压管无论如何旋转液柱高度H 无任何变化。这一现象可通过柏努利方程得到解释:当管内流速u =0时动压头02 2 ==u H 动 ,流体没有运动就不存在阻力,即Σh f =0,由于流体保持静止状态也就无外功加入,既W e =0,此时该式反映流体静止状态 见(P31)。这一液位高度的物理意义是总能量(总压头)。 (2) A 、B 、C 、D 、E 测压管内的液位是否同一高度为什么 答:A 、B 、C 、D 、E 测压管内的液位在同一高度(排除测量基准和人为误差)。这一现象说明各测压管总能量相等。 2. 当流量计阀门半开时,将测压管小孔转到垂直或正对流向,观察其的液位高度H /并回 答以下问题: (1) 各H /值的物理意义是什么 答:当测压管小孔转到正对流向时H /值指该测压点的冲压头H /冲;当测压管小孔转到垂直流向时H /值指该测压点的静压头H /静;两者之间的差值为动压头H /动=H /冲-H /静。

(2) 对同一测压点比较H 与H /各值之差,并分析其原因。 答:对同一测压点H >H /值,而上游的测压点H /值均大于下游相邻测压点H /值,原因显然是各点总能量相等的前提下减去上、下游相邻测压点之间的流体阻力损失Σh f 所致。 (3) 为什么离水槽越远H 与H /差值越大 (4) 答:离水槽越远流体阻力损失Σh f 就越大,就直管阻力公式可以看出2 2 u d l H f ??=λ与 管长l 呈正比。 3. 当流量计阀门全开时,将测压管小孔转到垂直或正对流向,观察其的液位高度 H 2222d c u u =22 ab u ρcd p ρab p 2 2 u d l H f ??=λ计算流量计阀门半开和全开A 点以及C 点所处截面流速大小。 答:注:A 点处的管径d=(m) ;C 点处的管径d=(m) A 点半开时的流速: 135.00145.036004 08.0360042 2=???=???= ππd Vs u A 半 (m/s ) A 点全开时的流速: 269.00145 .036004 16.0360042 2=???=???=ππd Vs u A 全 (m/s ) C 点半开时的流速: 1965.0012 .036004 08.0360042 2=???=???= ππd Vs u c 半 (m/s )

化工原理实验下册预习题(2014春)

化工原理下册预习题 1、吸收过程是依据以下差异进行物质间的分离 A、挥发度 B、溶解度 C、沸点 D、露点 E、饱和蒸汽压 2、吸收过程的三大操作要素是: A、x2,L,T B、L,x2 ,G C、L,G,T D、L,y1,x2 E、G,,y1,x2 X2,L,T 分别为吸收剂的进口浓度,流量,温度;y1,G分别为被处理气体的进口浓度、流量 3、填料吸收塔操作中,若吸收剂流量小于最小喷淋密度,则: A、不能操作 B、严重液泛 C、无法传质 D、填料不能全部被润湿 E、不能达到高的吸收率 4、填料吸液泛的原因及现象为: A、气量或液量过大 B、吸收剂或气体的温度过高 C、液泛时无法达到高的分离要求 D、液泛时塔釜压强急剧下降 E、液泛时塔釜压强急剧下降上升 5、对于液膜控制的吸收过程,有效提高传质速率的措施是: A、降低吸收剂温度T B、提高吸收剂温度T C、提高吸收剂流量L D、减小吸收剂的进口浓度x2 E、提高被处理气体流量G 6、某吸收操作,x2=0.1,L/mG=10,且回收率=95%,若要进一步提高吸收率,有效的措施是: A、提高吸收剂流量L B、降低吸收剂温度T C、降低吸收剂的进口浓度x2 D、更换高效填料 E、提高填料层高度

1、二元精馏塔稳定生产的基本条件是: A、必须满足全塔物料衡算 B、必须有合适的回流比 C、必须使塔釜的加热量恒定不变 D、塔内汽液负荷必须适当 E、必须满足轻组分物料衡算 2、板式精馏塔操作中造成严重漏液的原因是: A、塔釜加热量过大 B、回流量过小 C、塔釜加热量过小 D、进料量过小 E、堰上液层高度太低 3、板式精馏塔操作中造成溢流液泛的原因是: A、塔釜加热量过大 B、回流量过小 C、进料量太小 D、塔内下降液量过小 E、某块塔板的降液管被堵塞 4、在冷液进料的板式精馏塔操作中,造成精馏段干板,提馏段液泛的原因是: A、回流量过小 B、进料量过大 C、塔釜加热量过小 D、塔釜加热量过大 E、塔釜出料量太小 5、在精馏塔操作中,发现灵敏板温度突跃上升,且xd下降,xw下降, 应采取的措施是: A、D/F一定,关小塔釜加热量 B、D/F一定,开大塔釜加热量 C、R一定,增大塔顶出料量 D、R一定,减小塔顶出料量 E、D/F,R都不变,减小进料量 6、在精馏塔操作中,若xd下降而xw上升,应采取的措施是: A、D一定,增大塔釜加热量 B、D/一定,减小塔釜加热量 C、加热量一定,增大塔顶出料量 D、加热量一定,减小塔顶出料量 E、增大塔顶全凝器的冷却水流量 7、以下描述的现象中属于“液泛”的是: A、在高气速下液滴被气体从一层塔板带到上一层塔板;

化工原理实验思考题及答案汇总

化工原理实验思考题(填空与简答) 一、填空题: 1.孔板流量计的Re ~C 关系曲线应在 单对数 坐标纸上标绘。 2.孔板流量计的R V S ~关系曲线在双对数坐标上应为 直线 。 3.直管摩擦阻力测定实验是测定 λ 与 Re_的关系,在双对数坐标纸上标绘。 4.单相流动阻力测定实验是测定 直管阻力 和 局部阻力 。 5.启动离心泵时应 关闭出口阀和功率开关 。 6.流量增大时离心泵入口真空度 增大_出口压强将 减小 。 7.在精馏塔实验中,开始升温操作时的第一项工作应该是 开循环冷却水 。 8.在精馏实验中,判断精馏塔的操作是否稳定的方法是 塔顶温度稳定 9.在传热实验中随着空气流量增加其进出口温度差的变化趋势:_进出口温差随空气流量增加而减小 。 10.在传热实验中将热电偶冷端放在冰水中的理由是 减小测量误差 。 11.萃取实验中_水_为连续相, 煤油 为分散相。 12.萃取实验中水的出口浓度的计算公式为 E R R R E V C C V C /)(211-= 。 13.干燥过程可分为 等速干燥 和 降速干燥 。 14.干燥实验的主要目的之一是 掌握干燥曲线和干燥速率曲线的测定方法 。 15.过滤实验采用悬浮液的浓度为 5% , 其过滤介质为 帆布 。 16.过滤实验的主要内容 测定某一压强下的过滤常数 。 17.在双对数坐标系上求取斜率的方法为: 需用对数值来求算,或者直接用尺子在坐标纸上量取线段长度求取 。 18.在实验结束后,关闭手动电气调节仪表的顺序一般为: 先将手动旋钮旋

至零位,再关闭电源。 19.实验结束后应清扫现场卫生,合格后方可离开。 20.在做实验报告时,对于实验数据处理有一个特别要求就是: 要有一组数据处理的计算示例。 21.在阻力实验中,两截面上静压强的差采用倒U 形压差计测定。 22.实验数据中各变量的关系可表示为表格,图形和公式. 23.影响流体流动型态的因素有流体的流速、粘度、温度、尺寸、形状等. 24.用饱和水蒸汽加热冷空气的传热实验,试提出三个强化传热的方案(1)增加空气流速(2)在空气一侧加装翅片(3)定期排放不凝气体。 25.在精馏实验数据处理中需要确定进料的热状况参数q 值,实验中需要测定进料量、进料温度、进料浓度等。 26.干燥实验操作过程中要先开鼓风机送风后再开电热器,以防烧坏加热丝。 27.在本实验室中的精馏实验中应密切注意釜压,正常操作维持在0.005mPa,如果达到0.008~0.01mPa,可能出现液泛,应减少加热电流(或停止加热),将进料、回流和产品阀关闭,并作放空处理,重新开始实验。 28.流体在流动时具有三种机械能:即①位能,②动能,③压力能。这三种能量可以互相转换。 29.在柏努利方程实验中,当测压管上的小孔(即测压孔的中心线)与水流方向垂直时,测压管内液柱高度(从测压孔算起)为静压头,它反映测压点处液体的压强大小;当测压孔由上述方位转为正对水流方向时,测压管内液位将因此上升,所增加的液位高度,即为测压孔处液体的动压头,它反映出该点水流动能的大小。

化工原理实验报告_离心泵

离心泵特性曲线的测定 一、实验目的 1.学习离心泵的操作。 2.测定单级离心泵在固定转速下的特定曲线。 二、实验原理 离心泵的性能一般用三条特性曲线来表示,分别为H-Q 、N-Q 和-Q 曲线,本实验利用 如图1所示的实验装置进行测定工作。 泵的压头用下式计算 g u u h H H H 22 1 220-+++=真空表压力表 其中压力表H 及真空表H 分别表示离心泵出口压力表和进口真空表的读数换算成米液柱的数值,0h 表示进、出口管路两测压点间的垂直距离,可忽略不计,21u u =,故 真空表压力表H H H += g QH N e ρ=/(36001000) 效率%100?= N N e η, 式中:e N ——泵的有效功率,kW ; N ——电机的输入功率,由功率表测出,kW ; Q ——泵的流量,-13h m ?。

图1. 实验装置流程图 1-底阀 2-入口真空表 3-离心泵 4-出口压力表 5-充水阀 6-差压变送器 7-涡轮流量计 8-差压变送器 9-水箱 离心泵入口和出口管的规格为 1#~2#装置,入口内径为,出口内径为 3#~8#装置,入口内径为41mm,出口内径为48 三、实验步骤 1.打开充水阀向离心泵泵壳内充水。 2.关闭充水阀、出口流量调节阀,启动总电源开关,启动电机电源开关。 3.打开出口调节阀至最大,记录下管路流量最大值,即控制柜上的涡轮流量计的读数。 4.调节出口阀,流量从最大到最小测取8次,再由最小到最大测取8次,记录各次实验数据,包括压力表读数、真空表读数、涡轮流量计的读数、功率表的读数。 5.测取实验用水的温度。 6.关闭出口流量调节阀,关闭电机开关,关闭总电源开关。 注意事项:离心泵禁止在未冲满水的情况下空转。 四、数据处理与讨论 水温:℃,离心泵型号规格: 序流量泵入口压力(表压)泵出口压力(表压)电机功率扬程效率

化工原理实习心得

化工原理实习心得 化工原理实习是对化工原理知识的一个实践过程, 下面化工原理实习心得是想跟大家分享的,欢迎大家浏览。 第一篇:化工原理实习心得 在实习的过程中,自己学到了许多原先在课本上学 不到的东西,而且可以使自己更进一步接近社会,体会 到市场跳动的脉搏,如果说在象牙塔是看市场,还是比 较感性的话,那么当你身临企业,直接接触到企业的生 产与销售的话,就理性得多。因为,在市场的竞争受市 场竞争规则的约束,从采购、生产到销售都与市场有着 千丝万缕的联系,如何规避风险,如何开拓市场,如何 保证企业的生存发展,这一切的一切都是那么的现实。 于是理性的判断就显得重要了。在企业的实习过程中, 我发现了自己看问题的角度,思考问题的方式也逐渐开拓,这与实践密不可分,在实践过程中,我又一次感受 充实,感受成长。 通过安排到xxx车间进行实习,了解产品生产工艺 流程、职能部门的设置及其职能,了解企业的内部控制,在这一个多月的时间里,下到生产车间后,先了解整个 xxx生产的流程,从采购入库,到领料生产,到最后的

成品入罐,对整个车间的生产活动有了基本认识,这对 我们熟悉企业,进行实务操作打下良好基础。 其中,先前我们对xxx的生产几乎一无所知,但下 到车间之后,我们不仅了解了生产流程,还进一步了解 了xxx的生产工艺流程和用途,由于脂肪酸生产完后是直接用于公司后面的扬子石化生产,所以每个月的生产有一定的额度.而且由于季节和温度等条件的限制,机器开工的时间长度及强度也有相关的规定,另外,对一些流水 线的参观,也激发了我对如何通过新流水线的建设,对 降低生产成本的思考,于是,感受颇深的一点,要做一 名合格的会计人员,对基本、基础的作业环节是要了解的,否则,很容易让理论脱离实践. 在熟悉了车间的生产流程后,工作人员拿了以前的 交接班记录和中间产品申请单和报表等资料给我们看, 在翻看这些资料的过程中,有不懂或弄不清楚的资料, 积极向同事请教,在他们的耐心指导下,我们对车间的 整个产品检验的程序方法有了一定上的认识。 由于化工生产是不间断的,所以车间生产必须时刻有人,车间的工作人员采取四班两倒(一天白班12小时一天晚班休两天)和常白班制度.我们车间有四个人(主任,工 艺员,等)上长白班,其他人分成甲乙丙丁四个班四班两倒. 虽然我们没有正式分配,但我们都严格遵守车间的生

化工原理实验习题答案

化工原理实验习题答案 Prepared on 22 November 2020

1、填料吸收实验思考题 (1)本实验中,为什么塔底要有液封液封高度如何计算 答:保证塔内液面,防止气体漏出,保持塔内压力. 设置液封装置时,必须正确地确定液封所需高度,才能达到液封的目的。 U形管液封所需高度是由系统内压力(P1 塔顶气相压力)、冷凝器气相的压力(P2)及管道压力降(h,)等参数计算确定的。可按式(4.0.1-1)计算: H =(P1一P2)Y一h- 式中 H.,- —最小液封高度,m; P1,—系统内压力; P2—受液槽内压力; Y—液体相对密度; h-—管道压力降(液体回流道塔内的管线) 一般情况下,管道压力降(h-)值较小,可忽略不计,因此可简化为 H=(P1一P2)Y 为保证液封效果,液封高度一般选取比计算所需高度加0. 3m-0. 5m余量 为宜。 (2)测定填料塔的流体力学性能有什么工程意义 答:是确定最适宜操作气速的依据 (3)测定Kxa 有什么工程意义 答:传质系数Kxa是气液吸收过程重要的研究的内容,是吸收剂和催化剂等性能评定、吸收设备设计、放大的关键参数之一

(4)为什么二氧化碳吸收过程属于液膜控制 答:易溶气体的吸收过程是气膜控制,如HCl,NH3,吸收时的阻力主要在气相,反之就是液膜控制。对于CO2的溶解度和HCl比起来差远了,应该属于液膜控制(5)当气体温度和液体温度不同时,应用什么温度计算亨利系数 答:液体温度。因为是液膜控制,液体影响比较大。 2对流给热系数测定 1. 答:冷流体和蒸汽是并流时,传热温度差小于逆流时传热温度差,在相同进出口温度下,逆流传热效果大于并流传热效果。 2.答:不凝性气体会减少制冷剂的循环量,使制冷量降低。并且不凝性气体会滞留在冷凝器的上部管路内,致使实际冷凝面积减小,冷凝负荷增大,冷凝压力升高,从而制冷量会降低。而且由于冷凝压力的升高致使排气压力升高,还会减少压缩机的使用寿命。应把握好空气的进入,和空气的质量。 3.答:冷凝水不及时排走,附着在管外壁上,增加了热阻,降低传热速率。在外管 最低处设置排水口,及时排走冷凝水。 4.答:靠近蒸气温度因为蒸气冷凝传热膜系数远大于空气膜系数。 5. 答:基本无影响。因为α∝(ρ2gλ3r/μd0△t)1/4,当蒸汽压强增加时,r 和△t 均增加,其它参数不变,故 (ρ2gλ3r/μd0△t)1/4变化不大,所以认为蒸汽压强对α关联式无影响。 3、离心泵特性曲线测定 1、关闭阀门的原因从试验数据上分析:开阀门意味着扬程极小,这意味着电机功率极大,会烧坏电机。 2、离心泵不灌水很难排掉泵内的空气,导致泵空转而不能排水;泵不启动可能是电路问题或是泵本身已损坏,即使电机的三相电接反了,泵也会启动的。

相关主题
文本预览
相关文档 最新文档