当前位置:文档之家› 高等传热学肋片分析

高等传热学肋片分析

高等传热学肋片分析
高等传热学肋片分析

高等传热学导热理论

第三讲肋片导热分析

肋片(伸(延、扩)展面、):从壁面扩展出的换热面。

肋片的作用:

增加传热面积,改变换热条件和增加表面传热系数。

目的:强化传热,调整温度,减小体积及流阻,减轻重量。

肋的种类:直肋,环肋,异形肋等:

一维肋片的条件(假定):

(1)稳定导热,无内热源。

(2)连续均质,各向同性。

(3)表面传热系数h为常量。

不变。

(4)环境换热温度t

f

(5)导热系数λ为常量

(6)肋基温度均匀。

(7)δ《H,温度变化与宽度无关。

(8)肋基与壁面间无接触热阻

(无温差)

3.1一维对称直肋传热的通用微分方程:

对沿x方向一维传热,设传热面积A,由F o u r i e r定律和热力学第一定律,应用微元分析法,当λ=常量时,

)d x=0

有:-dΦ-h U(t-t

f

d(λA d t/d x)-h U(t-t f)d x

=(λA d2t/d x)+λ(d A/d x)d t-h U(t-t

f

)d x=0

λA d2t/d x2+λ(d A/d x)d t/d x-h U(t-t

f

)=0

导热面A矩形时A=2l y,U=2(l+2y),

取l=1,2y<

得:y d2t/d x2+(d y/d x)d t/d x-h/λ(t-t

f

)=0

令:y=δ/2(x/H)(1-2n)/(1-n)

n=1/2,y=δ/2=c o n s t,等截面肋。

n=0y=δ/2(x/H),三角形肋。

n=1/3y=δ/2(x/H)1/2,凸抛物线

n=∞,y=δ/2(x/H)2,凹抛物线

边界条件:

x=0,肋端:(1)1stB.C:t=t

f

(2) 2ndB.C中绝热边界条件:d t/d x=0。

(3) 3rdB.C:-λd t/d x=h(t-t

f

)

x=H,肋基:t=t

3.2等截面直肋的导热分析

上式中:n=1/2,y=δ/2=c o n s t,等截面肋。换一下坐标得:

d2t/d x2–h U/(λA)(t-t

f

)=0

令:θ=t-t

f

过余温度。

d2θ/d x2–m2θ=0

m2=h U/(λA)

边界条件:

x=H,肋端:(1)1stB.C:θ=0 。

(2) 2ndB.C中绝热边界条件解:dθ/d x=0。

(3) 3rdB.C:-λdθ/d x=h

2

θ

x=0,肋基:θ=θ

通解:θ=c

1e-m x+c

2

e m x

3.2.11stB.C解:

c 1e-m H+c

2

e m H=0

c 1+c

2

=θ

c 1=θ

e m H/(e m H-e-m H)

c 2=-θ

e-m H/(e m H-e-m H)

θ=θ0s h(m(H-x))/s h(m H)

整个肋片散热量:

Φ=-λA dθ/d x」x=0=λA mθ0c h(m H)/s h(m H)

=(h UλA)1/2(t

0-t

f

)c h(m H)/s h(m H)

特例:H→∞

θ=θ0e-m x

θH=0→t H=t f

整个肋片散热量:

Φ=-λA dθ/d x」x=0=λA mθ0=(h UλA)1/2(t0-t f)

3.2.22ndB.C中绝热边界条件解:

-c

1e-m H+c

2

e m H=0

c 1+c

2

=θ

c 1=θ

e m H/(e m H+e-m H)

c 2=θ

e-m H/(e m H+e-m H)

θ=θ0c h(m(H-x))/c h(m H)

整个肋片散热量:

Φ=-λA dθ/d x」x=0=λA mθ0s h(m H)/c h(m H)

=(h UλA)1/2(t

0-t

f

)t h(m H)

特例:H→∞

θ=θ0e-m x

θH=0→t H=t f

整个肋片散热量:

Φ=-λA dθ/d x」x=0=λA mθ0=(h UλA)1/2(t0-t f)结果与1stB.C解相同。

3.2.33rdB.C解:

-c

1e-m H+c

2

e m H=h

2

θ/(λm)

c 1+c

2

=θ

θ=θ0{[c h(m(H-x))+h2/(λm)s h(m(H-x))]/[c h(m H)+h2/(λm)s h(m H)]}整个肋片散热量:

Φ=-λA dθ/d x」x=0=λA mθ0{[s h(m H)+h2/(λm)c h(m H)]/[c h(m H)+h2/(λm)s h(m H)]}

=(h UλA)1/2(t

0-t

f

){[t h(m H)+h

2

/(λm)]/[1+h

2

/(λm)t h(m H)]}

特例:

h

2

=h,可得

h

2

=0,可得绝热边界条件解。

h

2

=∞,可得1s t边界条件解。

H→∞

?θ=θ

e-m x

整个肋片散热量:

?Φ=-λA dθ/d x」

x=0=λA mθ

=(h UλA)1/2(t

-t

f

)

3.2.4三种肋效率

由上分析:温度场变化特点:

a.过余温度为指数(双曲)曲线,肋基与换热流体温差大,肋端温差小。肋各处换热量不同,肋基处换热量最大,肋端处换热量最小。

b.当肋高趋向无穷大时,温度分布和换热量有下列趋势:

θ=θ0e-m x

Φ=-λA dθ/d x」x=0=λA mθ0=(h UλA)1/2(t0-t f)

由特点a定义第一类肋效率(肋片有效度):

η1=实际传热量/以肋基导热面积为基准的最大传热量(未装肋时肋基传热量)。

对绝热边界条件:

η1=(h UλA)1/2(t0-t f)t h(m H)/(h A(t0-t f))=t h(m H)/(m(A/U))

由特点a定义第二类肋效率(工程上常用):

η2=ηf=实际传热量/以肋对流面积为基准的最大传热量(肋片温度等于肋基温度时的传热量)。

对绝热边界条件:

η2=ηf=0.5x2h/λ=0.5δ(x/H)2(h UλA)1/2(t0-t f)t h(m H)/(h U H(t0-t f))=

t h(m H)/(m H)

由特点b定义第三类肋效率(肋片高度因子):

η3=实际传热量/肋片无限高时的传热量=t h(m H)

对绝热边界条件:

η3=(h UλA)1/2(t0-t f)t h(m H)/((h UλA)1/2(t0-t f))=t h(m H)

计算热量公式:

Φ=η1h A(t0-t f)=η2h U H(t0-t f)=η3(h UλA)1/2(t0-t f)

大家注意,对肋片,无量纲数m H非常重要,它决定了肋的温度分布和换热量大小。

三种肋效率间的关系:η

2/η

1

=A/H U

η2/η3=1/m H

η1/η3=U/m A

3.2适用肋片强化传热的条件:

问题:加上肋片是否一定能够达到强化传热的目的?

回答:不一定,即存在弱化传热的可能。

问题:满足什么条件,才能强化传热?我们这样分析:

加肋片相当与增加肋高。只要求得肋片传热量随肋高的变化规律,就可以得到答案。

作为例子,我们以等截面肋为对象,引入3r d B.C结果:

dΦ/d H=λm2{[c h(m H)+h

2/(λm)s h(m H)]2-[s h(m H)+h

2

/(λm)c h(m H)]2}

/[c h(m H)+h2/(λm)s h(m H)]2

=λm2[c h(m H)+h

2

/(λm)s h(m H)+

s h(m H)+h

2/(λm)c h(m H)][c h(m H)+h

2

/(λm)s h(m H)-s h(m H)-h

2

/(λm)c h(m H)]

/[c h(m H)+h

2

/(λm)s h(m H)]2

=λm

2[c h(m H)+h

2

/(λm)s h(m H)+s h(m H)+h

2

/(λm)c h(m H)]

[1-h

2

/(λm)][c h(m H)-s h(m H)]

/[c h(m H)+h

2

/(λm)s h(m H)]2≥0

1-h

2

/(λm)<0→dΦ/d H<0增高肋片,弱化传热

1-h

2

/(λm)=0→dΦ/d H=0增高肋片,对传热无影响

1-h

2

/(λm)>0→dΦ/d H>0增高肋片,强化传热

1-h

2/(λm)=1-A0.5h

2

/(λh U)0.5

=1-[h A/(λU)]0.5h

2

/h>0

(h/h

2

)2>h A/(λU)

h 2=h时有:B i

A/U

=h A/(λU)<1。对矩形:1/h>δ/(2λ):外部热阻要大于

内部热阻,加肋才能起作用。

工程上,有意义的加肋应满足要求:B i

A/U

<1/4,显然,在h较小和λ较大时,用肋容易达到要求。结论:气气对流换热时用肋效果好。

3.3肋形状y的优化:

问题:肋型线y取什么曲线好?

什么叫做“好”?给定传热量下要求具有最小体积或最小质量或给定体积(质量)下要求具有最大传热量。(对偶优化问题)

S c h m i d t假定:如要得到在给定传热量下要求具有最小体积或最小质量的肋的形状和尺寸,肋片任一导热截面的热流密度都应相等。

1928年,S c h m i d t等提出了一维肋片换热优化理论:设导热系数为常数,沿肋高的温度分布应为一条直线。D u f f i n应用变分法证明了S c h m i d t假定。

W i k i n s[3]指出只有在导热系数和换热系数为常数时,肋片的温度分布才是线性的。L i u和W i k i n s[4]等人还得到了有内热源及辐射换热时优化解。长期以来肋片的优化问题受到理论和应用两方面的重视。对称直肋最优型线和尺寸的无量纲表达式分析:

假定一维肋片,导热系数和换热系数为常数,我们有对称直肋微分方程(忽略曲线弧度):

y d2θ/d x2+(d y/d x)dθ/d x-θh/λ=0

由S c h m i d t假定,对任意截面x:dθ/d x=-q/λ=c o n s t

当λ为常量时,温度线性分布:θ=c

1x+c

2

,x=H,θ=θ

=c

1

H+c

2

设导热面为矩形,将温度解代入微分方程得优化肋的型线方程:

c 1(

d y/d x)-h/λ(c

1

x+c

2

)=0

y=h/λ(0.5x2+c

2x/c

1

+c

4

)=(0.5x2+c

3

x+c

4

)h/λ

这是一条抛物线。如果该线满足:x=0,y=0

x=H,y=δ/2

c 4=0,c

3

=c

2

/c

1

=(δλ/h-H2)/2H,θ

=c

1

H+c

1

(δλ/h-H2)/2H,c

1

=2Hθ

/(δ

λ/h+H2)

特别地若c

3

=0,δ/H=h H/λ,y=0.5x2h/λ=0.5δ(x/H)2相当与n=∞时的型线,

即凹抛物线形状的直肋最省材料。此时有:c

2=0,c

1

=θ

/H。

整理得:2y/δ=(x/H)2这条抛物线的几何意义是肋各点的的导热截面比,物理意义是肋各点的的导热截面的热流量比。同时可以求出:

(m H)2=2

η

f

=0.5

3.4最佳直肋尺寸

问题:给定肋形状y=f(x)及体积或质量后,如何确定肋厚或肋高?或肋高是否越大越好?

答案:在选取的δ,H上,肋的传热量达到最大?数学模型为

dΦ/d H=0V(或q

m

)=C A H=c o n s t

对矩形等截面肋,绝热边界条件:

dΦ/d H=d(λA mθ

t h(m H))/d H=d((λVhU/(CH))0.5θ0t h((ChU/(λV))0.5H1.5))/d H=(λVhU/C)0.5/H{(ChU/(λV))0.5H s e c h2[((ChU/(λ

V))0.5H1.5)]-0.5H-0.5t h[(ChU/(λV))0.5H1.5]}=0

(ChU/(λV))0.5H s e c h2[((ChU/(λV))0.5H1.5)]-0.5H-0.5t h[(ChU/(λV))0.5H1.5]=0 m H s e c h2[m H]]-0.5t h[m H]=0

解得:

m H=1.419

对凹抛物线肋,同样可得:

m H=1.414

对三角型肋,可得:

m H=1.309

下表给出了最佳尺寸时上述三种直肋片的有关参数:

凹抛物线直肋三角型直肋矩形直肋

n∞00.5

A p 0.333(Φ/θ

)3/(h2λ)0.348(Φ/θ0)3/(h2λ)0.505(Φ/θ0)3/(h2λ)或2δH/3(1)δH(1.045)2δH(1.52)

M H1.4141.3091.419

HΦ/θ

0/h0.842Φ/θ

/h0.798Φ/θ

/h

或1.44(λA

p /h)1/31.19(λA

p

/h)1/31.0(λA

p

/h)1/

δ0.5(Φ/θ0)2/(hλ)0.414(Φ/θ0)2/(hλ)0.316(Φ/θ0)2/(hλ)

或1.44(h/λ)1/3A

p 2/30.837(h/λ)1/3A

p

2/30.5(h/λ)1/3A

p

2/3

Φ:1.414(λδh)1/2θ01.554(λδh)1/2θ01.778(λδh)1/2θ0(1)(1.1)(1.26)或1.442(λh2A

p

)1/3θ01.422(λh2A p)1/3θ01.26(λh2A p)1/3θ0(1)(0.986)(0.874)η10.707(λ/(hδ))1/20.777(λ/(hδ))1/20.889(λ/(hδ))1/2η20.50.5930.627

注:Φ相同,A

p

:(1)(1.045)(1.52)δ相同,Φ:(1)(1.045)(1.26)

A

p

相同,Φ:(1)(0.986)(0.874)Φ→2ΦA p→8A pδ→4δH不变

体积V=A

p z A

p

∝1/λ,质量q

m

=ρV∝ρ/λ,Φ、θ、h给定时:几种肋片材

料的质量比和体积比:

密度导热系数体积比质量比铜:890038111.947铝:27002251.6931碳钢:7850458.46714.54不锈钢:83501525.446.39

高等传热学知识重点(含答案)2019

高等传热学知识重点 1.什么是粒子的平均自由程,Knusen数的表达式和物理意义。 Knusen数的表达式和物理意义:(Λ即为λ,L为特征长度) 2.固体中的微观热载流子的种类,以及对金属/绝缘体材料中热流的贡献。 3.分子、声子和电子分别满足怎样的统计分布律,分别写出其分布函数的表达式 分子的统计分布:Maxwell-Boltzmann(麦克斯韦-玻尔兹曼)分布: 电子的统计分布:Fermi-Dirac(费米-狄拉克)分布: 声子的统计分布:Bose-Eisentein(波色-爱因斯坦)分布; 高温下,FD,BE均化为MB;

4.什么是光学声子和声学声子,其波矢或频谱分布各有特性? 答:声子:晶格振动能量的量子化描述,是准粒子,有能量,无质量; 光学声子:与光子相互振动,发生散射,故称光学声子; 声学声子:类似机械波传动,故称声学声子; 5.影响声子和电子导热的散射效应有哪些? 答:影响声子(和电子)导热的散射效应有(热阻形成的主要原因): ①界面散射:由于不同材料的声子色散关系不一样,即使是完全结合的界面也是有热阻的; ②缺陷散射:除了晶格缺陷,最典型的是不纯物掺杂颗粒的散热,散射位相函数一般为Rayleigh散 射、Mie散射,这与光子非常相似; ③声子自身散射:声子本质上是晶格振动波,因此在传播过程中会与原子相互作用,会产生散射、 吸收和变频作用。

6.简述声子态密度(Density of State)及其物理意义,德拜模型和爱因斯坦模型的区别。答:声子态密度(DOS)[phonon.s/m3.rad]:声子在单位频率间隔内的状态数(振动模式数)Debye(德拜)模型: Einstein(爱因斯坦)模型: 7.分子动力学理论中,L-J势能函数的表达式及其意义。 答:Lennard-Jones 势能函数(兰纳-琼斯势能函数),只适用于惰性气体、简单分子晶体,是一种合理的近似公式;式中第一项可认为是对应于两体在近距离时以互相排斥为主的作用,第二项对应两体在远距离以互相吸引(例如通过范德瓦耳斯力)为主的作用,而此六次方项也的确可以使用以电子-原子核的电偶极矩摄动展开得到。

高等传热学讲义

第2章边界层方程 第一节Prandtl 边界层方程一.边界层简化的基本依据 外:粘性和换热可忽略 )(t δδ , l l t <<<<δδ或内:粘性和换热存在 )(t δδ特征尺寸 —l

二.普朗特边界层方程 常数性流体纵掠平板,层流的曲壁同样适用)。 δ v l u ∞∞ ∞u l v v l u δδ~~,可见,0=??+??y v x u )()((x x R δ>>曲率半径y x u v ∞ ∞T u ,w T ∞ ∞T u ,δ l

)(122 22 y u x u x p y u v x u u ??+??+??-=??+??νρδ δ ∞ ∞ u u l l u u ∞∞ 2 l u ∞ν2 δ ν ∞ u ) (2 l u ∞ 除以无因次化11 Re 12 ) )(Re 1 (δ l

因边界层那粘性项与惯性项均不能忽略,故 项可忽略,且说明只有Re>>1时,上述简化才适用。)(12 2 22y v x v y p y v v x v u ??+??+??-=??+??νρ1~))(Re 1(2 δ l l δ ;可见22 22 x u y u ??>>??δδ 1 ) (2 ∞u l l u l u /)(∞∞δ 2 /)(l u l ∞δ ν2 /)(δδ ν∞u l : 除以l u 2 ∞ )(Re 1l δ))(Re 1(δ l l δ

可见,各项均比u 方程对应项小得多可简化为 于是u 方程压力梯度项可写为。 )(2 2 22y T x T a y T v x T u ??+??=??+??,0=??y p dx dp ρ1-),(l δ 乘了δθδ w u l )(∞l u w θ∞2 l a w θ除以: l u w θ∞Pe /12 )(/1δ l Pe 12δ θw a 1 ) (∞-=T T w w θPr) Re (?====∞∞贝克列数—导热量对流热量w w p l k u c a l u Pe θθρ

高等传热学相变导热解(移动边界)

高等传热学导热理论——相变导热(移动边界问题)讨论 第五讲:相变导热(移动边界问题): 移动边界的导热问题有许多种,本讲只讲固液相变时的导热模型。 5.1 相变换热特点与分类: 特点: (1) 相变处存在一个界面把不同相的物质分成两个区间(实际不是一个面, 而是一个区)。 (2) 相变面随时间移动,移动规律时问题的一部分。 (3) 移动面可作为边界,决定了相变问题是非线性问题。 分类: (1) 半无限大体单区域问题(Stefan Question ) (2) 半无限大体双区域问题(Neumman Question ) (3) 有限双区域问题 5.2 相变导热的数学描述和解: 假定:固液两相内部只有导热,没有对流(适用于深空中相变)。 物性为常量。不考虑密度变化引起的体积变化。 控制方程: 对固相: 2 21s s s t t a x τ ??=?? 对液相: 2 2 1l l l t t a x τ ??= ?? 初值条件:0:s l t t t τ∞=== 边界条件: 0:::s l w l s l s x t ort t x t ort or x t ort t ∞ ===∞≠∞ =?= 在相变界面,热量守恒,温度连续,Q l 为相变潜热: ()():s l s l l l s l p t t d x Q and t t t x x d δτδτλλρτ ??==+==?? 5.2.1 半无限大体单区域问题(Stefan Question )的简化解: 以融解过程为例: 忽略液相显热, 2 210l l l t t a x τ ??==??,方程解为一直线,由边界条件得: ()/l w p w t t t t x δ =+- 对固相,忽略温差:w p t t t ∞==,即固相温度恒等于相变温度等于初始温度。 由相变处得换热条件求δ的变化规律:

传热学考研知识点总结

常用的相似准则数:①努谢尔特:Nu=aL/λ分子是实际壁面处的温度变化率,分母是原为l的流体层导热机理引起的温度变化率反应实际传热量与导热分子扩散热量传递的比较。Nu大小表明对流换热强度。②雷诺准则Re=WL/V Re大小反映了流体惯性力和粘性力相对大小。Re是判断流态的。③格拉小夫准则Gr=gβ△tL3/V2 Gr的大小表明浮升力和粘性力的的相对大小,Gr表明自然流动状态兑换热的影响。 ④普朗特准则: Pr=V/a Pr表明动量扩散率与热量扩散率的相对大小。 辐射换热时的角系数:①相对性②完整性③可加性 热交换器通常分为三类:间壁式、混合式和回热式,按传热表面的结构形式分为管式和板式间壁式热交换器按两种流体相互间的流动方向热交换器分为分为顺流,逆流,交叉流。 导温系数α也称为热扩散系数或热扩散率,它象征着物体在被加热或冷却是其内部各点温度趋于均匀一致的能力。Α大的物体被加热时,各处温度能较快的趋于一致。传热学考研总结 1傅里叶定律:单位时间内通过单位截面积所传递的热量,正比例于当地垂直于截面方向上的温度变化率 2集总参数法:忽略物体内部导热热阻的简化分析方法 3临界热通量:又称为临界热流密度,是大容器饱和沸腾中的热流密度的峰值 4效能:表示换热器的实际换热效果与最大可能的换热效果之比 5对流换热是怎样的过程,热量如何传递的? 对流换热:指流体各部分之间发生宏观运动产生的热量传递与流体内部分子导热引起的热量传递联合作用的结果。对流仅能发生在流体中,而且必然伴随有导热现象。 对流两大类:自然对流(不依靠泵或风机等外力作用,由于流体内部密度差引起的流动)与强制对流(依靠泵或风机等外力作用引起的流体宏观流动)。 影响换热系数因素:流体的物性,换热表面的形状与布置,流速,流动起因(自然、强制),流动状态(层流、湍流),有无相变。 6何谓凝结换热和沸腾换热,影响凝结换热和沸腾换热的因素? 蒸汽与低于饱和温度的壁面接触时,将汽化潜热传递给壁面的过程称为凝结过程。 如果凝结液体能很好的润湿壁面,它就在壁面上铺展成膜,这种凝结形式称为膜状凝结。 如果凝结液体不能很好地润湿壁面,在壁面上形成一个个小液珠,这种凝结方式称为珠状凝结。 液体在固液界面上形成气泡引起热量由固体传递给液体的过程称为沸腾换热。 按沸腾液体是否做整体流动可分为大容器沸腾(池沸腾)和管内沸腾;按液体主体温度是否达到饱和温度可分为饱和沸腾和过冷沸腾。 不凝结气体对凝结换热过程的影响:在靠近液膜表面的蒸气侧,随着蒸气的凝结,蒸气分压力减小而不凝结气体的分压力增大;蒸气在抵达液膜表面进行凝结前,必须以扩散方式穿过聚集在界面附近的不凝结气体层,因此,不凝结气体层的存在增加了传递过程的阻力。 影响凝结换热的因素:不凝结气体、蒸汽流速、管内冷凝、蒸汽过热度、液膜过冷度及温度分布非线性。 影响沸腾换热的因素:不凝结气体(使沸腾换热强化)、过冷度、重力加速度、液位高度、管内沸腾。 7强化凝结换热和沸腾换热的原则? 强化凝结换热的原则:减薄或消除液膜,及时排除冷凝液体。 强化沸腾换热的原则:增加汽化核心,提高壁面过热度。 8试以导热系数为定值,原来处于室温的无限大平壁因其一表面温度突然升高为某一定值而发生非稳态导热过程为例,说明过程中平壁内部温度变化的情况,着重指出几个典型阶段。 首先是平壁中紧挨高温表面部分的温度很快上升,而其余部分则仍保持原来的温度,随着时间的推移,温度上升所波及的范围不断扩大,经历了一段时间后,平壁的其他部分的温度也缓慢上升。 主要分为两个阶段:非正规状况阶段和正规状况阶段 9灰体有什么主要特征?灰体的吸收率与哪些因素有关?

高等传热学课件对流换热-第2章-3

2-3 管槽内层流对流换热特征 工程上存在大量的管槽内对流换热问题。本节对管槽内层流强制对流换热的流动与换热特征进行分析。 一、流动特征 当流体以截面均匀的流速0u 进入管道 后,由于粘性,会在 管壁上形成边界层。 边界层内相同r 处的轴向流速随δ的增加 而降低,导致对管中心势流区的排挤作用,使势流区流速增加。当边界层厚度δ达到管内半径时,势流区消失,边界层汇合于管轴线处,同时截面内速度分布不再变化。 u o

将管入口截面至边界层汇合截面间的流动区域称为入口段,或称为未充分发展流、正在发展流。该区域内,速度分布不断变化, (,)u u x r =,同时存在径向速度(,)v x r 。 边界层汇合截面以后的流动速度不再变化,()u u r =,而径向速度 0v =,这段流动区域称为充发展段或充分发展流。 所以,管内流动存在特征不同的两个区域:入口段,充分发展段。充分发展流动又分为:简单充分发展流、复杂充分发展流两种。 1). 简单充分发展流 是指只存在轴向速度分量,而其它方向速度分量为零的充分发展流动。 对圆管: ()u u r =,0v w ==; 对矩形管道:(,)u u x y =,0v w ==。 简单充分发展流任意横截面上压力均匀,沿轴向线性变化,即

dp const dx = 证明:对简单充分发展流,径向速度0v =,根据径向动量方程: 222211()v v p v v v u v x r r r r x r νρ??????+=?+++?????? ? 0p r ?=?, 即任意横截面上压力均匀,压力仅沿轴向变化。于是,轴向动量方程为: 222211(u u dp u u u u v x r dx r r x r νρ?????+=?+++????? 又发展流0u x ?=?(速度分布不变,或由连续方程得出)?

浙大高等传热学复习题部分答案

高等传热学复习题 1.简述求解导热问题的各种方法和傅立叶定律的适用条件。 不论如何,求解导热微分方程主要依靠三大方法: 理论法、试验法、综合理论和试验法 理论法:借助数学、逻辑等手段,根据物理规律,找出答案。它又分: 分析法;以数学分析为基础,通过符号和数值运算,得到结果。方法有:分离变量法,积分变换法(Laplace变换,Fourier变换),热源函数法,Green函数法,变分法,积分方程法等等,数理方程中有介绍。 近似分析法:积分方程法,相似分析法,变分法等。 分析法的优点是理论严谨,结论可靠,省钱省力,结论通用性好,便于分析和应用。缺点是可求解的对象不多,大部分要求几何形状规则,边界条件简单,线性问题。有的解结构复杂,应用有难度,对人员专业水平要求高。 数值法:是当前发展的主流,发展了大量的商业软件。方法有:有限差分法,有限元法,边界元法,直接模拟法,离散化法,蒙特卡罗法,格子气法等,大大扩展了导热微分方程的实用范围,不受形状等限制,省钱省力,在依靠计算机条件下,计算速度和计算质量、范围不断提高,有无穷的发展潜力,能求解部分非线性问题。缺点是结果可靠性差,对使用人员要求高,有的结果不直观,所求结果通用性差。 比拟法:有热电模拟,光模拟等 试验法:在许多情况下,理论并不能解决问题,或不能完全解决问题,或不能完美解决问题,必须通过试验。试验的可靠性高,结果直观,问题的针对性强,可以发掘理论没有涉及的新规律。可以起到检验理论分析和数值计算结果的作用。理论越是高度发展,试验法的作用就越强。理论永远代替不了试验。但试验耗时费力,绝大多数要求较高的财力和投入,在理论可以解决问题的地方,应尽量用理论方法。试验法也有各种类型:如探索性试验,验证性试验,比拟性试验等等。 综合法:用理论指导试验,以试验促进理论,是科学研究常用的方法。如浙大提出计算机辅助试验法(CA T)就是其中之一。 傅里叶定律向量形式说明,热流密度方向与温度梯度方向相反。它可适用于稳态、非稳态,变导热系数,各向同性,多维空间,连续光滑介质,气、液、固三相的导热问题。 2.定性地分析固体导热系数和温度变化的关系 3.什么是直肋的最佳形状与已知形状后的最佳尺寸? Schmidt假定:如要得到在给定传热量下要求具有最小体积或最小质量的肋的形状和尺寸,肋片任一导热截面的热流密度都应相等。 1928年,Schmidt等提出了一维肋片换热优化理论:设导热系数为常数,沿肋高的温度分布应为一条直线。Duffin应用变分法证明了Schmidt假定。Wikins[3]指出只有在导热系数和换热系数为常数时,肋片的温度分布才是线性的。Liu和Wikins[4]等人还得到了有内热源及辐射换热时优化解。长期以来肋片的优化问题受到理论和应用两方面的重视。 对称直肋最优型线和尺寸的无量纲表达式分析: 假定一维肋片,导热系数和换热系数为常数,我们有对称直肋微分方程(忽略曲 线弧度): yd2θ/dx2+(dy/dx)dθ/dx-θh/λ=0 由Schmidt假定,对任意截面x: dθ/dx=-q/λ=const

高等传热学课件对流换热-第5章-1

第五章自然对流换热 当流体内部的温度分布或浓度分布不均匀时,会造成密度分布的不均匀,在体积力场的作用下,形成浮升力,而引起流体的流动与换热,这种现象称为自然对流。 在自然界与工程技术中,自然对流现象很多,譬如:地面与大气间温度差引起的复杂大气环流,工业排烟在大气中的混合与蔓延,工业废水在水域中的混合与扩散,各种电子器件的散热冷却,建筑物内的采暖,炉中的火焰与烟气的蔓延等。 在铸造、温控等涉及固/液相变的技术过程中,自然对流也是重要的物理过程。 与强制对流换热一样,自然对流也有层流与湍流,内部流动与外部流动的区别。

5-1 自然对流边界层分析 一、自然对流边界层的特点 以放置于静止流体中的竖壁为例。流体温度为T ∞,壁面温度为w T ,当w T T ∞>时,壁面附近的流体被加热,温度升高,密度变小,在重力场作用下产生浮力,使流体向上运动,如图。 (a) Pr 1=, ()T δδ= (b)Pr >>1, ()T δδ>

一般来说,不均匀的温度场仅出现在离壁面较近的流体层内,表现出边界层的特性。与强制对流不同,离壁面较远的流体静止不动。 对不同类的流体,其边界层内的速度分布、温度分布及控制机理有所不同。 (a) 当Pr 1=时,T δδ=,温度分布单调,速度分布在离壁面一定距离 处取得较大值,从壁面到速度极大值处,浮升力克服粘性力产生惯性力(速度)。随着离开壁面的距离的增加,浮升力减小,但粘性力以更快的速度减小,直至为零,即在此处取得极大值。从该点向边界层外缘,由于浮升力进一步减小,不足以维持如此大的惯性,所以速度又逐渐降低。 (b)Pr >>1时,T δδ>。在T y δ<区域,浮升力克服粘性力产生惯性;在T y δ>区域浮升力为零,流体靠消耗惯性力来克服粘性力。此时,温度分布与速度分布的宽度不同。 (c) Pr <<1时,T δδ<,热扩散能力大于粘性扩散能力。在y δ<区域,

传热学考研知识点总结(良心出品必属精品)

传热学考研知识点总结 对流换热是怎样的过程,热量如何传递的?如下是小编整理的传热学考研知识点总结,希望对你有所帮助。 传热学考研知识点总结§1-1 “三个W” §1-2 热量传递的三种基本方式§1-3 传热过程和传热系数 要求:通过本章的学习,读者应对热量传递的三种基本方式、传热过程及热阻的概念有所了解,并能进行简单的计算,能对工程实际中简单的传热问题进行分析。作为绪论,本章对全书的主要内容作了初步概括但没有深化,具体更深入的讨论在随后的章节中体现。本章重点: 1.传热学研究的基本问题物体内部温度分布的计算方法热量的传递速率增强或削弱热传递速率的方法 2.热量传递的三种基本方式 (1).导热:依靠微观粒子的热运动而产生的热量传递。传热学重点研究的是在宏观温差作用下所发生的热量传递。傅立叶导热公式: (2).对流换热:当流体流过物体表面时所发生的热量传递过程。牛顿冷却公式: (3).辐射换热:任何一个处于绝对零度以上的物体都具有发射热辐射和吸收热辐射的能力,辐射换热就是这两个过程共同作用的结果。由于电磁波只能直线传播,所以只有两个物体相互看得见的部分才能发生辐射换热。黑体热辐射公式:实际物体热辐射: 传热过程及传热系数:热量从固壁一侧的流体通过固壁传向另一侧流体的过程。最简单的传热过程由三个环节串联组成。 传热学研究的基础 傅立叶定律 能量守恒定律+ 牛顿冷却公式 + 质量动量守恒定律四次方定律本章难点 1.对三种传热形式关系的理解各种方式热量传递的机理不同,但却可以同时存在于一个传热现象中。 2.热阻概念的理解严格讲热阻只适用于一维热量传递过程,且在传递过程中热量不能有任何形式的损耗。 思考题: 1.冬天经太阳晒过的棉被盖起来很暖和,经过拍打以后,效果更加明显。为什么? 2.试分析室内暖气片的散热过程。 3.冬天住在新建的居民楼比住旧楼房感觉更冷。试用传热学观点解释原因。 4.从教材表1-1给出的几种h数值,你可以得到什么结论? 5.夏天,有两个完全相同的液氮贮存容器放在一起,一个表面已结霜,另一个则没有。请问哪个容器的隔热性能更好,为什么? §2-1 导热的基本概念和定律§2-2 导热微分方程§2-3 一维稳态导热§2-4伸展体的一维稳态导热 要求:本章应着重掌握Fourier定律及其应用,影响导热系数的因素及导热问题的数学描写——导热微分方程及定解条件。在此基础上,能对几种典型几何

高等传热学课件对流换热-第2章-1

第二章层流强制对流换热 §2-1 层流对流换热边界层微分方程的物理数学性质 由于对流换热基本方程组的非线性与耦合性,求解异常困难,在19世纪,对粘性流动与换热进行求解几乎是不可能的。自从1904年德国的著名力学家Prandtl提出边界层的理论后,借助于该理论对N-S 方程进行简化,在某些简单的情况下可进行理论求解,从而为现代流体力学的发展奠定了基础,同时也推动了对流换热理论的发展。到目前为止,已获得了十几个层流对流换热问题的分析解。下面介绍边界层理论的要点及边界层微分方程的数理性质。

一、边界层理论要点 1.流动边界层 绕流固体壁面的粘 性流体流场可分为 边界层区、主流区(势流 区)两个特征不同的流动 区域: (a). 壁面附近边界层:在垂直于壁面方向,速度变化剧烈,存在很大 的速度梯度,粘性应力起重要作用。速度分布,粘性 (b). 离壁面较远的主流区:速度梯度很小,可以忽略粘性应力,视为 理想流体的流动。 δ 。(尺度) (c). 边界层厚度δ远比流过的距离L小得多,即L (d). 边界层内存在层流、湍流、过度流等不同流态。(流态)

2.热边界层 (a). 壁面附近的热边界层:垂直于壁面方向,存在很大的温度梯度, 沿壁面法向的导热起主要作用。 (b). 离壁面稍远的主流区:混合剧烈,温度梯度很小,可忽略导热。 δ 。 (c).热边界层厚度t L (d). tδ与δ的关系,起决于流体物性。(r P数) (e). 热边界层的流动状态对换热起着决定性作用。 从物理本质上看,边界层是扩散效应(微观热运动)起主要或重要作用的区域;或者说是扩散效应的影响区域。 层流热边界层内:沿壁面法向的热流传递方式主要是导热。 湍流边界层内:粘性底层靠导热,湍流核心区的脉动对流占主要地位。

高等传热学部分答案.

7-4,常物性流体在两无限大平行平板之间作稳态层流流动,下板静止不动,上板在外力作用下以恒定速度U 运动,试推导连续性方程和动量方程。 解:按照题意 0, 0=??=??=x v y v v 故连续性方程 0=??+??y v x u 可简化为 0=??x u 因流体是常物性,不可压缩的,N-S 方程为 x 方向: )(12222y u x u v y p F y u v x u u x ??+??+??-=??+??ρρ 可简化为 022=??+??-y v x p F x η y 方向 )(12222y v x v v y p F y v v x v u y ??+??+??-=??+??ρρ 可简化为 0=??= y p F y 8-3,试证明,流体外掠平壁层流边界层换热的局部努赛尔特数为 12121 Re Pr x Nu r = 证明:适用于外掠平板的层流边界层的能量方程

22t t t u v a x y y ???+=??? 常壁温边界条件为 0w y t t y ∞ ==→∞时,时,t=t 引入量纲一的温度w w t t t t ∞-Θ= - 则上述能量方程变为22u v a x y y ?Θ?Θ?Θ+=??? 引入相似变量1Re ()y y x x ηδ= == 有 11()(()22x x x ηη ηηη?Θ?Θ?''==Θ-=-Θ??? ()y y ηηη?Θ?Θ?'==???;22()U y x ηυ∞ ?Θ''= Θ? 将上三式和流函数表示的速度代入边界层能量方程,得到 1 Pr 02 f '''Θ+Θ= 当Pr 1时,速度边界层厚度远小于温度边界层厚度,可近似认为温度边界层内 速度为主流速度,即1,f f η'==,则由上式可得 Pr ()2d f d η''Θ'=-'Θ,求解可得 12 12 ()()Pr 2 Pr (0)()erf η ηπ Θ='Θ= 则1212 0.564Re Pr x x Nu = 8-4,求证,常物性不可压缩流体,对于层流边界层的二维滞止流动,其局部努

高等传热学作业要点

1-4、试写出各向异性介质在球坐标系)(?θ、、r 中的非稳态导热方程,已知坐标为导热系数主轴。 解:球坐标微元控制体如图所示: 热流密度矢量和傅里叶定律通用表达式为: →→→??+??+??-=?-=k T r k j T r k i r T k T k q r ? θθ?θsin 11' ' (1-1) 根据能量守恒:st out g in E E E E ? ???=-+ ?θθρ?θθ??θθ?θd drd r t T c d drd r q d q d q dr r q p r sin sin 2 2??=+??-??-??-? (1-2) 导热速率可根据傅里叶定律计算: ?θθd r rd t T k q r r sin ???-= ?θθ θθd r dr T r k q sin ???-= (1-3) θ? θ? ?rd dr T r k q ???- =sin 将上述式子代入(1-4-3)可得到 ) 51(sin sin )sin ()sin (sin )(222-??=+??????+??????+?????????θθρ?θθ?θ?θ??θθθθ?θθ?θd drd r t T c d drd r q d rd dr T r k rd d dr T r k d d dr r T r k r p r 对于各向异性材料,化简整理后可得到: t T c q T r k T r k r T r r r k p r ??=+??+????+?????ρ?θθθθθ?θ2 222222sin )(sin sin )( (1-6)

2-3、一长方柱体的上下表面(x=0,x=δ)的温度分别保持为1t 和2t ,两侧面(L y ±=)向温度为1t 的周围介质散热,表面传热系数为h 。试用分离变量法求解长方柱体中的稳态温度场。 解:根据题意画出示意图: (1)设f f f t t t t t t -=-=-=2211,,θθθ,根据题意写出下列方程组 ????? ??? ?? ?=+??==??======??+??00 000212222θθ λθθθδθθθ θh y L y y y x x y x (2-1) 解上述方程可以把θ分解成两部分I θ和∏θ两部分分别求解,然后运用叠加原理∏+=θθθI 得出最终温度场,一下为分解的I θ和∏θ两部分:

高等传热学作业

高等传热学作业Revised on November 25, 2020

第一章 1-4、试写出各向异性介质在球坐标系)(?θ、、r 中的非稳态导热方程,已知坐标为导热系数主轴。 解:球坐标微元控制体如图所示: 热流密度矢量和傅里叶定律通用表达式为: → →→??+??+??-=?-=k T r k j T r k i r T k T k q r ? θθ?θsin 11' ' (1-1) 根据能量守恒:st out g in E E E E ? ???=-+ ?θθρ?θθ??θθ?θd drd r t T c d drd r q d q d q dr r q p r sin sin 2 2??=+??-??-??-? (1-2) 导热速率可根据傅里叶定律计算: ?θθ θθd r dr T r k q sin ???- = (1-3) 将上述式子代入(1-4-3)可得到 ) 51(sin sin )sin ()sin (sin )(222-??=+??????+??????+?????????θθρ?θθ?θ?θ??θθθθ?θθ?θd drd r t T c d drd r q d rd dr T r k rd d dr T r k d d dr r T r k r p r 对于各向异性材料,化简整理后可得到: t T c q T r k T r k r T r r r k p r ??=+??+????+?????ρ?θθθθθ?θ2 222222sin )(sin sin )( (1-6) 第二章 2-3、一长方柱体的上下表面(x=0,x=δ)的温度分别保持为1t 和2t ,两侧面(L y ±=)向温度为1t 的周围介质散热,表面传热系数为h 。试用分离变量法求解长方柱体中的稳态温度场。 解:根据题意画出示意图: (1)设f f f t t t t t t -=-=-=2211,,θθθ,根据题意写出下列方程组

高等传热学课件对流换热-第6章-1

第六章 高速流动对流换热
在前面几章介绍的强制对流换热中, 我们假设速度和速度梯度充 分小,以致动能和粘性耗散的影响可以忽略不计。现在考虑高速和粘 性耗散的影响。我们主要介绍有更多重要应用的外部边界层。
6.1 高速流对流换热基本概念
高速对流主要涉及以下两类现象: z 从机械能向热能的转换,导致流体中的温度发生变化; z 由于温度变化使流体的物性发生变化。 空气一类气体若具有极高的速度,将会导致超高温离解、质量浓 度梯度,并因此发生质量扩散,使问题变得更加复杂。这里仅限于关 注未发生化学反应的边界层;对空气来说,这意味着我们将不考虑温

度超过 2000K 或者马赫数高于 5 的情况。对液体,如果普朗特数足 够高的话,粘性耗散实际上在中等速度时就具有很可观的作用。 我们的讨论仅限于普朗特数接近于 1 的气体。 有关高速对流的研究大都涉及对机械能转换和流体物性随温度 变化两个因素的总体考虑,很难看到它们单独的影响。这里,我们暂 不考虑变物性的影响,首先讨论能量转换问题。 能量转换过程能可逆地发生,也能不可逆地发生。比如,在边界 层内,激波与粘性的相互作用使得机械能与热能间的不可逆转换增 大,无粘性的速度变化(比如在接近亚音速滞止点附近流体的减速) 则产生可逆的,或者非常接近可逆的能量转换。高速边界层滞止点的 比较能很好地说明这两种情况的明显区别。 z 在滞止点(图 6-1)处速度降低,边界层以外的压力和温度提高。 对于亚音速流动, 该过程几乎是等熵的, 流体粘度不起什么作用。 无论减速可逆还是不可

逆,滞止区边界层以外的流体 温度等于滞止温度, 也就是说, 流体温升来自于绝热减速:
? T∞
V2 = T∞ + 2c
(6.1.1)
V
若不考虑变物性影响,并
* 用 T∞ 代替 T∞ , 低速滞止点的解
也能适用于高速滞止点问题:
? qw = h (Tw ? T∞ )
图 6-1 滞止点的流动
(6.1.2)
z 但高速边界层问题有所不同。 如果自由速度很高, 边界层以内速 度梯度很大, 边界层内因粘性切应力产生粘性耗散。 如果物体是 绝热的,那么耗散产生的热量可以靠分子或者涡漩传导的机理, 从靠近表面的向边界层外传递出去, 如图 6-2 所示。 稳态条件下, 在粘性耗散和热传导之间存在一种平衡状态, 导致图 6-2 所示的 温度分布。此条件下的表面温度就等于绝热壁面温度 Taw 。

传热学知识点总结

Φ-=B A c t t R 1211k R h h δλ=++传热学与工程热力学的关系: a 工程热力学研究平衡态下热能的性质、热能与机械能及其他形式能量之间相互转换的规律, 传热学研究过程和非平衡态热量传递规律。 b 热力不考虑热量传递过程的时间,而传热学时间是重要参数。 c 传热学以热力学第一定律和第二定律为基础。 传热学研究内容 传热学是研究温差引起的热量传递规律的学科,研究热量传递的机理、规律、计算和测试方法。 热传导 a 必须有温差 b 直接接触 c 依靠分子、原子及自由电子等微观粒子热运动而传递热量,不发生宏观的相对位移 d 没有能量形式的转化 热对流 a 必须有流体的宏观运动,必须有温差; b 对流换热既有对流,也有导热; c 流体与壁面必须直接接触; d 没有热量形式之间的转化。 热辐射: a 不需要物体直接接触,且在真空中辐射能的传递最有效。 b 在辐射换热过程中,不仅有能量的转换,而且伴随有能量形式的转化。 c .只要温度大于零就有.........能量..辐射。... d .物体的...辐射能力与其温度性质..........有关。... 传热热阻与欧姆定律 在一个串联的热量传递的过程中,如果通过各个环节的热流量相同,则各串联环节的的总热阻等于各串联环节热阻之和(I 总=I1+I2,则R 总=R1+R2) 第二章 温度场:描述了各个时刻....物体内所有各点....的温度分布。 稳态温度场::稳态工作条件下的温度场,此时物体中个点的温度不随时间而变 非稳态温度场:工作条件变动的温度场,温度分布随时间而变。 等温面:温度场中同一瞬间相同各点连成的面 等温线:在任何一个二维的截面上等温面表现为 肋效率:肋片的实际散热量ф与假设整个肋表面...处于肋基温度....时的理想散热量ф0 之比 接触热阻 Rc :壁与壁之间真正完全接触,增加了附加的传递阻力 三类边界条件 第一类:规定了边界上的温度值 第二类:规定了边界上的热流密度值 第三类:规定了边界上物体与周围流体间的表面..传热系数....h 及周围..流体的温度..... 。 导热微分方程所依据的基本定理 傅里叶定律和能量守恒定律 傅里叶定律及导热微分方程的适用范围 适用于:热流密度不是很高,过程作用时间足够长,过程发生的空间尺度范围足够大 不适用的:a 当导热物体温度接近0k 时b 当过程作用时间极短时c 当过成发生的空间尺度极小,与微观粒子的平均自由程相接近时

传热学知识点word版

传热学主要知识点 1.热量传递的三种基本方式。 热量传递的三种基本方式:导热(热传导)、对流(热对流)和热辐射。

2.导热的特点。 a 必须有温差; b 物体直接接触; c 依靠分子、原子及自由电子等微观粒子热运动而传递热量; d 在引力场下单纯的导热一般只发生在密实的固体中。

3.对流(热对流)(Convection)的概念。 流体中(气体或液体)温度不同的各部分之间,由于发生相对的宏观运动而把热量由一处传递到另一处的现象。 4对流换热的特点。 当流体流过一个物体表面时的热量传递过程,它与单纯的对流不同,具有如下特点: a 导热与热对流同时存在的复杂热传递过程 b 必须有直接接触(流体与壁面)和宏观运动;也必须有温差 c 壁面处会形成速度梯度很大的边界层 5.牛顿冷却公式的基本表达式及其中各物理量的定义。 [] W )(∞-=t t hA Φw [] 2m W )( f w t t h A Φq -==

6. 热辐射的特点。 a 任何物体,只要温度高于0 K,就会不停地向周围空间发出热辐射; b 可以在真空中传播; c 伴随能量形式的转变; d 具有强烈的方向性; e 辐射能与温度和波长均有关; f 发射辐射取决于温度的4次方。

7.导热系数, 表面传热系数和传热系数之间的区别。导热系数:表征材料导热能力的大小,是一种物性参数,与材料种类和温度关。 表面传热系数:当流体与壁面温度相差1度时、每单位壁面面积上、单位时间内所传递的热量。影响h因素:流速、流体物性、壁面形状大小等。传热系数:是表征传热过程强烈程度的标尺,不是物性参数,与过程有关。 常温下部分物质导热系数:银:427;纯铜:398;纯铝:236;普通钢:30-50;水:0.599;空气:0.0259;保温材料:<0.14;水垢:1-3;烟垢:0.1-0.3。

传热学知识点总结

第一章 §1-1 “三个W” §1-2 热量传递的三种基本方式 §1-3 传热过程和传热系数 要求:通过本章的学习,读者应对热量传递的三种基本方式、传热过程及热阻的概念有所了解,并能进行简单的计算,能对工程实际中简单的传热问题进行分析(有哪些热量传递方式和环节)。作为绪论,本章对全书的主要内容作了初步概括但没有深化,具体更深入的讨论在随后的章节中体现。 本章重点: 1.传热学研究的基本问题 物体内部温度分布的计算方法 热量的传递速率 增强或削弱热传递速率的方法 2.热量传递的三种基本方式 (1).导热:依靠微观粒子的热运动而产生的热量传递。传热学重点研究的是在宏观温差作用下所发生的热量传递。 傅立叶导热公式: (2).对流换热:当流体流过物体表面时所发生的热量传递过程。 牛顿冷却公式: (3).辐射换热:任何一个处于绝对零度以上的物体都具有发射热辐射和吸收热辐射的能力,辐射换热就是这两个过程共同作用的结果。由于电磁波只能直线传播,所以只有两个物体相互看得见的部分才能发生辐射换热。 黑体热辐射公式: 实际物体热辐射: 3.传热过程及传热系数:热量从固壁一侧的流体通过固壁传向另一侧流体的过程。 最简单的传热过程由三个环节串联组成。 4.传热学研究的基础 傅立叶定律 能量守恒定律+ 牛顿冷却公式+ 质量动量守恒定律 四次方定律 本章难点 1.对三种传热形式关系的理解 各种方式热量传递的机理不同,但却可以(串联或并联)同时存在于一个传热现象中。2.热阻概念的理解 严格讲热阻只适用于一维热量传递过程,且在传递过程中热量不能有任何形式的损耗。 思考题: 1.冬天经太阳晒过的棉被盖起来很暖和,经过拍打以后,效果更加明显。为什么?

高等传热学导热理论

高等传热学导热理论 参考书:高等传热学 贾力 方肇洪 钱兴华 ?S .K a k a c ,Y .Y e n e r , H e a t C o n d u c t i o n 1985, T K 124/Y K 3 ?G .E .M y e r s , A n a l y t i c a l M e t h o d s i n C o n d u c t i o n H e a t T r a n s f e r ,1971,T K 124/Y M 1 ?M .N .O z i s i k ,H e a t C o n d u c t i o n ,1980,(中译本)O 551.3/A 2 ?俞昌铭,热传导及数值分析,1981,清华大学出版社, O 551.3/Y 2 ?J .E .P a r r o t t ,A .D .S t u c k e s ,T h e r m a l C o n d u c t i o n o f S o l i d s ,1975, O 551.3/Y P 1 ?U .G r i g u l l ,H .S a n d n e r , ,H e a t C o n d u c t i o n ,1984,Y K 124/Y G 3 ?E c k e r t E .R .G ,A n a l y s i s o f H e a t a n d M a s s T r a n s f e r , O 551.3/Y E 1(英), O 551.3/A 3,(中) ?V .C .A r p a c i ,C o n d u c t i o n H e a t T r a n s f e r ,1966, ?钱壬章等,传热分析与计算,高教出版社 ?林瑞泰,热传导理论与方法,天津大学出版社 ?屠传经等,热传导,浙江大学出版社 第一讲 导热规律及其数学描述 导热可发生在物体的各种状态:气态、固态和液态。描述传热规律最基本的规律是傅里叶导热定律: 1. F o u r i e r L a w : dx dt q λ-= 傅里叶定律适用于稳态、非稳态,变导热系数,各向同性,多维空间,连续光滑介质,气、液、固三相的导热问题,但其表现形式上为已知热流方向的一维问题。用起来不方便。在已知温度场的情况,我们把傅里叶定律推广成向量形式: n n t t q ??-=?-=λλ 其中?叫n a b l a 算子,作用于温度叫温度梯度。n 为温度梯度单位方向向量。在 不同的坐标系中,?有不同的表现形式,在直角坐标系中: k z j y i x ??+??+??=? 傅里叶定律向量形式说明,热流密度方向与温度梯度方向相反。它可适用于稳态、非稳态,变导热系数,各向同性,多维空间,连续光滑介质,气、液、固三相的导热问题。 2.各向异性材料,导热系数张量; 许多物体的导热能力与方向有关,如木材。正确描述物体中一点的导热系数需采用二阶张量形式:

高等传热学

高等传热学问题及答案 1. 简述三种基本传热方式的传热机理并用公式表达传热定律;传热问题的边界条件有哪两类? 2. 有限元法求解传热问题的基本思想是什么?基本求解步骤有哪些?同有限差分方法相比其优点是什么? 3. 什么是形函数?形函数的两个最基本特征是什么? 4. 加权余量法是建立有限元代数方程的基本方法,请描述四种常见形式并用公式表达。 5. 特征伽辽金法(CG )在处理对流换热问题时遇到什么困难?特征分离法(CBS )处理对流换热问题的基本思想是什么? 第一题: (1)热传导 传热传导模式是因为从一个分子到另一个分子的能量交换,没有分子的实际运动,如果自由电子存在,也可能因为自由电子的运动。因此,这种形式的热输送在很大程度上取决于介质的性质,如果存在温度差,热传导发生在固体,液体和气体。 书上补充: 当两个物体有温差,或者物体内部有温度差时,在物体各部分之间不发生相对位移的情况下,物体微粒(分子,原子或自由电子)的热运动传递了热量。 (2)热对流 ()a w T T h q -=(牛顿冷却定律) 存在于液体和气体中的分子具有运动的自由,它们随身携带的能量(热量),从热区域移动到冷区域。由于在液体或气体的宏观运动,热量传递从一个地区到另一个地方 ,加上流体内的热传导能量传递,称为对流换热。对流可能是自然对流、强制对流,或混合对流。 百度补充: 对流仅发生于流体中,它是指由于流体的宏观运动使流体各部分之间发生相对位移而导致的热量传递过程。由于流体间各部分是相互接触的,除了流体的整体运动所带来的热对流之外,还伴生有由于流体的微观粒子运动造成的热传导。在工程上,常见的是流体流经固体表面时的热量传递过程,称之为对流传热。 (3)辐射 4w T q εσ=(斯蒂藩-玻耳兹曼定律)

传热学知识点

常用得相似准则数:①努谢尔特:Nu=aL/λ分子就是实际壁面处得温度变化率,分母就是原为l得流体层导热机理引起得温度变化率反应实际传热量与导热分子扩散热量传递得比较。Nu大小表明对流换热强度。②雷诺准则Re=WL/V Re大小反映了流体惯性力与粘性力相对大小。Re就是判断流态得。③格拉小夫准则Gr=gβ△tL3/V2 Gr得大小表明浮升力与粘性力得得相对大小,Gr表明自然流动状态兑换热得影响。④普朗特准则: Pr=V/a Pr表明动量扩散率与热量扩散率得相对大小。 辐射换热时得角系数:①相对性②完整性③可加性 热交换器通常分为三类:间壁式、混合式与回热式,按传热表面得结构形式分为管式与板式间壁式热交换器按两种流体相互间得流动方向热交换器分为分为顺流,逆流,交叉流。 导温系数α也称为热扩散系数或热扩散率,它象征着物体在被加热或冷却就是其内部各点温度趋于均匀一致得能力。Α大得物体被加热时,各处温度能较快得趋于一致。传热学考研总结 1傅里叶定律:单位时间内通过单位截面积所传递得热量,正比例于当地垂直于截面方向上得温度变化率 2集总参数法:忽略物体内部导热热阻得简化分析方法 3临界热通量:又称为临界热流密度,就是大容器饱与沸腾中得热流密度得峰值 4效能:表示换热器得实际换热效果与最大可能得换热效果之比 5对流换热就是怎样得过程,热量如何传递得? 对流换热:指流体各部分之间发生宏观运动产生得热量传递与流体内部分子导热引起得热量传递联合作用得结果。对流仅能发生在流体中,而且必然伴随有导热现象。 对流两大类:自然对流(不依靠泵或风机等外力作用,由于流体内部密度差引起得流动)与强制对流(依靠泵或风机等外力作用引起得流体宏观流动)。 影响换热系数因素:流体得物性,换热表面得形状与布置,流速,流动起因(自然、强制),流动状态(层流、湍流),有无相变。 6何谓凝结换热与沸腾换热,影响凝结换热与沸腾换热得因素? 蒸汽与低于饱与温度得壁面接触时,将汽化潜热传递给壁面得过程称为凝结过程。 如果凝结液体能很好得润湿壁面,它就在壁面上铺展成膜,这种凝结形式称为膜状凝结。 如果凝结液体不能很好地润湿壁面,在壁面上形成一个个小液珠,这种凝结方式称为珠状凝结。 液体在固液界面上形成气泡引起热量由固体传递给液体得过程称为沸腾换热。 按沸腾液体就是否做整体流动可分为大容器沸腾(池沸腾)与管内沸腾;按液体主体温度就是否达到饱与温度可分为饱与沸腾与过冷沸腾。 不凝结气体对凝结换热过程得影响:在靠近液膜表面得蒸气侧,随着蒸气得凝结,蒸气分压力减小而不凝结气体得分压力增大;蒸气在抵达液膜表面进行凝结前,必须以扩散方式穿过聚集在界面附近得不凝结气体层,因此,不凝结气体层得存在增加了传递过程得阻力。 影响凝结换热得因素:不凝结气体、蒸汽流速、管内冷凝、蒸汽过热度、液膜过冷度及温度分布非线性。 影响沸腾换热得因素:不凝结气体(使沸腾换热强化)、过冷度、重力加速度、液位高度、管内沸腾。 7强化凝结换热与沸腾换热得原则? 强化凝结换热得原则:减薄或消除液膜,及时排除冷凝液体。 强化沸腾换热得原则:增加汽化核心,提高壁面过热度。 8试以导热系数为定值,原来处于室温得无限大平壁因其一表面温度突然升高为某一定值而发生非稳态导热过程为例,说明过程中平壁内部温度变化得情况,着重指出几个典型阶段。 首先就是平壁中紧挨高温表面部分得温度很快上升,而其余部分则仍保持原来得温度,随着时间得推移,温度上升所波及得范围不断扩大,经历了一段时间后,平壁得其她部分得温度也缓慢上升。 主要分为两个阶段:非正规状况阶段与正规状况阶段 9灰体有什么主要特征?灰体得吸收率与哪些因素有关?

相关主题
文本预览
相关文档 最新文档