当前位置:文档之家› 酶催化机制和活性调节

酶催化机制和活性调节

酶催化作用综述

工业催化原理论文 论文题目:浅谈酶催化作用 课程名称:工业催化原理 学院:化学与化工学院 专业:化学工程与工艺 年级:化工122 学号:1208110201 学生姓名:邓元顺

浅论酶催化作用 摘要 酶作为催化剂使用已经有几个世纪的历史,但那时人们对酶的本性和功能并不了解。直到20世纪初,才证明所有的发酵过程均是由所用的酶促成的,故而酶也常被叫做酵素。现已证明,酶是由长链氨基酸构成的蛋白质。许多酶的初级结构已得到确定,而且影响酶催化功能的三维空间结构已被证明。尽管获得了不少信息,关于酶催化作用机理的一些基本细节仍不甚明朗,如今酶催化技术作为工业生物技术的核心,被誉为工业可持续发展最有希望的技术。 Abstracts Enzymes have been used for centuries, but it is not known to the nature and function of the enzyme. It was not until early twentieth Century that all of the fermentation processes were promoted by the enzymes that were used, and the enzyme was often called an enzyme. It has been proved that the enzyme is a protein composed of long chain amino acids. The primary structure of many enzymes has been determined, and the three-dimensional structure of the enzyme catalytic function has been demonstrated. In spite of a lot of information, some basic details about the mechanism of enzyme catalysis are still not very clear, and now the catalytic technology as the core of industrial biotechnology, known as the most promising technology for the sustainable development of industry. 关键词:酶,酶催化作用,

酶的作用与特性导学案

第五章第一节酶的作用与特性导学案 编制:胡玉苹审核:张凤霞 2012.8.30 【考纲解析】 知识目标:(1)细胞代谢的概念(2)酶的作用和本质(3)探究影响酶活性的因素学习重点:酶的作用和特性 学习难点:1.酶降低活化能的原理。 2.实验中控制变量的科学方法。 【基础整理】 一、酶在细胞代谢中的作用 1.概念 ①细胞代谢:。 ②活化能:。 ③原理:同无机催化剂相比,酶__________的作用更显著,因而催化效率__________。 ④意义:使细胞代谢能在________条件下______进行。 2、酶在细胞代谢中的作用: 2H2O2 △2H2O+O22H2O22H2O+O2实验:比较过氧化氢在不同条件下的分解 实验步骤:【问题探讨】 1.与1号试管相比,2号试管出现什么不同的现象?这一现象说明什么? 2.3号试管和4号试管未经加热,也有大量气泡产生,这说明什么? 催化剂(酶)的作用原理是: 3.酶的催化效率和无机催化剂相比谁更高?为什么? 4.为什么说酶对于细胞内化学反应的顺利进行至关重要? 5.本实验最后得出了什么结论? 【实验总结】 1.变量、自变量、因变量、无关变量的概念: 本实验的自变量: 本实验的因变量: 本实验的无关变量: 2.对照实验、对照组、实验组的概念: 对照实验: 对照组:本实验的对照组:实验组:本实验的实验组:

【小结1】控制变量: 【小结2】酶在细胞代谢中的作用: 二、酶的本质 探究一:酶的高效性的实验验证 (1)实验原理 ①________________________________________________________________________。 ②H 2O 2在常温、高温、过氧化氢酶、Fe 3+ 等不同条件下气泡产生的________或卫生香燃烧的________不同。 (2)实验过程 (3)实验结论:酶具有________,与无机催化剂相比,酶的催化效率________。 探究二:酶的专一性的验证实验 (1)实验原理 ①?????? ??? ?淀粉非还原性糖――→酶麦芽糖蔗糖非还原性糖――→酶葡萄糖+果糖还原糖+斐林试剂― →________________ ②用________分别催化淀粉和蔗糖后,再用斐林试剂鉴定,根据是否有砖红色沉淀来判定淀粉酶是否对二者都有催化作用,从而验证酶的________。 (2)实验程序 (3)实验结论: 探究三:影响酶活性的条件 1.温度对酶活性的影响 (1)实验原理 ①淀粉――→淀粉酶 麦芽糖 ↓碘液 ↓碘液 ②温度影响酶的活性,从而影响淀粉的水解程度。滴加碘液,根据________________________来判断酶的活性。 (2)实验设计程序 淀粉 淀粉酶 ↓ ↓ 各自在所控制的温度下处理一段时间 ↓ 淀粉与 下的淀粉酶混合 ↓ 在各自所控制的温度下保温一段时间 ↓ 滴加 ,观察颜色变化 2.pH 对酶活性的影响 (1)实验原理 ①2H 2O 2――→过氧化氢酶________ ②pH 可影响酶活性,从而影响O 2的产生情况,可根据__________

酶的作用机制和酶的调节

酶的作用机制和酶的调节 重点综述 1. 酶作用机制:有专一性机理(锁与钥匙学说和诱导契和假说)和高效性的机理,以后者出现偏多,而且考查的题型上也是多样化(填写、选择、判断、问答等)。 (1)酶作用机理的两种学说,可以只作一般性的了解。 (2)酶作用高效性的机理要重点掌握。体现在以下5个方面:①靠近与定向;②变形与扭曲;③共价催化;④酸碱催化;⑤酶活性部位的低介电区。 在这一部分中,还要了解某些酶的作用原理: ①溶菌酶:活性部位有Clu3,和ASP52典型的酸碱催化。 ②胰凝乳蛋白酶:活性部位有ASPl02、His57和Serl95组成的电荷拉力网。 ③羧肽酶A:含金属离子zn2+的酶。 2. 酶的调节:酶调节的类型(共价调节,化学修饰,酶原激活,酶含量在分子水平的调节)。 几个概念也很重要:别构酶,调节酶等。 (一)名词解释 1.变构酶(allosteric enzyme);2.同工酶(isozyme);3.活性中心(active center);4. 酶原的激活(activation of zymogen); 5. 别构效应(allosteric effect); 6. 正协同效应(positive cooperative effect) (二)选择题(在备选答案中选出1个或多个正确答案) 1. 酶原激活的实质是 A. 激活剂与酶结合使酶激活 B. 酶蛋白的变构效应 C. 酶原分子一级结构发生改变从而形成或暴露出酶的活性中心 D. 酶原分子的空间构象发生了变化而一级结构不变 E. 以上都不对 2. 同工酶的特点是 A. 催化相同的反应,但分子结构和理化性质不同的一类酶 B. 催化相同反应,分子组成相同,但辅酶不同的一类酶 C. 催化同一底物起不同反应的酶的总称 D. 多酶体系中酶组分的统称 E. 催化作用,分子组成及理化性质相同,但组织分布不同的酶 3. 乳酸脱氢酶(LDH)是一个由两种不同的亚基组成的四聚体。假定这些亚基随机结合成四聚体,这种酶有多少种同工酶? A. 两种 B. 三种 C. 四种 D. 五种 E. 六种 4.下列关于酶活性中心的叙述哪些是正确的 A.是由一条多肽链中若干相邻的氨基酸残基以线状排列而成 B.对于整个酶分子来说,只是酶的一小部分 C.仅通过共价键与作用物结合

酶促反应的特点与作用机制

20 ~ 20 学年度第学期 教师课时授课教案 学科系:医学院授课教师: 专业:科目:生物化学 教研室主任签字:学科系系办主任签字:年月日年月日

第二节酶促反应的特点与作用机制 一、酶促反应的特点 酶是一类催化剂,具有一般催化剂的特征:在化学反应前后没有质和量的改变;只能催化热力学上允许进行的反应;只加速可逆反应的进程,不改变平衡点;对可逆反应的正反应和逆反应都具有催化作用。但酶的化学本质是蛋白质,又具有一般催化剂所没有的特征。 (一)高度的催化效率 酶的催化效率通常比非催化反应高108~1020倍,比一般催化剂高107-1013倍。例如蔗糖酶催化蔗糖水解的速率是H+催化作用的2.5×1012倍,脲酶催化尿素的水解速率是H+催化作用的7×1012倍,且不需要较高的反应温度。研究表明,酶能更有效地降低反应的活化能,使参与反应的活化分子数量显著增加,从而大大提高酶的催化效率。 (二)高度的专一性 一种酶只能催化一种或一类化合物,或一种化学键,发生一定的化学反应,生成一定的产物,这种特性称为酶的专一性或特异性。根据酶对底物选择的严格程度不同,酶的专一性可分为三种类型。 1.绝对专一性酶只作用于某一特定的底物,进行一种专一的反应,生成一种特定的产物,称为绝对专一性。例如,尿酶只催化尿素水解成NH3和CO2,而对尿素的衍生物如甲基尿素没有催化作用。 2.相对专一性有些酶能作用于一类化合物或一种化学键,这种不太严格的选择性称为相对专一性。如磷酸酶对一般的磷酸键都能水解,不论是甘油磷酸酯,还是葡萄糖磷酸酯;蔗糖酶不仅水解蔗糖,

也能水解棉子糖,使之生成蜜二糖和果糖。 3.立体异构专一性有些酶对底物的立体构型有要求,仅作用于底物的一种立体异构体,这种特性称为酶的立体异构专一性。如L-氨基酸氧化酶只作用于L-氨基酸,对D-氨基酸则没有催化作用;淀粉酶只能水解淀粉中的α-1,4-糖苷键,而不能水解纤维素中的β-1,4-糖苷键。 (三)酶具有不稳定性 酶所催化的反应都是在比较温和的条件下进行的,如常温、常压、接近中性的环境等。由于酶的化学本质是蛋白质,任何能引起蛋白质变性的理化因素,如强酸、强碱、重金属盐、高温、紫外线、X射线等均能影响酶的催化活性,甚至使酶完全失活。 (四)酶促反应具有可调节性 酶促反应受多种因素的调控,以适应内外环境变化和生命活动的需要。例如在细胞内酶的分布具有区域化;酶原的激活使酶在合适的环境被激活和发挥作用;代谢物对关键酶、变构酶的抑制与激活和酶的共价修饰等调节;酶的含量受到酶蛋白合成的诱导、阻遏与酶降解速率的调节。 二、酶的作用机制 (一)酶能更有效地降低反应活化能 在任何一种热力学允许的反应体系中,底物分子所含能量各不相同,只有那些能量达到或超过一定水平的过渡态分子(即活化分子)オ有可能发生化学反应,底物分子达到活化分子所需要的最小能量称为

酶的定义及特点

酶的定义及特点 酶的概念: 酶是由活细胞合成的,对其特异底物起高效催化作用的生物催化剂(biocatalyst)。已发现的有两类:主要的一类是蛋白质酶(enzyme),生物体内已发现4000多种,数百种酶得到结晶。美国科学家Cech于1981年在研究原生动物四膜虫的RNA前体加工成熟时发现核酶“ribozyme”,为数不多,主要做用于核酸(1989年的诺贝尔化学奖)。 二、酶的作用特点 酶所催化的反应称为酶促反应。在酶促反应中被催化的物质称为底物,反应的生成物称为产物。酶所具有的催化能力称为酶活性。 酶作为生物催化剂,具有一般催化剂的共性,如在反应前后酶的质和量不变;只催化热力学允许的化学反应,即自由能由高向低转变的化学反应;不改变反应的平衡点。但是,酶是生物大分子,又具有与一般催化剂不同的特点。 1.极高的催化效率 酶的催化效率通常比非催化反应高108~1020倍,比一般催化剂高107~1013倍。例如,脲酶催化尿素的水解速度是H+催化作用的7×1012倍;碳酸酐酶每一酶分子每秒催化6×105 CO2与水结合成H2CO3,比非酶促反应快107倍。 2.高度的特异性

酶对催化的底物有高度的选择性,即一种酶只作用一种或一类化合物,催化一定的化学反应,并生成一定的产物,这种特性称为酶的特异性或专一性。有结构专一性和立体异构专一性两种类型。 结构专一性又分绝对专一性和相对专一性。前者只催化一种底物,进行一种化学反应。如脲酶仅催化尿素水解。后者可作用一类化合物或一种化学键。如酯酶可水解各种有机酸和醇形成的酯。在动物消化道中几种蛋白酶专一性不同,胰蛋白酶只水解Arg或Lys羧基形成的肽键;胰凝乳蛋白酶水解芳香氨基酸及其它疏水氨基酸羧基形成的肽键。 立体异构专一性指酶对底物立体构型的要求。例如乳酸脱氢酶催化L-乳酸脱氢为丙酮酸,对D-乳酸无作用;L-氨基酸氧化酶只作用L-氨基酸,对D-氨基酸无作用。 3.酶活性的可调节性 酶促反应受多种因素的调控,通过改变酶的合成和降解速度可调节酶的含量;酶在胞液和亚细胞的隔离分布构成酶的区域化调节;代谢物浓度或产物浓度的变化可以抑制或激活酶的活性;激素和神经系统的信息,可通过对关键酶的变构调节和共价修饰来影响整个酶促反应速度。所以酶是催化剂又是代谢调节元件,酶水平的调节是代谢调控的基本方式。 4.酶的不稳定性

生物酶催化资料全

酶的反应机理如下: 蛋白质的空间结构去看,而不能孤立地看形成蛋白质后的氨基酸残基。因为酶一般都是具有三级,或四级空间结构的,其中有功能的是部分氨基酸残基形成的结构域,包括底物结合部位和催化部位。首先底物结合部位和底物结合,再由催化部位作用,形成过渡态中间体,进而使底物发生化学变化。 生物学中的酶是具有高活性的蛋白分子。它的作用机理 有很多种,如趋近作用,亲核作用,亲电子作用等。 它具有高效性,专一性,条件性(条件严格,因为蛋白质容易变性) 而化学里讲的催化剂只具有一般的催化作用, 其作用机理是降低化学反映的活化能。 ----------------------------------------------------------- 生化中酶的作用机理: 酶的作用机理 酶催化反应机理的研究是当代生物化学的一个重要课题。它探讨酶作用高效率的原因以及酶反应的重要中间步骤。 酶原的激活(proenzyme activation)着重研究酶在激活——由无活性的酶原转变成有活性的酶时构象发生的变化。 一、与酶的高效率有关的因素 据现在所知,重要的因素有以下几个方面: 1.底物与酶的“靠近”(proximity)及“定向”(orientation) 由于化学反应速度与反应物浓度成正比,若在反应系统的某一局部区域,底物浓度增高,则反应速度也随之增高。提高酶反应速度的最主要方法是使底物分子进入酶的活性中心区域,亦即大大提高活性中心区域的底物有效浓度。曾测到过某底物在溶液中的浓度为0.001mol/L,而在其酶活性中心的浓度竟达100mol/L,比溶液中的浓度高十万倍!因此,可以想象在酶的活性中心区域反应速度必定是极高的。 “靠近“效应对提高反应速度的作用可以用一个著名的有机化学实验来说明,如表4-12,双羧酸的单苯基酯,在分子催化的过程中,自由的羧基作为催化剂起作用,而连有R的酯键则作为底物,受—COO-的催化,破裂成环而形成酸酐,催化基团—COO-愈靠近底物酯键则反应速度愈快,在最靠近的情况下速度可增加53000倍。 但是仅仅“靠近”还不够,还需要使反应的基团在反应中彼此相互严格地“定向”,见图4-19。只有既“靠近”又“定向”,反应物分子才被作用,迅速形成过渡态。

影响酶催化作用的因素

影响酶催化作用的因素 1.酶催化速率的表示方法:单位时间内底物的减少量或产物的生成量。 2.影响酶作用的因素及其规律。影响酶促反应的因素常有酶的浓度、pH、温度、、底物浓度、激活剂、抑制剂等,其变化规律有以下特点: (1)温度对酶促反应的影响 ①在一定温度范围内酶促反应速率随温度的升高而加快;但当温 度升高到一定限度时,酶促反应速率不仅不再加快反而随着温度的升 高而下降。②在一定条件下,酶活性最大时的温度称为该酶的最适温 度。见图1。 ③低温影响酶的活性,但不会使酶的空间结构破坏,温度升高后,酶 仍能恢复活性。但高温会导致酶变性,使其永久失去活性。 (2)pH对酶促反应的影响 ①每一种酶只能在一定限度的pH范围内才有活性,超过这个范围 酶就会永久失去活性。 ②在一定条件下,每一种酶在某一pH时活性最大,此pH称为该酶的 最适pH。如图2表示胰蛋白酶的活性与pH的关系。 (3)底物(反应物)浓度对酶促反应的影响 ①在底物浓度较低时,反应速率随底物浓度增加而加快,反应速 率与底物浓度近乎成正比。 ②在底物浓度较高时,底物浓度增加,反应速率也随之加快,但 不显著。 ③当底物浓度很大,且达到一定限度时,反应速率就达到一个最 大值,此时即使再增加底物浓度,反应速率也几乎不再改变,原因是 酶饱和了。见图3。 (4)酶浓度对酶促反应的影响。在底物足够、其他条件固定的条件 下,反应系统中不含有抑制酶活性的物质及其他不利于酶发挥作用的 因素时,酶促反应速率与酶浓度成正比。见图4。 (5)酶激活剂和酶抑制剂对酶活性的影响 ①酶激活剂:能增强酶的活性或使非活性的酶变为活性酶,如唾 液淀粉酶需要被氯离子激活后,其活性才能增强。 ②酶抑制剂:能使酶的活性下降或丧失,如氰化物可以抑制细胞 色素氧化酶的活性。 影响酶作用的因素: 曲线分析:

酶作为生物催化剂的特点

酶作为生物催化剂的特点:1,用量少而催化效率高;2,专一性高;3,反应条件温和 4,可调节性 影响酶催化作用的因素:1,底物浓度对酶促反应速度的影响在低底物浓度时, 反应速度与底物浓度成正比,表现为一级反应特征。当底物浓度达到一定值,几乎所有的酶都与底物结合后,反应速度达到最大值(Vmax),此时再增加底物浓度,反应速度不再增加,表现为零级反应。2. pH 的影响在一定的pH 下, 酶具有最大的催化活性,通常称此pH 为最适pH。pH影响酶活力的原因可能有以下几个方面:(1)过酸或过碱可以使酶的空间结构破坏,引起酶构象的改变,酶活性丧失。(2)当pH改变不很剧烈时,酶虽未变性,但活力受到影响。(3)pH影响维持酶分子空间结构的有关基团解离,从而影响了酶活性部位的构象,进而影响酶的活性3. 温度的影响一方面是温度升高,酶促反应速度加快。另一方面,温度升高,酶的高级结构将发生变化或变性,导致酶活性降低甚至丧失。因此大多数酶都有一个最适温度。在最适温度条件下,反应速度最大。4.酶浓度的影响在一个反应体系中,当[S]>>[E]反应速率随酶浓度的增加而增加(v=k[E]),这是酶活测定的基础之一。5 抑制剂对酶活性的影响使酶的活性降低或丧失的现象,称为酶的抑制作用。能够引起酶的抑制作用的化合物则称为抑制剂酶的抑制剂一般具备两个方面的特点:a.在化学结构上与被抑制的底物分子或底物的过渡状态相似。能够与酶的活性中心以非共价或共价的方式形成比较稳定的复合体或结合物。6.激活剂对酶反应的影响凡能提高酶活力的物质都称为激活剂,有的酶反应的系统需要一定的激活剂。 酶的分类与命名(1) 氧化还原酶AH2 + B = A +BH2主要包括脱氢酶(dehydrogenase)和氧化酶 例,醇+NAD+=醛或酮+NADH +H+→氢供体是醇,氢受体是NAD+ 系统命名→醇:NAD+氧化还原酶;推荐名→采用某供体脱氢酶,如醇脱氢酶 (2) 转移酶AB +C =A +BC系统命名:“供体:受体某基团转移酶”。推荐名:“受体(或供体)某基团转移酶。例,L-丙氨酸+2-酮戊二酸=丙酮酸+L-谷氨酸丙氨酸氨基转移酶→L-丙氨酸:2-酮戊二酸氨基转移酶表明该酶催化氨基从L-丙氨酸转移到2-酮戊二酸。(3) 水解酶系统命名:先写底物名称,再写发生水解作用的化学键位置,后面加上“水解酶”。推荐名:在底物名称的后面加上一个酶字。 (4) 裂合酶系统命名:“底物-裂解的基团-裂合酶”。 如L-谷氨酸1-羧基-裂合酶,表明该酶催化L-谷氨酸在1-羧基位置发生裂解反应。 推荐名:在裂解底物名称后面加上“脱羧酶”(decarboxylase)、“醛缩酶”(aldolase)、“脱水酶”(dehydratase)等,在缩合反应方向更为重要时,则用“合酶”( synthase)。 例子,如谷氨酸脱羧酶(L-谷氨酸=γ-氨基丁酸+CO2), 苏氨酸醛缩酶(L-苏氨酸=甘氨酸+乙醛), 柠檬酸脱水酶(柠檬酸=顺乌头酸+水), 乙酰乳酸合酶(2-乙酰乳酸+CO2 =2-丙酮酸)。 (5) 异构酶Isomerase 异构酶按照异构化的类型不同,分为6 个亚类。命名时分别在底物名称的后面加上异构酶(isomerase),、消旋酶(racemase)、变位酶(mutase)、表异构酶(epimerase)、顺反异构酶(cis-trans-isomerase)等。 (6) 合成酶Ligase or Synthetase 系统命名:在两个底物的名称后面加上“连接酶”。如谷氨酸:氨连接酶,其催化反应式为:L-谷氨酸+ 氨+ ATP ===== L-谷氨酰胺+ ADP +Pi。 推荐名:在合成产物名称之后加上“合成酶”。 如,天门冬酰胺合成酶,其催化反应式为: L-天门冬氨酸+ 氨+ATP == L-天门冬酰胺+ AMP +PPi。

酶的作用机理

酶 一、酶的作用机理: 1、降低反应活化能:在任何化学反应中,反应物分子必须超过一定的能阈,成为活化的状态,才能发生变化,形成产物。这种提高低能分子达到活化状态的能量,称为活化能。催化剂的作用,主要是降低反应所需的活化能,以致相同的能量能使更多的分子活化,从而加速反应的进行。酶能显著地降低活化能,故能表现为高度的催化效率。例如H2O2酶将H2O2转变为H2O 和O2,酶能降低反应活化能,使反应速度增高千百万倍以上。 2、复合物学说:酶催化某一反应时,首先在酶的活性中心与底物结合生成酶-底物复合物,此复合物再进行分解而释放出酶,同时生成一种或数种产物,此过程可用下式表示:E+S →ES→E+P,ES的形成改变了原来反应的途径,可使底物的活化能大大降低,从而使反应加速。 3、高效率的机理: (1)趋近效应和定向效应:酶可以将它的底物结合在它的活性部位,由于化学反应速度与反应物浓度成正比,若在反应系统的某一局部区域,底物浓度增高,则反应速度也随之提高,此外,酶与底物间的靠近具有一定的取向,这样反应物分子才被作用,大大增加了ES复合物进入活化状态的机率。 (2)张力作用:底物的结合可诱导酶分子构象发生变化,比底物大得多的酶分子的三、四级结构的变化,也可对底物产生张力作用,使底物扭曲,促进ES进入活性状态。 (3)酸碱催化作用:酶的活性中心具有某些氨基酸残基的R基团,这些基团往往是良好的质子供体或受体,在水溶液中这些广义的酸性基团或广义的碱性基团对许多化学反应是有力的催化剂。 (4)共价催化作用:某些酶能与底物形成极不稳定的、共价结合的ES复合物,这些复合物比无酶存在时更容易进行化学反应。

酶促反应的特点与作用机制

酶促反应的特点与作用机制 以下是为大家整理的酶促反应的特点与作用机制的相关范文,本文关键词为酶促,反应,特点,作用,机制,酶促,反应,特点,作用,机制,,您可以从右上方搜索框检索更多相关文章,如果您觉得有用,请继续关注我们并推荐给您的好友,您可以在医药卫生中查看更多范文。 酶促反应的特点和作用机制 宝鸡职业技术学院 20~20学年度第学期 教师课时授课教案

学科系:医学院授课教师: 专业:科目:生物化学 教研室主任签字:学科系系办主任签字:年月日年月日 酶促反应的特点和作用机制 宝鸡职业技术学院 第二节酶促反应的特点与作用机制 一、酶促反应的特点 酶是一类催化剂,具有一般催化剂的特征:在化学反应前后没有

质和量的改变;只能催化热力学上允许进行的反应;只加速可逆反应的进程,不改变平衡点;对可逆反应的正反应和逆反应都具有催化作用。但酶的化学本质是蛋白质,又具有一般催化剂所没有的特征。 (一)高度的催化效率 酶的催化效率通常比非催化反应高108~1020倍,比一般催化剂高107-1013倍。例如蔗糖酶催化蔗糖水解的速率是h+催化作用的2.51012倍,脲酶催化尿素的水解速率是h+催化作用的71012倍,且不需要较高的反应温度。研究表明,酶能更有效地降低反应的活化能,使参与反应的活化分子数量显著增加,从而大大提高酶的催化效率。 (二)高度的专一性 一种酶只能催化一种或一类化合物,或一种化学键,发生一定的化学反应,生成一定的产物,这种特性称为酶的专一性或特异性。根据酶对底物选择的严格程度不同,酶的专一性可分为三种类型。 1.绝对专一性酶只作用于某一特定的底物,进行一种专一的反应,生成一种特定的产物,称为绝对专一性。例如,尿酶只催化尿素水解成nh3和co2,而对尿素的衍生物如甲基尿素没有催化作用。

有关酶催化的原理简介

有关酶催化的原理简介 酶的化学本质是蛋白质。具有酶活性的蛋白质分为简单蛋白质类和结合蛋白质类。简单蛋白质类的酶是由氨基酸组成的,不含任何其他物质,如胃蛋白酶。结合蛋白质类的酶是由简单蛋白质与辅基组成的,如乳酸脱氢酶、转氨酶。组成酶的简单蛋白质部分叫做酶蛋白或主酶,辅基部分叫做辅酶。一般是主酶与辅酶相结合,成为全酶,才能起到酶的作用。 降低反应活化能在任何化学反应中,反应物分子必须超过一定的能阈,成为活化的状态,才能发生变化,形成产物。这种提高低能分子达到活化状态的能量,称为活化能。催化剂的作用,主要是降低反应所需的活化能,以致相同的能量能使更多的分子活化,从而加速反应的进行。酶能显著地降低活化能,故能表现为高度的催化效率。通过过氧化氢酶的例子,可以显著地看出,酶能降低反应活化能,使反应速度增高千百万倍以上。 酶的催化作用机理现在普遍被接受的是Koshland DE提出的诱导契合学说(解释酶的专一性)和共价催化与酸碱催化(解释酶的高效率)。诱导契合认为,酶和底物结合咋接触以前并不是完全契合的,只有在底物被与酶的结合中心结合后,酶分子构象产生了微妙的变化(多加了个基团进去分子力不平衡,构象肯定是要变的),从而使催化中心的位置改变到底物附近并刚好有效作用于底物,从而底物得到催化。有些酶通过共价催化来加速催化速率,在催化时,亲核催化剂或亲电子催化剂能分别放出电子或吸收电子并作用于底物的缺电子中心或负电中心,迅速形成不稳定的共价中间配合物,这个中间物很容易变成转变态,因此反应活化能大大降低,底物可以越过较低的能阈而形成产物。而酸碱催化是通过瞬时地向反应物提供质子或从反应物接受质子以稳定过渡态、加速反应的一种催化机制。 下面通过简述一篇关于生物酶催化合成生物柴油的文献来说明酶催化的过程和催化的特点。 这篇文献研究的背景是石化柴油的应用中所出现的一系列问题,针对这些问题采用动物或植物油脂与甲醇或乙醇进行反应合成脂肪酸单酯代替柴油,这种改性后的油脂(脂肪酸低碳醇酯)有着与柴油十分相似的理化性质,而且燃烧完全,无污染排放,称之为“生物柴油”。从生物柴油的制备原料来看,有着传统石化柴油不可比拟的优点,即原料可再生、产品本身环境友好、而且不用更换和经常清洗发动机等优点。目前生物柴油主要是用化学法生产,即动植物油脂与甲醇在高强度酸或碱催化剂下制备。化学法存在工艺复杂,醇消耗量大,产物不易回收,环境污染大等缺点。用脂肪酶代替酸碱催化剂催化合成生物柴油的报道已有很多,酶法合成生物柴油具有条件温和、醇用量小、产品易于收集、无污染物排放等优点,

酶作用的特性

精品资源 欢下载 酶作用的特性 酶是催化剂,只需微量就可以使所催化的反应加速进行,而其本身的质和量都不发生变化,此外酶是生物催化剂,它有着不同于化学催化剂的特性。 (1)酶具有高效性 酶的催化能力远远超过化学催化剂。例如,碳酸酐酶能够催化下面的反应: 3222CO H O H CO =+ 碳酸酐酶是目前已经知道的催化反应速度最快的酶之一。每个碳酸酐酶分子每秒能够催化5106?个2CO ,使它们与相同数量的O H 2结合,形成相同数量的32CO H 。碳酸酐酶催化上述反应的速度比非酶催化的上述反应速度快上710倍。酶为什么会具有这样强大的催化能力呢?酶的中间产物学说认为:酶在催化某一底物时,先与底物结合成一种不稳定的中间产物。这种中间产物极为活泼,很容易发生化学反应而变成反应物,并且放出酶。按照中间产物学说,酶的催化反应可以写成下式: S (底物)十E (酶)=SE (中间产物)=E 十P (反应产物) (2)酶具有高度的专一性 这就是说,一种酶只能作用于一种底物,或一类分子结构相似的底物,促使底物进行一定的化学反应,产生一定的反应产物。酶为什么具有这样高度的专一性呢?这可以用“诱导契合学说”来解释。 所谓“诱导契合学说”是指底物一旦与酶结合,酶分子上的某些基团常常发生明显的变化,从而使酶蛋白的构象发生相应的变化,使酶的活性中心的空间结构和底物的空间结构十分吻合,最终契合形成酶—底物络合物,这种变化的结果,使酶只能与对应的化合物契合,从而排斥了那些形状、大小不适合的化合物。科学家们对羧肽酶等进行了X 射线衍射研究,研究的结果有力地支持了这个假说。 (3)酶很容易失活 同一般的催化剂相比,酶很容易失去活性。酶失活的原因是蛋白质的空间结构发生改变造成的。 酶的催化作用,受到温度、pH 和某些化合物等因素的影响。 温度的影响:在一定的温度范围(0—40℃)内,酶的催化作用速度随着温度的升高而加快。一般地说,温度每升高10℃,反应速度就相应提高一倍。但超过60℃,绝大多数的酶就会失去活性。 pH 的影响:酶对环境中的pH 十分敏感。酶只有在一定的pH 范围内才能表现出活性,超过这个范围,酶就失活了。即使在这个有限的pH 范围内,酶的活性也要随着环境中pH 的变动而有所不同。一般来说,酶的最适pH 在4~8之间。但是,各种酶的最适pH 是不一样的。 某些化合物的影响:有些化合物可引起酶失活,如酒精、有机磷农药、有机氯农药等有机小分子物质;重金属离子等;有些离子或简单的有机化合物,能够增强酶的活性,这些物质叫做酶的激活剂。例如,经过透析的唾液淀粉酶的活性不高、如果加入少量的NaCl ,这种酶的活性就会大大增强,因为NaCl 中的-Cl 起到了激活唾液淀粉酶的作用;还有些物质能够抑制酶的活性,这类物质叫做酶的抑制剂,例如,氰化物可以抑制细胞色素氧化酶的活性。

生物化学课后答案6酶

6 酶 1.作为生物催化剂,酶最重要的特点是什么? 解答:作为生物催化剂,酶最重要的特点是具有很高的催化效率以及高度专一性。 2.酶分为哪几大类?每一大类酶催化的化学反应的特点是什么?请指出以下几种酶分别属于哪一大类酶: 磷酸葡糖异构酶(phosphoglucose isomerase) 碱性磷酸酶(alkaline phosphatase) ●肌酸激酶(creatine kinase) ?甘油醛―3―磷酸脱氢酶(glyceraldehyde-3-phosphate dehydrogenase) ?琥珀酰―CoA合成酶(succinyl-CoA synthetase) ?柠檬酸合酶(citrate synthase) ?葡萄糖氧化酶(glucose oxidase) ?谷丙转氨酶(glutamic-pyruvic transaminase) ?蔗糖酶(invertase) ? T4 RNA 连接酶(T4 RNA ligase) 解答:前两个问题参考本章第3节内容。 异构酶类; 水解酶类; ●转移酶类; ?氧化还原酶类中的脱氢酶; ?合成酶类; ?裂合酶类; ?氧化还原酶类中的氧化酶; ?转移酶类; ?水解酶类; ?合成酶类(又称连接酶类)。 3.什么是诱导契合学说,该学说如何解释酶的专一性? 解答:“诱导契合”学说认为酶分子的结构并非与底物分子正好互补,而是具有一定的柔性,当酶分子与底物分子靠近时,酶受底物分子诱导,其构象发生有利于与底物结合的变化,酶与底物在此基础上互补契合进行反应。根据诱导契合学说,经过诱导之后,酶与底物在结构上的互补性是酶催化底物反应的前提条件,酶只能与对应的化合物契合,从而排斥了那些形状、大小等不适合的化合物,因此酶对底物具有严格的选择性,即酶具有高度专一性。 4.阐述酶活性部位的概念、组成与特点。 解答:参考本章第5节内容。

生物化学-生化知识点_酶的作用机制 (10章)

2.11 酶的作用机制 P384 10章 ①①①酶的活性部位 (1)酶活性部位:酶的特殊催化能力只局限在大分子的一定区域,活性部位又称活性中心。 酶分子中与酶活力直接相关的区域称为活性中心,分为: ①结合部位:负责与底物结合,决定酶的专一性。 ①催化部位:负责催化底物键的断裂或形成,决定酶的催化能力。 对需要辅酶的酶,辅酶分子或辅酶分子某一部分结构往往是酶活性部位组成部分。 (2)酶活性部位特点: 1. 活性部位只占酶分子中相当小的部分,通常1~2%。P384 表10- 1列举一些酶活性部位的氨基酸残基。如溶菌酶一共129个氨基酸残基,活性部位为Asp52和Glu35;胰凝乳蛋白酶241个残基,活性部位为His57,Asp102,Ser 。 195 2. 活性部位为三维实体。活性部位氨基酸残基在一级结构上可能相距甚远,甚至不在一条肽链上,但在空间结构上相互靠近。因此空间结构破坏酶即失活。 活性中心以外部分可为酶活性中心提供三维结构。 3. 酶与底物的结构互补是指在酶和底物结合过程中,相互构象发生一定变化后才互补。如P385 图10-1。 4. 活性部位位于酶分子表面的一个裂缝内。裂缝中为一个疏水微环境,也含有某些极性氨基酸残基有利于催化,底物在此裂缝内有效浓度很高。 5. 酶与底物结合形成ES复合物主要靠次级键:氢键、盐键、范德华力和疏水相互作用。 6. 酶活性部位具有柔性和可运动性。 ①①①研究酶活性部位的方法 ①1①酶侧链基团化学修饰法: 1.特异性共价修饰:如二异丙基磷酰氟(DFP)专一地与酶活性部位 Ser- OH的羟基共价结合,使酶失活。如胰凝乳蛋白酶共28个Ser,但DFP只与活性中心的Ser反应,见P386。反应后,用HCl将酶部分水解,得含二异丙基磷酸酯(DIP)基团的肽的片断,序列分析定出DIP-Ser为Ser195。 2.亲和标记:用与底物结构相似的修饰剂,对酶活性部位进行专一 性共价修饰。 如TPCK(结构式见P387),结构与胰凝乳蛋白酶的底物对甲苯磺酰-L-苯丙氨酸乙酯(TPE)类似,TPCK只与胰凝乳蛋白酶中His57结合,说明His57为该酶活性部位的一个氨基酸残基。 (2) X-射线晶体结构分析: 可提供酶分子三维结构,了解酶活性部位氨基酸残基所处相对位置与状态,

生物酶的特点催化的优点

生物酶的特点催化的优点 生物酶的特点催化的优点 高效性。酶的催化效率非常高。 具有高度特异性。一种酶只能催化一种化学反应。 反应条件比较温和。强酸,强碱都可以使其失去活性。 生物酶是一种无毒、对环境友好的生物催化剂,其化学本质为蛋白质。酶的生产和应用,在国内外已具有80多年历史,进入20世 纪80年代,生物工程作为一门新兴高新术在我国得到了迅速发展, 酶的制造和应用领域逐渐扩大,酶在纺织工业中的应用也日臻成熟,由过去主要用于棉织物的退浆和蚕丝的脱胶,至现在在纺织染整的 各领域的广泛应用,体现了生物酶在染整工业中的优越性。 现在酶处理工艺已被公认为是一种符合环保要求的绿色生产工艺,它不仅使纺织品的.服用性能得到改善和提高,又因无毒无害,用量少,可生物降解废水,无污染而有利于生态环保的保护。 作为大的分类,酶类分为“分解系酶”和“合成系酶”。比如说,将蛋白质分解成能被吸吸收(那样)大小的氨基酸,通过分解系的酶 和吸收后的氨基酸来合成自身身体所必需的蛋白质,这些都是根据 酶来进行的。但是,为了区分生体内和生体外被使用的酶,称在生 体组织内被使用的酶为“代谢酶”,称在肠胃内等生体组织外被使 用的酶为“消化酶”,也可以说是为了方便起见。在生物化学上, 分为酸化还原酶、转移酶、加水分解酶、脱离酶、异性化酶和合成 酶等六大类。 溶菌酶 溶菌酶可作为一种具有杀菌作用的天然抗感染物质,有抗菌、消肿及加快组织恢复功能等作用。常用于人体肌肤护理。 果胶酶

果胶酶主要是由果胶裂解酶、聚半乳糖醛酸酶、果胶酸盐裂解酶和果胶酯酶组成。果胶物质是高度酯化的聚半乳糖醛酸。果胶酶作 用于果胶物质时,果胶裂解酶、聚半乳糖醛酸酶、果胶酸盐裂解酶 直接作用于果胶聚合物分子链内部的配糖键上,而果胶酯酶则使聚 半糖醛酸酯水解,为聚半乳糖醛酸酶和果胶酸盐裂解酶创造更多的 位置。 脂肪酶 脂肪酶能将脂肪水解成甘油和脂肪酸,脂肪酸进一步进行B一氧化,每次脱下一个C2物,生成乙酰COA(N—环己基辛基胺),进入TCA(三羧酸)环彻底氧化或进入乙醛酸环合成糖类。 脂肪酶(EC3.2.2.3,甘油酯水解酶)是分解天然油脂的酶,其在 纺织加工中主要用于绢纺原料脱脂处理;同时,只没在羊毛洗毛中是 较好的助洗剂,能去除羊毛附生杂质、脂蜡,使羊毛获得可纺性;对 棉织物进行精炼处理,能有效的去除棉的脂蜡;对涤纶进行处理,可 改善涤纶表面的亲水性。 蛋白酶 由微生物分泌的蛋白酶因菌种不同而异,例如枯草杆菌分泌明胶酶和酪蛋白酶,可以水解明胶和酪蛋白;费氏链酶菌分泌角蛋白酶, 可以水解动物的毛、角、蹄的角蛋白。蛋白酶将蛋白质分解成肽, 再经肽酶水解成氨基酸。 纤维素酶 纤维素酶是一个多组分酶体系,纺织工业中应用的纤维素酶大多数是由木酶属真菌制造的。纤维素酶中的纤维素二糖水解酶又称为 外切纤维素酶,由CHBI和CHBII两种酶组成,而内切葡聚糖酶,又 称为内切纤维素酶,至少由5种纤维素酶(EGI、EGII、EGHI、EGIV、EGV)组成。此外,还有13一葡萄糖醛酶。这些纤维素酶在纤维素的 水解中具有协同作用。 过氧化氢酶

酶的作用机制

第10章、酶的作用机制和酶的调节(P384) 本章重点:1、酶的活性中心,2、影响酶活性的条件和因素,3、酶和底物之间的相互作用和关系,4、酶催化反应机制,5酶概念的发展-核酶本章的主要研究内容: (一)酶的活性部位 (1)酶活性部位:酶的特殊催化能力只局限在大分子的一定区域,活性部位又称活性中心。 酶分子中与酶活力直接相关的区域称为活性中心,分为: ①结合部位:负责与底物结合,决定酶的专一性。 ②催化部位:负责催化底物键的断裂或形成,决定酶的催化能力。 对需要辅酶的酶,辅酶分子或辅酶分子某一部分结构往往是酶活性部位组成部分。 (2)酶活性部位特点: 1. 活性部位只占酶分子中相当小的部分,通常1~2%。P384 表10-1列举一些酶活性部位的氨基酸残基。如溶菌酶一共129个氨基酸残基,活性部位为Asp52和Glu35;胰凝乳蛋白酶241个残基,活性部位为His57,Asp102,Ser 。 195 2. 活性部位为三维实体。活性部位氨基酸残基在一级结构上可能相距甚远,甚至不在一条肽链上,但在空间结构上相互靠近。因此空间结构破坏酶即失活。活性中心以外部分可为酶活性中心提供三维结构。 3. 酶与底物的结构互补是指在酶和底物结合过程中,相互构象发生一定变化后才互补。如P385 图10-1。 4. 活性部位位于酶分子表面的一个裂缝内。裂缝中为一个疏水微环境,也含有某些极性氨基酸残基有利于催化,底物在此裂缝内有效浓度很高。 5. 酶与底物结合形成ES复合物主要靠次级键:氢键、盐键、范德华力和疏水相互作用。 6. 酶活性部位具有柔性和可运动性。 (二)研究酶活性部位的方法 (1)酶侧链基团化学修饰法: 1.特异性共价修饰:如二异丙基磷酰氟(DFP)专一地与酶活性部位Ser-OH的羟基共价结合,使酶失活。如胰凝乳蛋白酶共28个Ser,但DFP 只与活性中心的Ser反应,见P386。反应后,用HCl将酶部分水解,得含二异丙基磷酸酯(DIP)基团的肽的片断,序列分析定出DIP-Ser为Ser195。 2.亲和标记:用与底物结构相似的修饰剂,对酶活性部位进行专一性共价修饰。 如TPCK(结构式见P387),结构与胰凝乳蛋白酶的底物对甲苯磺酰-L-苯丙氨酸乙酯(TPE)类似,TPCK只与胰凝乳蛋白酶中His57结合,说明His57为该酶活性部位的一个氨基酸残基。 (2)X-射线晶体结构分析: 可提供酶分子三维结构,了解酶活性部位氨基酸残基所处相对位置与状态,与底物结合后酶分子在底物周围氨基酸残基排列状况,被作用键周围残

酶除一般催化剂的特点如:加快

酶学 第一节通论 什么是酶酶是由活细胞产生的,能在体内和体外起同样催化作用的一类具有活性中心和特殊构象的生物 大分子。酶是生物催化剂。 酶除一般催化剂的特点如:加快反应速度、反应前后无变化、不改变反应的平衡点等特征外,作为生物催 化剂具有自身的催化特点: 1.催化效率高: 107—1013 2.酶活性易受环境变化的影响 3.在体内,酶活性受调节和控制 4.酶的催化作用具高度专一性 (1)结构专一性 A. 绝对专一性脲酶 B. 相对专一性磷酸二酯酶 (2)立体异构专一性 (3)对酶催化专一性的几种假说 A . 锁钥学说(1894, Emil Fisher) B.诱导契合学说(1958, Koshland)

C . 三点附着学说(A. Ogster) 酶的分类和命名 节 酶的命名 为了研究和使用的方便,1961年国际生物化学学会酶学委员 会在对自然界中存在的酶进行了广泛研究的基础上,对每一 种酶都给出了一个习惯名称和系统名称。 1 习惯命名法 (1)根据催化的底物名称命名:淀粉酶、蛋白酶、脂肪酶 (2)根据催化反应的性质命名:转氨酶、脱氢酶、脱羧酶 有的以所催化的底物和性质命名:乳酸脱氢酶、琥珀酸脱 氢酶,有的以酶的来源或其它特征命名:碱性磷酸酶 2.国际系统命名法 谷丙转氨酶: L-丙氨酸:α—酮戊二酸氨基转移酶

草酸氧化酶:草酸:氧氧化酶 乙酰辅酶A水解酶:乙酰辅酶A:水解酶 二 . 酶的国际系统分类法 把酶分为6大类,即氧化还原酶类、转移酶类、水解酶类、裂合酶类、异构酶类和连接酶类。分别用1、2、3、4、5、6、来表示。再根据被作用的基团或键的特点将每一大类分为若干个亚类,每一个亚类又按顺序编成1、2、3、4、……等数字。 第三节.酶催化作用的分子基础 酶分子的结构特征 1.酶的活性部位(活性中心):酶分子中与底物结合并催化底物生成产物的部位。 2.酶活性部位(中心)的特点: 3.必需基团:在酶分子中有些基团并不位于活性中心,也不与底物直接作用,但它参与维持酶分子的空间构象,是酶 表现活性所必需的部位。 溶菌酶催化的反应:

酶催化反应

酶催化反应 许多化学反应都需要催化剂的参与,这些具有催化活性的物质可以降低反应所需的活化能,显著的改变化学反应速率,反应后自身不发生变化。在生物体中发生的化学反应几乎全都需要催化剂的参与,但这些催化剂不是分子筛,不是金属络合物,而是能够影响反应中心的化学键的断裂,稳定过渡态的蛋白质、核酸及其复合物。这种具有生物催化功能的高分子物质被称为酶[1]。酶在生物体中和细胞的其它组成及来源没有区别,是具有生物活性的功能物质。 核酸被发现具有催化功能是在二十世纪八十年代,Cech和Altman因对RNA催化剂研究的突出贡献,获得1989年度诺贝尔化学奖。一般而言我们把在细胞中起催化作用的蛋白称为酶,酶在字典中被解释为“一种有机的胶状物质,由蛋白质组成,对于生物化学变化起催化作用,发酵就是靠它的作用,又称酵素。 发酵是我们非常熟悉的过程,做馒头需要面粉发酵,而发酵就是最早酶的利用。在公元前21世纪,中国的夏禹时代和古巴比伦都已经有酿酒的记载,酿酒就是用酒曲把粮食中的淀粉转变为酒精,酒曲中含有丰富的微生物,如霉菌、细菌、酵母菌、乳酸菌等,霉菌中有曲霉菌、根霉菌、毛霉菌等有益的菌种,其本质就是提供酿酒用各种酶的载体。“曲为酒之母,曲为酒之骨,曲为酒之魂”,这是酶在酿酒这一复杂的化学转化过程中所处的地位的高度概括。 酶在民间一直被广泛使用。其实在公元前12世纪周代,人们就开始利用酶制作饴糖,但是我们的祖先并不知道酶是什么物质。对于这种具有神奇能力的物质的认识仅仅限于生活经验水平,而缺少对于酶的本质了解。我们知道任何物质都是结构决定性质,从表观的性质来帮助我们认识结构的特殊性,而酶这种天然的催化剂也不例外。 18世纪晚期,西方国家开始了对酶的探索。1783年,意大利科学家Spallanzani发现鸟的胃液能分解消化肉类,虽然他未说明此物为酶,但后来有人还是把他看作是酶的最早发现者。1833年,Payen等从麦芽水提取物中,用酒精沉淀获得了一种对热不稳定的物质,他可以使淀粉水解为可溶性糖,这种物质被称为淀粉酶制剂,也是一个游离于细胞代谢活动之外的制剂,可以完成特定的化学反应,但是当温度过高时,它可能会失去此特性,Payen等的发现表明人们开始认识到酶的一些特点。直到1897年,德国化学家Buchner兄弟把酵母细胞放在石英砂中用力研磨,加水搅拌,在进行加压过滤,得到不含酵母的提取液,在这些汁液中加入葡萄糖,一段时间后就冒出气,糖液居然变成了酒,证明了不含细胞的酵母提取液也能使糖发酵,说明发酵与细胞的活动无关,而是酶作用的化学本质,为此Buchner获得了1907年诺贝尔化学奖。1898年,Duelaux提出引用“ase”作为酶命名的词根。在酶这个概念传人中国时,人们用“酉”与“每”结合起来表示,“每”意为“自身生长出来并遍布于表面的物质”。“酉”指“发酵腐败”等最初发现的酶促反应。这也表现了当这个概念传入中国时人们对酶的认识。 随着科技的发展人们逐渐认识到酶在化学反应中的重要地位,那么酶作为生物催化剂的特点又是什么? 酶催化反应条件温和,反应专一,高效,容易失活。

相关主题
文本预览
相关文档 最新文档