当前位置:文档之家› 高中物理竞赛动量能量习题

高中物理竞赛动量能量习题

高中物理竞赛动量能量习题
高中物理竞赛动量能量习题

高中物理竞赛——动量、能量习题

一、动量定理还是动能定理?

物理情形:太空飞船在宇宙飞行时,和其它天体的万有引力可以忽略,但是,飞船会定时遇到太空垃圾的碰撞而受到阻碍作用。设单位体积的太空均匀分布垃圾n 颗,每颗的平均质量为m ,垃圾的运行速度可以忽略。飞船维持恒定的速率v 飞行,垂直速度方向的横截面积为S ,与太空垃圾的碰撞后,将垃圾完全粘附住。试求飞船引擎所应提供的平均推力F 。

模型分析:太空垃圾的分布并不是连续的,对飞船的撞击也不连续,如何正确选取研究对象,是本题的前提。建议充分理解“平均”的含义,这样才能相对模糊地处理垃圾与飞船的作用过程、淡化“作用时间”和所考查的“物理过程时间”的差异。物理过程需要人为截取,对象是太空垃圾。

先用动量定理推论解题。

取一段时间Δt ,在这段时间内,飞船要穿过体积ΔV = S ·v Δt 的空间,遭遇n ΔV 颗太空垃圾,使它们获得动量ΔP ,其动量变化率即是飞船应给予那部分垃圾的推力,也即飞船引擎的推力。

F = t P ?? = t v M ??? = t v V n m ???? = t v t nSv m ???? = nmSv 2 如果用动能定理,能不能解题呢?

同样针对上面的物理过程,由于飞船要前进x = v Δt 的位移,引擎推力F 须做功W = F x ,它对应飞船和被粘附的垃圾的动能增量,而飞船的ΔE k 为零,所以:

W = 2

1

ΔMv 2

即:F v Δt = 2

1

(n m S ·v Δt )v 2 得到:F =

2

1

nmSv 2 两个结果不一致,不可能都是正确的。分析动能定理的解题,我们不能发现,垃圾与飞船的碰撞是完全非弹性的,需要消耗大量的机械能,因此,认为“引擎做功就等于垃圾动能增加”的观点是错误的。但在动量定理的解题中,由于I =

F t ,由此推出的F = t

P

??必然是飞船对垃圾的平

均推力,再对飞船用平衡条件,F 的大小就是引擎推力大小了。这个解没有毛病可挑,是正确的。

(学生活动)思考:如图1所示,全长L 、总质量为M 的柔软绳子,盘在一根光滑的直杆上,现用手握住绳子的一端,以恒定的水平速度v 将绳子拉直。忽略地面阻力,试求手的拉力F 。

解:解题思路和上面完全相同。

答:L

Mv 2

二、动量定理的分方向应用

物理情形:三个质点A 、B 和C ,质量分别为m 1 、m 2和m 3 ,用拉直且不可伸长的绳子AB 和BC 相连,静止在水平面上,如图2所示,AB 和BC 之间的夹角为(π-α)。现对质点C 施加以冲量I ,方向沿BC ,试求质点A 开始运动的速度。

模型分析:首先,注意“开始运动”的理解,它指绳子恰被拉直,有作用力和冲量产生,但是绳子的方位尚未发生变化。其二,对三个质点均可用动量定理,但是,B 质点受冲量不在一条直线上,故最为复杂,可采用分方向的形式表达。其三,由于两段绳子不可伸长,故三质点的瞬时速度可以寻求到两个约束关系。

下面具体看解题过程——

绳拉直瞬间,AB 绳对A 、B 两质点的冲量大小相等(方向相反),设为I 1 ,BC 绳对B 、C 两质点的冲量大小相等(方向相反),设为I 2 ;设A 获得速度v 1(由于A 受合冲量只有I 1 ,方向沿AB ,故v 1的反向沿AB ),设B 获得速度v 2(由

于B 受合冲量为1I ?+2I ?

,矢量和既不沿AB ,也不沿BC 方向,可设v 2与AB 绳夹角为〈π-β〉,如图3所示),设C 获得速度

v 3(合冲量I ?+2I ?

沿BC 方向,故v 3沿BC 方向)。

对A 用动量定理,有:

I 1 = m 1 v 1

B 的动量定理是一个矢量方程:1I ?+2I ?=

m 22v ?

,可化为两个分方向的标量式,即:

I 2cos α-I 1 = m 2 v 2cos β

I 2sin α= m 2 v 2sin β ③ 质点C 的动量定理方程为:

I - I 2 = m 3 v 3 ④ AB 绳不可伸长,必有v 1 = v 2cos β ⑤ BC 绳不可伸长,必有v 2cos(β-α) = v 3 ⑥

六个方程解六个未知量(I 1 、I 2 、v 1 、v 2 、v 3 、β)是可能的,但繁复程度非同一般。解方程要注意条理性,否则易造成混乱。建议采取如下步骤——

1、先用⑤⑥式消掉v 2 、v 3 ,使六个一级式变成四个二级式: I 1 = m 1 v 1 ⑴ I 2cos α-I 1 = m 2 v 1 ⑵

I 2sin α= m 2 v 1 tg β ⑶ I - I 2 = m 3 v 1(cos α+ sin αtg β) ⑷ 2、解⑶⑷式消掉β,使四个二级式变成三个三级式:

I 1 = m 1 v 1 ㈠ I 2cos α-I 1 = m 2 v 1 ㈡

I = m 3 v 1 cos α+ I 22232m sin m m α

+ ㈢

3、最后对㈠㈡㈢式消I 1 、I 2 ,解v 1就方便多了。结果为: v 1 =

α

+++α

23132122sin m m )m m m (m cos Im

(学生活动:训练解方程的条理和耐心)思考:v 2的方位角β等于多少? 解:解“二级式”的⑴⑵⑶即可。⑴代入⑵消I 1 ,得I 2的表达式,将I 2的表达式代入⑶就行了。

答:β= arc tg (

α+tg m m m 2

2

1)。 三、动量守恒中的相对运动问题

物理情形:在光滑的水平地面上,有一辆车,车内有一个人和N 个铅球,系统原来处于静止状态。现车内的人以一定的水平速度将铅球一个一个地向车外抛出,车子和人将获得反冲速度。第一过程,保持每次相对地面抛球速率均为v ,直到将球抛完;第二过程,保持每次相对车子抛球速率均为v ,直到将球抛完。试问:哪一过程使车子获得的速度更大?

模型分析:动量守恒定律必须选取研究对象之外的第三方(或第四、第五方)为参照物,这意味着,本问题不能选车子为参照。一般选地面为参照系,这样对“第二过程”的铅球动量表达,就形成了难点,必须引进相对速度与绝对速度的关系。至于“第一过程”,比较简单:N 次抛球和将N 个球一次性抛出是完全等效的。

设车和人的质量为M ,每个铅球的质量为m 。由于矢量的方向落在一条直线上,可以假定一个正方向后,将矢量运算化为代数运算。设车速方向为正,且第一过程获得的速度大小为V 1 第二过程获得的速度大小为V 2 。

第一过程,由于铅球每次的动量都相同,可将多次抛球看成一次抛出。车子、人和N 个球动量守恒。

0 = Nm(-v) + MV 1

得:V 1 = M

Nm

v ①

第二过程,必须逐次考查铅球与车子(人)的作用。

第一个球与(N –1)个球、人、车系统作用,完毕后,设“系统”速度为u 1 。

值得注意的是,根据运动合成法则地车车球地球→→→+=v v v ?

??,铅球对地的速度并不是(-v ),而是(-v + u 1)。它们动量守恒方程为:

0 = m(-v + u 1) +〔M +(N-1)m 〕u 1

得:u 1 =v Nm

M m

+

第二个球与(N -2)个球、人、车系统作用,完毕后,设“系统”速度为u 2 。它们动量守恒方程为:

〔M+(N-1)m 〕u 1 = m(-v + u 2) +〔M+(N-2)m 〕u 2

得:u 2 =

v Nm

M m

+ +

v m )1N (M m -+ 第三个球与(N -2)个球、人、车系统作用,完毕后,设“系统”速度为u 3 。

铅球对地的速度是(-v + u 3)。它们动量守恒方程为:

〔M+(N-2)m 〕u 2 = m(-v + u 3) +〔M+(N-3)m 〕u 3

得:u 3 =

v Nm

M m

+ +

v m )1N (M m -+ + v m )2N (M m -+ 以此类推(过程注意:先找u N 和u N-1关系,再看u N 和v 的关系,不要急于化

简通分)……,u N 的通式已经可以找出:

V 2 = u N =

v Nm M m + + v m )1N (M m -+ + v m )2N (M m -+ + … + v m

M m

+

即:V 2 = ∑

=+N

1

i v im

M m

我们再将①式改写成: V 1 = ∑

=N

1i v M

m

①′ 不难发现,①′式和②式都有N 项,每项的分子都相同,但①′式中每项的分母都比②式中的分母小,所以有:V 1 > V 2 。

结论:第一过程使车子获得的速度较大。

(学生活动)思考:质量为M 的车上,有n 个质量均为m 的人,它们静止在光滑的水平地面上。现在车上的人以相对车大小恒为v 、方向水平向后的初速往车下跳。第一过程,N 个人同时跳下;第二过程,N 个人依次跳下。试问:哪一次车子获得的速度较大?

解:第二过程结论和上面的模型完全相同,第一过程结论为V 1 =

∑=+n

1i v nm

M m

。 答:第二过程获得速度大。

四、反冲运动中的一个重要定式

物理情形:如图4所示,长度为L 、质量为M 的船停止在静水中(但未抛锚),船头上有一个质量为m 的人,也是静止的。现在令人在船

上开始向船尾走动,忽略水的阻力,试问:当人走到船尾时,船将会移动多远?

(学生活动)思考:人可不可能匀速(或匀加速)走动?当人中途停下休息,船有速度吗?人的全程位移大小是L 吗?本系统选船为参照,动量守恒吗?

模型分析:动量守恒展示了已知质量情况下的速度关系,要过渡到位移关系,需要引进运动学的相关规律。根据实际情况(人必须停在船尾),人的运动不可能是匀速的,也不可能是匀加速的,运动学的规律应选择S = v t 。为寻求时间t ,则要抓人和船的位移约束关系。

对人、船系统,针对“开始走动→中间任意时刻”过程,应用动量守恒(设末态人的速率为v ,船的速率为V ),令指向船头方向为正向,则矢量关系可以化为代数运算,有:

0 = MV + m(-v) 即:mv = MV

由于过程的末态是任意选取的,此式展示了人和船在任一时刻的瞬时速度大小关系。而且不难推知,对中间的任一过程,两者的平均速度也有这种关系。即:

m v = M V

设全程的时间为t ,乘入①式两边,得:m v t = M V t

设s 和S 分别为人和船的全程位移大小,根据平均速度公式,得:m s = M S ②

受船长L

的约束,s

S

具有关系:s + S = L

解②、③可得:船的移动距离 S =m

M m

+L (应用动量守恒解题时,也可以全部都用矢量关系,但这时“位移关系”表达起来难度大一些——必须用到运动合成与分解的定式。时间允许的话,可以做一个对比介绍。)

另解:质心运动定律

人、船系统水平方向没有外力,故系统质心无加速度→系统质心无位移。先求出初态系统质心(用它到船的质心的水平距离x 表达。根据力矩平衡知识,得:

x =

)

M m (2mL

+),又根据,末态的质量分布与初态比较,相对整

体质心是左右对称的。弄清了这一点后,求解船的质心位移易如反掌。

(学生活动)思考:如图5所示,在无风的天空,人抓住气球下面的绳索,和气球恰能静止平衡,人和气球地质量分别为m 和M ,此时人离地面高h 。现在人欲沿悬索下降到地面,试问:要人充分安全地着地,绳索至少要多长?

解:和模型几乎完全相同,此处的绳长对应模型中的“船的长度”(“充分安全着地”的含义是不允许人脱离绳索跳跃着地)。

答:M

M m +h 。

(学生活动)思考:如图6所示,两个倾角相同的斜面,互相倒扣着放在光

滑的水平地面上,小斜面在大斜面的顶端。将它们无初速释放后,小斜面下滑,大斜面后退。已知大、小斜面的质量分别为M 和m ,底边长分别为a 和 b ,试求:小斜面滑到底端时,大斜面后退的距离。

解:水平方向动量守恒。解题过程从略。

答:m

M m

+(a -b )。

进阶应用:如图7所示,一个质量为M ,半径为R 的光滑均质半球,静置于光滑水平桌面上,在球顶有一个质量为m 的质点,由静止开始沿球面下滑。试求:质点离开球面以前的轨迹。

解说:质点下滑,半球后退,这个物理情形和上面的双斜面问题十分相似,仔细分析,由于

同样满足水平方向动量守恒,故我们介绍的“定式”是适用的。定式解决了水平位移(位置)的问题,竖直坐标则需要从数学的角度想一些办法。

为寻求轨迹方程,我们需要建立一个坐标:以半球球心O 为原点,沿质点滑下一侧的水平轴为x 坐标、竖直轴为y 坐标。

由于质点相对半球总是做圆周运动的(离开球面前),有必要引入相对运动中半球球心O ′的方位角θ来表达质点的瞬时位置,如图8所示。

由“定式”,易得:

x = m

M M

+Rsin θ ①

而由图知:y = Rcos θ ②

不难看出,①、②两式实际上已经是一个轨迹的参数方程。为了明确轨迹的性质,我们可以将参数θ消掉,使它们成为:

22

)R m

M M (x + + 22R y = 1

这样,特征就明显了:质点的轨迹是一个长、短半轴分别为R 和m

M M

+R 的椭圆。

五、功的定义式中S 怎么取值?

在求解功的问题时,有时遇到力的作用点位移与受力物体的(质心)位移不等,S是取力的作用点的位移,还是取物体(质心)

的位移呢?我们先看下面一些事例。

1、如图9所示,人用双手压在台面上推讲台,

结果双手前进了一段位移而讲台未移动。试问:人

是否做了功?

2、在本“部分”第3页图1的模型中,求拉

力做功时,S是否可以取绳子质心的位移?

3、人登静止的楼梯,从一楼到二楼。楼梯是

否做功?

4、如图10所示,双手用等大反向的力F压固

定汽缸两边的活塞,活塞移动相同距离S,汽缸中封闭气体被压缩。施力者(人)是否做功?

在以上四个事例中,S若取作用点位移,只有第1、

2、4例是做功的(注意第3例,楼梯支持力的作用点并

未移动,而只是在不停地交换作用点),S若取物体(受

力者)质心位移,只有第2、3例是做功的,而且,尽

管第2例都做了功,数字并不相同。所以,用不同的判

据得出的结论出现了本质的分歧。

面对这些似是而非的“疑难杂症”,我们先回到“做

功是物体能量转化的量度”这一根本点。

第1例,手和讲台面摩擦生了热,内能的生成必然是由人的生物能转化而来,人肯定做了功。S宜取作用点的位移;

第2例,求拉力的功,在前面已经阐述,S取作用点位移为佳;

第3例,楼梯不需要输出任何能量,不做功,S取作用点位移;

第4例,气体内能的增加必然是由人输出的,压力做功,S取作用点位移。

但是,如果分别以上四例中的受力者用动能定理,第1例,人对讲台不做功,S取物体质心位移;第2例,动能增量对应S取L/2时的值——物体质心位移;第4例,气体宏观动能无增量,S取质心位移。(第3例的分析暂时延后。)以上分析在援引理论知识方面都没有错,如何使它们统一?原来,功的概念有广义和狭义之分。在力学中,功的狭义概念仅指机械能转换的量度;而在物理学中功的广义概念指除热传递外的一切能量转换的量度。所以功也可定义为能量转换的量度。一个系统总能量的变化,常以系统对外做功的多少来量度。能量可以是机械能、电能、热能、化学能等各种形式,也可以多种形式的能量同时发生转化。由此可见,上面分析中,第一个理论对应的广义的功,第二个理论对应的则是狭义的功,它们都没有错误,只是在现阶段的教材中还没有将它们及时地区分开来而已。

而且,我们不难归纳:求广义的功,S取作用点的位移;求狭义的功,S取物体(质心)位移。

那么我们在解题中如何处理呢?这里给大家几点建议: 1、抽象地讲“某某力做的功”一般指广义的功;2、讲“力对某物体做的功”常常指狭义的功;3、动能定理中的功肯定是指狭义的功。

当然,求解功地问题时,还要注意具体问题具体分析。如上面的第3例,就相对复杂一些。如果认为所求为狭义的功,S取质心位移,是做了功,但结论仍

然是难以令人接受的。下面我们来这样一个处理:将复杂的形变物体(人)看成这样一个相对理想的组合:刚性物体下面连接一压缩的弹簧(如图11所示),人每一次蹬梯,腿伸直将躯体重心上举,等效为弹簧将刚性物体举起。

这样,我们就不难发现,做功的是人的双腿而非地面,人既是输出

能量(生物能)的机构,也是得到能量(机械能)的机构——这里

的物理情形更象是一种生物情形。本题所求的功应理解为广义功为

宜。

以上四例有一些共同的特点:要么,受力物体情形比较复杂(形

变,不能简单地看成一个质点。如第2、第3、第4例),要么,施

力者和受力者之间的能量转化不是封闭的(涉及到第三方,或机械

能以外的形式。如第1例)。以后,当遇到这样的问题时,需要我们慎重对待。

(学生活动)思考:足够长的水平传送带维持匀速v运转。将一袋货物无初速地放上去,在货物达到速度v之前,与传送带的摩擦力大小为f ,对地的位移为S 。试问:求摩擦力的功时,是否可以用W = fS ?

解:按一般的理解,这里应指广义的功(对应传送带引擎输出的能量),所以“位移”取作用点的位移。注意,在此处有一个隐含的“交换作用点”的问题,仔细分析,不难发现,每一个(相对皮带不动的)作用点的位移为2S 。(另解:求货物动能的增加和与皮带摩擦生热的总和。)

答:否。

(学生活动)思考:

如图12所示,人站在船

上,通过拉一根固定在铁

桩的缆绳使船靠岸。试问:

缆绳是否对船和人的系统

做功?

解:分析同上面的“第

3例”。

答:否。

六、机械能守恒与运动合

成(分解)的综合

物理情形:如图13所示,直角形的刚性杆被固定,水平和竖直部分均足够

长。质量分别为m

1和m

2

的A、B两个有孔小球,串在杆上,且被长为L的轻绳相

连。忽略两球的大小,初态时,认为它们的位置在同一高度,且绳处于拉直状态。现无初速地将系统释放,忽略一切摩擦,试求B球运动L/2时的速度v

2

模型分析:A、B系统机械能守恒。A、B两球的瞬时速度不等,其关系可据“第三部分”知识介绍的定式(滑轮小船)去

寻求。

(学生活动)A球的机械能是否守恒?B

球的机械能是否守恒?系统机械能守恒的理

由是什么(两法分析:a、“微元法”判断两个

W

T

的代数和为零;b、无非弹性碰撞,无摩擦,

没有其它形式能的生成)?

由“拓展条件”可以判断,A、B系统机械

能守恒,(设末态A球的瞬时速率为v

1

)过程

的方程为:

m 2g 2

L = 2

11v m 21 + 222v m 21 ①

在末态,绳与水平杆的瞬时夹角为30°,设绳子的瞬时迁移速率为v ,根据“第三部分”知识介绍的定式,有:

v 1 = v/cos30°, v 2 = v/sin30°

两式合并成:v 1 = v 2 tg30°= v 2/3 ② 解①、②两式,得:v 2 =

2

12m m gL

m 3

七、动量和能量的综合(一)

物理情形:如图14所示,两根长度均为L 的刚性轻杆,一端通过质量为m 的球形铰链连接,另一端分别与质量为m 和2m 的小球相连。将此装置的两杆合拢,铰链在上、竖直地放在水平桌面上,然后轻敲一下,使两小球向两边滑动,但两杆始终保持在竖直平面内。忽略一切摩擦,试求:两杆夹角为90°时,质量为2m 的小球的速度v 2 。

模型分析:三球系统机械能守恒、水平方向动量守恒,并注意约束关系——两杆不可伸长。

(学生活动)初步判断:左边小球和球形铰链的速度方向会怎样?

设末态(杆夹角90°)左边小球的速度为v 1(方向:水平向左),球形铰链的速度为v (方向:和竖直方向夹θ角斜向左),

对题设过程,三球系统机械能守恒,有:

mg( L-22L) = 21m 21v + 21mv 2 + 2

12m 22v ① 三球系统水平方向动量守恒,有:

mv 1 + mvsin θ= 2mv 2 ②

左边杆子不形变,有:

v 1cos45°= vcos(45°-θ) ③

右边杆子不形变,有:

vcos(45°+θ) = v 2cos45° ④

四个方程,解四个未知量(v 1 、v 2 、v 和θ),是可行的。推荐解方程的步骤如下——

1、③、④两式用v 2替代v 1和v ,代入②式,解θ值,得:tg θ= 1/4

2、在回到③、④两式,得:

v 1 = 3

5

v 2 , v = 317v 2

3、将v 1 、v 的替代式代入①式解v 2即可。结果:v 2 =

20

)

22(gL 3-

(学生活动)思考:球形铰链触地前一瞬,左球、铰链和右球的速度分别是多少?

解:由两杆不可形变,知三球的水平速度均为零,θ为零。一个能量方程足以解题。

答:0 、gL 2 、0 。

(学生活动)思考:当两杆夹角为90°时,右边小球的位移是多少? 解:水平方向用“反冲位移定式”,或水平方向用质心运动定律。 答:

L 8

2

3 。 进阶应用:在本讲模型“四、反冲……”的“进阶应用”(见图8)中,当质点m 滑到方位角θ时(未脱离半球),质点的速度v 的大小、方向怎样?

解说:此例综合应用运动合成、动量守恒、机械能守恒知识,数学运算比较繁复,是一道考查学生各种能力和素质的难题。

据运动的合成,有: 半球点→v ? = 地点→v ? + 半球地→v ? = 地点→v ?

-

地半球→v ?

其中地半球→v ?

必然是沿地面向左的,为了书写方

便,我们设其大小为v 2 ;半球点→v ?

必然是沿半球瞬时位置切线方向(垂直瞬时半径)的,设大小为v 相 。根据矢量减法的三角形法则,可以得到地点→v ?

(设大小

为v 1)的示意图,如图16所示。同时,我们将v 1的x 、y 分量v 1x 和v 1y 也描绘在图中。

由图可得:v 1y =(v 2 + v 1x )tg θ ① 质点和半球系统水平方向动量守恒,有:Mv 2 = mv 1x ②

对题设过程,质点和半球系统机械能守恒,有:mgR(1-cos θ) = 2

1

M 22v +

2

1m 21v ,即: mgR(1-cos θ) = 21M 22v + 2

1m (2x 1v + 2

y 1v ) ③

三个方程,解三个未知量(v 2 、v 1x 、v 1y )是可行的,但数学运算繁复,推荐步骤如下——

1、由①、②式得:v 1x =

m

M

v 2 , v 1y = (m M m +tg θ) v 2

2、代入③式解v 2 ,得:v 2 =θ

+++θ-2

222tg )m M (Mm M )

cos 1(gR m 2 3、由

21

v =

2x

1v +

2

y

1v 解v 1 ,得:v 1

+++θ+θ+θ-222222sin )m M (m Mm M )

sin m sin Mm 2M )(cos 1(gR 2

v 1的方向:和水平方向成α角,α= arctg x

1y 1v v = arctg (

θ+tg M

m

M ) 这就是最后的解。

〔一个附属结果:质点相对半球的瞬时角速度 ω =

R

v 相 =

)

sin m M (R )

cos 1)(M m (g 22θ+θ-+ 。〕

八、动量和能量的综合(二)

物理情形:如图17所示,在光滑的水平面上,质量为M = 1 kg 的平板车左端放有质量为m = 2 kg 的铁块,铁块与车之间的摩擦因素μ= 0.5 。开始时,车和铁块以共同速度v = 6 m/s 向右运动,车与右边的墙壁发生正碰,且碰撞是弹性的。车身足够长,使铁块不能和墙相碰。重力加速度g = 10 m/s 2 ,试求:1、铁块相对车运动的总路程;2、平板车第一次碰墙后所走的总路程。

模型分析:本模型介绍有两对相互作用时的处理常规。能量关系介绍摩擦生热定式的应用。由于过程比较复杂,动量分析还要辅助以动力学分析,综合程度较高。

由于车与墙壁的作用时短促而激烈的,而铁块和车的作用是舒缓而柔和的,当两对作用同时发生时,通常处理成“让短时作用完毕后,长时作用才开始”(这样可以使问题简化)。在此处,车与墙壁碰撞时,可以认为铁块与车的作用尚未发生,而是在车与墙作用完了之后,才开始与铁块作用。

规定向右为正向,将矢量运算化为代数运算。 车第一次碰墙后,车速变为-v ,然后与速度仍为v 的铁块作用,动量守恒,

作用完毕后,共同速度v 1 = M m )v (M mv +-+ = 3

v

,因方向为正,必朝墙运动。

(学生活动)车会不会达共同速度之前碰墙?动力学分析:车离墙的最大位

移S = a 2v 2,反向加速的位移S ′= 1

21a 2v ,其中a = a 1 = M mg

μ,故S ′< S ,所

以,车碰墙之前,必然已和铁块达到共同速度v 1 。 车第二次碰墙后,车速变为-v 1 ,然后与速度仍为v 1的铁块作用,动量守恒,作用完毕后,共同速度v 2 = M m )v (M mv 11+-+ = 3v 1 = 23

v

,因方向为正,必朝墙

运动。

车第三次碰墙,……共同速度v 3 =

3v 2 = 33

v

,朝墙运动。 ……

以此类推,我们可以概括铁块和车的运动情况——

铁块:匀减速向右→匀速向右→匀减速向右→匀速向右……

平板车:匀减速向左→匀加速向右→匀速向右→匀减速向左→匀加速向右→匀速向右……

显然,只要车和铁块还有共同速度,它们总是要碰墙,所以最后的稳定状态是:它们一起停在墙角(总的末动能为零)。

1、全程能量关系:对铁块和车系统,-ΔE k =ΔE 内 ,且,ΔE 内 = f 滑 S 相 ,

即:2

1

(m + M )v 2 = μmg ·S 相

代入数字得:S 相 = 5.4 m

2、平板车向右运动时比较复杂,只要去每次向左运动的路程的两倍即可。而向左是匀减速的,故

第一次:S 1 = a

2v 2

第二次:S 2 = a 2v 21 = a 212

2

3v

第三次:S 3 = a 2v 22

= a 214

23

v ……

n 次碰墙的总路程是:

ΣS = 2( S 1 + S 2 + S 3 + … + S n )= a v 2( 1 + 231 + 431

+ … + )

(1n 23

1- ) = M

mg v 2μ( 1 + 231 + 431

+ … + )

(1n 231- ) 碰墙次数n →∞,代入其它数字,得:ΣS = 4.05 m

(学生活动)质量为M 、程度为L 的木板固定在光滑水平面上,另一个质量为m 的滑块以水平初速v 0冲上木板,恰好能从木板的另一端滑下。现解除木板的固定(但无初速),让相同的滑块再次冲上木板,要求它仍能从另一端滑下,其初速度应为多少?

解:由第一过程,得滑动摩擦力f = L

2mv 20

第二过程应综合动量和能量关系(“恰滑下”的临界是:滑块达木板的另

一端,和木板具有共同速度,设为v ),设新的初速度为0v '

m 0v ' =( m + M )v

21m 20v ' - 2

1

( m + M )v 2 = fL 解以上三式即可。 答:0v '=

M

M

m +v 0 。

高中奥林匹克物理竞赛解题方法之七对称法

例1:沿水平方向向一堵竖直光滑的墙壁抛出一个弹性小球A , 抛出点离水平地面的高度为h ,距离墙壁的水平距离为s , 小球与墙壁发生弹性碰撞后,落在水平地面上,落地点距墙壁的水平距离为2s ,如图7—1所示. 求小球抛出时的初速度. 解析:因小球与墙壁发生弹性碰撞, 故与墙壁碰撞前后入射速度与反射速度具有对称性, 碰撞后小球的运 动轨迹与无墙壁阻挡时小球继续前进的轨迹相对称,如图7—1—甲所示,所以小球的运动可以转换为平抛运动处理, 效果上相当于小球从A ′点水平抛出所做的运动. 根据平抛运动的规律:?? ? ??==2 021gt y t v x 因为抛出点到落地点的距离为3s ,抛出点的高度为h 代入后可解得:h g s y g x v 2320 == 例2:如图7—2所示,在水平面上,有两个竖直光滑墙壁A 和B ,间距为d , 一个小球以初速度0v 从两墙正中间的O 点斜向上抛出, 与A 和B 各发生一次碰撞后正好落回抛出点O , 求小球的抛射角θ. 解析:小球的运动是斜上抛和斜下抛等三段运动组成, 若按顺序求解则相当复杂,如果视墙为一平面镜, 将球与墙的弹性碰撞等效为对平面镜的物、像移动,可利用物像对称的规律及斜抛规律求解. 物体跟墙A 碰撞前后的运动相当于从O ′点开始的斜上抛运动,与B 墙碰后落于O 点相当于落到O ″点,其中O 、O ′关于A 墙对称,O 、O ″对于B 墙对称,如图7—2—甲所示,于是有 ? ??==?? ???-==0221sin cos 200y d x gt t v y t v x 落地时θθ 代入可解得2 202arcsin 2122sin v dg v dg == θθ 所以抛射角 例3:A 、B 、C 三只猎犬站立的位置构成一个边长为a 的正三角形,每只猎犬追捕猎物的速度均为v ,A 犬想追捕B 犬,B 犬 想追捕C 犬,C 犬想追捕A 犬,为追捕到猎物,猎犬不断调整方向,速度方向始终“盯”住对方,它们同时起动,经多长时间可捕捉到猎物? 解析:以地面为参考系,三只猎犬运动轨迹都是一条复杂的曲线,但根据对称性,三只猎犬最后相交于 三角形的中心点,在追捕过程中,三只猎犬的位置构成三角形的形状不变,以绕点旋转的参考系来描述,可认为三角形不转动,而是三个顶点向中心靠近,所以只要求出顶点到中心运动的时间即可. 由题意作图7—3, 设顶点到中心的距离为s ,则由已知条件得 a s 3 3 = 由运动合成与分解的知识可知,在旋转的参考系中顶点向中心运动的速度为 v v v 2330cos = =' 由此可知三角形收缩到中心的时间为 v a v s t 32='= 此题也可以用递推法求解,读者可自己试解. 例4:如图7—4所示,两个同心圆代表一个圆形槽,质量为m ,内外半径几乎同为R. 槽内A 、B 两处分别放有一个质量也为m 的小球,AB 间的距离为槽的直径. 不计一切摩擦. 现将系统置于光滑水平面上,开始时槽静止,两小球具有垂直于AB 方向的速度v ,试求两小球第一次相距R 时,槽中心的速度0v . 解析:在水平面参考系中建立水平方向的x 轴和y 轴. 由系统的对称性可知中心或者说槽整体将仅在x 轴方向上 运动。设槽中心沿x 轴正方向运动的速度变为0v ,两小球相对槽心做角速度大小为ω的圆周运动,A 球处于

高中物理-动量守恒与能量守恒经典题目资料

专题四 动能定理与能量守恒 本专题涉及的考点有:功和功率、动能和动能定理、重力做功和重力势能、弹性势能、机械能守恒定律,都是历年高考的必考内容,考查的知识点覆盖面全,频率高,题型全。动能定理、机械能守恒定律是力学中的重点和难点,用能量观点解题是解决动力学问题的三大途径之一。《大纲》对本部分考点要求为Ⅱ类有五个, 功能关系一直都是高考的“重中之重”,是高考的热点和难点,涉及这部分内容的考题不但题型全、分值重,而且还常有高考压轴题。考题的内容经常与牛顿运动定律、曲线运动、动量守恒定律、电磁学等方面知识综合,物理过程复杂,综合分析的能力要求较高,这部分知识能密切联系生活实际、联系现代科学技术,因此,每年高考的压轴题,高难度的综合题经常涉及本专题知识。它的特点:一般过程复杂、难度大、能力要求高。还常考查考生将物理问题经过分析、推理转化为数学问题,然后运用数学知识解决物理问题的能力。所以复习时要重视对基本概念、规律的理解掌握,加强建立物理模型、运用数学知识解决物理问题的能力。 二、重点剖析 1、理解功的六个基本问题 (1)做功与否的判断问题:关键看功的两个必要因素,第一是力;第二是力的方向上的位移。而所谓的“力的方向上的位移”可作如下理解:当位移平行于力,则位移就是力的方向上的位的位移;当位移垂直于力,则位移垂直于力,则位移就不是力的方向上的位移;当位移与力既不垂直又不平行于力,则可对位移进行正交分解,其平行于力的方向上的分位移仍被称为力的方向上的位移。 (2)关于功的计算问题:①W=FS cos α这种方法只适用于恒力做功。②用动能定理W=ΔE k 或功能关系求功。当F 为变力时,高中阶段往往考虑用这种方法求功。 这种方法的依据是:做功的过程就是能量转化的过程,功是能的转化的量度。如果知道某一过程中能量转化的数值,那么也就知道了该过程中对应的功的数值。 (3)关于求功率问题:①t W P = 所求出的功率是时间t 内的平均功率。②功率的计算式:θcos Fv P =,其中θ是力与速度间的夹角。一般用于求某一时刻的瞬时功率。 (4)一对作用力和反作用力做功的关系问题:①一对作用力和反作用力在同一段时间内做的总功可能为正、可能为负、也可能为零;②一对互为作用反作用的摩擦力做的总功可能为零(静摩擦力)、可能为负(滑动摩擦力),但不可能为正。1 (5)了解常见力做功的特点:①重力做功和路径无关,只与物体始末位置的高度差h 有关:W=mgh ,当末位置低于初位置时,W >0,即重力做正功;反之重力做负功。②滑动摩擦力做功与路径有关。当某物体在一固定平面上运动时,滑动摩擦力做功的绝对值等于摩擦力与路

高中物理竞赛讲义:动量

专题六 动量 【扩展知识】 1.动量定理的分量表达式 I 合x =mv 2x -mv 1x , I 合y =mv 2y -mv 1y , I 合z =mv 2z -mv 1z . 2.质心与质心运动 2.1质点系的质量中心称为质心。若质点系内有n 个质点,它们的质量分别为m 1,m 2,……m n ,相对于坐标原点的位置矢量分别为r 1,r 2,……r n ,则质点系的质心位置矢量为 r c=n n n m m m r m r m r m ++++++ 211211=M r m n i i i ∑=1 若将其投影到直角坐标系中,可得质心位置坐标为 x c =M x m n i i i ∑=1, y c =M y m n i i i ∑=1, z c =M z m n i i i ∑=1. 2.2质心速度与质心动量 相对于选定的参考系,质点位置矢量对时间的变化率称为质心的速度。 v c=t r c ??=M p 总=M v m n i i i ∑=1, p c =Mv c =∑=n i i i v m 1 . 作用于质点系的合外力的冲量等于质心动量的增量 I 合= ∑=n i i I 1=p c -p c0=mv c -mv c0 . 2.3质心运动定律 作用于质点系的合外力等于质点总质量与质心加速度的乘积。F合=Ma c.。 对于由n 个质点组成的系统,若第i 个质点的加速度为a i ,则质点系的质心加速度可表示为 a c =M a m n i i i ∑=1 .

【典型例题】 1.将不可伸长的细绳的一端固定于天花板上的C点,另一端系一质量为m的小球以以角速度ω绕竖直轴做匀速圆周运动,细绳与竖直轴之间的夹角为θ,如图所示。已知A、B为某一直径上的两点,问小球从A点运动到B点的过程中细绳对小球的拉力T的冲量为多少? 2.一根均匀柔软绳长为l=3m,质量m=3kg,悬挂在天花板的钉子上,且下端刚好接触地板,现将软绳的最下端拾起与上端对齐,使之对折起来,然后让它无初速地自由下落,如图所示。求下落的绳离钉子的距离为x时,钉子对绳另一端的作用力是多少? 3.一长直光滑薄板AB放在平台上,OB伸出台面,在板左侧的D点放一质量为m1的小铁块,铁块以速度v向右运动。假设薄板相对于桌面不发生滑动,经过时间T0后薄板将翻倒。现让薄板恢复原状,并在薄板上O点放另一个质量为m2的小物体,如图所示。同样让m1从D点开始以速度v向右运动,并与m2发生正碰。那么从m1开始经过多少时间后薄板将翻倒?

物理竞赛角动量

物理竞赛角动量文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

第一节力矩和角动量 【知识要点】 一、力矩的定义 1.对轴的力矩 对轴的力矩可推动物体绕轴转动或改变物体绕轴转动的角速度.力矩的大小不仅与力的大小和方向有关,而且与力的作用点有关.当力的作用线在垂直于轴的平面(π)上时(图5-1-1),力矩τ的大小与力的作用点P和轴的距离ρ成正比,与力在垂直于ρ方向上的分量Fφ成正比,因为力在ρ方向上的分量Fρ对物体的绕轴转动无作用,于是有 τ=ρFφ=Fρsinθ(5. 1-1) 式中θ是F与ρ的夹角,ρ就是从轴与平面π的交点O'指向P点的矢量,由于在力矩作用下引起的转动有两个可能的方向,力矩也有正、负两种取向.例如,先任意规定轴的正方向,当逆着轴的正方向去看力矩作用下所引起的物体的转动时,若物体沿逆时针方向转动,对应的力矩就取为正,反之为负.由于ρsinθ=d就是力的作用线与轴的距离,(5. 1-1)式又可写成 τ = Fd (5. 1-1a) d常称为力臂,这正是大家所熟知的力矩表达式. 当力的作用线不在垂直于轴的平面(π)上时,可将力F 分解为平行于轴的分量F∥和垂直于轴的分量F⊥两部 分,其中F1-1b) 这里的θ是F⊥与ρ的夹角(图5-1-2). 2.对参考点的力矩 可将上述对轴的力矩的概念推广到对点的力矩.在选定的 参照系中,从参考点0 指向力的作用点P的矢量r与作 用力F的矢积称为作用力对于参考点0的力矩,即 Τ=r×F(5-1-2) r也可称为作用点相对参考点的位矢.当参考点是坐标原点时,r就是力的作用点的位矢. 根据矢积的意义,力矩的大小等于以r和F两矢量为邻边所构成的平行四边形的面积,方向与r、F所在平面垂直并与r、F成右手螺旋。 二、作用于质点的力矩和作用于质点系的力矩 1.作用于质点的力矩 当质点m受力F作用时,F对参考点〇的力矩即为质点受到的力矩,这时力矩表达式中的r就是参考点指质点的矢量,当参考点为坐标原点时,r就是质点的位矢.当质点受 F1、F2、…、F N N个力同时作用时,诸力对某参考点的力矩的矢量和等 于合力F=F1+F2+…+F N对同一参考点的力矩,即 r×F1+r×F2+…+r×F N=r×(F1+F2+…+F N)=r×F (5. 1-3) 2. 作用于质点系的力矩

高中物理竞赛流程详细解析

高中物理竞赛流程详细解析 高中物理竞赛国内竞赛主要分为:物理竞赛预赛、物理竞赛复赛、物理竞赛决赛三个流程,国际性赛事分为国际物理奥林匹克竞赛和亚洲物理奥林匹克竞赛。 一、全国中学生物理竞赛预赛(CPhO) 1、高中物理竞赛入门级赛事,每年9月上旬举办(也就是秋学期开学),由全国竞赛委员会统一命题,各省市、学校自行组织,所有中学生均可报名; 2、考试形式:笔试,共3小时,5道选择题、每题6分,5道填空题、每题10分,6道大题、每题20分,共计200分; 3、考试主要考力学、热学、电磁学、光学、近代物理等相关内容(回台回复“物竞考纲”查看明细); 4、比赛分别设置了一等奖、二等奖和三等奖,因为预赛主要是各省市为了选拔复赛选手而筹备的,所以一般一等奖可以参加复赛。 5、一般来说,考完试后2~3天即可在考点查询成绩。 二、全国中学生物理竞赛复赛(CPhO) 1、高中阶段最重要的赛事,其成绩对于自主招生及参加清北学科营等有直接影响,每年9月下旬举办(也就是预赛结束后)。 2、复赛分为笔试+实验: 笔试,共3小时,8道大题,每题40分,共计320分; 实验,共90分钟,2道实验,每道40分,共计80分; 总分400分。 3、笔试由全国竞赛委员会统一命题,各省市自行组织、规定考点,大多数省份只有预赛一等奖的同学可以参加; 实验由各省市自行命题,根据笔试成绩组织前几十名左右考生参加(也就是说实验不是所有人都考,只有角逐一等奖的同学才参加),最终根据实验和笔试的总成绩评定出一等奖、二等奖、三等。 4、各省市的实验时间稍有不同,具体可参考当地往年的考试时间。 5、考试内容在预赛的基础上稍有增加,具体考纲后台回复“物竞考纲”查看。 6、比赛设置了一等奖、二等奖、三等奖,也就是我们常说的省一、省二、省三,其中各省省一前几名入选该省省队,可参加决赛。 7、成绩有什么用? 省一等奖可基本满足除清华、北大、复旦以外其他985/211高校的自主招生条件; 省二等奖可满足部分985/211高校的自主招生条件; 省三等奖可满足大部分211学校的自主招生条件。 8、各省省队成员可参加清北金秋营、冬令营,并根据成绩获得降分优惠。

全国高中物理竞赛动量守恒专题

动量及动量守恒 【基本内容】: 1、冲量 恒力的冲量指的是力与其作用时间的乘积。随时间改变的力对物体的冲量是指力的作用对时间的积累效果,即力对时间的积分: dt t F I t t )(2 1 ? = 2、动量 动量是物质运动的一种量度,用P 表示。它定义为质点的质量m 与其速度v 的乘积,即v m P =。动量的单位是千克· 米/秒(s m kg /?). 3、质点的动量定理 质点所受的合外力的冲量等于其动量的增量,称之为质点动量定理.其积分形式为 )()(120 2 1 v m v m v m P d dt t F I P P t t ?=-===??, 其微分形式为 I d dt F P d ==, 即质点动量的元增量等于作用在它上面的的元冲量。 4、质点系的动量定理 如右图所示,质点系由n 个质点组成,动量各为i P (i =1,2,…,n ),第i 个质点受系统内其它质点作用的内力之和为内i F ,受系统外部作用的合外力为外i F ,对系统内各质点分别应用微分形式的动量定理:dt p d F F 1 11= +内外,…,dt p d F F i i i =+内外。把各质点相加,得到 ∑ ∑∑=+dt p d F F i i i 内外。考虑到系统内质点所受内力之和等于零,即0=∑内 i F 。可得质点系动量定理的微分形式:∑∑= i i p dt d F 外。用dt 乘等式两边,得 ∑∑=i i p d dt F 外 ,再对等式两边积分,可得质点系动量定理的积分形式: 00 ∑∑?∑-=i i t t i p p dt F 外 ,即一段时间内质点系动量的增量等于质点系所受合外力的 冲量。 5、动量守恒定律 如果质点系不受外力或所受外力之和(或合外力的冲量)为零,则质点系的动量将保持

镜像法-高中物理竞赛讲义

镜像法 思路 用假想的镜像电荷代替边界上的感应电荷。 保持求解区域中场方程和边界条件不变。 使用范围:界面几何形状较规范,电荷个数有限,且离散分布于有限区域。 使用范围 界面几何形状较规范,电荷个数有限,且离散分布于有限区域。 步骤 确定镜像电荷的大小和位置。 去掉界面,按原电荷和镜像电荷求解所求区域场。 求解边界上的感应电荷。 求解电场力。 平面镜像1 点电荷对平面的镜像 (a) 无限大接地导体平面上方有点电荷q (b)用镜像电荷-q代替导体平面上方的感应电荷 图4.4.1 点电荷的平面镜像 在无限大接地导体平面(YOZ平面)上方有一点电荷q,距离导体平面的高度为h。 用位于导体平面下方h处的镜像电荷-q代替导体平面上的感应电荷,边界条件维持不变,即YOZ平面为零电位面。 去掉导体平面,用原电荷和镜像电荷求解导体上方区域场,注意不能用原电荷和镜像电荷求解导体下方区域场。

电位: (4.4.2.1 ) 电场强度: (4.4.2.2) 其中, 感应电荷:=> (4.4.2.3) 电场力: (4.4.2.4) 图4.4.2 点电荷的平面镜像图4.4.3 单导线的平面镜像 无限长单导线对平面的镜像 与地面平行的极长的单导线,半径为a,离地高度为h。

用位于地面下方h处的镜像单导线代替地面上的感应电荷,边界条件维持不变。 将地面取消而代之以镜像单导线(所带电荷的电荷密度为) 电位: (4.4.2.5) 对地电容 : (4.4.2.6 平面镜像2 无限长均匀双线传输线对平面的镜 像 与地面平行的均匀双线传输线, 半径为a,离地高度为h,导线间距离为d, 导线一带正电荷+,导线二带负电荷-。 用位于地面下方h处的镜像双 导线代替地面上的感应电荷,边界条件维 持不变。 将地面取消而代之以镜像双导线。 图 4.4.4 无限长均匀传输线对地面的镜像 求解电位: (4.4.2.8) (4.4.2.9)

高中物理动量和能量知识点

学大教育设计人:马洪波 高考物理知识归纳(三) ---------------动量和能量 1.力的三种效应: 力的瞬时性(产生a)F=ma 、运动状态发生变化牛顿第二定律 时间积累效应( 冲量)I=Ft 、动量发生变化动量定理 空间积累效应( 做功)w=Fs 动能发生变化动能定理 2.动量观点:动量:p=mv= 2mE 冲量:I = F t K 动量定理:内容:物体所受合外力的冲量等于它的动量的变化。 公式: F 合t = mv ’一mv (解题时受力分析和正方向的规定是关键) I=F 合t=F 1t 1+F 2t 2+---= p=P 末-P 初=mv 末-mv 初 动量守恒定律:内容、守恒条件、不同的表达式及含义:' p p ;p 0;p1 - p 2 P=P′(系统相互作用前的总动量P 等于相互作用后的总动量P′) ΔP=0 (系统总动量变化为0) 如果相互作用的系统由两个物体构成,动量守恒的具体表达式为 P1+P2=P1′+P2′(系统相互作用前的总动量等于相互作用后的总动量) m1V 1+m2V 2=m1V 1′+m2V2′ ΔP=-ΔP'(两物体动量变化大小相等、方向相反) 实际中应用有:m1v1+m2v2= ' ' m1v m v ;0=m1v1+m2v2 m1v1+m2v2=(m1+m2)v 1 2 2 共 原来以动量(P)运动的物体,若其获得大小相等、方向相反的动量(-P),是导致物体静止或反向运动的临界条件。即:P+(-P)=0 注意理解四性:系统性、矢量性、同时性、相对性 矢量性:对一维情况,先选定某一方向为正方向,速度方向与正方向相同的速度取正,反之取负,把矢 量运算简化为代数运算。 相对性: 所有速度必须是相对同一惯性参照系。 同时性:表达式中v1 和v2 必须是相互作用前同一时刻的瞬时速度,v ’和v ’必须是相互作用后同一时刻 1 2 的瞬时速度。 解题步骤:选对象,划过程;受力分析。所选对象和过程符合什么规律?用何种形式列方程;(先要规定正方向)求解并讨论结果。 3.功与能观点: 功W = Fs cos (适用于恒力功的计算)①理解正功、零功、负功②功是能量转化的量度 W= P ·t ( p= w t = F S t =Fv) 功率:P = W t (在t 时间内力对物体做功的平均功率) P = Fv (F 为牵引力,不是合外力;V 为即时速度时,P 为即时功率;V 为平均速度时,P 为平均功率;P 一定时,F 与V 成正比) 动能:E K= 1 2 mv 2 2 p 2m 重力势能E p = mgh (凡是势能与零势能面的选择有关)

《全国中学生物理竞赛大纲》2020版

《全国中学生物理竞赛大纲2020版》 (2020年4月修订,2020年开始实行) 2011年对《全国中学生物理竞赛内容提要》进行了修订,修订稿经全国中学生物理竞赛委员会第30次全体会议通过,并决定从2020年开始实行。修订后的“内容提要”中,凡用※号标出的内容,仅限于复赛和决赛。 力学 1.运动学 参考系 坐标系直角坐标系 ※平面极坐标※自然坐标系 矢量和标量 质点运动的位移和路程速度加速度 匀速及匀变速直线运动及其图像 运动的合成与分解抛体运动圆周运动 圆周运动中的切向加速度和法向加速度 曲率半径角速度和※角加速度 相对运动伽里略速度变换 2.动力学 重力弹性力摩擦力惯性参考系 牛顿第一、二、三运动定律胡克定律万有引力定律均匀球壳对壳内和壳外质点的引力公式(不要求导出) ※非惯性参考系※平动加速参考系中的惯性力 ※匀速转动参考系惯性离心力、视重 ☆科里奥利力 3.物体的平衡 共点力作用下物体的平衡 力矩刚体的平衡条件 ☆虚功原理 4.动量 冲量动量质点与质点组的动量定理动量守恒定律※质心 ※质心运动定理 ※质心参考系 反冲运动 ※变质量体系的运动 5.机械能 功和功率

动能和动能定理※质心动能定理 重力势能引力势能 质点及均匀球壳壳内和壳外的引力势能公式(不要求导出)弹簧的弹性势能功能原理机械能守恒定律 碰撞 弹性碰撞与非弹性碰撞恢复系数 6.※角动量 冲量矩角动量 质点和质点组的角动量定理和转动定理 角动量守恒定律 7.有心运动 在万有引力和库仑力作用下物体的运动 开普勒定律 行星和人造天体的圆轨道和椭圆轨道运动 8.※刚体 刚体的平动刚体的定轴转动 绕轴的转动惯量 平行轴定理正交轴定理 刚体定轴转动的角动量定理刚体的平面平行运动9.流体力学 静止流体中的压强 浮力 ☆连续性方程☆伯努利方程 10.振动 简谐振动振幅频率和周期相位 振动的图像 参考圆简谐振动的速度 (线性)恢复力由动力学方程确定简谐振动的频率简谐振动的能量同方向同频率简谐振动的合成 阻尼振动受迫振动和共振(定性了解) 11.波动 横波和纵波 波长频率和波速的关系 波的图像 ※平面简谐波的表示式 波的干涉※驻波波的衍射(定性) 声波 声音的响度、音调和音品声音的共鸣乐音和噪声

物理竞赛 角动量

第一节力矩和角动量 【知识要点】 一、力矩的定义 1.对轴的力矩 对轴的力矩可推动物体绕轴转动或改变物体绕轴转动的角速度.力矩的大小不仅 与力的大小和方向有关,而且与力的作用点有关.当力的作用线在垂直于轴的平面(π)上时(图5-1-1),力矩τ的大小与力的作用点P和轴的距离ρ成正比,与力在垂直于ρ方向上的分量Fφ成正比,因为力在ρ方向上的分量Fρ对物体的绕轴转动无作用,于是有 τ=ρFφ=Fρsinθ(5. 1-1) 式中θ是F与ρ的夹角,ρ就是从轴与平面π的交点O'指向P点的矢量,由于在力矩作用下引起的转动有两个可能的方向,力矩也有正、负两种取向.例如,先任意规定轴的正方向,当逆着轴的正方向去看力矩作用下所引起的物体的转动时,若物体沿逆时针方向转动,对应的力矩就取为正,反之为负.由于ρsinθ=d就是力的作用线与轴的距离,(5. 1-1)式又可写成 τ = Fd (5. 1-1a) d常称为力臂,这正是大家所熟知的力矩表达式. 当力的作用线不在垂直于轴的平面(π)上时,可将力 F分解为平行于轴的分量F ∥ 和垂直于轴的分量F⊥两 部分,其中F // 对物体绕轴转动不起作用,而F⊥就是 在垂直于轴的平面(π)上的投影,故这时F对轴的 力矩可写成 τ=ρF⊥sinθ(5. 1-1b) 这里的θ是F⊥与ρ的夹角(图5-1-2). 2.对参考点的力矩 可将上述对轴的力矩的概念推广到对点的力矩.在选 定的参照系中,从参考点0 指向力的作用点P的矢量r与作用力F的矢积称为作用力对于参考点0的力矩,即 Τ=r×F(5-1-2) r也可称为作用点相对参考点的位矢.当参考点是坐标原点时,r就是力的作用点的位矢.根据矢积的意义,力矩的大小等于以r和F两矢量为邻边所构成的平行四边形的面积,方向与r、F所在平面垂直并与r、F成右手螺旋。 二、作用于质点的力矩和作用于质点系的力矩 1.作用于质点的力矩 当质点m受力F作用时,F对参考点〇的力矩即为质点受到的力矩,这时力矩表达式(5.1-2)中的r就是参考点指质点的矢量,当参考点为坐标原点时,r就是质点 的位矢.当质点受F 1、F 2 、…、F N N个力同时作用时,诸力对某参考点的力矩的

高中物理竞赛(解题方法:整体法)

高中奥林匹克物理竞赛解题方法 、整体法 方法简介 整体是以物体系统为研究对象,从整体或全过程去把握物理现象的本质和规律,是一种把具 有相互联系、相互依赖、相互制约、相互作用的多个物体,多个状态,或者多个物理变化过程组合 作为一个融洽加以研究的思维形式。整体思维是一种综合思维,也可以说是一种综合思维,也是多 种思维的高度综合,层次深、理论性强、运用价值高。因此在物理研究与学习中善于运用整体研究 分析、处理和解决问题,一方面表现为知识的综合贯通,另一方面表现为思维的有机组合。灵活运 用整体思维可以产生不同凡响的效果,显现“变”的魅力, 把物理问题变繁为简、变难为易。 赛题精讲 例1如图1—1所示,人和车的质量分别为m和M,人用水 平力F拉绳子,图中两端绳子均处于水平方向,不计滑轮质量及摩 擦,若人和车保持相对静止,且水平地面是光滑的,则车的加速度为 ________________________________________________ . 解析:要求车的加速度,似乎需将车隔离出来才能求解,事实 上,人和车保持相对静止,即人和车有相同的加速度,所以可将人和车看做一个整体,对整体用 牛顿第二定律求解即可 将人和车整体作为研究对象,整体受到重力、水平面的支持力和两条绳的拉力 向重力与支持力平衡,水平方向绳的拉力为2F,所以有: 2F=(M+m)a,解得: 2F a M m 例2用轻质细线把两个质量未知的小球悬挂起来,如图 1 —2所示,今对小球a持续施加一个向左偏下30°的恒力,并对小球b持续施加一个向右 偏上30°的同样大小的恒力,最后达到平衡,表示平衡状态的图可能是 ?在竖直方解析

高中物理竞赛(动量)概论

动 量 一.冲量、动量定理 1.冲量:I =Ft ,相当于F -t 图象的面积。 2.动量定理:Ft =mv 2-mv 1(是矢量关系)。 3.动量定理的推广: ∑∑=v m t F ??。 1. 如图所示,水平面上有二个物体A 和B ,质量分别为m A =2Kg,m B =1Kg,A 与B 相距一定的距离,A 以 v 0=10m/s 的初速度向静止的B 运动,与B 发生正碰后分开,分开后A 仍向原方向运 动,已知A 从开始运动到停下来共运动6s 时间.求碰后B 能滑行的时间.(略去A 、B 的碰撞时间,A 和B 与地面之间的动摩擦因数都为0.1,重力加速度g =10m/s 2) (答案:8s ) 解:对系统,有动量定理:-μm A gt A -μm B gt B =0-m A v 0,t B =8s. 2. 以速度大小为v 1竖直向上抛出一小球,小球落回地面时的速度大小为v 2,设小球在运动过程中受空气阻 力大小与速度大小成正比,求小球在空中运动的时间.[答案:(v 1+v 2)/g ] 解:因小球在运动过程中受到的阻力大小是变化的,所以无法直接用牛顿定律解,把物体运动过程分成无数段,则 ∑=s t v ?。 上升过程,有动量定理:-mg ?t -kv ?t =m ?v ,求和得:mgt 上+ks =mv 1. 同理下落过程:mgt 下-ks =mv 2.两式相加得:t =t 上+t 下=(v 1+v 2)/g . 3. 质量为m 的均匀铁链,悬挂在天花板上,其下端恰好与水平桌面接触,当上端的悬挂点突然脱开后,求当有 一半的铁链在水平桌面上时,铁链对桌面的压力. (答案:3mg /2) 解:设铁链长为L ,则单位长度的质量为m /L ,当有一半的铁链在水平桌面上时,铁链对桌面的压力为:桌面上的铁链的重力F 1=mg /2和落到桌面上的铁链对桌面的冲力F 2之和. 取刚落到桌面上的一小段铁链作为研究对象,它的初速度v 0= gL gL =2 2,末速度v =0,质量?m =v 0?tm /L . 有动量定理: 22()0(),得.m m F mg t m Lg F Lg mg Lg mg t t ??-??=-?-= +?≈ =?? 所以铁链对桌面的压力F =F 1+F 2=3mg /2.(F 2不能用动能定理,为什么?) 4. 一根均匀柔软绳长为L ,质量为m ,对折后两端固定在一个钉子上.其中一端突然从钉子上脱落,如图所示. 求下落端的端点离钉子的距离为x 时,钉子对绳子另一端的作用力.[答案: 2 1 mg (1+3x /L )] 解:当左边绳端离钉子的距离为x 时,左边绳长为x = 2 1 (L -x ),速度gx v 2=.右边绳长为21(L +x ),又经一段很短时间?t 后,左边的绳子又有长度为2 1 v ?t 的一小段转 移到右边去了,我们就分析这一小段绳子,这一小段绳子受两个力作用:上面绳子对它的拉力T 和它本身的重力 2 1 v ?t λg (λ=m /L ,为绳子的线密度),根据动量定理(不能用动能定理,因在绳子受T 的作用过程有动能损失),

第33届全国中学生物理竞赛决赛试题

第33届全国中学生物理竞赛决赛理论考试试题 可能用到的物理常量和公式: 真空中的光速82.99810/c m s =?; 地球表面重力加速度大小为g ; 普朗克常量为h ,2h π=; 2111ln ,1121x dx C x x x +=+<--?。 1、(15分)山西大同某煤矿相对于秦皇岛的高度为c h 。质量为t m 的火车载有质量为c m 的煤,从大同沿大秦铁路行驶路程l 后到达秦皇岛,卸载后空车返回。从大同到秦皇岛的过程中,火车和煤总势能的一部分克服铁轨和空气做功,其余部分由发电机转换成电能,平均转换效率为1η,电能被全部存储于蓄电池中以用于返程。空车在返程中由储存的电能驱动电动机克服重力和阻力做功,储存的电能转化为对外做功的平均转换效率为2η。假设大秦线轨道上火车平均每运行单位距离克服阻力需要做的功与运行时(火车或火车和煤)总重量成正比,比例系数为常数μ,火车由大同出发时携带的电能为零。 (1)若空车返回大同时还有剩余的电能,求该电能E 。 (2)问火车至少装载质量为多少的煤,才能在不另外提供能量的条件下刚好返回大同? (3)已知火车在从大同到达秦皇岛的铁轨上运行的平均速率为v ,请给出发电机的平均输出功率P 与题给的其它物理量的关系。 2、(15分)如图a ,AB 为一根均质细杆,质量为m ,长度为2l ;杆上端B 通过一不可伸长的软轻绳悬挂到固定点O ,绳长为1l 。开始时绳和杆均静止下垂,此后所有运动均在同一竖 直面内。 (1)现对杆上的D 点沿水平方向施加一瞬时冲量I ,若 在施加冲量后的瞬间,B 点绕悬点O 转动的角速度和杆 绕其质心转动的角速度相同,求D 点到B 点的距离和B 点绕悬点O 转动的初始角速度0ω。

高中物理竞赛方法集锦 等效法

四、等效法方法简介 在一些物理问题中,一个过程的发展、一个状态的确定,往往是由多个因素决定的,在这一决定中,若某些因素所起的作用和另一些因素所起的作用相同,则前一些因素与后一些因素是等效的,它们便可以互相代替,而对过程的发展或状态的确定,最后结果并不影响,这种以等效为前提而使某些因素互相代替来研究问题的方法就是等效法. 等效思维的实质是在效果相同的情况下,将较为复杂的实际问题变换为简单的熟悉问题,以便突出主要因素,抓住它的本质,找出其中规律.因此应用等效法时往往是用较简单的因素代替较复杂的因素,以使问题得到简化而便于求解. 赛题精讲 例1:如图4—1所示,水平面上,有两个竖直的光滑 墙壁A 和B ,相距为d ,一个小球以初速度v 0从两墙 之间的O 点斜向上抛出,与A 和B 各发生一次弹性 碰撞后,正好落回抛出点,求小球的抛射角θ. 解析:将弹性小球在两墙之间的反弹运动,可等效为 一个完整的斜抛运动(见图).所以可用解斜抛运动的 方法求解. 由题意得:g v v t v d θ θθsin 2cos cos 2000? =?= 可解得抛射角 20 2arcsin 21v gd = θ 例2:质点由A 向B 做直线运动,A 、B 间的距离为L ,已知质点在A 点的速度为v 0,加速度为a ,如果将L 分成相等的n 段,质点每通过L/n 的距离加速度均增加a /n ,求质点到达B 时的速度. 解析 从A 到B 的整个运动过程中,由于加速度均匀增加,故此运动是非匀变速直线 运动,而非匀变速直线运动,不能用匀变速直线运动公式求解,但若能将此运动用匀变速直线运动等效代替,则此运动就可以求解. 因加速度随通过的距离均匀增加,则此运动中的平均加速度为 n a n n a an n a n a a a a a 2)13(232)1(2 -= -=-++= += 末 初平 由匀变速运动的导出公式得2 22v v L a B -=平 解得 n aL n v v B )13(2 0-+ = 例3一只老鼠从老鼠洞沿直线爬出,已知爬出速度v 的大小与距老鼠洞中心的距离s 成

高中物理-动量和能量的综合

动量和能量的综合 一、大纲解读 动量、能量思想是贯穿整个物理学的基本思想,应用动量和能量的观点求解的问题,是力学三条主线中的两条主线的结合部,是中学物理中涉及面最广,灵活性最大,综合性最强,容最丰富的部分,以两大定律与两大定理为核心构筑了力学体系,能够渗透到中学物理大部分章节与知识点中。将各章节知识不断分化,再与动量能量问题进行高层次组合,就会形成综合型考查问题,全面考查知识掌握程度与应用物理解决问题能力,是历年高考热点考查容,而且命题方式多样,题型全,分量重,小到选择题,填空题,大到压轴题,都可能在此出题.考查容涉及中学物理的各个版块,因此综合性强.主要综合考查动能定理、机械能守恒定律、能量守恒定律、动量定理和动量守恒定律的运用等.相关试题可能通过以弹簧模型、滑动类模型、碰撞模型、反冲等为构件的综合题形式出现,也有可能综合到带电粒子的运动及电磁感应之中加以考查. 二、重点剖析 1.独立理清两条线:一是力的时间积累——冲量——动量定理——动量守恒;二是力的空间移位积累——功——动能定理——机械能守恒——能的转化与守恒.把握这两条主线的结合部:系统.. 。即两个或两个以上物体组成相互作用的物体系统。动量和能量的综合问题通常是以物体系统为研究对象的,这是因为动量守恒定律只对相互作用的系统才具有意义。 2.解题时要抓特征扣条件,认真分析研究对象的过程特征,若只有重力、系统弹力做 功就看是否要应用机械能守恒定律;若涉及其他力做功,要考虑能否应用动能定理或能的转化关系建立方程;若过程满足合外力为零,或者力远大于外力,判断是否要应用动量守恒;若合外力不为零,或冲量涉及瞬时作用状态,则应该考虑应用动量定理还是牛顿定律. 3.应注意分析过程的转折点,如运动规律中的碰撞、爆炸等相互作用,它是不同物理过程的交汇点,也是物理量的联系点,一般涉及能量变化过程,例如碰撞中动能可能不变,也可能有动能损失,而爆炸时系统动能会增加. 三、考点透视 考点1、碰撞作用 碰撞类问题应注意:⑴由于碰撞时间极短,作用力很大,因此动量守恒;⑵动能不增加,碰后系统总动能小于或等于碰前总动能,即1212k k k k E '+E 'E +E ≤;⑶速度要符合物理情景:如果碰前两物体同向运动,则后面的物体速度一定大于前面物体的速度,即v v 后前>,碰撞后,原来在前面的物体速度一定增大,且≥v v 后前;如果两物体碰前是相向运动,则碰撞后,两物体的运动方向不可能都不改变,除非两物体碰撞后速度均为零。

高中物理竞赛讲义-角动量

角动量 一、力矩(对比力) 1、质点对轴的力矩可以使物体绕轴转动或改变物体的角速度 2、力矩可以用M 或τ表示 3、力矩是矢量 4、力矩的大小和方向 (1)二维问题 sin rF τθ= 注意,式中的角度θ为F 、r 两个矢量方向的夹角。 求力矩的两种方法:(类比求功的两种方法) (sin )r F τθ= (sin )r F τθ= 二维问题中,力矩的方向可以简单地用顺时针、逆时针表示。 (2)三维问题 r F τ=?r r r 力矩的大小为 sin rF τθ= 力矩的方向与r 和F 构成的平面垂直,遵循右手螺 旋法则 5、质点系统受到的力矩 只需要考虑外力的力矩,一对内力的力矩之和一定为0. 二、冲量矩(对比冲量) 1、冲量矩反映了冲量改变物体转动的效果,是一个过程量 2、冲量矩用L 表示 3、冲量矩的大小 L r I r Ft t τ=?=?=r r u r r r r 4、冲量矩是矢量,方向与r 和F 构成的平面垂直,遵循右手螺旋法则,即方向和力矩的方向相同 5、经常需用微元法(类比功和冲量这两个过程量的计算) 三、动量矩(即角动量)(对比动量) 1、角动量反映了物体转动的状态,是一个状态量 2、角动量用l 表示 3、角动量的大小 l r p r vm =?=?u r r r r r 4、角动量是矢量,方向与r 和v 构成的平面垂直,遵循右手螺旋法则 四、角动量定理(对比动量定理) 冲量矩等于角动量的变化量 L t l τ==?r r r

五、角动量守恒定律(对比动量守恒定律) 角动量守恒的条件:(满足下列任意一个即可) 1、合外力为0 2、合外力不为0,但合力矩为0 例如:地球绕太阳公转 此类问题常叫做“有心力”模型 3、合外力不为0,每个瞬时合力矩也不为0,但全过程总的冲量矩为0 例如:单摆从某位置摆动到对称位置的过程 注意:讨论转动问题一定要规定转轴,转轴不同结果也不同 六、转动惯量(对比质量) 1、转动惯量反映了转动中惯性 2、转动惯量用I 或J 表示 3、质点的转动惯量等于质量乘以和转轴距离的平方 2I mr = 4、转动惯量是标量 5、由于实际物体经常不能看作质点,转动惯量的计算需要用微元法或微积分 2 i i I m r =∑ 6、引入转动惯量后,角动量也可以表示为(类比动量的定义) l I ω=r r 七、转动问题中的牛顿第二定律(即转动定理)(对比牛顿第二定律) 合力矩等于转动惯量乘以角加速度 I τβ=r r 八、动能的另一种表示方式 221122 k E mv I ω= =

高中物理竞赛方法集锦

例11:如图13—11所示,用12根阻值均为r的相同的电阻丝构成正立方体框架。试求AG两点间的等效电阻。 解析:该电路是立体电路,我们可以将该立体电路“压扁”,使其变成平面电路,如图13—11—甲所示。 考虑到D、E、B三点等势,C、F、H三点等势,则电路图可等效为如图13—11—乙所示的电路图,所以AG间总电阻为

r r r r R 6 5363=++= 例12:如图13—12所示,倾角为θ的斜面上放一木 制圆制,其质量m=0.2kg ,半径为r ,长度L=0.1m ,圆柱 上顺着轴线OO ′绕有N=10匝的线圈,线圈平面与斜面 平行,斜面处于竖直向上的匀强磁场中,磁感应强度 B=0.5T ,当通入多大电流时,圆柱才不致往下滚动? 解析:要准确地表达各物理量之间的关系, 最好画出正视图,问题就比较容易求解了。如 图13—12—甲所示,磁场力F m 对线圈的力矩 为M B =NBIL ·2r ·sin θ,重力对D 点的力矩为: M G =mgsin θ,平衡时有:M B =M G 则可解得:A NBL mg I 96.12== 例13:空间由电阻丝组成的无穷网络如图13—13 所示,每段电阻丝的电阻均为r ,试求A 、B 间的等效 电阻R AB 。 解析:设想电流A 点流入,从B 点流出,由对称 性可知,网络中背面那一根无限长电阻丝中各点等电 势,故可撤去这根电阻丝,而把空间网络等效为图13—13—甲所示的电路。

(1)其中竖直线电阻r ′分别为两个r 串联和一个r 并联后的电阻值, 所以 r r r r r 3 232=?=' 横线每根电阻仍为r ,此时将立体网络变成平面网络。 (2)由于此网络具有左右对称性,所以以AB 为轴对折,此时网络变为如图13—13—乙所示的网络。 其中横线每根电阻为21r r = 竖线每根电阻为32r r r ='= '' AB 对应那根的电阻为r r 32 =' 此时由左右无限大变为右边无限 大。 (3)设第二个网络的结点为CD ,此后均有相同的网络,去掉AB 时电路为图13—13—丙所示。再设R CD =R n -1(不包含CD 所对应的竖线电阻) 则N B A R R =',网络如图13—13—丁所示。

高中物理《动量能量》专题复习

《动量、能量》二轮复习方案 一、命题趋向及热点情景 从04到08高考题演变来看,动量、能量知识在09高考中应表现为选择题一道,实验题无,25题为动量与能量的压轴题,这种布局可能性很高. 因为压轴情形大增故此板块我市二轮备考应有重点突破. 选择题通常借助一幅不太复杂的情景考查学生对动量能量主要知识初步理解能力,特别地近些年来能图像式的选项来影响考生的判断…… 计算题则以生活中或从实际中抽象出来的理想的相对复杂情景,考查学生物理理解能力、推理能力、分析综合能力、应用数学处理物理问题的能力. 通常考查对象通常两个或以上,考查情景中的全程或局部,对象的全部或局部含有能量和动量变化或守恒.考查的情形有关碰撞的问题、滑块问题、传送带、绳杆管轨道类等问题…… 二、重难点突破意义及对策 得综合者得高考,得物理者得理综,物理中有关热点主干知识重难点突破者得物理.物理题目是否顺手关键在于选择中一两道、设计型实验、压轴题的突破.这几个方面解决得好会对理综成绩提升会有乘数效应,相反就会是一种伤心的痛. 通常一道题学生做得如何在于对题的情景感知程度和对情景的把握.这里面有属于学生层面的千差万别的个体因素,还有属于教师层面的引导传授的群体因素.前者我们很多时候无法把握,后者正要我们作为教者对症下药. 【对策1】创设丰富的情景引导学生分析研究 老师应手头上必备近些年来高考和模拟题库,最好是分成板快的,还要借助学校及本组教师的资源优势从网上、从来往学校组织题源,老师多做多探索结合本校学生过去和现在的训练,把那些学生没有经历的相对新颖有代表性最能本板块新题型、新情景及时补充到课堂、训练和考试中.除此外在二轮复习中还应把学生过去分散感受过经典爱错的老情景集中呈现,增强学生实考中快速切入的能力. 【对策2】形成分类专题突破 要精讲一道题要像学生刚做该题那样,分析题目已知条件,建立此情景全局画面,寻找连结各画面的逻辑连结关系,建立学生最熟悉的模型,用最恰当定理公式建立物理量的关系. 一类题要精讲一道,学生最需要的是如何切入,整体把握以及提醒关键细节的易错点. 做好这方面的事老教师往往在自己头脑里有一套成熟的题集,但也要结合集体智慧不断结合高考和学生实际推陈出新. 专题目标形成一类题的解题方法和套路,进一步提高学生理解能力、推理能力、分析综合能力、应用数学处理物理问题的能力. 【对策3】强化必要的物理思维定势 动量和能量的综合题注定要呈现两个及以上物体分析的优势;相对复杂的情景也注定有大过程中包含许多子过程,大过程和子过程有着复杂的连接关系;相对复杂的情景也注定耗时较多,解这类题很注重效率. A. 用动量、能量观解题优先级别高于牛顿运动定律。 B.尽可能列出动量、能量转化始末的全程方程。 列方程中,要关注公式定理及守恒条件,做到粗中有细. 特别是涉及有碰撞或爆炸类动能定理方程时类情形时则应在撞前撞后分别列方程而不应该列出贯穿大过程始末的方程,这并不是全程方程有什么问题而是像碰撞中能量转化涉及作用力,作用时间位移小,这些力的作功在方程中无法呈现的缘故。 C. 两个及以上物体系的优先系统分析法 系统分析法在牛顿运动定律和动量定理中获取了极大的成功,但在动能定理中却受到了极大的压制,但系统分析法从来就是一种优化的解题观念。这里最难办的就是系统内力作功问题,关于内力作功大量的选择题来强化学生的认识,不是无的放矢。系统动能定理不是不能用,但不可滥用。系统动能定量完全可表述为:多物体构成的系统中所有系统外力作功和所有系统内力作功的代数和等于系统内各物体动能变化的总和。但这样一个结论下了和没下没什么差别,因为它在很多时候不能给我们带来便利。

相关主题
文本预览
相关文档 最新文档