当前位置:文档之家› 光学发展简史

光学发展简史

光学发展简史
光学发展简史

光学发展简史-萌芽时期

中国古代光学萌芽及发展

中国古代对光的认识是和生产、生活实践紧密相连的。它起源于火的获得和光源的利用,以光学器具的发明、制造及应用为前提条件。根据籍记载,中国古代对光的认识大多集中在光的直线传播、光的反射、大气光学、成像理论等多个方面。

光的直线传播

1、对光的直线传播的认识早在春秋战国时

《墨经》已记载了小孔成像的实验:“景,光之人,

煦若射,下者之人也高;高者之人也下,足蔽下光,

故成景于上,首蔽上光,故成景于下……”。指出小

孔成倒像的根本原因是光的“煦若射”,以“射”来

比喻光线径直向、疾速似箭远及他处的特征动而准

确。

宋代,沈括在《梦溪笔谈》中描写了他做过的一个实验,在纸窗上开一个小孔,使窗外的飞鸢和塔的影子成像于室内的纸屏上,他发现:“若鸢飞空中,其影随鸢而移,或中间为窗所束,则影与鸢遂相违,鸢东则影西,鸢西则影东,又如窗隙中楼塔之影,中间为窗所束,亦皆倒垂”。进一步用物动影移说明因光线的直进“为窗所束”而形成倒像。

2、对视觉和颜色的认识对视觉在《墨经》中已有记载:“目以火见”。已明确表示人眼依赖光照才能看见东西。稍后的《吕氏春秋·任数篇》明确地指出:“目之见也借于昭”。《礼记·仲尼燕居》中也记载:“譬如终夜有求于幽室之中,非烛何见?”东汉《潜夫论》中更进一步明确指出:“夫目之视,非能有光也,必因乎日月火炎而后光存焉”。以上记载均明确指出人眼能看到东西的条件必须是光照,尤其值得注意的是认为:光不是从眼睛里发出来的,而是从日、月、火焰等光源产生的。这种对视觉的认识是朴素、明确、比较深刻的。

颜色问题,在中国古代很少从科学角度加以探索,而着重于文化礼节和应用。早在石器时代的彩陶就已有多种颜色工艺。《诗经》里就出现了数十种不同颜色的记载。周代把颜色分为“正色”和“间色”两类,其中“正色”是指“青、赤、黄、白、黑五色”。“间色”则由不同的“正色”以不同的比例混合而成。战国时期《孙子兵法·势篇》更指出:“色不过五,五色之变不可胜观也”。可见这“正色”和“间色”的说法,与现代光学中的“三原色”理论很类似,但缺乏实验基础。清初博明对颜色提出”五色相宣之理,以相反而相成。如白之与黑,朱之与绿,黄之与蓝,乃天地间自然之对,待深则俱深,浅则俱浅。相杂而间,色生矣”(《西斋偶得三种》)。这里孕育了互补色的初步概念,虽未形成一定的颜色理论,但从半经验半思辨的角度看也实在是难能可贵的。

3、光的反射和镜的利用中国古代由于金属冶炼技术的发展,铜镜在公元前2000年夏初的齐家文化时期已经出现。后来随着技术的发展,古镜制作技术逐渐提高,应

用范围逐扩大,种类也逐渐增多,出现了各种平面镜、凹面镜和凸面镜,甚至还制造出被国外称为魔镜的“透光镜”。1956~1957年河南陕县上村岭1052号虢国墓出土过春秋早期的一面阳燧(凹面镜),它直径7.5厘米,凹面呈银白色,打磨十分光洁,背面中心还有一高鼻纽以便携带,周围是虎、鸟花纹,图1是它的镜背及剖面图。镜的利用为光的反射的研究创造了良好的条件,使中国古代对

中国古代铜镜

光的反射现象和成像规律有较早的认

识。这方面的记载也较多。关于平面镜

反射成像,《墨经》中记载:“景迎日,

说在转”。说明人像投在迎向太阳的一

边,是因为日光经过镜子的反射而转变

了方向。这是对光的反射现象的一种客

观描写。关于平面镜组合成像,《庄子·天

下篇》中记载:“鉴以鉴影,而鉴以有影,两鉴相鉴重影无穷”。生动地描写了光线在两镜之间彼此往复反射,形成许许多多像的情景。《淮南万毕术》记载:“取大镜高悬,置水盆于其下,则见四邻矣”。其原理和现代的潜望镜很类似。对凸面镜成像的规律,在《墨经》中有所叙述:“鉴团,景一,说在刑之大”。经说中进一步解释说:“鉴,鉴者近,则所鉴大,景亦大,其远,所鉴小,景亦小,而必正”。它说明了凸面镜只成一种像,物体总成一种缩小而正立的像,对凸面镜成像规律作了细致描写。关于凹面镜,《墨经》记载:“鉴洼,景一小而易,一大而正,说在中之外、内”。说明当时已认识到凹面镜有一个“中”(指焦点和球心之间)。物在“中”之外,得到比物体小而倒立的像,物在“中”之内,得到的是比物体大而正立的像,这种观察是细致而周密的。《淮南子·天文训》记载:“阳燧见日则燃而为火'。这说明中国古代已认识到凹面镜对光线有聚作用。《梦溪笔谈》中也有记载:“阳燧,面洼,以一指迫而照之则正,渐远则无所见,过此遂倒”。此处不仅述了凹面镜成像的规律,还提出了测凹面镜的焦距的一种粗略方法,发现成正像和倒像之间有个分界点。《梦溪笔谈》又说:“阳燧面洼,向日照之,光皆聚向内,离镜一、二寸,光聚为一点,大如麻菽,着物则火发,此则腰鼓最细处也”。作者(沈括)把聚光点形容如芝麻和豆粒那么之小,又把它称作“碍”,用“腰鼓最细处”形容地比喻光束的会聚,十分贴切。

4、对大气光学现象的探讨大气光学现象是中国古代光学最有成效的领域之一,早在周代由于占卜的需要,已建立了官方的观测机构,虽然他们的工作蒙上了一层神秘的色彩,但是对晕、虹、海市蜃楼、北极光等大气光学现象的观测与记载是长期、系统而又深入细致的,世所罕见。《周礼》中记载有“十煇”,指的是括“霾”和“虹”等在内的十种大气光学现象。到唐代对它的认识更加细致、深入。《晋书·天文志》中明确指出:“日旁有气,圆而周布,内赤外青,名日晕”。此处不仅为晕下了定义,而且把晕按其形态冠以各种形象的名称,如将太阳上的一小段晕弧叫做“冠”;太阳左右侧内向的晕弧叫做“抱”等等。另外在《魏书·天象志》中对晕也有记载。除此以外,在宋朝以后的许多地方志中也记载有

大气光象,还出现了关于大气光象的专著及图谱,其中《天象灾瑞图解》一直流传至今。殷商时期,就出现了有关虹的象形文字,对虹的形状和出现的季节、方位不少书有所记载,如《礼记·月令》指出:“季春之月……虹始见”,“孟冬之月……虹藏不见”。东汉蔡邕(132~192)在《明堂月令》中写道:“虹见有青赤之色,常依阴云而昼见于日冲。无云不见,太阳亦不见,见辄与日相互,率以日西,见于东方……?这些记载虽然是很粗浅的,经验性的,但它却是关于虹的确凿记录。魏、晋以后,对虹的本质和它的成因逐渐有所探讨,南朝江淹说自己对虹“迫而察之”,断定是因为“雨日阴阳之气”而成。唐初已认识到虹的成因,”若云薄漏日,日照雨滴则虹生”,明确指出“日照”和“雨滴”是产生虹的条件。后来,张志和在《玄真子·涛之灵》中明确指出:“背日喷乎水,成虹霓之状'。第一次用实验方法得出人工造虹,到南宋时,蔡在《毛诗名物解》中,对这一种更有发展:“今以水喷日,自侧视之则晕为虹”。不仅重复了《玄真了》

海市蜃楼

中的实验方法,而且更进一步指出了观

察者所在的位置。在国外对虹的成因作

出解释的是在13世纪,因此我们对虹成

因的正确描述比西方早约600年。

关于海市蜃楼,中国古代也早有记载,

如《史记·天官书》:“蜃气象楼台”。

《汉书·天文志》:“海旁蜃气楼台”。

《晋书·天文志》:“凡海旁蜃气象楼

台,广野气成宫阙,北夷之气如牛羊群畜穹庐,南夷之气类舟船幡旗”。这是对海市蜃楼的如实描写,但当时并不了解其成因和机理。到宋朝苏轼对它才有较正确的认识,他在《登州海市》中说:“东方云海空复空,群山出没月明中,荡摇浮进生万象,岂有贝阙藏珠宫”。此处明确地表示海市蜃楼都是幻景,蜃气并不能成宫殿的思想。到明、清之际,陈霆、方以智等人对海市蜃楼作了进一步探讨,陈霆认为海市蜃楼的成因是:“为阳焰和地气蒸郁,偶尔变幻'。方以智认为“海市或以为蜃气,“非也”。张瑶星认为蓬莱岛上的蜃景是附近庙岛群岛所成的幻景,后来揭暄和游艺画了一幅如图2所示的“山城海市蜃气楼台图”,图上右方是左方楼台的倒影。文中记载了登州(即蓬菜)海市,并说:“昔曾见海市中城楼,外植一管,乃本府东关所植者。因语以湿气为阳蒸出水上,竖则对映,横则反映,气盛则明,气微则隐,气移则物形渐改耳,在山为山城,在海为海市,言蜃气,非也。”这一气“气映”说是对当时海市蜃楼知识的珍贵总结。极光是一种瞬息变幻、绚丽多彩的大气光象,中国处在北半球,故观察到的只能是北极光。早在二千年前,中国就对北极光人加以观察,并有所记载,《竹书纪年》中记载:“周昭王末年,夜清,五色光贯紫微。其年,王南巡不返”。此文虽如实地记录了北极光出现的时间、方位和颜色,但把王南巡不返(卒于江上)联系起来,说明当时对北极光还没有正确的认识。对北极光的形状、颜色不少书都有详细的描述,并绘有彩色极光图,这些都是研究北极光的极好史料。

5、关于成影现象的认识日常生活中,在光线照射下,影随时随处可以见到,它引起人们的注意,并探究其形成的规律。立竿见影是中国古代最早被注意的问题,后来用此方法测影定向,并应用于确定墓穴和建筑物的方位上。这套方法在周代已发展很精密,据《考工记》记载,当时有“土方氏”使用圭表,“典瑞氏”管理土圭,“匠人”则使用土圭辨定方位进行建筑,并指出在测表影之先,要使地面保持水平,使表竿保持垂直,这说明当时已认识到投影的长度和光源位置有关,而且也和物体的斜度有关。《墨经》中对成影的讨论更加深入,通过实验明确指出:表秆在地面上投影的粗细长短,是随木离光源的远近、木的倾斜度以及光源的大小变化而变化的规律。

中国古代对光的认识除以上所述外,还有其他一些方面,如折射现象;天然晶体的色散;明清时期,光学从西方传入后,还有了光学仪器的制作等等,但这些认识是零散的,定性的,绝大多数都只停留在对光学现象的描写和记载上。值得提出的是宋末元初的赵友钦(13世纪中叶至14世纪初叶),在《革象新书》的“小罅光景”中,描写了一个大型光学实验,在地面下挖了两个圆阱,圆阱上可加放中心开有大小、形状不同孔的圆板盖。通过它可进行只有一个条件不同的对比实验,对小孔(大小和形状)、光源(形状和强度)、像(形状和亮度)、物距、像距之间的关系进行研究。将两块圆板上各插1000多支蜡烛,放在阱底或桌面上作为该实验的光源。通过实验确认了光直线进行的性质,定性地显示了像的明亮程度与光源强度之间的关系,并涉及光的照度和成像理论。他所采用的大型实验方法很有特色,是中国历史上记载的规模最大的实验。还有值得提出的元代郭守敬(1231~1316)曾巧妙地利用针孔取像器〔“景(影)符”〕解决了历来圭表读数不准的问题。一般圭表因太阳上下边沿投影在影端生成半影,因此读数比较模糊。正如《元史卷48》所说:“表短,……所谓分、秒、太、少、半之数,末易分别……表长,……影虚而谈,难得实影”。郭守敬在建河南登封观星台时除用水平沟使圭面保持水平外,在表上加一横梁,在圭上加一可移动的“景符”)即在约宽2寸和斜铜时上扎一针孔,以“楮(即斜)竿”调其倾度以迎晶光。这样,太阳针孔像“仅如米许,隐然见横梁于其中”,细如发丝,误差可达0.1毫米。郭守敬的观测结果之精确令拉普拉斯为惊之叹。郭守敬的改进是在实际测量、反复试验中创造,并且带有定量意义,可惜这种创造只是凤毛麟角,很少有人继承下来。

西方光学萌芽及发展

从墨翟开始后的两千多年的漫长岁月构成了光学发展的萌芽时期,在此期间光学发展比较缓慢。罗马帝国的灭亡(公元475年)大体上标志着黑暗时代的开始,在此之后,欧洲在很长一段时间里科学发展缓慢,光学亦是如此。除

托勒密像

了对光的直线传播、反射和折射等现象的观察和实验外,

在生产和社会需要的推动下,在光的反射和透镜的应用方

面,逐渐有了些成果。克莱门德(Clemomedes)和托勒密

(C.Ptolemy,90--168)研究了光的折射现象,最先测定了

光通过两证介质免时代入射角和折射角。罗马哲学家塞涅

卡(Seneca,前3--65)指出充满水的玻璃泡具有强大功能。

从阿拉伯的巴斯拉来到埃及的学者阿尔哈雷(Alhazen,965--1038)反对欧几里德和托勒密关于眼镜发出光线才能看到物体的学说,认为光线来自所观察的物体,并且光是以球面形式从光源发出的;反射和入射线共面且入射面垂直与界面,他研究了球面镜与抛物面镜,并详细描述了人眼的构造;她首先发明了凸透镜,并对凸透镜进行了实验研究,所得的结果接近于近代关于凸透镜的理论。培根(R.Bacon,1214--1294)提出透镜校正视力和采用透镜组构成望远镜的可能性,并描述了透镜焦点的位置。阿玛蒂(Armati)发明了眼镜。波特

(G.B.D.Porta,1535--1615)研究了成像暗箱,并在1589年的论文《自然的魔法》中讨论了复合面镜以及凸透镜和凸透镜组的组合。综上所述,到15世纪末和16世纪初,凹面镜、凸面镜、眼镜、透镜以及暗箱和幻灯等光学元件已相继出现。

光学发展简史-几何光学时期

这一时期可以称为光学发展史上的转折点。在这个时期建立了光的反射定律和折射定律,奠定了几何光学的基础。同时为了提高人眼的观察能力,人们发明了光学仪器,第一架望远镜的诞生促进了天文学和航海事业的发展,显微镜的发明给生物学的研究提供了强有力的工具。

荷兰的李普塞在1608年发明了第一架望远镜。开普勒于1611年发表了他的著作《折光学》,提出照度定律,还设计了几种新型的望远镜,他还发现当光以小角度入射到界面时,入射角和折射角近似地成正比关系。折射定律的精确公式则是斯涅耳和笛卡儿提出的。1621年斯涅耳在他的一篇文章中指出,入射角的余割和折射角的余割之比是常数,而笛卡儿约在1630年在《折光学》中给出了用正弦函数表述的折射定律。接着费马在1657年首先指出光在介质中传播时所走路程取极值的原理,并根据这个原理推出光的反射定律和折射定律。综上所述,到十七世纪中叶,基本上已经奠定了几何光学的基础。

关于光的本性的概念,是以光的直线传播观念为基础的,但从十七世纪开始,就发现有与光的直线传播不完全符合的事实。意大利人格里马第首先观察到光的衍射现象,接着,胡克也观察到衍射现象,并且和波意耳独立地研究了薄膜所产生的彩色干涉条纹,这些都是光的波动理论的萌芽。

惠更斯像

十七世纪下半叶,牛顿和惠更斯等把光的研究引向进一步岁展

的道路。1672年牛顿完成了著名的三棱镜色散试验,并发现

了牛顿圈(但最早发现牛顿圈的却是胡克)。在发现这些现象

的同时,牛顿于公元1704年出版的《光学》,提出了光是微

粒流的理论,他认为这些微粒从光源飞出来。在真空或均匀物

质内由于惯性而作匀速直线运动,并以此观点解释光的反射和

折射定律。然而在解释牛顿圈时,却遇到了困难。同时,这种

微粒流的假设也难以说明光在绕过障碍物之后所发生的衍射

现象。

惠更斯反对光的微粒说,1678年他在《论光》一书中从声和光的某些现象的相似性出发,认为光是在“以太”中传播的波.所谓“以太”则是一种假想的弹性媒质,充满于整个宇宙空间,光的传播取决于“以太”的弹性和密度.运用他的波动理论中的次波原理,惠更斯不仅成功地解释了反射和折射定律,还解释了方解石的双折射现象.但惠更斯没有把波动过程的特性给予足够的说明,他没有指出光现象的周期性,他没有提到波长的概念.他的次波包络面成为新的波面的理论,没有考虑到它们是由波动按一定的位相叠加造成的.归根到底仍旧摆脱不了几何光学的观念,因此不能由此说明光的干涉和衍射等有关光的波动本性的现象.与此相反,坚持微粒说的牛顿却从他发现的牛顿圈的现象中确定光是周期性的.

综上所述,这一时期中,在以牛顿为代表的微粒说占统治地位的同时,由于相继发现了干涉、衍射和偏振等光的被动现象,以惠更斯为代表的波动说也初步提出来了,因而这个时期也可以说是几何光学向波动光学过渡的时期,是人们对光的认识逐步深化的时期.

光学发展简史-波动光学时期

19世纪初,波动光学初步形成,其中托马斯·杨圆满地解释了“薄膜颜色”和双狭缝干涉现象。菲涅耳于1818年以杨氏干涉原理补充了惠更斯原理,由此形成了今天为人们所熟知的惠更斯-菲涅耳原理,用它可圆满地解释光的干涉和衍射现象,也能解释光的直线传播。在进一步的研究中,观察到了光的偏振和偏振光的干涉。为了解释这些现象,菲涅耳假定光是一种在连续媒质(以太)中传播的横波。为说明光在各不同媒质中的不同速度,又必须假定以太的特性在不同的物质中是不同的;在各向异性媒质中还需要有更复杂的假设。此外,还必须给以太以更特殊的性质才能解释光不是纵波。如此性质的以太是难以想象的。

杨氏像

1846年,法拉第发现了光的振动面在磁场中发生旋转;1856年,韦

伯发现光在真空中的速度等于电流强度的电磁单位与静电单位的比

值。他们的发现表明光学现象与磁学、电学现象间有一定的内在关

系。

1860年前后,麦克斯韦的指出,电场和磁场的改变,不能局限于空

间的某一部分,而是以等于电流的电磁单位与静电单位的比值的速

度传播着,光就是这样一种电磁现象。这个结论在1888年为赫兹的实验证实。

然而,这样的理论还不能说明能产生象光这样高的频率的电振子的性质,也不能解释光的色散现象。到了1896年洛伦兹创立电子论,才解释了发光和物质吸收光的现象,也解释了光在物质中传播的各种特点,包括对色散现象的解释。在洛伦兹的理论中,以太乃是广袤无限的不动的媒质,其唯一特点是,在这种媒质中光振动具有一定的传播速度。

对于像炽热的黑体的辐射中能量按波长分布这样重要的问题,洛伦兹理论还不能给出令人满意的解释。并且,如果认为洛伦兹关于以太的概念是正确的话,则可将不动的以太选作参照

系,使人们能区别出绝对运动。而事实上,1887年迈克耳逊用干涉仪测“以太风”,得到否定的结果,这表明到了洛伦兹电子论时期,人们对光的本性的认识仍然有不少片面性。光的电磁论在整个物理学的发展中起着很重要的作用,它指出光恶化电磁现象的一致性,并且证明了各种自然现象之间存在这相互联系这一辩证唯物论的基本原理,使人们在认识光的本性方面向前迈进了一大步。

在此期间,人们还用多种实验方法对光速进行了多次测定。1849年斐索(A.H.L.Fizeau,1819--1896)运用了旋转齿轮的方法及1862年傅科(J.L.Foucault,1819--1868)使用旋转镜法测定了光在各种不同介质中的传播速度。

光学发展简史-量子光学时期

19世纪末到20世纪初,光学的研究深入到光的发生、光和物质相互作用的围观机制中。光的电磁理论主要困难是不能解释光和物质相互作用的某些现象,例如,炽热黑体辐射中能量按波长分布的问题,特别是1887年赫兹发现的光电效应。

1900年,普朗克从物质的分子结构理论中借用不连续性的概念,提出了辐射的量子论。他认为各种频率的电磁波,包括光,只能以各自确定分量的能量从振子射出,这种能量微粒称为量子,光的量子称为光子。量子论不仅很自然地解释了灼热体辐射能量按波长分布的规律,而且以全新的方式提出了光与物质相互作用的整个问题。量子论不但给光学,也给整个物理学提供了新的概念,所以通常把它的诞生视为近代物理学的起点。

光电效应

1905年,爱因斯坦运用量子论解释了光电效应。他给光子

作了十分明确的表示,特别指出光与物质相互作用时,光

也是以光子为最小单位进行的。

1905年9月,德国《物理学年鉴》发表了爱因斯坦的“关

于运动媒质的电动力学”一文。第一次提出了狭义相对论

基本原理,文中指出,从伽利略和牛顿时代以来占统治地

位的古典物理学,其应用范围只限于速度远远小于光速的

情况,而他的新理论可解释与很大运动速度有关的过程的特征,根本放弃了以太的概念,圆满地解释了运动物体的光学现象。

这样,在20世纪初,一方面从光的干涉、衍射、偏振以及运动物体的光学现象确证了光是电磁波;而另一方面又从热辐射、光电效应、光压以及光的化学作用等无可怀疑地证明了光的量子性——微粒性。光和一切微观粒子斗具有玻璃二象性,这个认识促进了原子核和粒子研究的发展,也推动人们去进一步探索光和物质的本质,包括实物和场的本质问题。为了彻底认清光的本性,还要不断探索,不断前进。

光学发展简史-现代光学时期

从20世纪中叶起,随着新技术的出现,新的理论也不断发展,已逐步形成了许多新的分支学科或边渊学科,光学的应用十分广泛。几何光学本来就是为设计各种光学仪器而发展起来的专门学科,随着科学技术的进步,物理光学也越来越显示出它的威力,例如光的干涉目前仍是精密测量中无可替代的手段,衍射光栅则是重要的分光仪器,光谱在人类认识物质的微观结构(如原子结构、分子结构等)方面曾起了关键性的作用,人们把数学、信息论与光的衍射结合起来,发展起一门新的学科——傅里叶光学,把它应用到信息处理、像质评价、光学计算等技术中去。特别是激光的发明,可以说是光学发展史上的一个革命性的里程碑,由于激光具有强度大、单色性好、方向性强等一系列独特的性能,自从它问世以来,很快被运用到材料加工、精密测量、通讯、测距、全息检测、医疗、农业等极为广泛的技术领域,取得了优异的成绩。此外,激光还为同位素分离、储化,信息处理、受控核聚变、以及军事上的应用,展现了光辉的前景。

光学显微镜

20世纪中叶,特别是激光问世以后,光

学开始进入了一个新的时期,以致于成

为现代物理学和现代科学技术前沿的重

要组成部分。其中最重要的成就,就是

发现了爱因斯坦于1916年预言过的原子

和分子的受激辐射,并且创造了许多具

体的产生受激辐射的技术。

爱因斯坦研究辐射时指出,在一定条件

下,如果能使受激辐射继续去激发其他

粒子,造成连锁反应,雪崩似地获得放

大效果,最后就可得到单色性极强的辐射,即激光。1960年,梅曼用红宝石制成第一台可见光的激光器;同年制成氦氖激光器;1962年产生了半导体激光器;1963年产生了可调谐染料激光器。由于激光具有极好的单色性、高亮度和良好的方向性,所以自1958年发现以来,得到了迅速的发展和广泛应用,引起了科学技术的重大变化。

光学的另一个重要的分支是由成像光学、全息术和光学信息处理组成的。这一分支最早可追溯到1873年阿贝提出的显微镜成像理论,和1906年波特为之完成的实验验证;1935年泽尔尼克提出位相反衬观察法,并依此由蔡司工厂制成相衬显微镜,为此他获得了1953年诺贝尔物理学奖;1948年伽柏提出的现代全息照相术的前身——波阵面再现原理,为此,伽柏获得了1971年诺贝尔物理学奖。

自20世纪50年代以来,人们开始把数学、电子技术和通信理论与光学结合起来,给光学引入了频谱、空间滤波、载波、线性变换及相关运算等概念,更新了经典成像光学,形成了所谓“博里叶光学”。再加上由于激光所提供的相干光和由利思及阿帕特内克斯改进了的全息术,形成了一个新的学科领域——光学信息处理。光纤通信就是依据这方面理论的重要成就,它为信息传输和处理提供了崭新的技术。

在现代光学本身,由强激光产生的非线性光学现象正为越来越多的人们所注意。激光光谱学,包括激光喇曼光谱学、高分辨率光谱和皮秒超短脉冲,以及可调谐激光技术的出现,已使传统的光谱学发生了很大的变化,成为深入研究物质微观结构、运动规律及能量转换机制的重要手段。它为凝聚态物理学、分子生物学和化学的动态过程的研究提供了前所未有的技术。总之,现代光学和其他学科和技术的结合,在人们的生产和生活中发挥这日益重大的作用和影响,正在成为人们认识自然、改造自然以及提高劳动生产率的越来越强有力的武器。

光学仪器在医疗器械中的应用要点

光学仪器在医疗器械中的应用 摘要 人们通过对光现象的认识和研究,加深了对光本质认识的同时,也极大地推动了现代光学的迅速发展和光学仪器的广泛应用,特别是在医疗器械上的应用,为很多疾病解决了难题。这次实习为我以后的工作和学习奠定初步的知识,使我能够亲身感受到由一个学生转变到一个职业人的过程。此外,更能体验生活的艰辛,激励自己好学的心,培养刻苦耐劳的精神,为以后走入社会奠定基础。 关键词:光学发展光学仪器光学应用医疗器械 Abstract People passes pair of optical phenomena understanding and research, deepen the understanding of the essence of light at the same time, but also greatly promote the rapid development of modern optics and optical instruments are widely used, especially in the application of medical devices, for many diseases to solve the problem. This practice for my future study and work to lay the preliminary knowledge, so that I can feel from a student to an occupation people process. In addition, it can experience the hardships of life, encouraging his good heart, industriousness and stamina training spirit, after entering the society lays a foundation. Key words:Optical development Optical instruments Optical application Medical apparatus and instruments 第一章绪论 1.1 前言 随着我国仪器仪表行业的迅猛发展,光学仪器也出现了的新的发展。目前我国光学仪器在物理学新效应和高新技术的推动下,有了新的探索和发展。在医疗设备方面应用越来越广泛。 目前,计量测试仪器、物理学测试仪器、地学和地质学仪器、化学分析仪器、医学仪器、无损材料检验仪器的研发都十分重视高温超导量子干涉器(SGUID)技术的应用。同时光纤、光学玻璃等检测,也逐渐应用到椭偏技术。 未来我国光学仪器将逐渐向自动化、光电化发展。目前三座标测量机、自准直仪和投影仪等光学计量仪器已经在微机化、光电化发展中取得了良好的成效。未来更多的新光电器件、新功能材料的开发,将进一步促进光学仪器的光电化发展。同时CCD器件、半导体激光器、光纤传感器等技术的发展也在推动着光学仪器的变革,使光学仪器更加微机化、光电化、自动化以及高精确化。

光学显微镜的发展历程

光学显微镜的发展历程 光学显微镜(简称显微镜),顾名思义是一种通过光学放大成像,显示物体微观结构的一种光学仪器,它由一个或多个透镜通过组合构成。显微镜成像是一种光的艺术,在配合各种不同的光源时,可形成各自不同类型的影像,演变形成了各种类型的显微镜。 1.单目生物显微镜(光学显微镜发展的初期阶段1.0) 显微镜发展初期,光学技术不发达,当时制成的显微镜为单光路直筒设计,只能使用一只目镜进行观察,因此常被称作单目显微镜。单目显微镜受当时的电子、机械、信息等技术的局限,通常具有以下几种特点:①采用反光镜反射自然光提供照明;②粗、细准焦螺旋采用分离式手轮;③载物台为单层结构,且不可移动。 早期影像技术还未起步,使得显微镜下的微观世界只能即时观察,若想把看到的微观世界呈现出来,与他人进行沟通交流,就需通过笔、纸把观察到的影像,以临摹的方式画出来,因此生物绘画就成了当时生物学工作者的一项必备技能。生物绘画要求观察者左眼进行观察,右眼辅助绘画,难度较高,绘画结果精度较低,且容易受到人为主观因素的影响而失真。 综上所述,在当时使用显微镜观察被认为是一项十分复杂的科学实验操作过程,操作人员需进行训练才能熟练使用显微镜,并获得较理想的结果。尽管如此,显微镜的出现,大幅拓宽了人类的观察范围,也使得微生物学、医学等学科取得了前所未有的进步。 2.双目生物显微镜(显微镜发展的第二阶段2.0)

由于使用单目生物显微镜时需将一只眼对准目镜,长时间观察极易疲劳。电灯的出现使得显微镜的照明得到大幅度改善,特别是光源的亮度充足且亮度还可不断提高,从而促使人们能够利用分光棱镜将物镜传上来的光信号一分为二,便于使用者通过两只眼睛进行观察,这样便大幅减轻眼睛负担,提高使用的舒适度,因此这种显微镜也被称作双目生物显微镜(图1-2)。双目生物显微镜除了具备双目观察筒外,得益于当时光学、电子技术、机械技术的发展,使得显微镜整体上有了较大的改进。 显微镜发展至这一阶段,是光学技术的快速发展时期,尤其是可控的电灯取代自然光使得显微镜的使用不再受自然环境以及地理位置的影响。另外由于电灯的多样化,以及各种滤光镜的运用,光学技术的进步,促使荧光显微镜、金相显微镜、偏光显微镜,倒置显微镜等多种类型显微镜得以面世。 3.三目生物显微镜(显微镜发展的第三阶段3.0) 光学成像效果取得重大进展之后,人们将显微镜改善的重点放在了显微图像的获取技术上。人们在双目光路信号进行再次分光,形成三目观察筒,然后将摄像采集器安装于三目观察筒上以获得显微图像。此后显微影像逐渐成为人们记录原始信息的重要手段。相比之前提及的显微绘画,这种获取显微画面的方式更精准、更高效,更先进。 4.数码液晶显微镜(显微镜发展的第四阶段4.0) 数码显微镜凭其能够实时显示及图像处理等优点,获得了广泛的应用,显微观察不再拘泥于传统双目观察筒。上一代显微镜要获得显

四大光学仪器在生活中各领域的应用

四大光学仪器在生活中各领域的应用 摘要:现代光学已经发展成为一门相互交叉相互渗透,涉及到各个领域的综合性学科。成为现代科学技术最活跃前沿领域之一[1]。光学的应用是与光学实验仪器的不断改进和光学理论的逐渐完善同步产生的。本文对紫外—可见分光光度计、红外光谱和Raman光谱仪、原子发射光谱仪、原子吸收光谱仪在生活中各领域的应用一一进行了介绍。 关键词: 一、紫外—可见分光光度计的应用 紫外可见分光光度法从问世以来,在应用方面有了很大的发展,尤其是在相关学科发展的基础上,促使分光光度计仪器的不断创新,功能更加齐全,使得光度法的应用更拓宽了范围[2]。目前,分光光度法已为工农业各个部门和科学研究的各个领域所广泛采用,成为人们从事生产和科研的有力测试手段。 1.结构 一般地,紫外可见分光光度计主要由光源系统、单色器系统、样品室、检测系统组成。光源发出的复合光通过单色器被分解成单色光,当单色光通过样品室时,一部分被样品吸收,其余未被吸收的光到达检测器,被转变为电信号,经电子电路的放大和数据处理后通过显示系统给出测量结果[3]。 2.原理 由于各种物质具有各自不同的分子、原子和不同的分子空间结构,其吸收光能量的情况也就不会相同。因此,每种物质都有其特有的、固定的吸收光谱曲线,可根据吸收光谱上的某些特征波长处的吸光度的高低判别或测定该物质的含量,这就是分光光度定性和定量分析的基础[3]。 3.特点 分光光度法对于分析人员来说,可以说是最常用和有效的工具之一。因为分光光度法具有灵敏度高、选择性好、准确度高、适用浓度范围广的特点[4]。 4.应用 4.1纯度检验 紫外吸收光谱能测定化合物中含有微量的具有紫外吸收的杂质。如果化合物的紫外可见光区没有明显的吸收峰,而它的杂质在紫外区内有较强的吸收峰,就可以检测出化合物中的杂质[4]。 4.2与标准物及标准图谱对照 将分析样品和标准样品以相同浓度配制在同一溶剂中,在同一条件下分别测定紫外可见吸收光谱。若两者是同一物质,则两者的光谱图应完全一致。如果没有标样,也可以和现成的标准谱图对照进行比较。这种方法要求仪器准确,精密度高,且测定条件要相同[2]。 4.3氢键强度的测定 不同的极性溶剂产生氢键的强度也不同。这可以利用紫外光谱来判断化合物在不同溶剂中氢键强度,以确定选择哪一种溶剂。 4.4反应动力学研究 借助于分光光度法可以得出一些化学反应速度常数,并从两个或两个以上温度条件下得到的速度数据,得出反应活化能。 4.5络合物组成及稳定常数的测定 金属离子常与有机物形成络合物,多数络合物在紫外可见区是有吸收的,我们可以利用分光光度法来研究其组成。 除此之外,紫外—可见分光光度计还常常应用于比较最大吸收波长吸收系数的一致性、检定物质等方面的研究[3]。 二、红外光谱和Raman光谱仪 红外光谱广泛应用于分子结构的基础研究和化学组成的分析领域,对有机化合物的定性分析具有鲜明的特征性。由于其专属性强各种基因吸收带信息多,固可用于固体、液体和气体定性和定量分析[4]。又由于用红外光谱作样品分析时基本不需要处理,且不破坏和消耗样品,自身又无环境污染,因而被广泛运用。 1.结构

常用的光学仪器

本节前言 第五节常用的光学仪器 大约400多年前,荷兰的米德堡城里住着一个磨眼镜片名叫詹森的玻璃技师。他的两个男孩又天真又淘气。一次詹森因事外出,弟兄俩爬上他的工作台玩玻璃片。他们用铜管两端放上玻璃片,对准一本书看去。新奇的事出现了,一个逗号竟象一个胖蝌蚪似地爬在那里。詹森后来做了更高明的管子:管子细长,两端各固定一块凸透镜,管子的长度还可以调整。这便是1590年制成的第一具显微镜。詹森的生意就越来越兴隆。名声很快传了出去。 这消息传到伽利略耳里时,竟成了荷兰有人发明了可以看见远处物体的仪器。在这一误传之下,伽利略制成了第一具望远镜。 1827年,法国写生画家达格尔开始钻研摄影术。他拿所有的钱去向光学家购买贵重的透镜,向药房买药品,不分昼夜地一个人关在暗室里。达格尔把一片铜板镀了银,把它放在水银蒸汽中,然后把这张片子装到摄影机上,对准物体进行拍照,拍照后再作一番处理,片子上有光照的地方就会变成黑色。因为达格尔制成的镀银铜板感光性能很差,所以拍一次照片十分费事。一个人要照像,得先在脸上涂一层白粉,然后在摄影机前一动不动地坐上半小时。 我们现在所运用的显微镜、望远镜、照相机在构造上、功能上与早期相比都有了很大改进。这节中我们对它们的结构,工作原理作具体介绍,并结合动画来生动演示各自的成像过程。 §1.5常用的光学仪器 观察很小或很远的物体时,我们凭肉眼往往看不清楚,这时就要凭借相应的仪器——显微镜和望远镜来增大观察物体时的视角,从而能最大限度地看清物体。为了把观察到的景物记录下来,还需要使用照相机。 显微镜 显微镜是用来观察细菌、动植物组织、金属结构等细微物体的光学仪器。显微镜的主要部分是装在镜筒两端的两组透镜。每组透镜都相当于一个凸透镜,对着物体的一组叫做物镜,对着眼睛的一组叫做目镜。物镜的焦距很短,目镜的焦距较长。 图中展示的是利用显微镜观察到的微生物(单细胞海藻)的情况。我们将样品放置在载玻片上,盖上覆片。载玻片放置在显微镜平台上,光线经下面的平面镜反射照亮载玻片。离载玻片较近的物镜形成微小物体放大的实像。目镜进一步放大像,像就比物体本身大几百倍。多数显微镜有2-3个物镜,可发根据需要的放大倍数来选择。

典型光学仪器的基本原理

1、光学仪器在国民生产和生活中各个领域广泛应用,绝大多数光学仪器可归纳为望远镜系统、显微镜系统和照明系统三类。 2、人眼构造:人眼本身就相当于一个摄影系统,外表大体呈球形,直径约为25mm,由角膜、瞳孔、房水、睫状体、晶状体和玻璃体等组成的屈光系统相当于成像系统的镜头,起聚焦成像作用。眼睛内的视网膜和大脑的使神经中枢等相当于成像系统的感光底片和控制系统,能够接收外界信号并成像。 3、视度调节:眼睛通过睫状肌的伸缩本能地改变水晶体光焦度的大小以实现对任意距离的物体自动调焦的过程称作眼睛的视度调节。 4、视觉调节:人眼除了随着物体距离的改变而调节晶状体曲率外,还可以在不同的明暗条件下工作,人眼能感受非常大范围的光亮度变化,即眼睛对不同的亮度条件下具有适应的调节能力,这种能力称为眼睛的视觉调节。 5、放大镜定义:放大镜(英文名称:magnifier):用来观察物体细节的简单目视光学器件,是焦距比眼的明视距离小得多的会聚透镜。物体在人眼视网膜上所成像的大小正比于物对眼所张的角(视角)。 6、视角愈大,像也愈大,愈能分辨物的细节。移近物体可增大视角,但受到眼睛调焦能力的限制。使用放大镜,令其紧靠眼睛,并把物放在它的焦点以内,成一正立虚像。放大镜的作用是放大视角。 7、显微镜:显微镜是由一个透镜或几个透镜的组合构成的一种光学仪器,是人类进入原子时代的标志。主要用于放大微小物体成为人的肉眼所能看到的仪器。显微镜分光学显微镜和电子显微镜:光学显微

镜是在1590年由荷兰的詹森父子所首创。现在的光学显微镜可把物体放大1600倍,分辨的最小极限达0.1微米,国内显微镜机械筒长度一般是160mm。 8、光学显微镜由目镜,物镜,粗准焦螺旋,细准焦螺旋,压片夹,通光孔,遮光器,转换器,反光镜,载物台,镜臂,镜筒,镜座,聚光器,光阑组成。 9、显微镜以显微原理进行分类可分为光学显微镜与电子显微镜。 10、光学显微镜:通常皆由光学部分、照明部分和机械部分组成。无

我国光学加工技术的发展历史

我国光学加工技术的发展历史 发布日期:2008-03-05 我也要投稿!作者:网络阅读:[ 字体选择:大中 小 ] 我国光学仪器的加工技术,虽然有较长历史但形成批量生产并具有完整的工艺是在新中国成立后。光学冷加工工艺在解放前虽然已有所采用,但缺乏完整性。解放后经过光学行业各方面人士及职工的努力,方逐步形成了较完善的加工方法。 五十年代初期,光学行业的设备陈旧,工艺落后。进入第一个五年计划后,加工工艺主要是采用“苏联”的工艺,设备也是由苏联引的和按“苏联”图纸制造的专用设备,二十世纪六十年代初期,国内个别厂家由德国引进了先进设备(如铣磨机和光学对中心磨边机),受到这些设备的启示,国内在六十年代中期开始工艺科研和研制新设备。首先进行的是研究粗磨机机械化和设计粗磨机,由于设备和工艺的改进,加工效率有很大的提高,但是后来受政治形势的影响,光学工艺的革新受到冲击,刚见成效的工艺革新,就此停止。 二十世纪七十年代中期,对光学冷加工技术改造和技术革新提出了“四化”目标,即毛坯型料化、粗磨机械化、精磨高速化、定心磨边自动化。经过努力,这些目标全部在二十世纪八十年代初基本实现了。 光学工业实现了光学冷加工“四化”,为军转民生产光学仪器奠定了有力基础。二十世纪八十年代针对当时民用光学仪器生产,又提出了光学零件制造的新四化,即抛光高速化,清洗超声化,辅助工序机械化和辅料商品化。“新四化”,虽然受到了管理体制改变的影响,在研制设备和进行工艺科研的时间和深度不够理想,但全部实现了。二十世纪八十年代重点是对光学加工机理和工艺因素的研究和探讨,通过科研人员和课题组的努力,均取得了理想的科研成果。在光学零件的定摆磨削和光学零件加工中不同牌号玻璃与不同结合剂的丸片之间的合理匹配都在光学加工方面有了突破,引起光学界的重视。这些科研的成果对光学加工工业起了重要作用,为了我们进一步提高光学加工的科研水平,奠定了雄厚的基础,为新的创新开辟了道路。 二十世纪八十年代是我们光学技术和工艺科研硕果累累的时期。不但在光学加工的基础理论方面,而在加工设备,加工工艺,加工模具,以及辅料等方面都取得了可喜成果。如光学加工机理,光学零件加工工艺因素,光敏胶,PH值稳定剂,光学导电膜,易腐蚀玻璃保护膜;PJM-320平面精磨机,QJM220球面精磨机,QJP-100与QJP-40光学中球面与小球面精磨抛光机;光学零件复制法;光学零件超声清洗代替清擦,光学零件真空吹塑包装以及自聚焦透镜制造等等,真是不胜枚举。这些科研成果,不但通过了部级鉴定,而且均获得子部级奖励或国家发明将。进入九十年代后,在中国光学行业有了更大的进展,这是由于光学产品出口,光学工艺也随着有了更大的改变和进展。我们采用了几十年的成盘加工工艺受到了冲击,而单件光学加工在光学批量生产中占据了统治地位。 本世纪初,我国光学制造业已取得了辉煌的成果,进入了发展的高峰,已形成了很强的生产能力。据有数字统计的资料,我国光学制造能力已超过了五亿件/年,当然这不包括,一些小型民办企业的生产能力。在亚洲也好,在世界上也好,中国光学冷加工的能力应当是名列前茅的,但我们的技术水平却是比较落后。主要是表现在不能大批量生产高精度元器件,大部分企业不能长期稳定生产,不能制造高精度的特种光学零件。造成此种现象的原因:a.执行工艺规程不够b.没有专门工艺研究和工艺设备的研究开发单位c.没有行业法规d.没有软件贸易企业,没有“光学工程”的承包单位。 光学加工设备和光学工艺的发展是分不开的。孔夫子说过“工欲善其事,必先利其器”。

光学望远镜的发展简介

光学望远镜的发展简介 天文学是研究天体和宇宙的科学,观测是天文学研究的主要实验方法.在17世纪以前,天文学家只能用肉眼观测星空中几千个比较亮的天体.17世纪初,伽利略发明了天文望远镜,人类的眼界随之大为开阔,望远镜成了近代天文观测的眼睛.本文就光学天文望远镜的发展作一简单介绍. 一、折射式望远镜 1.伽利略望远镜 图1 第一个望远镜是荷兰的一位眼镜商人里帕席于1608年做成的.据说,里帕席无意间将两块镜片重叠并使其相隔一定的距离观看时,发现远处教堂上的风标明显地放大了.于是,他把两块镜片装在一个铜管的两头,发明了最初的望远镜,这引起了许多人的兴趣.1609年,当伽利略得知荷兰人发明了望远镜的消息后,他激动不已,立即亲自动手制作望远镜.他用一个凸透镜作为物镜,一个凹透镜作为目镜,于1609年7月初制成了倍率为3的望远镜,这种望远镜的构造如图1所示,这种光学系统现称为伽利略望远镜.经过进一步的改进,到1610年9月,将倍率提高到了33倍.伽利略用自制的望远镜观察天空,发现了月球表面的环行山、太阳黑子、木星的卫星等一系列重大的天文现象,从此天文学进入了望远镜时代. 2.开普勒望远镜 图2 鉴于伽利略望远镜放大倍数和视场都较小的缺点,1611年,德国天文学家开普勒设计了用两片双凸透镜分别作为物镜和目镜的望远镜,使得放大倍数和视场都有了明显的提高,如图2所示,这种光学系统现称为开普勒望远镜.用这种望远镜看到的像是倒立的,这会使人很不习惯,不过对于天文观测则毫无影响.从17世纪中叶起,开普勒望远镜在天文观测中得到了普遍的应用. 当时的望远镜都采用单个透镜作为物镜,存在着严重的色差,为了获得好的观测效果,需要用曲率非常小的透镜,因此镜身越来越长,最长的竟达65米.直至英国光学仪器商杜隆用冕牌玻璃和火石玻璃制造了消色透镜,从此,长镜身望远镜被消色差折射望远镜所取代. 二、反射式望远镜 图3 由于伽利略和开普勒望远镜均存在明显的色差,所以人们又发明了消色差的反射式望远镜.牛顿在清楚地解释了“色差”问题后,于1688年制作了一种与众不同的反射式望远镜.他采用球面镜作为主镜,将金属磨制成一块凹面镜,并在主镜的焦点前面放置了一个与主镜成45°角的反射镜,使经主镜反射后的会聚光经反射镜以90°角反射出镜筒后到达目镜,如图3所示,这种光学系统称为牛顿式反射望远镜.它的球面镜虽然会产生一定的相差,但用反射镜代替折射镜却是一个巨大的成功.

光学的发展

光学的发展 光学是一门古老的科学,古希腊数学家欧几里得和天文学家托勒密都对此做出过贡献。但近代光学的发展主要经历了几何光学时期和波动光学时期。荷兰莱顿大学力学教授斯涅耳(Snell Willebrord van Roijen ,1580~1626)在大量实验的基础上于1621年得出折射定律。笛卡尔(Descartes Rene ,1596~1650)在1637年出版的《屈光学》一书中提出了折射定律的现代形式,即入射角与折射角的正弦之比为常数。光的反射定律和折射定律的建立为几何光学奠定了基础。由于制造光学仪器的需要,对光的折射性质的研究成为热门。光的本性早在古希腊时代就成为先贤们争辩的课题,17世纪以来微粒说和波动说的争论成为光学发展中的主线和动力。到19世纪末20世纪初,人们在研究光的产生、光与物质的作用时发现了光的量子特征,并进入了一个蓬勃发展的量子光学时代。 第一节 几何光学的发展 几何光学的发展是从日常生活、观察天象中开始的。因此,历史上的光学几乎与力学、数学等一起成为人们探索自然奥秘的最早部门。从光学器具看,中国的青铜镜早就应用,而玻璃和珐琅在埃及、希腊、罗马发现较早。光的反射定律的发明者已无法考证;早在公元前四世纪,古希腊哲学家柏拉图(Plato ,BC 428~BC 348)在他的学园的教学内容中就已有光的直进和反射角与入射角相等的内容。 1、折射定律的建立 古希腊数学家欧几里德(Euclid ,BC 330~275 BC )在《光学》一书中说:“我们假想光是直线进行的,在线与线之间还留出一些空隙,光线自物体到人眼成为一个锥体,锥顶就在人眼,锥底在物体.只有被光线碰到的东西,才能为我们看见.”这就是“流出论”的根据。但原子论者则主张一切感觉都是从物体发出的物质流引起的。亚里士多德介于二者之间,主张“视觉是在眼睛和可见物体之间的中介者运动的结果。”公元二世纪时托勒密写成了《光学》一书,第一次得出了光由空气射入水中时的折射数据;并认为折射角与入射角成正比。中世纪阿拉伯人阿尔加桑(Al-hazen ,965~1038)著成了《光学》一书,他在书中改进了托勒密的仪器,指出入射线、折射线与法线在一平面内,阿尔加桑《光学》于十三世纪被译成拉丁文,正是它激励了波兰数学家维特洛(Vitello )去研究光学,并发表了一系列光学研究论文。 望远镜出现后,为了改善天文、航海与战争中这一必备的利器, 需要不断改善已有的光学元件的制备和提高望远镜的倍数,这就不能 没有正确的理论研究。开普勒在1604年发表了对维特洛光学论文的 注释,1611年发表了《屈光学》,他认为折射角r 由两部分组成,一 部分正比于入射角i ,另一部分正比于入射角的正割sect 。只有在小 于30°时,托勒密的正比例定律才适用。在光近乎垂直入射时,i ∶ r =3∶2, 他还得出玻璃的折射角不会超过42°。根据光路的可逆性,他得出存在有全反射现象的结论。在这些工作的基础上,他求出了曲 率相等的双凸透镜的焦距和平面透镜的焦距,并设计了他的望远镜。 荷兰莱顿大学力学教授斯涅耳(Snell Willebrord von Roijen , 1580~1626)在大约1621年发现了折射定律,如图1,水中-点S ′从空气中看好象在S 点,斯涅耳发现,对于任意入射角: ==='r i r OP i OP S O OS csc csc sin sin 常量 斯涅耳以不方便的形式把折射定律叙述如下:在相同的介质里,入射角和折射角的余割之比总是保持相同的值。这一定律是斯涅耳1626年去世后,惠更斯和伊萨克·沃斯(Isaak V oss )从斯涅耳的手稿中,获得他的发现并公诸于世。 图7-1为斯涅耳折射定律原理

光学发展史

光学发展史 学院:理学院 专业:光电信息科学与工程 姓名:孙岐政 学号:13272034 2015年5月15日

光学的起源和力学等一样,可以追溯到3000年前甚至更早的时期。在中国,墨翟(公元前468—公元前376)及其弟子所著的《墨经》记载了光的直线传播和光在镜面上的反射等现象,并具体分析了物、像的正倒及大小关系。无论从时间还是科学性来讲,《墨经》可以说是世界上较为系统的关于光学知识的最早记录。约100多年后,古希腊数学家欧几里得(Euclid,约公元前330—公元前275)在其著作中研究了平面镜成像问题,提出了光的反射定律,指出反射角等于入射角,但他同时提出了将光当作类似触须的投射学说。 从墨翟开始打2000多年的漫长岁月构成了光学发展的萌芽期,这期间光学发展缓慢,东西方科学发展都收到很大压抑。这期间有克莱门德(Cleomedes,公元50年)和托勒密(C. Ptolemy,公元50年)研究了关的折射现象,最先测定了光通过两种介质分界面时的入射角和折射角。阿拉伯学者阿勒·哈增(Al Hazen,965—1038)写过一本《光学全书》,研究了球面镜和抛物面镜的性质,并对人眼的构造及视觉作用做了详尽的叙述;中国的沈括(1031—1095年)撰写的《梦溪笔谈》对光的直线传播及球面镜成像作了比较深入的研究,并说明了月相的变化规律及月食的成因。法国的培根(R.Bacon,公元1214—1294)提出了用透镜矫正视力和采用透镜组构成望远镜的想法,并描述了透镜焦点的位置。 到17世纪,在经历了文艺复兴的大潮之后,科学在欧洲又进入了一个蓬勃发展的时期,1621年斯涅耳(W. Snell,1591—1626)从实验中发现了折射定律,而笛卡尔(R. Descartes,1596—1619)第一个把它归纳成解析表达式。1657年费马(P. de Fermat,1601—1665)提出了最小时间原理,并说明由此可推出光的反射和折射定律,至此几何光学的基础已基本奠定。 人们对光学真正的深入实验和研究始于17世纪,荷兰的李普塞(H. Lippershey,1587—1619)在1608年发明了第一架望远镜;17世纪初,简森(Z. Janssen,1588—1632)和冯特纳(P. Fontana,1580—1656)最早制作了复合显微镜。1607年,伽利略(G. Galilei,1564—1642)测定光从一个山峰传到另一个山峰所用的时间。他让山顶上的人打开手中所持灯的遮光罩,作为发光的开始。又命令第二个山峰上的人看到对方的灯光后立即打开己方灯的遮光罩。这样测定第一山峰上的人自发出光信号到看到对方的灯光的时间间隔,便得到光在两个山峰间来回一次所需的时间。但是由于人的反应及动作时间远大于光运行所需的时间,伽利略的实验没有成功。1610年伽利略用自制的望远镜观察星体,发现了绕木星运行的卫星,给哥白尼关于地球绕日运动的日心说提供了强有力的证据。关于光的本性的认识,格里马第(F. M. Grinmaldi,1618—1663)首次注意到了衍射现象。他发现光在通过细棒等障碍物时违背了直线传播的规律,在物体阴影的边缘出现了蓝绿色亮、暗交替的或变化的彩色条纹。胡克(R. Hooke,1635—1703)和玻意耳(R. Boyle,1652—1691)各自独立的发现了现在称为牛顿环的在白光下薄膜的彩色干涉图样,胡克还明确主张光由振动组成,每一振动产生一个球面并以高速向外传播,这可以认为是波动学说的发端。到17世纪60世纪末期,丹麦的巴塞林(E. Bartholin,1625—1698)发现了光经过方解石时的双折射现象。17世纪70年代荷兰的惠更斯(C. Huygens,1629—1695)进一步发现了光的偏振性质。1690年惠更斯在其著作《论光》中阐述了光的波动说,并提出了后来以他的名字命名的惠更斯原理。 1672年,牛顿(I. Newton,1643—1727)进行了白光的实验,发现白光通过棱镜时,会在光屏上形成按一定次序排列的彩色光带;于是他认为白光由各种色光复合而成,各色光在玻璃中收到不同程度的折射而被分解成许多组成部分。

显微镜发展历程最详细的介绍

显微镜,顾名思义就是显示微观世界、观察物体做观结构的仪器。1590年,人类发明第一台显微镜至今,显微镜主要可分为:光学显微、电子显微、原子力显微镜。 电子显微诞生于20世纪30年代,原子力显微镜诞生于20世纪80年代,它们有一共同特性:不是通过光学成像而是通过检测电子東或原子间相互作用力间接成像,即是通过电子成像、原子力成像,由于眼時不能直接观察,所以需要由相关的感应器经过计算机换算合成我们可以观察的图像照片,只能观察静态物体,不可实时观察,显微图像照片都是黑白图像,分辦率都很高,最高分辦率可达到0.2纳米,属于研究级别的显微镜,操作复杂,价格昂贵。(注光学显微镜的分辦率最高只能达到0.2微米,而人眼的分率一般为0.2毫米)这里重点解读历史久远,应用广泛,适合我们普通教学的光学显微镜。光学显微镜最主要的特点是通过光学成像它是由多个透镜组通过光学设计组合构成。光学显微镜成像是一种光的艺术,在配合各种不同的光源时,可形成各种不同类型的影像,演变形成了各种类型的显微锐。我们根据显微的技术进步

及不同的观察方式为节点,把光学显微的发展历程划分成四个阶段。 单目显微镜(显微镜发展的1.0阶段) 1590年,诞生了人类第一台显微镜。 由于处于显微镜萌芽阶段,光学技术不发达,因此当时开发的显微镜为单光路直筒设计,只能使用一只目镜进行观寮,因此称作单目显微镜。单目显微镜受当时的电子、机械、光学等技术的局限,通常具有以下几种特点:2)采用反光镜反射自然光提供照明2)粗、细准焦螺旋采用分离式3)载物台为单层结构,且不可移动; 早期影像技术还未起步,使得显微镜下的微观世界只能即时观察,若想把看到的微观世界呈现出来,与他人进行沟通交流,就需通过笔、纸把观察到的影像,以临的方式绘画出来,因此生物绘画就成了当时生物学工作者的一项必备技能。生物绘画要求观察者左眼进行观察,右眼辅助绘画,难度较高,绘画结果精度较任,且容易受到人为主观因素的影响而失真。综上所述,在那个时期使用显微镜的观察操作被认为是一项十分复杂的科学实验,操作人员需进行专业训练才能熟练使用

一览显微镜发展历程

一览显微镜发展历程 1846年卡尔·蔡司先生在耶拿市Neugasse街7号开设一间制造精密光学仪器的小作坊。 1857年蔡司先生开始制造复合显微镜 1860年Abbe先生在蔡司公司完成光学系统计算,发现了能够围绕光轴形成清晰图像的(阿贝)正弦条件,并提出了数值孔径(N.A.)的概念。(并得出结论:在最佳条件下,通过使用紫外光和1.4数值孔径光学显微镜理论上能够实现的分辨率为0.2μm。) 1866年销售第1000台显微镜。ErnstAbbe先生加入蔡司先生企业,使蔡司公司显微镜技术建立在科学基础之上。1872年蔡司公司开始生产制造基于科学计算基础的光学显微镜(明显具有更好的光学性能) 1874年卡尔·蔡司开始生产制造简单但很精确的显微镜1877年蔡司公司生产出第一台油浸物镜光学显微镜(奠定了当前几乎所有的实验室用油浸物镜显微镜基础,明显提供更高的检测分辨率) 1882年ErnstAbbe先生和OttoSchott先生在耶拿成立了玻璃技术实验室。(随后生产制造质地均匀、尺寸准确、具有良好光学性能的玻璃镜头) 1884年--1891年耶拿“Schott& Gemossen玻璃厂”成立,卡

尔·蔡司先生于1888年逝世,成立了卡尔·蔡司基金会。1886年采用复消色差物镜的显微镜首次上市 1900年在AugustK?hler先生的帮助下,蔡司先生的小作坊开始全球性扩展,同样,奠定荧光显微镜坚实基石。 1896年蔡司公司应美国昆虫学家HoratioS. Greenough先生要求设计制造第一台立体显微镜。 1904年AugustK?hler先生和Mortzvon Roht先生发明的紫外线显微镜和由K?hler先生安装制造。 1908年HenrySiedentopf先生改进完善的荧光显微镜进一步扩大光学显微镜的可利用光源 1914年第一次世界大战,暂时中断了“民用仪器设备”的研发工作 1930年Zernike先生利用反射式衍射光栅进行工作时发现:可观测到单独光束的相位位置。 1933年著名的L-Stativ成为显微镜中的典范。 1936年Zernike先生与蔡司公司合作开发出第一台相衬显微镜样机(利用该种相衬显微镜可以观察活体细胞,不会因染色使细胞受损。) 1940年蔡司公司与ARG公司合作进入电子显微镜领域1949年蔡司公司推出第一台EM8静态校正透射型电子显微镜TEM。(同样奠定蔡司公司研发生产电子显微镜的基石。)1955年集成有摄像头和自动照明控制的全新摄影显微镜问

显微镜是一种精密的光学仪器

生命科学技术仪器使用期末考试论文 题目:光学显微镜的使用 学院:生命科学技术学院 班级:09级动物方向 姓名:景小平 学号:2009191024

光学显微镜的使用 显微镜是一种精密的光学仪器,已有300多年的发展史。自从有了,人们看到了过去看不到的许多微小生物和构成生物的基本单元——细胞。目前,不仅有能放大千余倍的光学,而且有放大几十万倍的电子,使我们对生物体的生命活动规律有了更进一步的认识。在普通中学生物教学大纲中规定的实验中,大部分要通过来完成,因此,性能的好坏是做好观察实验的关键。 光学显微镜(light microscope)是生物科学和医学研究领域常用的仪器,它在细胞生物学、组织学、病理学、微生物学及其他有关学科的教学研究工作中有着极为广泛的用途,是研究人体及其他生物机体组织和细胞结构强有力的工具。 光学显微镜简称光镜,是利用光线照明使微小物体形成放大影像的仪器。目前使用的光镜种类繁多,外形和结构差别较大,有些类型的光镜有其特殊的用途,如暗视野显微镜、荧光显微镜、相差显微镜,倒置显微镜等,但其基本的构造和工作原理是相似的。一台普通光镜主要由机械系统和光学系统两部分构成,而光学系统则主要包括光源、反光镜、聚光器、物镜和目镜等部件。 光镜是如何使微小物体放大的呢?物镜和目镜的结构虽然比较复杂,但它们的作用都是相当于一个凸透镜,由于被检标本是放在物镜下方的1~2倍焦距之间的,上方形成一倒立的放大实相,该实相正好位于目镜的下焦点(焦平面)之内,目镜进一步将它放大成一个虚像,通过调焦可使虚像落在眼睛的明视距离处,在视网膜上形成一个直立的实像。显微镜中被放大的倒立虚像与视网膜上直立的实像是相吻合的,该虚像看起来好像在离眼睛25cm处。 分辨力是光镜的主要性能指示。所谓分辨力(resolving power)也称为辨率或分辨本领,是指显微镜或人眼在25cm的明视距离处,能清楚地分辨被检物体细微结构最小间隔的能力,即分辨出标本上相互接近的两点间的最小距离的能力。据测定,人眼的分辨力约为100 μm。显微镜的分辨力由物镜的分辨力决定,物镜的分辨力就是显微镜的分辨力,而目镜与显微镜的分辨力无关。光镜的分辨力(R)(R值越小,分辨率越高)可以下式计算: 这里n为聚光镜与物镜之间介质的折射率(空气为1、油为1.5);θ为标本对物镜镜口张角的半角,sin的最大值为1;λ为照明光源的波长(白光约为0.5m)。放大率或放大倍数是光镜性能的另一重要参数,一台显微镜的总放大倍数等于目镜放大倍数与物镜放大倍数的乘积。 一、光学显微镜的基本构造及功能 (一)机械部分 1、镜筒:为安装在光镜最上方或镜臂前方的圆筒状结构,其上端装有目镜,下端与物镜转换器相连。根据镜筒的数目,光镜可分为单筒式或双筒式两类。单筒光镜又分为直立式和倾斜式两种。而双筒式光镜的镜筒均为倾斜的。镜筒直立式光镜的目镜与物镜的中心线互成45度角,在其镜筒中装有能使光线折转45度的棱镜。 2、物镜转换器:又称物镜转换盘。是安装在镜筒下方的一圆盘状构造,可以按顺时针或反时针方向自由旋转。其上均匀分布有3~4个圆孔,用以装载不同放大倍数的物镜。转动物镜转换盘可使不同的物镜到达工作位置(即与光路合轴)。使用时注意凭手感使所需物镜准确到位。

光学显微镜的工作原理汇编

光学显微镜的工作原 理

光学显微镜的工作原理 显微镜是一种精密的光学仪器,已有300多年的发展史。自从有了显微镜,人们看到了过去看不到的许多微小生物和构成生物的基本单元——细胞。目前,不仅有能放大千余倍的光学显微镜,而且有放大几十万倍的电子显微镜,使我们对生物体的生命活动规律有了更进一步的认识。在普通中学生物教学大纲中规定的实验中,大部分要通过显微镜来完成,因此,显微镜性能的好坏是做好观察实验的关键。 一、显微镜的光学系统 显微镜的光学系统主要包括物镜、目镜、反光镜和聚光器四个部件。广义的说也包括照明光源、滤光器、盖玻片和载玻片等。 (一)、物镜 物镜是决定显微镜性能的最重要部件,安装在物镜转换器上,接近被观察的物体,故叫做物镜或接物镜。 1、物镜的分类 物镜根据使用条件的不同可分为干燥物镜和浸液物镜;其中浸液物镜又可分为水浸物镜和油浸物镜(常用放大倍数为90—100倍)。 根据放大倍数的不同可分为低倍物镜(10倍以下)、中倍物镜(20倍左右)高倍物镜(40—65倍)。

根据像差矫正情况,分为消色差物镜(常用,能矫正光谱中两种色光的色差的物镜)和复色差物镜(能矫正光谱中三种色光的色差的物镜,价格贵,使用少)。 2、物镜的主要参数: 物镜主要参数包括:放大倍数、数值孔径和工作距离。 ①、放大倍数是指眼睛看到像的大小与对应标本大小的比值。它指的是长度的比值而不是面积的比值。例:放大倍数为100×,指的是长度是1μm的标本,放大后像的长度是100μm,要是以面积计算,则放大了10,000倍。 显微镜的总放大倍数等于物镜和目镜放大倍数的乘积。 ②、数值孔径也叫镜口率,简写NA 或A,是物镜和聚光器的主要参数,与显微镜的分辨力成正比。干燥物镜的数值孔径为0.05-0.95,油浸物镜(香柏油)的数值孔径为 1.25。 ③、工作距离是指当所观察的标本最清楚时物镜的前端透镜下面到标本的盖玻片上面的距离。物镜的工作距离与物镜的焦距有关,物镜的焦距越长,放大倍数越低,其工作距离越长。例:10倍物镜上标有10/0.25和160/0.17,其中10为物镜的放大倍数; 0.25为数值孔径;160为镜筒长度(单位mm);0.17为盖玻片的标准厚度(单位mm)。10倍物镜有效工作距离为6.5mm,40倍物镜有效工作距离为0.48mm 。

仪器光学

绪论补充更正 视觉函数(光谱光效率函数) 明视觉光谱光效率函数—V(λ);暗视觉光谱光效率函数—V′(λ)国际照明委员会(CIE)1924年和1951年推荐

dΦ(λ)=KmV(λ)Φe(λ)dλ Km=683 lm/W dΦ(λ)=Km′V′(λ)Φe(λ)dλ Km′=1755 lm/W 注:国际计量委员会(CIPM)确认1cd=1/683W/sir(λ=555nm) 该关系对于明视觉发光量系已完全肯定地确认,对于暗视觉量系,所引起的变化大约只有3%,具有令人满意的连续性 ——1977年

第一章拉氏不变量和光学传递函数 (OTF) §1 拉氏不变量与其它几何光学量关系 一、Lagramge-Helmholz不变量 J= nuy = u n '''y n——折射率,u——孔径角,y——物高(u、y为近轴量) 表示在同轴光学系统的近轴区存在一个对整个系统的不变量。

J 是由几何光学引出的:'''''u n nu y y l n nl = ==β ∴'''y u n nuy = 实际上在更普遍的条件下成立,即 y y u n u n ''sin 'sin = =β 得到使近轴点成像理想的正弦条件: ''sin 'sin y u n uy n = 将近轴条件推广到整个空间,就得到理想光学系统的物像空间不变式: '''tgu y n nytgu =(无畸变像的条件) 即角放大率: n t g u t g u n ''= ν (注意与视角放大倍率Γ区别)

二、几何光学基本定律 ㈠光的直线传播定律 在各向同性的均匀介质中,光沿直线方向传播。 ㈡光的独立传播定律 不同光源发出的光在空间某点相遇时,彼此互不影响,各光束独立传播。 (在考虑波动性时,均有局限性,如“衍射”和“干涉”) ㈢光的折射定律和反射定律 向量公式:N Q n N Q n ?=?''或 ()0''=?-N Q n Q n I N Q sin =?

典型光学仪器的基本原理

光学仪器在国民生产和生活中各个领域广泛应用,绝大多数光学仪器可归纳为望远镜系统、显微镜系统和照明系统三类。 人眼构造:人眼本身就相当于一个摄影系统,外表大体呈球形,直径约为25mm,由角膜、瞳孔、房水、睫状体、晶状体和玻璃体等组成的屈光系统相当于成像系统的镜头,起聚焦成像作用。眼睛内的视网膜和大脑的使神经中枢等相当于成像系统的感光底片和控制系统,能够接收外界信号并成像。 视度调节:眼睛通过睫状肌的伸缩本能地改变水晶体光焦度的大小以实现对任意距离的物体自动调焦的过程称作眼睛的视度调节。 视觉调节:人眼除了随着物体距离的改变而调节晶状体曲率外,还可以在不同的明暗条件下工作,人眼能感受非常大范围的光亮度变化,即眼睛对不同的亮度条件下具有适应的调节能力,这种能力称为眼睛的视觉调节。 放大镜定义:放大镜(英文名称:magnifier):用来观察物体细节的简单目视光学器件,是焦距比眼的明视距离小得多的会聚透镜。物体在人眼视网膜上所成像的大小正比于物对眼所张的角(视角)。 视角愈大,像也愈大,愈能分辨物的细节。移近物体可增大视角,但受到眼睛调焦能力的限制。使用放大镜,令其紧靠眼睛,并把物放在它的焦点以内,成一正立虚像。放大镜的作用是放大视角。 显微镜:显微镜是由一个透镜或几个透镜的组合构成的一种光学仪器,是人类进入原子时代的标志。主要用于放大微小物体成为人的肉眼所能看到的仪器。显微镜分光学显微镜和电子显微镜:光学显微镜是在1590年由荷兰的詹森父子所首创。现在的光学显微镜可把物体放大1600倍,分辨的最小极限达0.1微米,国内显微镜机械筒长度一般是160mm。 光学显微镜由目镜,物镜,粗准焦螺旋,细准焦螺旋,压片夹,通光孔,遮光器,转换器,反光镜,载物台,镜臂,镜筒,镜座,聚光器,光阑组成。 显微镜以显微原理进行分类可分为光学显微镜与电子显微镜。 10、光学显微镜:通常皆由光学部分、照明部分和机械部分组成。无疑光学部分是最为关键的,它由目镜和物镜组成。早于1590年,荷兰和意大利的眼镜制造者已经造出类似显微镜的放大仪器。光学显微镜的种类很多,主要有明视野显微镜(普通光学显微镜)、暗视野显微镜、荧光显微镜、相差显微镜、激光扫描共聚焦显微镜、偏光显微镜、微分干涉差显微镜、倒置显微镜。 11、电子显微镜:电子显微镜有与光学显微镜相似的基本结构特征,但它有着比光学显微镜高得多的对物体的放大及分辨本领,它将电子流作为一种新的光源,使物体成像。自1938年Ruska发明第一台透射电子显微镜至今,除了透射电镜本身的性能不断的提高外,还发展了其他多种类型的电镜。如扫描电镜、分析电镜、超高压电镜等。结合各种电镜样品制备技术,可对样品进行多方面的结构或结构与功能关系的深入研究。显微镜被用来观察微小物体的图像。常用于生物、医药及微小粒子的观测。电子显微镜可把物体放大到200万倍。12、望远镜:望远镜是一种利用透镜或反射镜以及其他光学器件观测遥远物体的光学仪器。利用通过透镜的光线折射或光线被凹镜反射使之进入小孔并会聚成像,再经过一个放大目镜而被看到。又称“千里镜”。望远镜的第一个作用是放大远处物体的张角,使人眼能看清角距更小的细节。望远镜第二个作用是把物镜收集到的比瞳孔直径(最大8毫米)粗得多的光束,送入人眼,使观测者能看到原来看不到的暗弱物体。 13、望远镜的分类:

测量仪器的发展

光学仪器是仪器仪表行业中非常重要的组成类别,是工农业生产 光学仪器 、资源勘探、空间探索、科学实验、国防建设以及社会生活各个领域不可缺少的观察、测试、分析、控制、记录和传递的工具。特别是现代光学仪器的功能已成为人脑神经功能的延伸和拓展。 从传统光学仪器转变到现代光学仪器,关键在于计算机化,而微电子技术是基础。光谱仪器发展最快,发达国家上世纪80年代已实现微机化,现已向联用技术、全自动化(如内装机械手等机器人系统,实现无人操作)、实验室信息管理系统自动化及智能化方向发展。 光学计量仪器从大型精密仪器——三座标测量机到传统的自准直仪和投影仪都已实现微机化、光电化:激光技术的结合和CCD等光电器件的引入,更为快速、准确、可 靠的在线检测和监控创造了条件。 未来10年,高新技术的发展和应用将进一步推动光学仪器实现光机电算一体化和智能化。现今的智能化仪器更确切地应称为“微机化”仪器。而高程度的智能化是信息技术的最高层次,应包括理解、推理、判断与分析等一系列功能,是数值、逻辑与知识的结合分析结果,智能化的标志是知识的表达与应用。电子技术、计算机技术和光电器件的不断发展和功能的完善,为仪器向更高档次的智能发展创造了条件。 未来10年,光和电的渗透会进一步强化,更多的新技术、新器件将推广应用,因而在光机电算一体化的基础上融入不同原理,派生出新用途的产品,以满足各领域日益增长的需求。具有优异性能的光电器件和功能材料的开发和应用,将加速现代光学仪器的发展。如CCD器件、半导体激光器、光纤传感器等制造技术趋于成熟,实现应用已获 突破,显示了广泛的应用前景。它必将使光学仪器领域发生重要变革,推动产品向小型化、高分辨、光电化和自动化发展。 未来的光学计量仪器仪表是简化设计,大量压缩零部件,提高智能化和便于操作,发展在线计量测试仪器仪表。

相关主题
文本预览
相关文档 最新文档