当前位置:文档之家› 高三数学一轮复习讲义 专题50 排列与组合

高三数学一轮复习讲义 专题50 排列与组合

高三数学一轮复习讲义 专题50 排列与组合
高三数学一轮复习讲义 专题50 排列与组合

专题50 排列与组合

考纲导读:

考纲要求: 理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题; 理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题.

考纲解读: 解排列组合应用题要依据先组后排、先分类后分步、优限等思想,具体的题型有单限、双限、捆绑、插空(相间)、等机率(除序)、挡板等.有直接法和间接法、占位模型法.另外,要注意“谁选谁的一类问题”. 排列数与组合数公式分别有两个,这些公式的应用也是命题的本原.

考点精析:

考点1、 排列数与组合数公式

此类题主要考查排列与组合的定义和排列数与组合数公式的应用,多为公式的变形证明和解方程、解不等式等.

【考例1】解方程组?????-=+=.1C 3111C ,2C C x n x n

x n x n 解题思路:本题也可利用组合数公式的变形式,将C 1+x n ,C 1-x n 都用C x n 来表示,即

C 1+x n =1+-x x n C x n ,C 1-x n =1+-x n x C x n ,从而方程C 1+x n =311C 1-x n 可化为1

+-x x n C x n =311×1

+-x n x C x n ,约去C x n ,可得解. 正确答案:∵C x n =C x n n -=C x n 2,∴n -x =2x .∴n =3x .

又由C 1+x n =3

11C 1-x n 得)!1()!1(!--+x n x n =311·)!1()!1(!+--x n x n . ∴3(x -1)!(n -x +1)!=11(x +1)!(n -x -1)!.

∴3(n -x +1)(n -x )=11(x +1)x .

将n =3x 代入得6(2x +1)=11(x +1).

∴x =5,n =3x =15.

经检验,?

??==15,5n x 是原方程组的解. 回顾与反思:本题考查了组合组公式的性质及计算.

知识链接:组合数.从n 个不同元素中取出m(m ≤n)个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用符号m

n C 表示. 组合数公式:

!m )1m n ()1n (n A A C m

m m n m

n +--== =)!

m n (!m !n -. 并且规定1C o n =,则有1C C n n o n ==.组合数性质. m n C =m n n

C -, m n 1m n m 1n C C C +=-+ . 【考例2】求下列各式中的n 值.

(1)3412A 140A n n =+; (2)32213A 6A 2A n n n +=+;

(3)3198A 4A -=n n .

解题思路:根据排列公式分别代入即可得解.

正确答案:(1)由排列数公式,得

(2n +1)·2n ·(2n -1)·(2n -2)

=140·n (n -1)(n -2),

整理得4n 2-35n +69=0,

∴(4n -23)(n -3)=0,

∴n =3或n =4

23(舍去), ∴n =3.

(2)由排列数公式,得3n (n -1)(n -2)=2(n +1)·n +6n (n -1),

整理得3n 2-17n +10=0,

解得n =5或n =

3

2(舍去),∴n =5. (3)由排列数公式,得

)!10(!94)!8(!83n n -?=-?, 化简,得n 2-19n +78=0.

n =6或n =13.

∵n ≤8,∴n =6.

回顾与反思:解组数数方程.代入组合数公式,展开成阶乘形式直接求解,是解方程的基本方法,读者要好好掌握.而利用组合数的变形式,直接消去相同的非零公因式,则可以避免不必要的烦琐计算,可使计算简化,同时体现了数学中整体消元的思想方法.

知识链接:一般地,从n 个不同元素中取出m (m ≤n )个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.A m n =n (n -1)(n -2)…(n -m +1).这里n 、m ∈N *,且m ≤n ,这个公式叫做排列数公式.

考点2、排列应用问题

此类题主要通过应用题来进行考查,涉及的方法和题型都较多,是高考考查的重点内容.

【考例1】 (·北京四中)只用1,2,3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻出现,这样的四位数有( )

A. 6个

B. 9个

C. 18

D. 36个

解题思路:先按条件将出现重复的数字按排列分为三类,每一类可以有33A 种排列,由分

步计数原理可得结论.

正确答案:由题意必有一个数使用了两次,这两次在四位数中可以居于14位或13位或

24位,共有3种排放法,将其视为一个整体,则4位数共有33318A =种排法.故应选C.

回顾与反思:本题考查了排列组合的应用,考查了考生灵活应用所学的知识分析与处理分问题的能力.

知识链接:涉及有限制条件的排列问题时,首先考虑特殊位置上元素的选法,再考虑其他位置上的其他元素(这种方法叫做特殊位置或特殊元素法);或者先求出有加限制条件的排列数,再减去不全条件的排列数(也叫做间接法或排除法).设计解题方案时,要合理、完备,做到无重复,无遗漏,特别地,分类时标准要统一.

【考例2】 (·西城区抽样)在1,2,3,4,5这五个数字所组成的没有重复数字的三位

数中,其各个数字之和为9的三位数共有( )

A .6个

B .9个

C .12个

D .18个

解题思路:符合条件的三位数共有两类,即由1,3,5或2,3,4所组成的三位数.

正确答案:各数字之和为9可以取的不重复三个数字分别为:1,3,5; 2,3,4.

其分别组成的三位数共有333312A A +=, 故应选C.

回顾与反思:本题考查了排列组合计数在实际问题的中应用, 其体现了常规的排列数与组合问题的实际操作与题型间的灵活变换.三位数需要针对各自的实际问题进行分析,解题中要注意数的不重不漏的分析与求解.

知识链接:“元素分析法”“位置分析法”是解决排列问题的最基本方法,它们的共同点是先考虑特殊元素的要求.有两个约束条件时,往往以一个约束条件为轴心展开讨论,但要兼顾其他条件的约束.直接法、间接法、插入法、捆绑法、对称法,都是分析问题的常用方法.

考点3、组合应用问题

此类题主要通过应用题来进行考查,涉及的方法和题型都较多,是高考考查的重点内容.

【考例1】如图,要用三根数据线将四台电脑A 、B 、 C 、D 连接起来以实现资源共享,则不同的连接方案的的 种数共( )

A .32

B .16

C .15

D .12

解题思路:可以将四台电脑看作是四个点,作出平面

图形来辅助理解即可得如下解法.

正确答案:画一个正方形和它的两条对角线,在这6

条线段中,选3条的选法有3620C =种.当中,4个直角三角形不是连接方案,故不同的连

接方案共有36420416C -=-=种.故答案选B.

回顾与反思:如何区分一个问题属于排列问题还是组合问题,关键在于:当取出某m 个元素后,如果改变顺序,就得到一种新的取法,就是排列问题;如果改变顺序,所得结果还是原来的取法,这就属于组合问题.

知识链接:计算组合数问题时,常先设计一个组合的方案(有可能事实上做不到),根据方案,利用两个原理和组合数公式求解.

【考例2】 (·雅礼中学月考)(理)已知}5,4,3,2,1{==B A ,从A 到B 的映射f 满足:①(1)(2)(3)f f f ≤≤(4)f ≤(5)f ≤;②f 的象有且只有2个.则适合条件的映射f 的个数是

A.10 B.20 C.40 D.80

解题思路:将A 集合中的元素利用隔板法分为两个有序组,再从B 集合中选出两个元素,按有序的对应方式对应即可得结论.

正确答案:从集合B 中任选两个元素有2

510C =种选法,将之按从小到大排列好,在按从

小到大排列的1,2,3,4,5中的4个空插入一个隔板将它们分为两组有144C =种隔法,

将隔开的 A 如 B C

两组依次与B中的两个元素相对应,即可得符合条件的映射,即得适合条件的映射f共有10440

?=个,应选C.

回顾与反思:本题考查了映射的概念及排列组合的应用.隔板法在解此类问题中的灵活应用问题及考生对概念综合性应用问题的灵活处理能力.

知识链接:对具体的组合应用题,可以利用两个基本原理并结合组合数公式进行求解.解决组合应用题的常用方法是:首先整体分类,要注意分类时,不重复不遗漏,用到分类计数原理;然后局部分步,用到分步计数原理.

考点4、排列与组合的综合应用问题

此类题主要通过应用题来进行考查,涉及的方法和题型都较多,是高考考查的重点内容.

【考例1】(·海淀区期中)某采访小组共8名同学,其中男生6名,女生2名.现从中按性别分层随机抽取4名同学参加一项采访活动,则不同的抽取方法共有()

A. 40种

B. 70种

C. 80种

D. 240种

解题思路:先求得分层抽样的抽样比,再根据抽样比决定男女生各需要抽取多少人,利用组合计数法计算可得结论.

正确答案:由题意可知按分层抽样抽取4名同学,抽样比为1

2

, 需从男生中抽取3名,从

女生中抽取1名,即得共有31

6240

C C=,故应选A.

回顾与反思:本题考查了抽样统计中分层抽样的概念及排列组合的实际应用.

知识链接:排列组合综合应用.①整体分类.对事件进行整体分类,从集合的意义讲,分类要做到各类的并集等于全集,以保证分类的不遗漏,任意两类的交集等于空集,以保证分类的不重复,计算结果时,运用分类计数原理.②局部分步.整体分类以后,对每一类进行局部分步,分步要做到步骤连续,以保证分步时不遗漏,同时步骤要独立,以保证分步的不重复,计算每一类的相应结果时,运用分步计数原理.

【考例2】(·大同市调研)5个男生2个女生排成一排,若女生不能排在两端,且又必须相邻,则不同的排法总数有( )

A.480种

B. 960种

C. 720种

D. 1440种

解题思路:将两名女生作为一个整体,男生先排,再将女生插入5名男生中即可得结论.

正确答案:两名女生捆绑有2

22

A=种排法,将男生先排有5

5120

A=种排法,将两名女生插入5名男生中的4个空中有共有12024960

??=种不同的排法,故应选B.

回顾与反思:本题考查了排列组合知识解相邻相间问题的排队问题,体现了数学知识在实际生活中的实际应用.

知识链接:在不知道如何解的时候,将题目条件与结论做一个比较,明确得到结论需要什么样的条件,或者将问题转化为一个等价命题.“命题的等价转化”是重要的数学思想方法,解题时应灵活使用.

创新探究:

【探究1】用五种不同的颜色,给图中的(1)(2)(3)(4)的

各部分涂色,每部分涂一色,相邻部分涂不同色,则涂色的

方法共有种.

创新思路:本题考查应用排列组合方法解决涂色问题.其有两种解决方式,分类按颜色涂色法和分步按区域涂色法.

解析:按排列中相邻问题处理.(1)(4)或(2)(4).可以涂相同的颜色.分类:若(1)(4)同色,有

A 3

5种,若(2)(4)同色,有A 35种,若(1)(2)(3)(4)均不同色,有A 45种.由加法原理,共有

N =2A 3

5+A 45=240种.

【探究2】在∠AOB 的OA 边上取m 个点,在OB 边上取n 个点(均除O 点外),连同O 点共m +n +1个点,现任取其中三个点为顶点作三角形,可作的三角形有( )

12

12111121

21

2121

211211C C C D.C C C C C C C.C C C C .C B C C C A.C n m n m n m m n n m m

n n m m n n m +++++++++

创新思路:考查组合的概念及加法原理.分类讨论思想及间接法.

解析: 解法一:第一类办法:从OA 边上(不包括O )中任取一点与从OB 边上(不包括

O )中任取两点,可构造一个三角形,有C 1

m C 2n 个;第二类办法:从OA 边上(不包括O )中任

取两点与OB 边上(不包括O )中任取一点,与O 点可构造一个三角形,有C 2

m C 1n 个;第三类

办法:从OA 边上(不包括O )任取一点与OB 边上(不包括O )中任取一点,与O 点可构造一

个三角形,有C 1

m C 1n 个.由加法原理共有N =C 1m C 2n +C 2m C 1n +C 1m C 1n 个三角形.

解法二:从m +n +1中任取三点共有C 3

1++n m 个,其中三点均在射线OA (包括O 点),有

C 31+m 个,三点均在射线OB (包括O 点),有C 31+n 个.所以,个数为N =C 3

1++n m -C 31+m -C 31+n 个.

故应选C.

方法归纳:

1.各种与元素的位置、顺序无关的组合的问题,常见的题型有:选派问题,抽样问题,图形问题,集合问题,分组问题.解答组合应用题时,要在仔细审题的基础上,分清是否为组合问题,对较复杂的组合问题,要搞清是“分类”还是“ 分步”去解决.将复杂问题通过两个原理化归为简单问题,对解排列组合综合问题往往是“ 先组合,后排列.

2.在求解排列与组合应用问题时,应注意:

①把具体问题转化或归结为排列或组合问题;

②通过分析确定运用分类计数原理还是分步计数原理;

③分析题目条件,避免“选取”时重复和遗漏;

④列出式子计算和作答.

3.解排列与组合应用题常用的方法有:直接计算法与间接计算法;分类法与分步法;元素分析法和位置分析法;插空法和捆绑法等八种.

4.经常运用的数学思想是:①分类讨论思想;②转化思想;③对称思想.

过关必练:

一、选择题:

1. (·江西九校模)只用1,2,3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻出现,这样的四位数有( )

A.6个

B.9个

C.18个

D.36个

2. (·扬州二模)对某种产品的5件不同正品和4件不同次品一一进行检测,直到区分出所有次品为止. 若所有次品恰好经过五次检测被全部发现,则这样的检测方法有( )

A .20种

B .96种

C .480种

D .600种

(完整word版)排列组合竞赛训练题(含答案),推荐文档

排列组合 一、选择题 1、公共汽车上有4位乘客,其中任何两人都不在同一车站下车,汽车沿途停靠6个站,那么这4位乘客不同的下车方式共有 A、15种 B、24种 C、360种 D、480种 2、把10个相同的球放入三个不同的盒子中,使得每个盒子中的球数不少于2,则不同的放法有 A、81种 B、15种 C、10种 D、4种 3、12辆警卫车护送三位高级领导人,这三位领导人分别坐在其中的三辆车中,要求在开行后12辆车一字排开,车距相同,车的颜色相同,每辆车内的警卫的工作能力是一样的,三位领导人所坐的车不能相邻,且不能在首尾位置。则共()种安排出行的办法 A、A99×A310 B、A99×A38 C、A38 D、C38 4、在正方体的8个顶点、12条棱的中点、6个面的中心及正方体的中心共27个点中,不共线的三点组的个数是 A、2898 B、2877 C、2876 D、2872 5、有两个同心圆,在外圆上有相异的6个点,内圆上有相异的3个点,由这9个点所确定的直线最少可有 A、15条 B、21条 C、36条 D、3条 6、已知两个实数集A={a1,a2,…,a60}与B={b1,b2,…b25},若从A到B的映射f使得B中每个元素都有原象,且f(a1)≥f(a2)≥…≥f(a60),则这样的映射共有 A、C60 B、C2459 C、C2560 D、C2559 二、填空题 7、4410共有个不同的正约数。 8、有7个人站成一排,其中A、B不能相邻,C、D必须挨在一起,且C要求在A的右侧,则共有站队方法数是。 9、如图,两圆相交于A、B两点, 在两圆周上另有六点C、D、E、F、G、 H,其中仅E、B、G共线,共他无三 点共线,这八点紧多可以确不同圆的 个数是。 10、一个圆周上有5个红点,7个白点,要求任两个红点不得相邻,那么共有种排列方法。 11、平面上给定5点,这些点两两间的连线互不平行,又不垂直,也不重合,现从任一点向其余四点两两之间的连线作垂线,则所有这些垂线间的交点数最多是。 12、10人有相应的10个指纹档案,每个指纹档案上都记录有相应人的指纹痕迹,并有检测指示灯和检测时的手指按钮,10人某人把手指按在键钮上,若是他的档案,则指示灯出现绿色,否则出现红色,现在这10人把手指按在10个指纹档案的键钮上去检测,规定一个人只能在一个档案上去检测,并且两个人不能在同一档案上去检测,这时指示灯全部出现红色,这样的情况共有种。 三、解答题 13、中、日围棋队各出7名队员,按事先安排好的次序出场进行围棋擂台赛,双方先由1号队员

(完整版)高中数学完整讲义——排列与组合7排列组合问题的常用方法总结1,推荐文档

m m m n ! n m 知识内容 1. 基本计数原理 ⑴加法原理 分类计数原理:做一件事,完成它有 n 类办法,在第一类办法中有 m 1 种不同的方法,在第二类办法中 有 m 2 种方法,……,在第 n 类办法中有 m n 种不同的方法.那么完成这件事共有 种不同的方法.又称加法原理. ⑵乘法原理 分步计数原理:做一件事,完成它需要分成 n 个子步骤,做第一个步骤有 m 1 种不同的方法,做第二个 步骤有 m 2 种不同方法,……,做第 n 个步骤有 m n 种不同的方法.那么完成这件事共有 种不同的方法.又称乘法原理. ⑶加法原理与乘法原理的综合运用 如果完成一件事的各种方法是相互独立的,那么计算完成这件事的方法数时,使用分类计数原理.如果完成一件事的各个步骤是相互联系的,即各个步骤都必须完成,这件事才告完成,那么计算完成这件事的方法数时,使用分步计数原理. 分类计数原理、分步计数原理是推导排列数、组合数公式的理论基础,也是求解排列、组合问题的基本思想方法,这两个原理十分重要必须认真学好,并正确地灵活加以应用. 2. ⑴排列:一般地,从 n 个不同的元素中任取 m (m ≤ n ) 顺序排成一列,叫做从 n 个不同元素中取出 个元素的一个排列.(其中被取的象叫做元素) 排列数:从 n 个不同的元素中取出个元素的排列数,用符号 个元素的所有排列的个数,叫做从 n 个不同元素中取出 排列数公式: , m , n ∈ N + ,并且 m ≤ n . 全排列:一般地, n 个不同元素全部取出的一个排列,叫做 个不同元素的一个全排列. n 的阶乘:正整数由1 到 n 的连乘积,叫作 n 的阶乘,用 ⑵组合:一般地,从 n 个不同元素中,任意取出个元素的一个组合. 表示.规定: 0! = 1 . 个元素并成一组,叫做从 n 个元素中任取个 组合数:从 n 个不同元素中,任意取出任意取出 m 个元素的组合数,用符号 表示. 元素的所有组合的个数,叫做从 n 个不同元素中, 组合数公式: , m , n ∈ N + ,并且 m ≤ n . 1 / 20 排列组合问题的常用方法总 结 1 m (m ≤ n ) m ! C m n = n (n - 1)(n - 2) (n - m + 1) = n C m n ! m !(n - m )! (m ≤n ) m (m ≤ n ) N = m 1 ? m 2 ? ? m n N = m 1 + m 2 + + m n A m n 表示. A m = n (n - 1)(n - 2) (n - m + 1) n

最新高三数学专题复习资料函数与方程

第八节 函数与方程 1.函数f(x)=ln(x +1)-2 x 的一个零点所在的区间是( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4) 2.若x 0是方程? ????12x =x 13的解,则x 0属于区间( ) A.? ????23,1 B.? ???? 12,23 C.? ????13,12 D.? ? ???0,13 3.(A.金华模拟)若函数f(x)=(m -2)x 2+mx +(2m +1)的两个零点分别在区间(-1,0)和区间(1,2)内,则m 的取值范围是( ) A.? ????-12,14 B.? ???? -14,12 C.? ????14,12 D.???? ??14,12 4.(A.舟山模拟)设函数f 1(x)=log 2x -? ????12x ,f 2(x)=log 12x -? ???? 12x 的零点分 别为x 1,x 2,则( ) A .0

A .7 B .8 C .9 D .10 7.函数f(x)=?? ? x 2 +2x -3,x ≤0 -2+ln x ,x>0 的零点个数为________. 8.(A.杭州模拟)已知函数f(x)=??? x ,x ≤0, x 2 -x ,x>0, 若函数g(x)=f(x)-m 有三个不同的零点,则实数m 的取值范围为__________. 9.(A.义乌模拟)已知函数f(x)=ln x +3x -8的零点x 0∈[a ,b],且b -a =1,a ,b ∈N *,则a +b =________. 10.设函数f(x)=ax 2+bx +b -1(a ≠0). (1)当a =1,b =-2时,求函数f(x)的零点; (2)若对任意b ∈R ,函数f(x)恒有两个不同零点,求实数a 的取值范围. 11.已知函数f(x)=-x 2 +2ex +m -1,g(x)=x +e 2 x (x>0). (1)若g(x)=m 有实数根,求m 的取值范围; (2)确定m 的取值范围,使得g(x)-f(x)=0有两个相异实根. 12.是否存在这样的实数a ,使函数f(x)=x 2+(3a -2)x +a -1在区间[-1,3]上与x 轴有且只有一个交点.若存在,求出a 的范围,若不存在,说明理由. [冲击名校] 1.已知函数f(x)满足f(x)+1= 1 f x +1 ,当x ∈[0,1]时,f(x)=x ,若 在区间(-1,1]内,函数g(x)=f(x)-mx -m 有两个零点,则实数m 的取值范围是( ) A.??????0,12 B.??????12,+∞ C.??????0,13 D.? ? ???0,12 2.已知函数f(x)=?? ? kx +1,x ≤0,ln x ,x>0,则下列关于函数y =f(f(x))+1的 零点个数的判断正确的是( )

高中数学竞赛标准讲义---排列组合与概率

高中数学竞赛标准讲义----排列组合与概率 一、基础知识 1.加法原理:做一件事有n 类办法,在第1类办法中有m 1种不同的方法,在第2类办法中有m 2种不同的方法,……,在第n 类办法中有m n 种不同的方法,那么完成这件事一共有N=m 1+m 2+…+m n 种不同的方法。 2.乘法原理:做一件事,完成它需要分n 个步骤,第1步有m 1种不同的方法,第2步有m 2种不同的方法,……,第n 步有m n 种不同的方法,那么完成这件事共有N=m 1×m 2×…×m n 种不同的方法。 3.排列与排列数:从n 个不同元素中,任取m(m ≤n)个元素,按照一定顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列,从n 个不同元素中取出m 个(m ≤n)元素的所有排列个数,叫做从n 个不同元素中取出m 个元素的排列数,用m n A 表示,m n A =n(n-1)…(n-m+1)= )! (! m n n -,其中m,n ∈N,m ≤n, 注:一般地0n A =1,0!=1,n n A =n!。 4.N 个不同元素的圆周排列数为n A n n =(n-1)!。 5.组合与组合数:一般地,从n 个不同元素中,任取m(m ≤n)个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合,即从n 个不同元素中不计顺序地取出m 个构成原集合的一个子集。从n 个不同元素中取出m(m ≤n)个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用m n C 表示: .)! (!! !)1()1(m n m n m m n n n C m n -=+--= 6.组合数的基本性质:(1)m n n m n C C -=;(2)11--+=n n m n m n C C C ;(3)k n k n C C k n =--11;(4)n n k k n n n n n C C C C 20 10==+++∑= ;(5)111++++-=+++k m k k m k k k k k C C C C ;(6)k n m n m k k n C C C --=。 7.定理1:不定方程x 1+x 2+…+x n =r 的正整数解的个数为11--n r C 。 [证明]将r 个相同的小球装入n 个不同的盒子的装法构成的集合为A ,不定方程x 1+x 2+…+x n =r 的正整数解构成的集合为B ,A 的每个装法对应B 的唯一一个解,因而构成映射,不同的装法对应的解也不同,因此为单射。反之B 中每一个解(x 1,x 2,…,x n ),将x i 作为第i 个盒子中球的个数,i=1,2,…,n ,便得到A 的一个装法,因此为满射,所以是一一映射,将r 个小球从左到右排成一列,每种装法相当于从r-1个空格中选n-1个,将球分n 份,共有11--n r C 种。故定理得证。 推论1 不定方程x 1+x 2+…+x n =r 的非负整数解的个数为.1r r n C -+

小学奥数专题排列组合

?排列问题题型分类: 1.信号问题 2.数字问题 3.坐法问题 4.照相问题 5.排队问题 ?组合问题题型分类: 1.几何计数问题 2.加乘算式问题 3.比赛问题 4.选法问题 ?常用解题方法和技巧 1.优先排列法 2.总体淘汰法 3.合理分类和准确分步 4.相邻问题用捆绑法 5.不相邻问题用插空法 6.顺序问题用“除法” 7.分排问题用直接法 8.试验法 9.探索法 10.消序法 11.住店法 12.对应法 13.去头去尾法 14.树形图法 15.类推法 16.几何计数法 17.标数法 18.对称法

分类相加,分步组合,有序排列,无序组合 ?基础知识(数学概率方面的基本原理) 一.加法原理:做一件事情,完成它有N类办法, 在第一类办法中有M1中不同的方法, 在第二类办法中有M2中不同的方法,……, 在第N类办法中有M n种不同的方法, 那么完成这件事情共有M1+M2+……+M n种不同的方法。 二.乘法原理:如果完成某项任务,可分为k个步骤, 完成第一步有n1种不同的方法, 完成第二步有n2种不同的方法,…… 完成第k步有nk种不同的方法, 那么完成此项任务共有n 1×n 2 ×……×n k 种不同的方法。 三.两个原理的区别 ?做一件事,完成它若有n类办法,是分类问题,每一类中的方法都是独立的,故用加法原理。 每一类中的每一种方法都可以独立完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏) ?做一件事,需要分n个步骤,步与步之间是连续的,只有将分成的若干个互相联系的步 骤,依次相继完成,这件事才算完成,因此用乘法原理. 任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同

排列组合综合讲义

排列组合综合讲义 1.基本计数原理 ⑴加法原理 分类计数原理:做一件事,完成它有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种方法,……,在第n 类办法中有n m 种不同的方法.那么完成这件事共有12n N m m m =+++ 种不同的方法.又称加法原理. ⑵乘法原理 分步计数原理:做一件事,完成它需要分成n 个子步骤,做第一个步骤有1m 种不同的方法,做第二个步骤有2m 种不同方法,……,做第n 个步骤有n m 种不同的方法.那么完成这件事共有12n N m m m =??? 种不同的方法.又称乘法原 理. ⑶加法原理与乘法原理的综合运用 如果完成一件事的各种方法是相互独立的,那么计算完成这件事的方法数时,使用分类计数原理.如果完成一件事的各个步骤是相互联系的,即各个步骤都必须完成,这件事才告完成,那么计算完成这件事的方法数时,使用分步计数原理. 分类计数原理、分步计数原理是推导排列数、组合数公式的理论基础,也是求解排列、组合问题的基本思想方法,这两个原理十分重要必须认真学好,并正确地灵活加以应用. 2. 排列与组合 ⑴排列: 一般地,从n 个不同的元素中任取()m m n ≤个元素,按照一定的顺序排成一

列,叫做从n 个不同元素中取出m 个元素的一个排列.(其中被取的对象叫做元素) 排列数:从n 个不同的元素中取出()m m n ≤个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号A m n 表示. 排列数公式:A (1)(2)(1)m n n n n n m =---+ ,m n +∈N ,,并且 m n ≤. 全排列:一般地,n 个不同元素全部取出的一个排列,叫做n 个不同元素的一个全排列. n 的阶乘:正整数由1到n 的连乘积,叫作n 的阶乘,用!n 表示.规定:0!1=. ⑵组合: 一般地,从n 个不同元素中,任意取出m ()m n ≤个元素并成一组,叫做从n 个元素中任取m 个元素的一个组合. 组合数:从n 个不同元素中,任意取出m ()m n ≤个元素的所有组合的个数,叫做从n 个不同元素中,任意取出m 个元素的组合数,用符号C m n 表示. 组合数公式:(1)(2)(1)!C !!()! m n n n n n m n m m n m ---+==- ,,m n +∈N ,并且m n ≤. 组合数的两个性质:性质1:C C m n m n n -=;性质2:11C C C m m m n n n -+=+.(规定0C 1n =) ⑶排列组合综合问题 解排列组合问题,首先要用好两个计数原理和排列组合的定义,即首先弄清是分类还是分步,是排列还是组合,同时要掌握一些常见类型的排列组合问题的解法: 1.特殊元素、特殊位置优先法: 元素优先法:先考虑有限制条件的元素的要求,再考虑其他元素; 位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置; 2.分类分步法:对于较复杂的排列组合问题,常需要分类讨论或分步计算,一定要做到分类明确,层次清楚,不重不漏.

高三数学解析几何专题复习讲义(含答案解析)

二轮复习——解析几何 一.专题内容分析 解析几何:解析几何综合问题(椭圆或抛物线)及基本解答策略+圆锥曲线的定义和几何性质+直线与圆+极坐标、参数方程+线性规划 二.解答策略与核心方法、核心思想 圆锥曲线综合问题的解答策略: 核心量的选择: 常见的几何关系与几何特征的代数化: ①线段的中点:坐标公式 ②线段的长:弦长公式;解三角形 ③三角形面积: 2 1底×高,正弦定理面积公式 ④夹角:向量夹角;两角差正切;余弦定理;正弦定理面积公式 ⑤面积之比,线段之比:面积比转化为线段比,线段比转化为坐标差之比 ⑥三点共线:利用向量或相似转化为坐标差之比 ⑦垂直平分:两直线垂直的条件及中点坐标公式 ⑧点关于直线的对称,点关于点,直线关于直线对称 ⑨直线与圆的位置关系 ⑩等腰三角形,平行四边形,菱形,矩形,正方形,圆等图形的特征 代数运算:设参、消参 重视基本解题思路的归纳与整理但不要模式化,学会把不同类型的几何问题转化成代数形式.

三.典型例题分析 1.(海淀区2017.4)已知椭圆C :22 221(0)x y a b a b +=>>的左、右顶点分别为A ,B ,且||4AB =,离心率为12 . (Ⅰ)求椭圆C 的方程; (Ⅱ)设点(4,0)Q , 若点P 在直线4x =上,直线BP 形APQM 为梯形?若存在,求出点P 解法1:(Ⅰ)椭圆C 的方程为22 143 x y +=. (Ⅱ)假设存在点,P 使得四边形APQM 为梯形. 由题可知,显然,AM PQ 不平行,所以AP 与MQ AP MQ k k =. 设点0(4,)P y ,11(,)M x y ,06 AP y k =,114MQ y k x = -, ∴ 01164y y x =-① ∴直线PB 方程为0(2)2 y y x =-, 由点M 在直线PB 上,则0 11(2)2 y y x = -② ①②联立,0 101(2) 264y x y x -=-,显然00y ≠,可解得11x =. 又由点M 在椭圆上,211143y + =,所以132y =±,即3 (1,)2 M ±, 将其代入①,解得03y =±,∴(4,3)P ±. 解法2:(Ⅰ)椭圆C 的方程为22 143 x y +=. (Ⅱ)假设存在点,P 使得四边形APQM 为梯形. 由题可知,显然,AM PQ 不平行,所以AP 与MQ 平行, AP MQ k k =, 显然直线AP 斜率存在,设直线AP 方程为(2)y k x =+. 由(2)4y k x x =+??=? ,所以6y k =,所以(4,6)P k ,又(2,0)B ,所以632PB k k k ==. ∴直线PB 方程为3(2)y k x =-,由22 3(2) 34120 y k x x y =-?? +-=?,消y , 得2222(121)484840k x k x k +-+-=.

竞赛试题选编之排列组合

竞赛试题选编之排列组合 一.选择题 (2005年全国高中数学联赛) },4,3,2,1,|7777{},6,5,4,3,2,1,0{4 433221=∈+++==i T a a a a a M T i 将M 中的元素按从大到小的顺序排列,则第2005个数是( ) A . 43273767575+++ B .4327 2767575+++ C .43274707171+++ D .43273707171+++ (2004年高中数学联赛)设三位数n abc =,若以a ,b ,c 为三条边的长可以构成一个等腰(含等边)三角形,则这样的三位数n 有( ) A. 45个 B. 81个 C. 165个 D. 216个 (2002年全国高中数学联赛)已知两个实数集合},,,{10021a a a A =与},,,{5021b b b B =,若从A 到B 的映射f 使得B 中每个元素都有原象,且)()()(10021a f a f a f ≤≤≤ ,则这样映射共有 (A )50100C (B )5099C (C )49100C (D )4999C 某个货场有1997辆车排队等待装货,要求第一辆车必须装9箱货物,每相邻的4辆车装货总数为34箱.为满足上述要求,至少应该有货物的箱数是B (A )16966 (B )16975 (C )16984 (D )17009 首位数字是1,且恰有两个数字相同的四位数共有D (A )216个 (B )252个 (C )324个 (D )432个 对x i ∈{1,2,…,n },i =1,2,…,n ,有()2 11+=∑=n n x n i i ,x 1x 2…x n =n !,使x 1,x 2,…,x n ,一定是1,2,…,n 的一个排列的最大数n 是C (A )4 (B )6 (C )8 (D )9 设集合M ={-2,0,1},N ={1,2,3,4,5},映射f :M →N 使对任意的x ∈M ,都有x +f (x )+xf (x )是奇数,则这样的映射f 的个数是A (A )45 (B )27 (C )15 (D )11 一个五位的自然数abcde 称为“凸”数,当且仅当它满足a <b <c ,c >d >e (如12430,13531等),则在所有的五位数中“凸”数的

排列组合二项式定理竞赛选拔题

排列组合二项式定理竞赛选拔题 班级 _______ 姓名_______ 选择填空每题3分,简答题每题7分. 1 ?五男两女站成一排,要求女生不能站在两端,且又要相邻,则共有________ 种排法? 2. 6人排成一排,要求甲乙两人之间必有2人,则共有_________ 种排法. 3.8张椅子排成一排,有4人就坐,每人一个座位,其中恰有3个连续空位,则共有______________ 种排法? 4. 8人站成一列纵队,要求甲乙丙三人不在排头且互相隔开,则共有________ 种排法? 5. ____________________________________________________________ 六人并排拍照,要求甲不坐最左边,乙不坐最右边,则共有____________________________________ 种排法. 6. 求满足方程x y z 10且x,y,z N *的解的个数_____________________ . 7. 从1,2,3,…,14中,按数从小到大的顺序取出a i,a2,a3,使同时满足a? a i 3, a3 a? 3 , 则符合要求的不同取法有_________ 种. &求四个杯子,四个杯盖均不对号入座的方法种数______________ . 9?有五件不同奖品发给4位先进工作者,每人至少一件,有 _______ 种不同的发放方法. 10. 一次小型演出活动,准备了两个独唱、两个乐器演奏、一个舞蹈、一个相声共六个节目, 要编排一个节目单,规定同类节目不能连排,不同的排法有 _____________ 种. 11. ______________________________________________________________________________ 从1 , 2, 3, 4, 7, 9六个数字中任取两个作为一个对数的底数和真数,可得_______ 个不同的数值. 12 .若(1+x)+(1+x)2+(1+x)3+??. +(1+x)n=a o+a1(x-1)+a 2(x-1)2+…+a n(x-1)n,贝y a o+a1+a2+ …+a n 等于. 13?用0, 1 , 2, 3, 4五个数字组成无重复数字的五位数,并将他们排成一个递增数列,则32140是这个数列的第____________________ 项. 14 ?计算3.02 4得 __________ .(使误差小于0.001) 6 15. 求1 2x 3x2展开式中的x2项的系数. 16. 一直线和圆相离,这条直线上有6个点,圆周上有4个点,通过任意两点作直线,最少 可作直线的条数是() A . 37 B . 19 C. 13 D. 7 17?某团进行换届选举,从甲、乙、丙、丁四人中选出三人分别担任书记、畐师记和组织委员,规定上届任职的甲、乙、丙三人不能连任原职,则不同的任职结果有() A . 5 种 B . 11 种 C . 14 种 D . 23 种 18 .某城新建的一条道路上有12只路灯,为了节省用电而又不影响正常的照明,可以熄灭其 中三只路灯,但两端的灯不能熄灭,也不能熄灭相邻的两只灯,那么熄灯方法共有() A. C;种 B . A种 C . C93种 D . A种 19 .从6双不同颜色的手套中任取4只,其中恰好有1双同色的取法有() A . 240 B . 180 C . 120 D . 60

艺术生高考数学专题讲义:考点37 直线及其方程

考点三十七 直线及其方程 知识梳理 1.直线的倾斜角 (1)定义:在平面直角坐标系中,对于一条与x 轴相交的直线l ,把x 轴(正方向)按逆时针方向绕着交点旋转到和直线l 重合所成的角,叫作直线l 的倾斜角.当直线l 和x 轴平行或重合时,规定它的倾斜角为0°. (2)倾斜角的范围为[0°,180°). 2.直线的斜率 (1)定义:当直线l 的倾斜角α≠π 2时,其倾斜角α的正切值tan α叫做这条直线的斜率,斜率 通常用小写字母k 表示,即k =tan α. (2)过两点的直线的斜率公式:经过两点P 1(x 1,y 1),P 2(x 2,y 2) (x 1≠x 2)的直线的斜率公式为k =y 2-y 1x 2-x 1 . (3) 直线的倾斜角α和斜率k 之间的对应关系 每条直线都有倾斜角,但不是每条直线都有斜率,倾斜角是90°的直线斜率不存在.它们之间的关系如下: 3.直线方程的五种形式 4.过P 1(11222(1)若x 1=x 2,且y 1≠y 2时,直线垂直于x 轴,方程为x =x 1; (2)若x 1≠x 2,且y 1=y 2时,直线垂直于y 轴,方程为y =y 1; (3)若x 1=x 2=0,且y 1≠y 2时,直线即为y 轴,方程为x =0; (4)若x 1≠x 2,且y 1=y 2=0时,直线即为x 轴,方程为y =0.

5.线段的中点坐标公式 若点P 1、P 2的坐标分别为(x 1,y 1)、(x 2,y 2),且线段P 1P 2的中点M 的坐标为(x ,y ),则??? x =x 1+x 2 2y =y 1 +y 2 2 ,此公式为线段P 1P 2的中点坐标公式. 典例剖析 题型一 直线的倾斜角和斜率 例1 已知两点A (-3,3),B (3,-1),则直线AB 的倾斜角等于__________. 答案 56π 解析 斜率k = -1-33-(-3) =-3 3, 又∵θ∈[0,π), ∴θ=5 6 π. 变式训练 经过两点A (4,2y +1),B (2,-3)的直线的倾斜角为3π 4,则y =__________. 答案 -3 解析 由2y +1-(-3)4-2=2y +4 2=y +2, 得y +2=tan 3π 4=-1.∴y =-3. 解题要点 求斜率的常见方法: 1.若已知倾斜角α或α的某种三角函数值,一般根据k =tan α求斜率. 2.若已知直线上两点A (x 1,y 1),B (x 2,y 2),一般根据斜率公式k =y 2-y 1 x 2-x 1(x 1≠x 2)求斜率. 3.若已知直线的一般式方程ax +by +c =0,一般根据公式k =-a b 求斜率. 题型二 直线方程的求解 例2 已知△ABC 的三个顶点分别为A (-3,0),B (2,1),C (-2,3),求: (1)BC 边所在直线的方程; (2)BC 边上中线AD 所在直线的方程; (3)BC 边的垂直平分线DE 的方程. 解析 (1)因为直线BC 经过B (2,1)和C (-2,3)两点,由两点式得BC 的方程为y -13-1=x -2 -2-2, 即x +2y -4=0.

排列组合常见题型及解题策略(详解)

排列组合常见题型及解题策略 一.可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复, 把不能重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法”可顺利解题,在这类 问题使用住店处理的策略中,关键是在正确判断哪个底数,哪个是指数 【例1】(1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同报名方法? (2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果? (3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法? 【解析】:(1)43(2)34 (3)34 【例2】 把6名实习生分配到7个车间实习共有多少种不同方法? 【解析】:完成此事共分6步,第一步;将第一名实习生分配到车间有7种不同方案, 第二步:将第二名实习生分配到车间也有7种不同方案,依次类推,由分步计数原理知共有67种不同方案. 【例3】 8名同学争夺3项冠军,获得冠军的可能性有( ) A 、38 B 、83 C 、38A D 、3 8C 【解析】:冠军不能重复,但同一个学生可获得多项冠军,把8名学生看作8家“店”,3项冠军 看作3个“客”,他们都可能住进任意一家“店”,每个“客”有8种可能,因此共有38种不同的 结果。所以选A 二.相邻问题捆绑法: 题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 【例1】,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有 【解析】:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A 种 【例2】(2009四川卷理)3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女 生中有且只有两位女生相邻,则不同排法的种数是( ) A. 360 B. 188 C. 216 D. 96 【解析】: 间接法 6位同学站成一排,3位女生中有且只有两位女生相邻的排法有, 22223242C A A A =432种, 其中男生甲站两端的有1 222223232A C A A A =144,符合条件的排法故共有288 三.相离问题插空法 :元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列, 再把规定的相离的几个元素插入上述几个元素的空位和两端. 【例1】七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是

排列组合专项讲义(知识点+例题+练习含详解)

排列组合问题专项讲义 知识点+例题+练习题+详细解析 基本知识框架: 加法原理 排列数 排列数公式 综合应用 乘法原理 组合数 组合数公式 一、基本概念: 乘法原理: 一般地,如果完成一件事情需要n 步,其中,做第一步有a 种不同的方法,做第二步有b 种不同的方法,…,做第n 步有x 种不同的方法,那么,完成这件事一共有: N =a ×b ×…×x 种不同的方法。 加法原理: 一般地,如果完成一件事有k 类方法,第一类方法中有a 种不同的做法,第二类方法中有b 种不同的做法,…,第n 类有x 种不同的做法,那么,完成这件事一共有: N =a +b +…+x 种不同的方法。 排列、排列数 一般地,从n 个不同的元素中任意取出m(n ≥m)个元素,按照一定的顺序排成一列,叫做从n 个不同的元素中取出m 个元素的一个排列。 从n 个不同的元素中取出m(n ≥m)个元素的所有排列的个数,叫做从n 个不同的元素中取出m 个元素 的排列数。记做m n A 。 m n A =n(n -1)(n -2)(n -3)…(n -m +1) 组合、组合数 一般地,从n 个不同的元素中取出m(n ≥m)个元素组成一组,不计组内各元素的次序,叫做从n 个不同的元素中取出m 个元素的一个组合。 从n 个不同的元素中取出m(n ≥m)个元素的所有组合的个数,叫做从n 个不同的元素中取出m 个不同 元素的组合数。记座m n C 。 m n C =m n m m A A =n(n -1)(n -2)(n -3)…(n -m +1)÷!m 二、常见的解题策略 1、特殊元素优先排列 2、合理分步与准确分类 3、排列、组合混合问题先选后排 4、正难则反,等价转化 5、相邻问题捆绑法 6、不相邻问题插空法 7、定序问题除法处理

数学竞赛教案讲义排列组合与概率

第十三章 排列组合与概率 一、基础知识 1.加法原理:做一件事有n 类办法,在第1类办法中有m 1种不同的方法,在第2类办法中有m 2种不同的方法,……,在第n 类办法中有m n 种不同的方法,那么完成这件事一共有N=m 1+m 2+…+m n 种不同的方法。2 乘法原理:做一件事,完成它需要分n 个步骤,第1步有m 1种不同的方法,第2步有m 2种不同的方法,……,第n 步有m n 种不同的方法,那么完成这件事共有N=m 1×m 2×…×m n 种不同的方法。3.排列与排列数:从n 个不同元素中,任取m(m ≤n)个元素,按照一定顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列,从n 个不同元素中取出m 个(m ≤n)元素的所有排列个数,叫做从n 个不同元素中取出m 个元素的排列数,用m n A 表示,m n A =n(n-1)…(n-m+1)= )! (! m n n -,其中m,n ∈N,m ≤n, 注:一般地0 n A =1,0!=1,n n A =n!。 4.N 个不同元素的圆周排列数为n A n n =(n-1)!。 5.组合与组合数:一般地,从n 个不同元素中,任取m(m ≤n)个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合,即从n 个不同元素中不计顺序地取出m 个构成原集合的一个子集。从n 个不同元素中取出m(m ≤n)个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用m n C 表示: .)! (!! !)1()1(m n m n m m n n n C m n -=+--= 6.组合数的基本性质:(1)m n n m n C C -=;(2)1 1--+=n n m n m n C C C ;(3) k n k n C C k n =--11;(4)n n k k n n n n n C C C C 20 10==+++∑= ;(5)111++++-=+++k m k k m k k k k k C C C C ;(6) k n m n m k k n C C C --=。 7.定理1:不定方程x 1+x 2+…+x n =r 的正整数解的个数为1 1--n r C 。

高中数学专题讲义-线性规划

【例1】 设O 为坐标原点,(1,1)A ,若点B 满足2222101212x y x y x y ?+--+????≥≤≤≤≤, 则OA OB ?u u u v u u u v 的最小值为( ) A .2 B .2 C .3 D .22+ 【例2】 已知变量,x y 满足120x y x y ????-? ≥≤≤,则x y +的最小值为( ) A .2 B .3 C .4 D .5 【例3】 不等式组0,10, 3260x x y x y ??--??--?≥≥≤所表示的平面区域的面积等于 . 典例分析 线性规划

【例4】设变量,x y满足约束条件 3 1 x y x y + ? ? -- ? ≥ ≥ ,则目标函数2 z y x =+的最小值为() A.1B.2C.3D.4 【例5】设变量,x y满足 0, 10 3260 y x y x y ? ? -- ? ?-- ? ≥ ≥ ≤ ,则该不等式组所表示的平面区域的面积等 于,z x y =+的最大值为. 【例6】目标函数2 z x y =+在约束条件 30 20 x y x y y +- ? ? - ? ? ? ≤ ≥ ≥ 下取得的最大值是________. 【例7】下面四个点中,在平面区域 4 y x y x <+ ? ? >- ? 内的点是() A.(0,0)B.(0,2)C.(3,2) -D.(2,0) -

【例8】已知平面区域 1 ||1 (,)0,(,) 1 y x y x x y y M x y y x ?? + ? ?? -+ ? ?? ??? Ω== ?????? ? ?? ????? ? ?? ≤ ≤ ≥ ≥ ≤ ,向区域Ω内 随机投一点P,点P落在区域M内的概率为() A.1 4 B. 1 3 C. 1 2 D. 2 3 【例9】若x,y满足约束条件 30 03 x y x y x + ? ? -+ ? ? ? ≥ ≥ ≤≤ ,则2 z x y =-的最大值为. 【例10】已知不等式组 y x y x x a ? ? - ? ? ? ≤ ≥ ≤ ,表示的平面区域的面积为4,点() , P x y在所给平面区 域内,则2 z x y =+的最大值为______.

初中数学竞赛—奥数讲义计数专题:排列组合及答案

华杯赛计数专题:排列组合 基础知识: 1.排列:从n个对象中选出m(不超过n)个并进行排序,共有的方法数称为排列数,写成。 2.排列数的计算:约定:0!=1 排列数是由乘法原理得到的,因此排列可以看成是乘法原理的一种应用。 3.组合:从n个对象中选出m(不超过n)个,不进行排序,共有的方法数称为组合数,写成。 4.排列与组合的关系:。 5.组合数的计算: 6.排列数与组合数的一些性质: 例题: 例1.4名男生和3名女生站成一排: (1)一共有多少种不同的站法? (2)甲,乙二人必须站在两端的排法有多少种? (3)甲,乙二人不能站在两端的排法有多少种? (4)甲不排头,也不排尾,有多少种排法? (5)甲只能排头或排尾,有多少种排法? 【答案】(1)5040;(2)240;(3)2400;(4)3600;(5)略 【解答】

例2.在50件产品中有4件是次品,从中任意抽出5件,至少有3件是次品的抽法共多少种? 【答案】4186种 【解答】至少有3件是次品,分两种情况 第一种情况:3件是次品的抽法:从4件次品中中抽出3件是种,其中, ,然后,从46件正常品中抽2件,总共种。其中, 所以,3件是次品的抽法共种。 第二种情况:4件是次品的抽法共:种。 任意抽出5件产品,至少有3件是次品的抽法,是将上述两种情况加在一起, 所以,总共是4×23×45+46=23×182=4186种。 总结:有序是排列,无序是组合。 例3.3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士,不同的分配方法共有多少种? 【答案】540种 【解答】可设三所学校为甲、乙、丙,三位医生去3所学校的分配方案:用排列数表示为 =3×2×1=6。用乘法原理表示为3!=6。 六名护士去学校甲有种选法,剩下4名护士去乙学校,有种选法,剩下两名自然去学校丙。 所以,不同的分配方法共有种。 例4.有多少个五位数,满足其数位上的每个数字均至少出现两次? 【答案】819 【解答】 方法一: (1)出现一个数字的情况是9种; (2)出现两个数字,首位不能是0,共有9种情况, (i)首位确定之后,如果首位数总共出现3次,则从后面的4个数位中,选出两位,共种情况,剩下的两个数位,还需要选相同的数,因为可以是0,所以,有9种选择。所以,这种情况总共有×9=54种。 (ii)首位确定之后,如果首位数总共出现2次,则从后面的4个数位中,选出一位,总共种情况,剩下的三个数位,还需要选相同的数,因为可以是0,所以,有9种选择。所以,这种情况总共有×9=36种。 所以,出现两个数字的情况为(36+54)×9=810.

完整版排列组合的二十种解法最全的排列组合方法总结

教学目标 1. 进一步理解和应用分步计数原理和分类计数原理。 2. 掌握解决排列组合问题的常用策略 ;能运用解题策略解决简单的综合应用题。提高学生解决问题分 析问题的能力 3. 学会应用数学思想和方法解决排列组合问题 复习巩固 1. 分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有 m i 种不同的方法,在第 2类办法中有m 2种不同的方 法,…,在第n 类办法中有m n 种不同的方法,那么完成这件事共有: N m i m 2 L m n 种不同的方法. 2. 分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有叶种不同的方法,做第2步有m 2种不同的方法,… 做第n 步有m n 种不同的方法,那么完成这件事共有: N mi m 2 L m n 种不同的方法. 3. 分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下 : 1. 认真审题弄清要做什么事 2. 怎样做才能完成所要做的事 ,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少 类。 3. 确定每一步或每一类是排列问题 (有序)还是组合(无序)问题,元素总数是多少及取出多少个元素 . 4. 解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5 可以组成多少个没有重复数字五位奇数 . 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置 . 先排末位共有C ; 然后排首位共有C 1 最后排其它位置共有 A 3 由分步计数原理得C 4C ;A ; 288 位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法 ,若以元素分析为主,需 先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位 置。若 有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件 练习题:7种不同的花种在排成一列的花盆里 多少不同的种法? 二. 相邻元素捆绑策略 例2. 7人站成一排,其中甲乙相邻且丙丁相邻,共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元 素进行排 A 3 ,若两种葵花不种在中间,也不种在两端的花盆里,冋有 A 5 A 2 A 2 480种不同的

高中数学专题讲义-数学归纳法

题型一:数学归纳法基础 【例1】已知n 为正偶数,用数学归纳法证明111 111112()234 1242n n n n -+-++ =+++-++L L 时,若已假设2(≥=k k n 为偶数)时命题为真,则还需要用归纳假设再证 ( ) A .1+=k n 时等式成立 B .2+=k n 时等式成立 C .22+=k n 时等式成立 D .)2(2+=k n 时等式成立 【例2】已知n 是正偶数,用数学归纳法证明时,若已假设n=k (2≥k 且为偶数)时命 题为真,,则还需证明( ) A.n=k+1时命题成立 B. n=k+2时命题成立 C. n=2k+2时命题成立 D. n=2(k+2)时命题成立 【例3】某个命题与正整数n 有关,如果当)(+∈=N k k n 时命题成立,那么可推得当 1+=k n 时命题也成立. 现已知当7=n 时该命题不成立,那么可推得 ( ) A .当n=6时该命题不成立 B .当n=6时该命题成立 C .当n=8时该命题不成立 D .当n=8时该命题成立 【例4】利用数学归纳法证明 “*),12(312)()2)(1(N n n n n n n n ∈-???????=+???++ ”时,从“k n =”变到“1+=k n ”时,左边应增乘的因式是 ( ) A 12+k B 112++k k C 1)22)(12(+++k k k D 1 3 2++k k 【例5】用数学归纳法证明),1(1112 2 *+∈≠--=++++N n a a a a a a n n Λ,在验证n=1时,典例分析 板块三.数学归纳法

左边计算所得的式子是( ) A. 1 B.a +1 C.21a a ++ D. 421a a a +++ 【例6】用数学归纳法证明n n n n n 2)()2)(1(=+++Λ))(12(31*∈+????N n n Λ,从“k 到k+1”左端需乘的代数式是( ) A.2k+1 B.)12(2+k C. 112++k k D.1 3 2++k k 【例7】用数学归纳法证明:1+ 21+3 1+)1,(,121 >∈<-+*n N n n n Λ时,在第二步证明 从n=k 到n=k+1成立时,左边增加的项数是( ) A.k 2 B.12-k C.12-k D.12+k 【例8】设 )1()2()1()(-++++=n f f f n n f Λ,用数学归纳法证明 “)()1()2()1(n nf n f f f n =-++++Λ”时,第一步要证的等式是 【例9】用数学归纳法证明“)12(212)()2)(1(-????=+++n n n n n n ΛΛ”(+∈N n ) 时,从 “n k =到1n k =+”时,左边应增添的式子是__ __。 【例10】用数学归纳法证明不等式 24 13 12111> ++++++n n n n Λ的过程中,由k 推导到k+1时,不等式左边增加的式子是 【例11】是否存在常数c b a ,,是等式22222421(1)2(2)()n n n n n an bn c ?-+?-+???+?-=++对 一切)*N n ∈成立?证明你的结论。 题型二:证明整除问题 【例12】若存在正整数m ,使得)(93)72()(*∈+-=N n n n f n 能被m 整除,则m = 【例13】证明:)(,)3(1*∈+-N n x n 能被2+x 整除 【例14】已知数列{}n a 满足1201a a ==,,当*n ∈N 时,21n n n a a a ++=+.

相关主题
文本预览
相关文档 最新文档