当前位置:文档之家› 不同强度等级混凝土配合比

不同强度等级混凝土配合比

不同强度等级混凝土配合比
不同强度等级混凝土配合比

混凝土按强度分成若干强度等级,混凝土的强度等级是按立方体抗压强度标准值fcu,k划分的。立方体抗压强度标准值是立方抗压强度总体分布中的一个值,强度低于该值得百分率不超过5%,即有95%的保证率。混凝土的强度分为C7.5、C10、C15、C20、C25、C30、C35、C40、C45、C50、C55、C60等十二个等级。

混凝土配合比是指混凝土中各组成材料(水泥、水、砂、石)之间的比例关系。有两种表示方法:一种是以1立方米混凝土中各种材料用量,如水泥300千克,水180千克,砂690千克,石子1260千克;另一种是用单位质量的水泥与各种材料用量的比值及混凝土的水灰比来表示,例如前例可写成:

C:S:G=1:2.3:4.2,W/C=0.6。

常用等级

C10每立方米约:

水:180kg

水泥:230kg

砂:780kg

石子:1240kg

C15

32.5Mpa水泥0.307吨

42.5Mpa水泥0 吨

中砂0.511立方米

<16mm石子0.83 立方米

水0.22立方米

C20

水:175kg水泥:343kg 砂:621kg 石子:1261kg

配合比为:0.51:1:1.81:3.68

C25

水:175kg水泥:398kg 砂:566kg 石子:1261kg

配合比为:0.44:1:1.42:3.17

C30

水:175kg 水泥:461kg 砂:512kg 石子:1252kg

配合比为:0.38:1:1.11:2.72

普通混凝土配合比参考:

水泥

品种混凝土等级配比(单位)Kng 塌落度mm 抗压强度N/mm2

水泥砂石水7天28天

P.C32.5 C20 300 734 1236 195 35 21.0 29.0 1 2.45 4.12 0.65

C25 320 768 1153 208 45 19.6 32.1

1 2.40 3.60 0.65

C30 370 721 1127 207 45 29.5 35.2

1 1.95 3.05 0.56

C35 430 642 1094 172 44 32.8 44.1

1 1.49 2.54 0.40

C40 480 572 1111 202 50 34.6 50.7

1 1.19 2.31 0.42

P.O 32.5 C20 295 707 1203 195 30 20.2 29.1 1 2.40 4.08 0.66

C25 316 719 1173 192 50 22.1 32.4

1 2.28 3.71 0.61

C30 366 665 1182 187 50 27.9 37.6

1 1.8

2 3.2

3 0.51

C35 429 637 1184 200 60 30.***6.2

1 1.48 2.76 0.47

C40 478 *** 1128 210 60 29.4 51.0

1 1.33 2.36 0.44

P.O 32.5R C25 321 749 1173 193 50 26.6 39.1 1 2.33 3.65 0.60

C30 360 725 1134 198 60 29.4 44.3

1 2.01 3.15 0.55

C35 431 643 1096 190 50 39.0 51.3

1 1.49 2.54 0.44

C40 480 572 1111 202 40 39.3 51.0

1 1.19 2.31 0.42

P.O

42.5(R) C30 352 676 1202 190 55 29.***5.2

1 1.9

2 3.41 0.54

C35 386 643 1194 197 50 34.5 49.5

1 1.67 3.09 0.51

C40 398 649 1155 199 55 39.5 55.3

1 1.63 2.90 0.50

C50 496 606 1297 223 45 38.4 55.9

1 1.2

2 2.61 0.45

PII 42.5R C30 348 652 1212 188 50 31.***6.0

1 1.87 3.48 0.54

C35 380 639 1187 194 50 35.0 50.5

1 1.68 3.1

2 0.51

C40 398 649 1155 199 55 39.5 55.3

1 1.63 2.90 0.50

C45 462 618 1147 203 4***2.7 59.1

1 1.34 2.48 0.44

C50 480 633 1115 192 25 45.7 62.8

1 1.3

2 2.32 0.40

P.O 52.5R C40 392 645 1197 196 53 40.2 55.8

1 1.64 3.05 0.50

C45 456 622 1156 19***2 43.5 59.5

1 1.36 2.53 0.43

C50 468 626 1162 192 30 45.2 61.6

1 1.33 2.47 0.41

此试验数据为标准实验室获得,砂采用中砂,细度模数为 2.94,碎石为5~31.5mm连续粒级。各等级混凝土配比也可以通过掺加外加剂来调整。

混凝土标号与强度等级

长期以来,我国混凝土按抗压强度分级,并采用“标号”表征。1987年GBJ107-87标准改以“强度等级”表达。DL/T5057-1996《水工混凝土结构设计规范》,D L/T5082-1998《水工建筑物抗冰冻设计规范》,DL5108-1999《混凝土重力坝设计规范》等,均以“强度等级”表达,因而新标准也以“强度等级”表达以便统一

称谓。水工混凝土除要满足设计强度等级指标外,还要满足抗渗、抗冻和极限拉伸值指标。不少大型水电站工程中重要部位混凝土,常以表示混凝土耐久性的抗冻融指标或极限拉伸值指标为主要控制性指标。

过去用“标号”描述强度分级时,是以立方体抗压强度标准值的数值冠以中文“号”字来表达,如200号、300号等。

根据有关标准规定,混凝土强度等级应以混凝土英文名称第一个字母加上其强度标准值来表达。如C20、C30等。

水工混凝土仅以强度来划分等级是不够的。水工混凝土的等级划分,应是以多指标等级来表征。如设计提出了4项指标C9020、W0.8、F150、εp0.85×10-4,即90 d抗压强度为20 MPa、抗渗能力达到0.8 MPa下不渗水、抗冻融能力达到150次冻融循环、极限拉伸值达到0.85×10-4。作为这一等级的水工混凝土这4项指标应并列提出,用任一项指标来表征都是不合适的。作为水电站枢纽工程,也有部分厂房和其它结构物工程,设计只提出抗压强度指标时,则以强度来划分等级,如其龄期亦为28 d,则以C20、C30表示。

2 混凝土强度及其标准值符号的改变

在以标号表达混凝土强度分级的原有体系中,混凝土立方体抗压强度用“R”来表达。根据有关标准规定,建筑材料强度统一由符号“f”表达。混凝土立方体抗压强度为“fcu”。其中,“cu”是立方体的意思。而立方体抗压强度标准值以“fcu,k”表达,其中“k”是标准值的意思,例如混凝土强度等级为C20时,fcu,k=20N/mm2(MPa),即立方体28d抗压强度标准值为20MPa。

水工建筑物大体积混凝土普遍采用90d或180d龄期,故在C符号后加龄期下角标,如C9015,C9020指90d龄期抗压强度标准值为15MPa、20MPa的水工混凝土强度等级,C18015则表示为180d龄期抗压强度标准值为15MPa。

3 计量单位的变化

过去我国采用公制计量单位,混凝土强度的单位为kgf/cm2。现按国务院已公布的有关法令,推行以国际单位制为基础的法定计量单位制,在该单位体系中,力的基本单位是N(牛顿),因此,强度的基本单位为1 N/m2,也可写作1Pa。标号改为强度等级后,混凝土强度计量单位改以国际单位制表达。由于N/m2(P a),数值太小,一般以1N/mm2=106N/m2(MPa)作为混凝土强度的实际使用的计量单位,读作“牛顿每平方毫米”或“兆帕”。

新标准中强度计量单位均采用MPa(兆帕)表达。

4 配制强度计算公式的变更

原标准混凝土配制强度的计算公式为:

R配=R标/-t·Cv

新标准混凝土配制强度计算公式为:

fcu,o=fcu,k+t·σ

式中:fcu,o—混凝土配制强度MPa;

fcu,k—混凝土设计龄期的强度标准值MPa;

t —概率度系数

σ—混凝土强度标准差MPa。

原标准的公式和变更后本标准采用的公式所设计的配制强度没有实质上的差别。主要引自美国混凝土学会的ACI214-77《混凝土强度试验结果评定的推荐方法》(1989年重新批准发布)。ACI214-77称:对于任何设计,其需要的平均强度fcr,可根据使用的离差系数(CV)或标准离差(б)由公式(1)或(1a)计算求得。

Fcr=Fc′/1-t·Cv (1)

Fcr=Fc′+tσ (1α)

式中:Fcr —需要的平均强度

Fc′—规定的设计强度

t —概率度系数

Cv—以小数表示的离差系数预测值

σ—标准差的预测值

现行国家标准及国内各行业标准,对混凝土配合比设计强度计算和混凝土生产质量控制,均采用以混凝土强度标准差(σ)为主要参数的计算方法。国家标准GB5 0204-1992《混凝土结构工程施工及验收规范》和JGJ55-2000《普通混凝土配合比设计规程》,以及有关建工系统混凝土的强度保证率(P)均采用95%,相应的概率度系数(t)为1.645,因而混凝土配制强度的计算公式均为:

fcu,o=fcu,k+1.645σ

新标准对混凝土配制强度公式fcu,o=fcu,k+tσ中,以t值取代常数1.645,这是因为水工混凝土工程结构复杂,不同的混凝土坝型,不同部位分区混凝土对混凝土强度保证率(P)有不同的要求,如重力坝混凝土强度的保证率一般要求80%,有些轻型坝P值要求85%~90%,而部分厂房和其它工程结构物混凝土P值要求为95%。对于不同混凝土对P值的要求,根据表1查得其相应的概率度t值。

表1 保证率和概率度系数关系

--------------------------------------------------------------------------------

保证率

P(%)65.5 69.2 72.5 75.8 78.8 80.0 82.9 85 90.0 93.3 95.0 97.7 99.9

--------------------------------------------------------------------------------

概率度

系数t 0.40 0.50 0.60 0.70 0.80 0.84 0.95 1.04 1.28 1.50 1.65 2.0 3.0

--------------------------------------------------------------------------------

5 强度标准差的选用

混凝土施工开工初始阶段,缺少混凝土施工的实测抗压强度统计资料,标准差σ值可按新标准表2中的数值参考选用。

表2 标准差σ值

--------------------------------------------------------------------------------

混凝土强度等级≤C9015 C9020~C9025 C9030~C9035 C9040~C9045 ≥C9050

--------------------------------------------------------------------------------

σ(90d)3.5 4.0 4.5 5.0 5.5

--------------------------------------------------------------------------------

混凝土等级均以90天龄期为代表,如果其它龄期(如28天,180天)可相应换算后选用。

混凝土进入正常施工阶段,应根据前一个月(如一个月内还达不到统计所需试件组数n值要求时,可延迟至3个月内)相同强度等级,相同混凝土配合比的混凝土强度资料,进行混凝土强度标准差σ值的计算,其公式为:

式中:fcu,i —第i组的试件强度,MPa;

mfcu—n组试件强度平均值,MPa;

n —试件组数,应大于30。

混凝土标准差的下限取值:通过施工实测强度值,计算的σ值,对于小于或等于C9025级混凝土,σ小于2.5MPa时,σ值用2.5 MPa;对于大于或等于C9 030级混凝土,计算的σ小于3.0 MPa时,σ取用3.0 MPa。

σ值是28天龄期的实测强度值计算的。90天龄期的σ值一般要略大一些,但2 8天的σ值已基本反映了混凝土的质量波动,这亦是结合了混凝土质量控制的需要,90天的统计结果滞后了一些。28天的统计成果可有效的掌握施工质量的波动,并根据需要及时修正和调整配制混凝土抗压强度时所采用的σ值。实际上是要求以28天的混凝土强度标准差(σ)进行动态控制,以保证混凝土质量。

1:3水泥砂浆,究竟是体积比还是重量比

首先明确对象:是砌筑砂浆还是抹灰砂浆?

对于砌筑砂浆(一般分水泥砂浆和水泥混合砂浆等),一般用强度等级表示,普通砌筑砂浆的强度等级代号以M表示,砌筑混凝土砌块的专用砂浆用Mb表示。其强度是根据所用材料的不同(如水泥的种类和标号、砂的颗粒级配等)由实验室给出设计配比单,此配比一般是根据《砌筑砂浆配合比设计规程》

(JGJ98-2000),并结合施工水平通过试配和试验确定的具有85%保证率的强度(立方体抗压强度,单位MPa)。其配比是按每立米体积的砂浆中各组分的质量(Kg)比表示的,其中砂是按含水率小于0.5%的干砂计算的。砂浆的体积是按砂浆拌和物的密度(水泥砂浆1900kg/m^3,混合砂浆1800kg/m^3)换算的。

实际施工配比还应根据砂的实际含水率进行质量换算。

施工中一般均直接采用质量比表示,目的是便于计量和控制质量!当然也可以全部换算成体积比,但所用的密度(为堆积密度)必须是现场实测值,以确保其正确性。

这一点和混凝土配比相似,所不同的是对砌筑砂浆对水的用量可以根据现场实际施工要求的稠度和和易性在较大的范围内调整(一般在270~330Kg/m^3左右,当然没有绝对限制),而混凝土则必须严格控制水的用量(由水灰比控制)。

再说一下抹灰砂浆,抹灰砂浆一般分为普通抹灰砂浆(水泥砂浆、混合砂浆等)、特种抹灰砂浆(防水砂浆、装饰砂浆,聚合物砂浆等)等。抹灰砂浆一般不直接要求强度等级,设计文件中一般多采用“1:m”或“1:n:m”的表示方法,采用的是份数比,即体积比,当然1一般是指水泥或其他胶结料用量,m是砂用量,即一般用“水泥:其他胶结料或添加料:砂”的形式表示。

其配比形式还可以采用x:y:z的形式,均为份数比,即体积比。

当然抹灰砂浆实际上也是有强度值的,如抗压强度、黏结强度等,只不过一般很少采用。

应该注意到,其实用体积比是过去的习惯用法,其前提条件采用什么种类的胶结料(或水泥)没有说清楚,也没给出水泥的强度等级要求,所以不够科学、规范。我国现行规范也采用此提法,但对于有抗压要求的更倾向于采用强度等级表示。

网友提到的《建筑地面工程施工质量验收规范》(GB50209-2002)5.3.2条,就同时采用了两种提法“水泥砂浆面层的体积比(强度等级)必须符合设计要求;且体积比应为1:2,强度等级不应小于M15。”从中可以看到两者有时是可以表示同一种砂浆的。

(但注意1:2的水泥砂浆并一定等于M15的强度等级,因为前者没有指明水泥的强度标号)

从严格意义上说,体积比并不科学,也不便于质量管理和施工质量控制,以后应逐步过渡采用容易量化和管理的质量比,同时考虑所用材料的强度指标和特性等方面。

如《地下防水工程技术规范》GB50108-2001中对于普通防水砂浆的配合比就采用了质量比,(前提是水泥强度等级不低于32.5级)详见规范第4.2.7条和4.2.12条

高性能混凝土配合比设计和选择样本

高性能混凝土配合比设计和选择 1、原材料选择 水泥: C30普通混凝土和水下混凝土采用宁夏赛马普通硅酸盐水泥P.O42.5 R 密度3.0 g/cm3, 氯离子含量0.015%, 标准稠度用水量28.4%, 比表面积333 m2/kg, 水泥中粉煤灰掺量16.7%。 C50预应力混凝土采用宁夏赛马普通硅酸盐水泥P.O52.5R, 标准稠度用水量25.8%, 氯离子含量0.016%, , 水泥中粉煤灰掺量7%, 水泥密度3.1 g/cm3, 比表面积410m2/kg。 粉煤灰采用宁夏大坝电厂生产的优质Ⅰ级粉煤灰, 表观密度p f =2.2g/cm3。 硅粉: 采用宁夏大武口铁合金厂生产, 松堆密度p b = 0.18~0.23g/cm3、表 观密度=2.0~2.2g/cm3比表面积: 15~20m2/g、需水量比: ≤125% 、 SiO 2 含量可达 85~90%。 石灰岩粉: 采用柳木高玉明牌石灰岩粉表观密度=2.8g/cm3, 比表面积=450 kg/m2, 含泥量≤2%。 矿粉: 采用青铜峡矿粉表观密度=2.8g/cm3, 比表面积=600 kg/m2。 减水剂采用山西黄恒HY-A聚羧酸高性能液体减水剂, 减水率不小于25%,经正交设计减水剂C30优化为浇凝材料0.8%, C50优化为浇凝材料1.1%。 细集料: 银川天昊水洗砂厂中砂: 表观密度2687kg/m3、堆积密度1640kg/ m3、空隙率39%、含泥量1.3%、云母含量1.3%、坚固性4.3%、细度模数2. 86; 细度模数M k =2.6~3.2。要求M k 浮动小, 具有良好的级配Ⅱ区中粗砂, 太细 的砂配制不出高性能混凝土。细集料满足JTJ/T F50—《公路桥涵施工技术规 范》6.3要求。 粗集料: 套门沟碎石(5-31.5): 表观密度2727 kg/m3、堆积密度1520 kg/ m3、空隙率44%、含泥量0.7%、压碎值8.7%、针片状含量2.5%、 SO 3 含量0. 02%;

普通水泥混凝土配合比参考表

合比没有区分。 2、当掺和掺合料时,釆用内掺法可等量或超量取代,最大取代量应根据掺 合料性能进行强度对比实验结果而定。 3、配制流态性混凝土时,参考配比试验所采用的是减水率在15%以上的高效 减水剂。 4、参考配比试验所有砂石为丨丨区中砂,石子为5-31. 5mm的连续级配的碎 石。 水泥标号 百科名片 水泥的标号是水泥“强度”的指标。水泥的强度是表示单位面积受力的大小,是指水泥加水拌和后,经凝结、硬化后的坚实程度(水泥的强度与组成水泥的矿物成分、颗粒细度、硬化时的温度、湿度、以及水泥中加水的比例等因素有关)。水泥的强度是确定水泥标号的指标,也是选用水泥的主要依据。测定水泥强度的方法用前是“软练法”。目录 展开 基本信息 此法是将1: 3的水泥、(福建平潭白石英砂)及规定的水,按照规定的方法与

水泥拌制成软练胶砂,制成7. 07 X 7. 07 X 7. 07厘米的立方体抗压试块与8字形抗拉试块,在标准条件下进行养护,分别测定其3天、7天及28天的抗压强度和抗拉强度,以分组试块的28天平均抗压强度来确定水泥的标号,但3天、7天的技压强度也必须满足规定的要求。 目前我国生产的水泥一般有225#、325#、425#、525#等儿种标号。生产不同标号的水泥,是为了适应制做不同标号的混凝土的需要。 水泥的标号 标准 水泥的标号是水泥强度大小的标志,测定水泥标号的抗压强度,系指水泥砂浆硬结28d后的强度。例如检测得到28d后的抗压强度为310 kg∕cm2, 则水泥的标号定为300号。抗压强度为300-400 kg∕cm2者均算为300号。普通水泥有:200、250、300、400、500> 600六种标号。200号-300号的可用于一些房屋建筑。400号以上的可用于建筑较大的桥梁或厂房,以及一些重要路面和制造预制构件。 关于水泥标号的用法,其实并没有非常精细的规定,一般来说,设计图纸中会给出明确的规定。 在民用建筑工程中,一般用的比较多的是普通硅酸盐水泥和矿渣硅酸盐水泥。 标号一般常用的有,。 有325的和425的325的250元一300元425的360—450元品牌,地区不一样价格就不一样 关于水泥标号

普通混凝土配合比设计方法及例题

普通混凝土配合比设计方法[1] 一、基本要求 1.普通混凝土要兼顾性能与经济成本,最主要的是要控制每立方米胶凝材料用量及水泥用量,走低水胶比、大掺合料用量、高砂率的设计路线; 2.普通塑性混凝土配合比设计时,主要参数参考下表 ; ②普通混凝土掺合料不宜使用多孔、含碳量、含泥量、泥块含量超标的掺合料; ③确保外加剂与水泥及掺合料相容性良好,其中重点关注缓凝剂、膨胀剂等与水泥及掺合料的相容性,相容性不良的外加剂,不得用于配制混凝土; 3 设计普通混凝土配合比时,应用excel编计算公式,计算过程中通过调整参数以符合表1给出的范围。

2 术语、符号 2.1 术语 2.1.1普通混凝土ordinary concrete 干表观密度为2000~2800kg/m3的水泥混凝土。 2.1.2 干硬性混凝土stiff concrete 拌合物坍落度小于10mm且须用维勃时间(s)表示其稠度的混凝土。 2.1.3塑性混凝土plastic concrete 拌合物坍落度为10mm~90mm的混凝土。 2.1.4流动性混凝土pasty concrete 拌合物坍落度为100mm~150mm的混凝土。 2.1.5大流动性混凝土flowing concrete 拌合物坍落度不小于160mm的混凝土。 2.1.6抗渗混凝土impermeable concrete 抗渗等级不低于P6的混凝土。 2.1.7抗冻混凝土frost-resistant concrete 抗冻等级不低于F50的混凝土。 2.1.8高强混凝土high-strength concrete 强度等级不小于C60的混凝土。 2.1.9泵送混凝土pumped concrete 可在施工现场通过压力泵及输送管道进行浇筑的混凝土。 2.1.10大体积混凝土mass concrete 体积较大的、可能由胶凝材料水化热引起的温度应力导致有害裂缝的结构混凝土。 2.1.11 胶凝材料binder 混凝土中水泥和矿物掺合料的总称。 2.1.12 胶凝材料用量binder content 混凝土中水泥用量和矿物掺合料用量之和。 2.1.13 水胶比water-binder ratio 混凝土中用水量与胶凝材料用量的质量比。 2.1.14 矿物掺合料掺量percentage of mineral admixture 矿物掺合料用量占胶凝材料用量的质量百分比。 2.1.15 外加剂掺量percentage of chemical admixture 外加剂用量相对于胶凝材料用量的质量百分比。

高强混凝土配合比设计方法及例题

高强(C60)混凝土配合比设计方法[1] 基本特点: 1)每立方米混凝土胶凝材料质量480±20kg; 2)水泥用量不低于42.5级,每立方米水泥质量不超过400kg; 3)砂率0.38~0.40,砂率尽量选小些,以降低粘度; 4)使用掺合料取代部分水泥,宜矿渣(10%~20%)与粉煤灰(10%~15%)复掺; 5)优先选用聚羧酸减水剂,并复配有相容性良好缓凝剂与消泡剂; 6)粗骨料粒径不应大于31.5mm,如果强度等级大于C60,其最大粒径不应大于25mm;7)粗骨料的针片状含量不宜大于5.0%; 8)粗骨料的含泥量不应大于0.5%,泥块含量不宜大于0.2%; 9)细骨料的细度模数宜大于2.6; 10)细骨料含泥量不应大于2.0%,泥块含量不应大于0.5%。

3 基本规定 3.0.1混凝土配合比设计应满足混凝土配制强度、拌合物性能、力学性能和耐久性能的设计要求。混凝土拌合物性能、力学性能和耐久性能的试验方法应分别符合现行国家标准《普通混凝土拌合物性能试验方法标准》GB/T50080、《普通混凝土力学性能试验方法标准》GB/T50081和《普通混凝土长期性能和耐久性能试验方法标准》GB/T50082的规定。3.0.2 混凝土配合比设计应采用工程实际使用的原材料,并应满足国家现行标准的有关要求;配合比设计应以干燥状态骨料为基准,细骨料含水率应小于0.5%,粗骨料含水率应小于0.2%。 3.0.3 混凝土的最大水胶比应符合《混凝土结构设计规范》GB50010的规定。 3.0.4 混凝土的最小胶凝材料用量应符合表3.0.4的规定,配制C15及其以下强度等级的混凝土,可不受表3.0.4的限制。 表3.0.4 混凝土的最小胶凝材料用量 3.0.5矿物掺合料在混凝土中的掺量应通过试验确定。钢筋混凝土中矿物掺合料最大掺量宜符合表3.0.5-1的规定;预应力钢筋混凝土中矿物掺合料最大掺量宜符合表3.0.5-2的规定。 表3.0.5-1钢筋混凝土中矿物掺合料最大掺量 注:①采用硅酸盐水泥和普通硅酸盐水泥之外的通用硅酸盐水泥时,混凝土中水泥混合材和矿物掺合料用量之和应不大于按普通硅酸盐水泥用量20%计算混合材和矿物掺合料用量之和; ②对基础大体积混凝土,粉煤灰、粒化高炉矿渣粉和复合掺合料的最大掺量可增加5%; ③复合掺合料中各组分的掺量不宜超过任一组分单掺时的最大掺量。 表3.0.5-2 预应力钢筋混凝土中矿物掺合料最大掺量

高性能混凝土配合比的设计及优化

高性能混凝土配合比的设计及优化 随着现代桥梁不断向海洋化、大跨度、高耐久方向发展,桥梁工程中的商品混凝土对下列各项性能指标提出了更高的要求:耐久性、工作性、适用性、强度、体积稳定性、经济性和不易开裂性。鉴于目前我国海工钢筋商品混凝土建筑物的使用寿命普遍偏短的状况,结合我局青岛海湾大桥施工实际,我们开展了海工高性能商品混凝土的试验研究,以提出桥梁工程用海工高性能商品混凝土配合比及其应用技术,有效地控制商品混凝土质量,延长海工商品混凝土建筑物的使用寿命。 1前言 高性能商品混凝土是一种新型高技术商品混凝土,是在大幅度提高普通商品混凝土性能的基础上采用现代商品混凝土技术制作的商品混凝土,是以耐久性作为设计的主要指标,针对不同用途的要求,在商品混凝土中掺入一定量的矿物掺合料和高性能复合外加剂,取用较低的水胶比和较少的水泥用量,在施工时采取严格的质量控制措施,制备满足力学性能、耐久性能、工作性能以及经济合理性的商品混凝土。高性能商品混凝土与普通商品混凝土相比,主要区别为:高性能商品混凝土以耐久性指标为主要控制指标、采用较低的水胶比、较低的用水量及水泥用量、同时掺加复合外加剂及矿物掺合料等。 高性能商品混凝土十分敏感,当环境温度、原材料质量、配合比、计量发生变化时,其工作性能易发生突变,造成商品混凝土离析、泌水、和易性差,影响施工并造成商品混凝土外观差、耐久性差。因此,原材料质量、配合比选定、商品混凝土的搅拌、浇注等与高性能商品混凝土质量密切相关,这些环节必须加以严格控制,才有保证商品混凝土质量。 2如何选择各种原材料

选择原材料的原则:任何原材料对具体工程都有利有弊,检验合格的原材料不一定能满足商品混凝土的需要。选取适合自己的才是最好的,要充分发挥适合商品混凝土设计的的各种材料的特性,为我所用。 2.1水泥是商品混凝土中最为重要的胶凝材料。 水泥宜选用低水化热和低碱含量的水泥,尽可能避免使用早强水泥和高C3A 含量的水泥。水泥一般采用大型水泥厂生产的水泥,质量比较稳定,但应注意当砂石碱活性较大时,应采用低碱水泥。采用低碱水泥一是可以降低商品混凝土含碱量,减少与碱活性骨料发生反应的程度,二是可以减少商品混凝土开裂的倾向。 2.2掺合料的使用 不同的掺合料具有不同的特性和作用。 表1粉煤灰和矿渣粉的优缺点 矿渣粉和粉煤灰的掺入,减少了水泥用量,延长了商品混凝土水化热反应的时间,推迟了温度峰值的产生且降低了温度峰值。 2.3外加剂的选择 外加剂是配制高性能商品混凝土最重要的材料,配制高性能商品混凝土的关键是要以较低的用水量且要使商品混凝土达到较大的坍落度、较高的强度以及并具有较小的坍落度损失,这些只有掺加高性能减水剂才能实现,关键是看它能不能与其它各种材料(主要是水泥)相兼容,合适自己的才是最好的。 2.4骨料的选择

混凝土配合比

混凝土配合比 轻混凝土是指表观密度小于1950kg/m3的混凝土。可分为轻集料混凝土、多孔混凝土和无砂大孔混凝土三类。轻混凝土的主要特点为: 1.表观密度小。轻混凝土与普通混凝土相比,其表观密度一般可减小1/4~3/4,使上部结构的自重明显减轻,从而显著地减少地基处理费用,并且可减小柱子的截面尺寸。又由于构件自重产生的恒载减小,因此可减少梁板的钢筋用量。此外,还可降低材料运输费用,加快施工进度。 2.保温性能良好。材料的表观密度是决定其导热系数的最主要因素,因此轻混凝土通常具有良好的保温性能,降低建筑物使用能耗。 3.耐火性能良好。轻混凝土具有保温性能好、热膨胀系数小等特点,遇火强度损失小,故特别适用于耐火等级要求高的高层建筑和工业建筑。 4.力学性能良好。轻混凝土的弹性模量较小、受力变形较大,抗裂性较好,能有效吸收地震能,提高建筑物的抗震能力,故适用于有抗震要求的建筑。 5.易于加工。轻混凝土中,尤其是多孔混凝土,易于打入钉子和进行锯切加工。这对于施工中固定门窗框、安装管道和电线等带来很大方便。 轻混凝土在主体结构的中应用尚不多,主要原因是价格较高。但是,若对建筑物进行综合经济分析,则可收到显著的技术和经济效益,尤其是考虑建筑物使用阶段的节能效益,其技术经济效益更佳。 一、轻骨料混凝土 用轻粗骨料、轻细骨料(或普通砂)和水泥配制而成的混凝土,其干表观密度不大于1950kg/m3,称为轻骨料混凝土。当粗细骨料均为轻骨料时,称为全轻混凝土;当细骨料为普通砂时,称砂轻混凝土。 (一)轻骨料的种类及技术性质 1.轻骨料的种类。凡是骨料粒径为5mm以上,堆积密度小于1000kg/m3的轻质骨料,称为轻粗骨料。粒径小于5mm,堆积密度小于1200kg/m3的轻质骨料,称为轻细骨料。 轻骨料按来源不同分为三类:①天然轻骨料(如浮石、火山渣及轻砂等);②工业废料轻骨料(如粉煤灰陶粒、膨胀矿渣、自燃煤矸石等);③人造轻骨料(如膨胀珍珠岩、页岩陶粒、粘土陶粒等)。 2.轻骨料的技术性质。轻骨料的技术性质主要有松堆密度、强度、颗粒级配和吸水率等,此外,还有耐久性、体积安定性、有害成分含量等。

混凝土配合比设计步骤

普通混凝土的配合比设计 普通混凝土的配合比是指混凝土的各组成材料数量之间的质量比例关系。确定比例关系的过程叫配合比设计。普通混凝土配合比,应根据原材料性能及对混凝土的技术要求进行计算,并经试验室试配、调整后确定。普通混凝土的组成材料主要包括水泥、粗集料、细集料和水,随着混凝土技术的发展,外加剂和掺和料的应用日益普遍,因此,其掺量也是配合比设计时需选定的。 混凝土配合比常用的表示方法有两种;一种以1m3混凝土中各项材料的质量表示,混凝土中的水泥、水、粗集料、细集料的实际用量按顺序表达,如水泥300Kg、水182 Kg、砂680 Kg、石子1310 Kg;另一种表示方法是以水泥、水、砂、石之间的相对质量比及水灰比表达,如前例可表示为1:2.26:4.37,W/C=0.61,我国目前采用的量质量比。 一、混凝土配合比设计的基本要求 配合比设计的任务,就是根据原材料的技术性能及施工条件,确定出能满足工程所要求的技术经济指标的各项组成材料的用量。其基本要求是; (1)达到混凝土结构设计要求的强度等级。 (2)满足混凝土施工所要求的和易性要求。 (3)满足工程所处环境和使用条件对混凝土耐久性的要求。 (4)符合经济原则,节约水泥,降低成本。 二、混凝土配合比设计的步骤 混凝土的配合比设计是一个计算、试配、调整的复杂过程,大致可分为初步计算配合比、基准配合比、实验室配合比、施工配合比设计4个设计阶段。首先按照已选择的原材料性能及对混凝土的技术要求进行初步计算,得出“初步计算配合比”。基准配合比是在初步计算配合比的基础上,通过试配、检测、进行工作性的调整、修正得到;实验室配合比是通过对水灰比的微量调整,在满足设计强度的前提下,进一步调整配合比以确定水泥用量最小的方案;而施工配合绋考虑砂、石的实际含水率对配合比的影响,对配合比做最后的修正,是实际应用的配合比,配合比设计的过程是逐一满足混凝土的强度、工作性、耐久性、节约水泥等要求的过程。 三、混凝土配合比设计的基本资料

浅谈自密实高性能混凝土配合比的计算方法

浅谈自密实高性能混凝土配合比的计算方法 [日期:2006-11-17] 来源:《中国混凝土网》作者:[字体:大中小] 余志武潘志宏谢友均刘宝举 (中南大学土木建筑学院,湖南长沙 410075) 摘要:与普通混凝土相比,自密实混凝土配合比计算涉及的因素多,除了要满足强度要求外,对工作性更有很高的要求,因此,自密实混凝土配合比与普通混凝土配合比有很大差别。自密实混凝土至今没有形成统一的设计计算方法。本文对常用的自密实高性能混凝土配合比计算方法作了简单介绍,在对自密实高性能混凝土配合比计算参数如水胶比、浆集比、粗细骨料体积等方面作了一些探讨的基础上,结合固定砂石体积计算法,对全计算法进行了改进。改进后的计算方法更能符合自密实高性能混凝土的特点并且计算简单,使用方便,该方法对自密实混凝土的配制和应用推广有一定的意义。 关键词:高性能混凝土;自密实混凝土;配合比计算;配合比设计 中图分类号:文献标示码:A COMMENTS ON MIX CALCULATION METHOD OF SELF COMPACTING HIGH PERFORMANCE CONCRETE Yu Zhiwu Pan Zhihong Xie Youjun Liu Baoju (Civil and Architecture College, Central South University) Abstract: Comparing with mix calculation of ordinary concrete, mix calculation of self -compacting concrete (SCC) deals with more factors. Not only the demand of st rength should be met, but also the requirements for workability should be met well, so SCC is different from ordinary concrete. Up to now, there is no uniform mix me thod of SCC. In this paper, mix calculation method in common use is introduced con cisely. Based on discussions of mix design parameters such as water binder ratio, paste aggregate ratio, and volume content of fine and coarse aggregation, and refe rred to the fixed volume content of aggregate method, the modified overall calcula tion method is presented. It can well satisfy the demands of the trait of SCC, and the application of the method is simple and convenient. The method proposed in th is paper is beneficial to the popularization of SCC .

普通水泥混凝土配合比参考表

普通水泥混凝土配合比参考表

水泥标号 水泥的标号是水泥“强度”的指标。水泥的强度是表示单位面积受力的大小,是指水泥加水拌和后,经凝结、硬化后的坚实程度(水泥的强度与组成水泥的矿物成分、颗粒细度、硬化时的温度、湿度、以及水泥中加水的比例等因素有关)。水泥的强度是确定水泥标号的指标,也是选用水泥的主要依据。测定水泥强度的方法用前是“软练法”。 目录

此法是将1:3的水泥、标准砂(福建平潭白石英砂)及规定的水,按照规定的方法与水泥拌制成软练胶砂,制成7.07 X 7.07 X 7.07厘米的立方体抗压试块与8字形抗拉试块,在标准条件下进行养护,分别测定其3天、7天及28天的抗压强度和抗拉强度,以分组试块的28天平均抗压强度来确定水泥的标号,但3天、7天的技压强度也必须满足规定的要求。 目前我国生产的水泥一般有225#、325#、425#、525#等几种标号。生产不同标号的水泥,是为了适应制做不同标号的混凝土的需要。 标准 水泥的标号是水泥强度大小的标志,测定水泥标号的抗压强度,系指水泥砂浆硬结28d后的强度。例如检测得到28d后的抗压强度为310 kg/cm2,则水泥的标号定为300号。抗压强度为300-400 kg/cm2者均算为300号。普通水泥有:200、250、300、400、500、600六种标号。200号-300号的可用于一些房屋建筑。400号以上的可用于建筑较大的桥梁或厂房,以及一些重要路面和制造预制构件。 关于水泥标号的用法,其实并没有非常精细的规定,一般来说,设计图纸中会给出明确的规定。 在民用建筑工程中,一般用的比较多的是普通硅酸盐水泥和矿渣硅酸盐水泥。 标号一般常用的有P.O 32.5/42.5,P.S 32.5/42.5。 有325的和425的 325的250元--300元 425的360--450元品牌,地区不一样价格就不一样 关于水泥标号 通用水泥新标准是:GB175-1999《硅酸盐水泥、普通硅酸盐水泥》、GB1344-1999《矿渣硅酸盐水泥、火山灰硅酸盐水泥及粉煤灰硅酸盐水泥》、GB12958-1999《复合硅酸盐水泥》。从2001年4月1日起正式实施。 与旧标准的区别 (1)六大水泥产品标准均引用GB/T17671-1999方法为该标准的强度检验方法,不再采用GB177-85方法。 (2)水泥标号改为强度等级

混凝土配合比设计方法

混凝土配合比设计方法 一、设计出的混凝土配合比应满足的基本要求是: (1)满足施工对混凝土拌和物的和易性要求; (2)满足结构设计和质量规范对混凝土的强度等级要求; (3)满足工程所处环境对混凝土的抗渗性、抗冻性及其他耐久性要求; (4)在满足上述要求的前提下,尽量节省水泥,以满足经济性要求。 二、混凝土配合比设计的三个参数 组成混凝土的四种材料,即水泥、水、砂、石子。 混凝土的四种组成材料可由三个参数来控制。 1.水灰比水与水泥的比例称为水灰比。前面已讲,水灰比是影响混凝土和易性、强度和耐久性的主要因素,水灰比的大小是根据强度和耐久性确定,在满足强度和耐久性要求的前提下,选用较大水灰比,这有利于节约水泥。 2.砂率砂子占砂石总量的百分率称为砂率。砂率对混合料和易性影响较大,如选择不恰当,对混凝土强度和耐久性都有影响。应采用合理砂率。在保证和易性要求的条件下,取较小值,同样有利于节约水泥。 3.用水量用水量是指1m3混凝土拌合物中水的用量(kg/m3)。在水灰比确定后,混凝土中单位用水量也表示水泥浆与集料之间的比例关系。为节约水泥,单位用水量在满足流动性条件下,取较小值。 三、混凝土配合比设计的步骤 (一)设计的基本资料 1、混凝土的强度等级、施工管理水平,

2、对混凝土耐久性的要求, 3、原材料的品种及其物理力学性质 4、混凝土的部位、结构构造情况、施工条件等 (二)初步配合比的计算 1.确定混凝土的配制强度 fcu.o=fcu.k+1.645σ (规范规定的强度保证率P≥95%) 2.选择水灰比 (1)根据强度要求计算水灰比 根据混凝土的配制强度及水泥的实际强度,用经验公式计算水灰比: 式中A,B——回归系数,可通过试验测定,无试验资料时, 碎石混凝土A=0.48,B=0.52; 卵石混凝土A=0.50,B=0.61: fce——水泥的实际强度,MPa; 无水泥实际强度数据时,可按fce=γc·fce.k确定; fce.k——水泥强度等级的强度标准值; γc——水泥强度等级强度标准值的富裕系数,该值应按实际统计资料确定。 (2)查表4—7确定满足耐久性要求的混凝土的最大水灰比。 (3)选择以上两个水灰比中的小值作为初步水灰比。

水泥混凝土配合比参考表

精心整理 精心整理 水泥混凝土配合比参考表水泥强度等级 混凝土强度等级 每立方米混凝土材料用量(KG/m2) 配比适用于配置的混凝土类别 水泥 水 沙子 石子 32.5 32.5R C15 300 185 730 1165 适用于配料混凝土坍落度在30mm-70mm 的塑性混凝土 C20 350 185 690 1160 C25 400 185 650 1180 C30 450 183 600 1192 C35 480 180 580 1230 C40 520 178 525 1220 C20 350 185 795 1055 掺入适当高效减水剂,适用于配置混凝土坍落 度大于80mm 流态性混凝土 C25 405 185 758 1061 C30 450 183 752 1045 C35 480 180 705 1040 C40 520 180 655 1070 42.5 42.5R C20 290 185 725 1180 适用于配料混凝土坍落度在30mm-70mm 的塑 性混凝土 C25 345 185 670 1195 C30 380 185 648 1198 C35 430 185 615 1205 C40 460 185 590 1210

精心整理 精心整理C454801805701215 C505101785451220 C203001858301056 掺入适当高效减水剂,适用于配置混凝土坍落 度大于80mm流态性混凝土 C253401858001045 C303851847751050 C354201857501060 C404601837301065 C454851807001080 C505151806751085 62.5 625.R C303401856751200 适用于配料混凝土坍落度在30mm-70mm的塑 性混凝土 C353751856501205 C404051856251215 C454401855951220 C503681835601240 C605251805301250 C303501908001045 掺入适当高效减水剂,适用于配置混凝土坍落 度大于80mm流态性混凝土 C353851887801050 C404201857651055 C454501857501060

混凝土配合比设计的步骤

混凝土配合比设计的步骤 (1)初步配合比的计算 按照已选择的原材料性能及混凝土的技术要求进行初步计算,得出“初步配合比”; (2)基准配合比的确定 经过试验室试拌调整,得出“基准配合比”; (3)实验室配合比的确定 经过强度检验(如有抗渗、抗冻等其他性能要求,应当进行相应的检验),定出满足设计和施工要求并比较经济的“试验室配合比”(也叫设计配合比); (4)施工配合比 根据现场砂、石的实际含水率,对试验室配合比进行调整,求出“施工配合比”。 ㈠初步配合比的计算 1)确定配制强度 2)初步确定水灰比值(W/C ) 3)选择每1m3混凝土的用水量(W0) 4)计算混凝土的单位水泥用量(C0) 5)选取合理砂率Sp 6)计算1m3混凝土中砂、石骨料的用量 7)书写初步配合比 (1)确定配制强度(fcu,o) 配制强度按下式计算: σ 645.1..+=k cu v cu f f (2)初步确定水灰比(W/C) 采用碎石时: ,0.46( 0.07)cu v ce C f f W =- 采用卵石时: ,0.48( 0.33)cu v ce C f f W =- (3)选择单位用水量(mW0) ①干硬性和塑性混凝土用水量的确定 a. 水灰比在0.40~0.80范围时,根据粗骨料的品种、粒径及施工要求的混凝土拌合物稠度,其用水量可按表4-20(P104)选取。 b. 水灰比小于0.40的混凝土以及采用特殊成型工艺的混凝土用水量,应通过试验确定。 ②流动性和大流动性混凝土的用水量宜按下列步骤进行 a. 以表4-22中坍落度90mm 的用水量为基础,按坍落度每增大20mm 用水量增加5kg ,计算出未掺外加剂时的混凝土的用水量; b. 掺外加剂时的混凝土的用水量可按下式计算: (1) w wo m m αβ=-

高性能混凝土配合比设计及问题

高性能混凝土配合比设计及问题 发表时间:2020-04-13T05:50:20.538Z 来源:《建筑细部》2019年第21期作者:宋兰玉[导读] 建筑行业是与人们生活和工作过程息息相关的部分,建筑物的安全性与质量也直接影响到人们居住和使用的安全性,许多建筑工程企业过分的追求施工方面的经济效益就会导致在施工质量方面的控制能力降低,从而影响到整体工程的发展。宋兰玉 山东滨州城建集团公司山东滨州 256600摘要:建筑行业是与人们生活和工作过程息息相关的部分,建筑物的安全性与质量也直接影响到人们居住和使用的安全性,许多建筑工程企业过分的追求施工方面的经济效益就会导致在施工质量方面的控制能力降低,从而影响到整体工程的发展。高性能混凝土可以在此 过程中起到保证施工质量的基本性作用,从而提升混凝土施工中的强度和工程的质量,增强建筑物结构的稳定性。在最佳的配合比的情况之下,可以在根源上提升整体工程质量。 关键词:高性能混凝土;配合比;设计问题 引言 强度大于60MPa的水泥混凝土即高强混凝土,同时坍落度大于180mm以上并且可以维持较好工作性能的水泥混凝土即高性能混凝土,结合以上两种混凝土的概念,强度在C60以上并具有良好流动性的混凝土叫做高强高性能混凝土。随着社会的发展,在科学技术的影响下外加剂性能逐渐提升,C60以上具有大流动性的混凝土应用越来越广泛,因此高强高性能混凝土的配合比在设计过程中要更加严格。这段内容感觉与下面不很相符似的再看看好吗? 1高性能混凝土性能研究 1.1高耐久性 (1)抗渗性。高性能混凝土在制作的过程中需要加入符合要求的骨料级配,同时要确定合理的水胶比参数,能够充分的进行振捣与养护施工,使其具备非常高的抗渗性能。经过大量的试验统计分析可以发现,如果W/C大于0.55,表示抗渗性较差,而W/C的值小于0.50抗渗性非常好。(2)抗冻性。抗冻性主要指的是混凝土在水饱和的条件之下经过多次U型农户那仍然能够保持较高的强度,结构整体性也比较高。 1.2免振自密实 高性能混凝土浇筑施工时并不需要进行振捣处理,减少了施工环节,还能够防止在放进材料分布过密而出现无法振捣的情况,对于一些结构比较复杂、厚度比较薄的材料来说有着非常好的效果。此外,对于一些高、深施工与水下施工项目来说,也有着非高的优势。同时在施工中能够避免出现噪音的影响,施工速度也比较高。高性能混凝土的主要特点就是其流动性比较强,能够直接流动进入到模具中,并不会出现离析的问题,在成型结束之后的质量比较高,表层比较光滑,也不会存在蜂窝麻面的情况。 2高性能混凝土配合比设计常见问题 2.1双掺或多掺问题 在高性能混凝土配合比设计中,双掺或多掺问题较为突出,这类问题会导致混凝土强度的增长时间和混凝土凝结时间的延长,工程进度很容易受到影响。同时,过量的掺合料或较低的掺合料质量,也很容易导致高性能混凝土出现长时间塑性。因此,高性能混凝土配合比设计需综合结合工程施工气候环境、施工方式、结构特征、强度等级、具体要求,以此合理控制活性矿物掺合料总掺入量。如采用高标号硅酸盐水泥,一般可将活性矿物掺合料总掺量适当提升,如在冬季进行施工,则需要选择非缓凝型的减水剂,活性矿物掺合料的总掺量也需要适当降低。 2.2粗细骨料搭配问题 粗细骨料搭配属于高性能混凝土配合比设计的重要内容,工程质量直接受到这一搭配的影响。高性能混凝土的水胶比一般较低,且水泥石强度相对较高,因此粗细骨料的有关强度也需要适当提高。 3高性能混凝土配合比设计优化策略 3.1高性能混凝土设计要求和标准

(完整版)C80高强混凝土配比

C80高强混凝土配比 C80混凝土强度高对材料要求也高: 水泥:优质52.5水泥; 粉煤灰:I级优质粉煤灰; 矿粉:不低于S95级,最好是S105级优质矿渣粉; 砂:级配合理的优质中砂; 石子:5-20mm级配良好的石子,针片状颗粒含量不超过5%或尽量小; 高性能减水剂:正常掺量范围内最大减水率不小于35%; 如果有其它性能要求尚需要复掺其它外加剂; 配合比范围:水泥 380kg,矿粉:120kg,粉煤灰:70kg,水:148kg,砂:720kg,石:992kg,外加剂:约8-10kg,只是一个大致的数,不作为工程应用依据。 如果有硅粉,水胶比、水泥、矿粉、粉煤灰均要做相应调整。施工条件,如泵送与否,也要做相应调整。如果需要根据实际材料确定确切的配合比可以再研究。 1)粗集料除进行压碎指标试验外,对碎石尚应进行岩石立方体抗压强度试验, 其结果不应小于要求配制的混凝土抗压强度标准值R的1.5倍。 2)高强混凝土宜采用中砂,其细度模数宜大于2.6,含泥量不应大于2.0%,泥 块含量不应大于0、5%。 3)高强混凝土的配合比应符合规范规定。当无可靠的强度统计数据及标准差数 值时,混凝土的施工配制强度(平均值)对于C50~C60应不低于强度等级的1.15倍,对于C70~C80应不低于强度等级值的1.12倍。 4)高强混凝土所用砂率及所采用外加剂和矿物掺合料的品种、掺量应通过试验 确定。 5)高强混凝土的水泥用量不宜大于500kg/m^3,水泥和混合材料的总量不超过 550~600kg/m3,粉煤灰掺量不宜超过胶结料质量的30%,沸石粉不宜超过10%,硅粉不宜超过8%~10%。各种混合料的掺用种类及数量,必须通过试验

黄腾C30二级配高性能混凝土配合比设计

C30(二级配)高性能混凝土配合比设计 一、设计原则 针对设计任务及要求,根据实际使用的材料,使配制的混凝土在满足经济性的前提下,符合技术性能及施工要求。 二、设计依据及标准 (1)JTG/T F50-2011《公路桥涵施工技术规范》 (2)JGJ 55-2011《普通混凝土配合比设计规程》 (3)JTG E30-2005《公路工程水泥及水泥混凝土试验规程》 (4)JTG E42-2005《公路工程集料试验规程》 (5)GB/T50080-2002《普通混凝土拌合物性能试验方法标准》 (6)GB/T50081-2002《普通混凝土力学性能试验方法标准》 (7)施工图纸 三、设计要求 (1)C30高性能混凝土 (2)设计坍落度为(160~200)mm (3)使用部位:台帽等。 四、原材料 1.水泥:规格:盾石P·O 4 2.5,产地:冀东海德堡水泥有限公司。 2.外加剂:规格:HT-HPC聚羧酸高性能减水剂(HPWR-R)缓凝型,产地:山西黄腾化工有限公司,掺量:1.2%。 3. 砂:规格:中砂,产地:高陵吴村杨兴运砂场。 4.碎石:规格:4.75mm~19mm连续级配碎石,产地:泾阳四星友谊石场,掺配比例:5~10mm:10~20mm:=15:85。 5.粉煤灰:规格:F类Ⅰ级,产地:韩城大唐盛龙科技实业有限责任公司。 6.水:饮用水。 五、配合比设计 (1)确定水泥混凝土的配制强度:(? cu,0 ) 根据公式? cu,0= ? cu,k +1.645σ

? cu,0 —砼试配强度MPa ? cu,k —砼设计强度30MPa σ—标准差,取5.0 MPa 1.645—混凝土强度达到95%保证率时的保证率系数。 试配强度? cu,0=? cu,k +1.645σ=30+1.645×5.0=38.2MPa (2)计算水灰比:(W/C) W/C=(α a ×? b )÷(? cu,0 +α a ×α b ×? b ) =(0.53×39.4)÷(38.2+0.53×0.20×39.4) =0.49 α a 、α b -回归系数,当采用碎石时,α a =0.53,α b =0.20 ? b -胶凝材料28d胶砂抗压强度,按JGJ 55-2011《普通混凝土配合比设计规程》第 5.1.3及5.1.4条确定,取39.4 MPa。 根据混凝土的耐久性要求,水灰比选用0.49接近JTG/T F50-2011《公路桥涵施工技术规范》中C30混凝土最大水灰比0.50的要求,从安全角度考虑选用水灰比0.39。 (3)选定单位用水量:(m wo ) 根据设计坍落度需要和骨料情况,查表选定用水量为210kg/m3,掺外加剂后的用水量 m wo = 210(1-0.32)=143kg/m3。 (4)计算单位胶凝材料用量:(m co ) 根据选用的水胶比和单位用水量,计算胶凝材料用量为 m co =143÷0.39=367kg/m3。 根据混凝土的耐久性要求,胶凝材料用量367kg/m3满足规范中C30混凝土最小胶凝材料用量要求。 (5)计算单位外加剂用量(m a ) m a =367×1.0%= 3.67kg/m3。 (6)计算粉煤灰及水泥用量(m f0 m c0) m f0 =367×20%=73 kg/m3 m c0 =367-73=294kg/m3 根据JTG/T F50-2011《公路桥涵施工技术规范》,水泥用量294kg/m3满足规范要求。(7)选定砂率:(β s ) 根据骨料和水灰比及所用砂为粗砂查表确定砂率为38%。

C50混凝土配合比设计注意事项

C50混凝土配合比设计注意事项

C50混凝土配合比设计注意事项 在桥梁的上部结构中,如梁板等混凝土的设计强度基本上采用C50混凝土或大于C50的混凝土。所以对C50以上混凝土的原材料的选择、配合比的设计、混凝土的施工是至关重要的。下面就对C50以上混凝土的原材料选择、配合比的设计、混凝土的施工需注意的事项,结合本人多年来对桥梁上预应力C50预制25m、30m组合箱梁、预制45mT型梁、现浇箱梁及悬浇箱梁配合比的设计及原材的选择注意要点作如下简述。 1、原材料 1.1 集料 混凝土中集料体积大约占混凝土体积的3/4,由于所占的体积相当大,所以集料的质量对混凝土的技术性能和生产成本均产生一定的影响,在配制C50混凝土时,对集料的强度、级配、表面特征、颗粒形状、杂质的含量、吸水率等,必须认真检验,严格选材。这样才能配制出满足技术性能要求的C50混凝土,同时又能降低混凝土的生产成本。

1.1.1 细集料 砂材质的好坏,对C50以上混凝土的拌和物和易性的影响比粗集料要大。优先选取级配良好的江砂或河砂。因为江砂或河砂比较干净,含泥量少,砂中石英颗粒含量较多,级配一般都能符合要求。山砂一般不能使用,山砂中含泥量较大且含有较多的风化软弱颗粒。砂的细度模数宜控制在2.6以上,细度模数小于2.5时,拌制的混凝土拌和物显得太粘稠,施工中难于振捣,且由于砂细,在满足相同和易性要求时,增大水泥用量。这样不但增加了混凝土的成本,而且影响混凝土的技术性能,如混凝土的耐久性、收缩裂缝等。砂也不宜太粗,细度模数在3.3以上时,容易引起新拌混凝土的运输浇筑过程中离析及保水性能差,从而影响混凝土的内在质量及外观质量。C50泵送混凝土细度模数控制在2.6~2.8之间最佳,普通混凝土控制在3.3以下。另外还要注意砂中杂质的含量,比如云母、泥的含量过高,不但影响混凝土拌和物的和易性,而且影响混凝土的强度、耐久性,引起混凝土的收缩裂缝等其他性能。含泥量不超过2%,云母含量小于1%。

各种型号水泥混凝土配合比

各种型号水泥混凝土配合比

常规C10、C15、C20、C25、C30混凝土配合比混凝土按强度分成若干强度等级,混凝土的强度等级是按立方体抗压强度标准值fcu,k划分的。立方体抗压强度标准值是立方抗压强度总体分布中的一个值,强度低于该值得百分率不超过5%,即有95%的保证率。混凝土的强度分为C7.5、C10、C15、C20、C25、C30、C35、C40、C45、C50、C55、C60等十二个等级。 混凝土配合比是指混凝土中各组成材料(水泥、水、砂、石)之间的比例关系。有两种表示方法:一种是以1立方米混凝土中各种材料用量,如水泥300千克,水180千克,砂690千克,石子1260千克;另一种是用单位质量的水泥与各种材料用量的比值及混凝土的水灰比来表示,例如前例可写成: C:S:G=1:2.3:4.2,W/C=0.6。 常用等级 C25 水:175kg水泥:398kg 砂:566kg 石子:1261kg 配合比为:0.44:1:1.42:3.17 C30 水:175kg水泥:461kg 砂:512kg 石子:1252kg 配合比为:0.38:1:1.11:2.72

C20 水:175kg水泥:343kg 砂:621kg 石子:1261kg 配合比为:0.51:1:1.81:3.68 . . . 普通混凝土配合比参考: 水泥 品种混凝土等级配比 (单位)Kng 塌落度mm 抗压强度 N/mm2 水泥砂石水 7天 28天 P.C32.5 C20 300 734 1236 195 35 21.0 29.0 1 2.45 4.1 2 0.65 C25 320 768 1153 208 45 19.6 32.1 1 2.40 3.60 0.65 C30 370 721 1127 207 45 29.5 35.2 1 1.95 3.05 0.56 C35 430 642 1094 172 44 32.8 44.1 1 1.49 2.54 0.40 C40 480 572 1111 202 50 34.6 50.7 1 1.19 2.31 0.42 P.O 32.5 C20 295 707 1203 195 30 20.2 29.1

水泥混凝土配合比参考表

精心整理水泥混凝土配合比参考表 每立方米混凝土材料用量(KG/m2) 水泥强度混凝土强度等 配比适用于配置的混凝土类别等级级 水泥水沙子石子 C153001857301165 C203501856901160 C254001856501180适用于配料混凝土坍落度在30mm-70mm的塑 性混凝土 C304501836001192 C354801805801230 32.5 C405201785251220 32.5R C203501857951055 C254051857581061 C304501837521045掺入适当高效减水剂,适用于配置混凝土坍落度大于80mm流态性混凝土 C354801807051040 C405201806551070 C202901857251180 C253451856701195 C303801856481198 C354301856151205适用于配料混凝土坍落度在30mm-70mm的塑性混凝土 C404601855901210 C454801805701215 C505101785451220 42.5 42.5R C203001858301056 C253401858001045 C303851847751050 掺入适当高效减水剂,适用于配置混凝土坍落C354201857501060 度大于80mm流态性混凝土 C404601837301065 C454851807001080 C505151806751085 C303401856751200 C353751856501205 C404051856251215适用于配料混凝土坍落度在30mm-70mm的塑62.5 性混凝土 625.R C454401855951220 C503681835601240 C605251805301250 精心整理

相关主题
文本预览
相关文档 最新文档