当前位置:文档之家› Aluminum Single Electron Transistors with Islands Isolated from a Substrate

Aluminum Single Electron Transistors with Islands Isolated from a Substrate

a r

X i

v

:c o

n

d

-

m

a t

/

9

9

1

2

1

7

9

v

1

[

c o

n

d

-

m a

t

.

m e

s -

h

a

l

l

]

1

D

e

c

1

9

9

9

Aluminum Single Electron Transistors with Islands Isolated from a Substrate V.A.Krupenin 1,D.E.Presnov 1,3,A.B.Zorin 2,3and J.Niemeyer 21Laboratory of Cryoelectronics,Moscow State University,119899Moscow,Russia 2PTB,Bundesallee 100,D-38116Braunschweig,Germany 3Nuclear Physics Institute,Moscow State University,119899Moscow,Russia The low-frequency noise ?gures of single-electron transistors (electrometers)of traditional planar and new stacked geometry were compared.We observed a correlation between the charge noise and the contact area of the transistor island with a dielectric substrate in the set of Al transistors located on the same chip and having almost similar electric parameters.We have found that the smaller the contact area the lower the noise level of the transistor.

The lowest noise value (δQ x =(8±2)×10?6e/√

V.A.Krupenin et al.

open surface of the structure.This surrounding apparently contains many trapping centers capable of producing random low-frequency variations of the polarization charge on the transistor island.

The idea of our study has been to e?ectively diminish the substrate component of noise in a SET transistor.We solved this problem by using the non-traditional(stacked)design of the transistor,in which the contact area of the island to the substrate was minimized8.A small metallic is-land of the SET transistor was placed onto the oxidized base electrode(s), which e?ciently screened the electric?eld of charge impurities located in the substrate.

2.F ABRICATION OF THE SAMPLES

The Al transistors(see Fig.1)with Al/AlO x/Al tunnel junctions were fabricated on Si substrate bu?ered by a sputtered Al2O3layer200nm thick. Shadow evaporation9at three or four angles was used.The peculiarity of our method was that each electrode(the base and counter electrodes and the island)was formed individually.

Fig.1.SEM image of the typical transistor of stacked geometry.Triple shadows resulted from three successive depositions of Al through the same mask.

Al SET Transistors with Islands Isolated from a Substrate

We fabricated and studied the three three types of samples.The tran-

sistors of type I(Fig.2a-d)were fabricated in three deposition steps in

situ.After the?rst and second depositions the structure was oxidized to

form tunnel barriers of the transistor junctions.We used a series of masks

which allowed a gradual transformation from the planar transistor structure

(Fig.2a)to the stack geometry(Fig.2d)to be realized.For stack transis-

tors,particular attention was paid to precisely aligning the island and the base electrode to avoid contact between the electrodes.

Fig.2.Geometry of the series of the type I transistors with di?erent contact

area between the transistor island and the substrate(a-d).The contact

area is expressed as percentage of the whole island area.The junctions of type I transistors are of almost identical sizes.Their electric parameters are

RΣ=200?450k?,CΣ=350?450aF,C1/C2≈R2/R1≈3?5and CΣ~0.8?0.2aF.The transistor of type II(e),the sequence of fabrication steps

(f-h)and the equivalent electric circuit(i)are shown.In this sample,the

island(see also10)is completely placed on the base electrode.The device has

a small shunting tunnel junction(R sh≈1.9M?).The electric parameters of the transistor are RΣ=R1+R2≈3.9M?,CΣ=C1+C2+C g≈270aF, CΣ≈0.2aF and C1/C2≈R2/R1≈20?30.

V.A.Krupenin et al.

In contrast to type I,the transistor of type II(Fig.2e)was intentionally fabricated to have a shunting tunnel junction between the outer electrodes. This was the price to be paid for the complete and reliable isolation of the island from the substrate.The base electrode of this device was deposited (Fig.2f)in two steps,without oxidation between depositions.The island was formed in the third(Fig.2g)deposition step at the same angle and through the same opening in the mask as in the previous(second)deposition. This self-aligned method and the fact that the mask opening shrinks during deposition guarantees that the island is deposited exactly on top of the base electrode with no contact to the substrate.As a result,a shunting junction between the base and counter electrodes was formed after the last,fourth deposition(Fig.2h).The presence of the shunting junction has testi?ed the absence of contact between transistor island and substrate.

The design of the sample of type III is depicted in Fig.3.This transistor also has a tunnel junction shunt and the island is not in contact with the substrate.The structure consists of two touching?ngers(electrodes)with an island positioned on top of these?ngers.It has been fabricated by shadow evaporation at three di?erent angles,with an oxidation after the?rst and second deposition steps.

Fig.3.Top view(a)and cross-section(b)of the type III transistor with an island placed onto the outer electrodes,thus isolated from the substrate. The device has the small-size shunting tunnel junction(R sh≈1.1M?). The electric parameters of the transistor are RΣ=R1+R2≈0.75M?

and CΣ=C1+C2+C g≈250aF.A dotted line shows a possible shift of the transistor island from its nominal position(solid line),giving rise to small-area contact between island and substrate.

Al SET Transistors with Islands Isolated from a Substrate

3.EXPERIMENT

The electric and noise characteristics of all samples were measured in a dilution refrigerator at the bath temperature of T=25mK.The magnetic ?eld B=1T was applied to suppress superconductivity in the Al?lms.A voltage bias con?guration was chosen and an output current I measured by a transimpedance ampli?er11.

To observe the noise in?uence of the dielectric substrate on the electrom-eter performance,we have measured and compared the equivalent charge noise?gures of the set of our devices.In most of the cases the magnitude of the noise signal depended on a slope dI/dV g of the modulation curve at a working point(see,for instance12),pointing to the charge nature of the noise.We measured the low frequency(f<100Hz)noise spectra and characterized our samples by the magnitude of the charge?uctuations at f=10Hz.The results are presented in Figs.4-6.

3.1.Devices of type I

The transistors of type I and type II,both of stacked geometry,had the lowest noise?gure.The diagram in Fig.4demonstrates the gradual

Fig.4.Charge noise in the transistors of di?erent geometries(shown in Fig.2a-e)measured at small currents(I≈10?20pA)and low frequency (f=10Hz).The transistors with the contact areas of50%,30%and20% (Fig.2a-c)and one of the stacked transistors(Fig.2d),with a noise level of √

7×10?5e/

V.A.Krupenin et al.

decrease of the charge noise in the set of transistors(type I)with decreasing

the island-substrate contact area.Since the perfect Coulomb blockade was observed in all stack transistors of type I investigated(Fig.2d),i.e.they did not show any sign of a shunt between the base and counter electrodes, we cannot exclude the existence of small areas where the edge of the island is in contact with the substrate.These areas potentially contribute to the total noise of transistors,and this could explain the noticeable di?erence in the noise levels(see Fig.4)of these devices.

The lowest charge noise level among the series of stacked transistors

of type I,measured at f=10Hz,was found to be2.5×10?5e/

Hz or~4ˉh14.On the other hand,the noise?gure

obtained is substantially lower than the best one obtained for an electrometer

of traditional(planar)geometry:7×10?5e/

Hz)

to the total noise signal(δI=8±2fA/

Al SET Transistors with Islands Isolated from a Substrate

Fig.5.Typical I?V(a)and I?V g(b)curves of the type II transistor. I?V curves are presented in the blockade(solid line)and open(dotted line) states of the transistor.The presence a non zero conductance between the counter electrodes leads to a?nite slope of the I?V curve in the blockade state of the transistor and to the shift of I?V g curves depended on voltage bias V.

√electrometer noise related to the input charge:δQ x=(8±2)×10?6e/

Hz or41ˉh)recently attained by the so-called rf-SET transistor16at much higher(f=1.1MHz)frequency where the o?set charge noise should be obviously roll-o?.Moreover,the lowest noise?gure measured in a”shunted”stacked transistor at10Hz is close to its fundamental white

noise?oor13whose level for this sample was estimated to beδQ x=(2÷√

3)×10?6e/

Hz at f=10Hz,although it is considerably higher than that of the type II transistor.We believe that this is because of incomplete screening of the island from noise sources

V.A.Krupenin et al.

Fig.6.I?V g curve(a)and the output noise spectra(b)measured in the sample of type II at small current(6pA)and at points(A,B,C)with di?erent values of the current-to-charge ratio dI/dQ0,where Q0=C g V g.

of the substrate.We assume that the island was placed so that its small part contacted the substrate(as shown in Fig.3by dotted line)because of imperfect alignment.Nevertheless,this design has obvious advantages:?rst, it is easier to fabricate than that of devices of types I and II and secondly, what is even more important,it gives the opportunity to reduce further the dimensions of the tunnel junctions and,hence,to increase an operation temperature of the SET electrometer.

4.DISCUSSION

Our experiments with metallic SET transistors of di?erent design clearly show that the dominant contribution to the background charge noise is as-sociated with a”noisy”substrate.

The stacked samples in which the island-substrate contact area was minimized(devices of types I,II and III)exhibit pretty low noise at low transport current.In some cases(transistor of type II)this residual low-frequency noise was insensitive to the gate voltage and this behavior might be associated with?uctuations of junction conductance8.At high transport currents and bias voltages,the usual gate dependence of noise in these sam-ples is restored and the noise level increases(see Fig.7).Such behavior can be explained by activation of the charge traps inside the dielectric barriers

Al SET Transistors with Islands Isolated from a Substrate

Fig.7.The charge noise of the type II transistor obtained for di?erent biases V at frequency f=10Hz.

and the natural Al oxide covering the whole sample surface.In particu-lar,the perimeter area of the island seems to be most sensitive to random recharging of traps located nearby,because a charge induced on a metallic surface of small radius of curvature strongly depends on a distance to the source-charge.As regards the tunnel barriers,their charge noise behavior(if any)at low currents I tr is remarkable.Even for very small I tr,the electric ?eld inside the barriers oscillates with the SET rate I tr/e and amplitude of A=e/(dCΣ),where d is the barrier thickness3.However,this rather strong ?eld does not produce an appreciable random switching of the barrier traps. On the other hand,a strong alternative?eld can possibly re-charge the po-tential traps with the rate of SET oscillations.

In conclusion,we have proposed two possible ways(devices of types II and III)which allow the noise characteristics of SET devices to be drastically improved.In particular,the obtained charge noise level of the SET electrom-

√eter,with an island isolated from a substrate,δQ x=(8±2)×10?6e/

V.A.Krupenin et al.

5.ACKNOWLEDGMENTS

This work has been supported in part by the German BMBF,the EU Project CHARGE,the Russian Scienti?c Program”Physics of Solid State Nanostructures”and the Russian Foundation for Basic Research.

REFERENCES

1.G.Zimmerli,T.M.Eiles,R.L.Kautz,and J.M.Martinis,Appl.Phys.Lett.

61,237(1992).

2.S.M.Verbrugh,Ph.D.thesis,Delft University of Technology,1995;S.M.Ver-

brugh,M.L.Benhamadi,E.H.Visscher,and J.E.Mooij,J.Appl.Phys.78, 2830(1995).

3.A.B.Zorin,F.-J.Ahlers,J.Niemeyer,T.Weimann,H.Wolf,V.A.Krupenin,

and S.V.Lotkhov,Phys.Rev.B53,13682(1996).

4.A.N.Korotkov,D.V.Averin,K.K.Likharev,and S.A.Vasenko,in Single

Electron Tunneling and Mesoscopic Devices,edited by H.Koch and H.L¨u bbig, p.45(Springer-Verlag,Berlin,1992).

5.M.W.Keller,J.M.Martinis,A.H.Steinbach,and N.M.Zimmerman,IEEE

Trans.on Instrum.and Meas.46,307(1997).

6.V.A.Krupenin,S.V.Lotkhov,D.E.Presnov,A.B.Zorin,F.-J.Ahlers,

J.Niemeyer,H.Scherer,T.Weimann,and H.Wolf,Czech.J.Phys.46,suppl.

4,2283(1996).

7.K.K.Likharev,Proceedings of the IEEE,87,No.4,606-632(1999).

8.V.A.Krupenin,D.E.Presnov,M.N.Savvateev,H.Scherer,A.B.Zorin,and

J.Niemeyer,J.Appl.Phys.48,3212(1998).

9.J.Niemeyer,PTB Mitt.84,251(1974);G.J.Dolan,Appl.Phys.Lett.31,337

(1977).

10.V.A.Krupenin,D.E.Presnov,A.B.Zorin,and J.Niemeyer,in22nd Inter-

national Conference on Low Temperature Physics(Helsinki,Finland,1999);to be published in Physica B;http://lt22.hut.?/cgi/view?id=S11138

11.B.Starmark,P.Delsing,D.B.Haviland,and T.Claeson,in6th International

Superconductive Electronics Conference,edited by H.Koch and S.Knappe, Vol.2,p.391(Berlin,Germany,1997).

12.B.Starmark,T.Henning,T.Claeson,P.Delsing,and A.N.Korotkov,

LANL e-Print Archive.[Online.]Available WWW:https://www.doczj.com/doc/4b6799952.html,,cond-mat/9806354,June1998.

13.A.N.Korotkov,Phys.Rev.B49,10381(1994).

14.We characterize the sensitivity of our devices in terms of equivalent charge noise

referred to the transistor island.

15.E.H.Visscher,S.M.Verbrugh,J.Lindermann,P.Hadley and J.E.Mooij,

Appl.Phys.Lett.66,305(1995).

16.R.J.Schoelkopf,P.Walgren,A.A.Kozhevnikov,P.Delsing,and D.E.Prober,

Science280,1238(1998).

电子封装的现状及发展趋势

电子封装的现状及发展趋势 现代电子信息技术飞速发展,电子产品向小型化、便携化、多功能化方向发展.电子封装材料和技术使电子器件最终成为有功能的产品.现已研发出多种新型封装材料、技术和工艺.电子封装正在与电子设计和制造一起,共同推动着信息化社会的发展 一.电子封装材料现状 近年来,封装材料的发展一直呈现快速增长的态势.电子封装材料用于承载电子元器件及其连接线路,并具有良好的电绝缘性.封装对芯片具有机械支撑和环境保护作用,对器件和电路的热性能和可靠性起着重要作用.理想的电子封装材料必须满足以下基本要求: 1)高热导率,低介电常数、低介电损耗,有较好的高频、高功率性能; 2)热膨胀系数(CTE)与Si或GaAs芯片匹配,避免芯片的热应力损坏;3)有足够的强度、刚度,对芯片起到支撑和保护的作用;4)成本尽可能低,满足大规模商业化应用的要求;5)密度尽可能小(主要指航空航天和移动通信设备),并具有电磁屏蔽和射频屏蔽的特性。电子封装材料主要包括基板、布线、框架、层间介质和密封材料. 1.1基板 高电阻率、高热导率和低介电常数是集成电路对封装用基片的最基本要求,同时还应与硅片具有良好的热匹配、易成型、高表面平整度、易金属化、易加工、低成本并具有一定的机械性能电子封装基片材料的种类很多,包括:陶瓷、环氧玻璃、金刚石、金属及金属基复合材料等.

1.1.1陶瓷 陶瓷是电子封装中常用的一种基片材料,具有较高的绝缘性能和优异的高频特性,同时线膨胀系数与电子元器件非常相近,化学性能非常稳定且热导率高随着美国、日本等发达国家相继研究并推出叠片多层陶瓷基片,陶瓷基片成为当今世界上广泛应用的几种高技术陶瓷之一目前已投人使用的高导热陶瓷基片材料有A12q,AIN,SIC和B或)等. 1.1.2环氧玻璃 环氧玻璃是进行引脚和塑料封装成本最低的一种,常用于单层、双层或多层印刷板,是一种由环氧树脂和玻璃纤维(基础材料)组成的复合材料.此种材料的力学性能良好,但导热性较差,电性能和线膨胀系数匹配一般.由于其价格低廉,因而在表面安装(SMT)中得到了广泛应用. 1.1.3金刚石 天然金刚石具有作为半导体器件封装所必需的优良的性能,如高热导率(200W八m·K),25oC)、低介电常数(5.5)、高电阻率(1016n·em)和击穿场强(1000kV/mm).从20世纪60年代起,在微电子界利用金刚石作为半导体器件封装基片,并将金刚石作为散热材料,应用于微波雪崩二极管、GeIMPATT(碰撞雪崩及渡越时间二极管)和激光器,提高了它们的输出功率.但是,受天然金刚石或高温高压下合成金刚石昂贵的价格和尺寸的限制,这种技术无法大规模推广. 1.1.4金属基复合材料

微电子封装

晶圆:由普通硅砂熔炼提纯拉制成硅柱后切成的单晶硅薄片 微电子封装技术特点: 1:向高密度及高I/O引脚数发展,引脚由四边引出趋向面阵引出发展 2:向表面组装示封装(SMP)发展,以适应表面贴装(SMT)技术及生产要求 3:向高频率及大功率封装发展 4:从陶瓷封装向塑料封装发展 5:从单芯片封装(SCP)向多芯片封装(MCP)发展 6:从只注重发展IC芯片到先发展封装技术再发展IC芯片技术技术 微电子封装的定义:是指用某种材料座位外壳安防、固定和密封半导体继承电路芯片,并用导体做引脚将芯片上的接点引出外壳 狭义的电子封装技术定义:是指利用膜技术及微细连接技术,将半导体元器件及其他构成要素在框架或基板上布置、固定及连接,引出接线端子,并通过可塑性绝缘介质灌封固定,构成整体立体结构的工艺技术。(最基本的) 广义的电子封装技术定义:是指将半导体和电子元器件所具有的电子的、物理的功能,转变为能适用于设备或系统的形式,并使之为人类社会服务的科学与技术。(功能性的) 微电子封装的功能: 1:提供机械支撑及环境保护; 2:提供电流通路; 3:提供信号的输入和输出通路; 4:提供热通路。 微电子封装的要点: 1:电源分配; 2:信号分配; 3:机械支撑; 4:散热通道; 5:环境保护。 零级封装:是指半导体基片上的集成电路元件、器件、线路;更确切地应该叫未加封装的裸芯片。 一级封装:是指采用合适的材料(金属、陶瓷或塑料)将一个或多个集成电路芯片及它们的组合进行封装,同时在芯片的焊区与封装的外引脚间用引线键合(wire bonding,WB)、载带自动焊(tape automated bonding,TAB)、倒装片键合(flip chip bonding,FCB)三种互联技术连接,使其成为具有实际功能的电子元器件或组件。 二级封装技术:实际上是一种多芯片和多元件的组装,即各种以及封装后的集成电路芯片、微电子产品、以及何种类型元器件一同安装在印刷电路板或其他基板上。

手机电路原理,通俗易懂

第二部分原理篇 第一章手机的功能电路 ETACS、GSM蜂窝手机是一个工作在双工状态下的收发信机。一部移动电话包括无线接收机(Receiver)、发射机(Transmitter)、控制模块(Controller)及人机界面部分(Interface)和电源(Power Supply)。 数字手机从电路可分为,射频与逻辑音频电路两大部分。其中射频电路包含从天线到接收机的解调输出,与发射的I/Q调制到功率放大器输出的电路;逻辑音频包含从接收解调到,接收音频输出、发射话音拾取(送话器电路)到发射I/Q调制器及逻辑电路部分的中央处理单元、数字语音处理及各种存储器电路等。见图1-1所示 从印刷电路板的结构一般分为:逻辑系统、射频系统、电源系统,3个部分。在手机中,这3个部分相互配合,在逻辑控制系统统一指挥下,完成手机的各项功能。 图1-1手机的结构框图 注:双频手机的电路通常是增加一些DCS1800的电路,但其中相当一部分电路是DCS 与GSM通道公用的。 第二章射频系统 射频系统由射频接收和射频发射两部分组成。射频接收电路完成接收信号的滤波、信号放大、解调等功能;射频发射电路主要完成语音基带信号的调制、变频、功率放大等功能。手机要得到GSM系统的服务,首先必须有信号强度指示,能够进入GSM网络。手机电路中不管是射频接收系统还是射频发射系统出现故障,都能导致手机不能进入GSM网络。 对于目前市场上爱立信、三星系列的手机,当射频接收系统没有故障但射频发射系统有故障时,手机有信号强度值指示但不能入网;对于摩托罗拉、诺基亚等其他系列的手机,不管哪一部分有故障均不能入网,也没有信号强度值指示。当用手动搜索网络的方式搜索网络时,如能搜索到网络,说明射频接收部分是正常的;如果不能搜索到网络,首先可以确定射频接收部分有故障。 而射频电路则包含接收机射频处理、发射机射频处理和频率合成单元。 第一节接收机的电路结构 移动通信设备常采用超外差变频接收机,这是因为天线感应接收到的信号十分微弱,而鉴频器要求的输人信号电平较高,且需稳定。放大器的总增益一般需在120dB以上,这么大的放大量,要用多级调谐放大器且要稳定,实际上是很难办得到的,另外高频选频放大器的通带宽度太宽,当频率改变时,多级放大器的所有调谐回路必须跟着改变,而且要做到统一调谐,

微电子封装必备答案

微电子封装答案 微电子封装 第一章绪论 1、微电子封装技术的发展特点是什么?发展趋势怎样?(P8、9页) 答:特点: (1)微电子封装向高密度和高I/O引脚数发展,引脚由四边引出向面阵排列发展。 (2)微电子封装向表面安装式封装发展,以适合表面安装技术。 (3)从陶瓷封装向塑料封装发展。 (4)从注重发展IC芯片向先发展后道封装再发展芯片转移。 发展趋势: (1)微电子封装具有的I/O引脚数将更多。 (2)微电子封装应具有更高的电性能和热性能。 (3)微电子封装将更轻、更薄、更小。 (4)微电子封装将更便于安装、使用和返修。 (5)微电子封装的可靠性会更高。 (6)微电子封装的性能价格比会更高,而成本却更低,达到物美价廉。 2、微电子封装可以分为哪三个层次(级别)?并简单说明其内容。(P15~18页)答:(1)一级微电子封装技术 把IC芯片封装起来,同时用芯片互连技术连接起来,成为电子元器件或组件。 (2)二级微电子封装技术 这一级封装技术实际上是组装。将上一级各种类型的电子元器件安装到基板上。 (3)三级微电子封装技术 由二级组装的各个插板安装在一个更大的母板上构成,是一种立体组装技术。 3、微电子封装有哪些功能?(P19页) 答:1、电源分配2、信号分配3、散热通道4、机械支撑5、环境保护 4、芯片粘接方法分为哪几类?粘接的介质有何不同(成分)?。(P12页) 答:(1)Au-Si合金共熔法(共晶型) 成分:芯片背面淀积Au层,基板上也要有金属化层(一般为Au或Pd-Ag)。 (2)Pb-Sn合金片焊接法(点锡型) 成分:芯片背面用Au层或Ni层均可,基板导体除Au、Pd-Ag外,也可用Cu (3)导电胶粘接法(点浆型) 成分:导电胶(含银而具有良好导热、导电性能的环氧树脂。) (4)有机树脂基粘接法(点胶型) 成分:有机树脂基(低应力且要必须去除α粒子) 5、简述共晶型芯片固晶机(粘片机)主要组成部分及其功能。 答:系统组成部分: 1 机械传动系统 2 运动控制系统 3 图像识别(PR)系统 4 气动/真空系统 5 温控系统 6、和共晶型相比,点浆型芯片固晶机(粘片机)在各组成部分及其功能的主要不同在哪里?答: 名词解释:取晶、固晶、焊线、塑封、冲筋、点胶

封装材料行业基本概况

封装材料行业研究报告 研究员:高鸿飞一、行业定义 根据国民经济行业分类《国民经济行业分类GB/T 4754-2011》),引线框架和LED支架制造业属于为计算机、通信和其他电子设备制造业(行业代码:C39);根据中国证监会行业分类(《上市公司行业分类指引》),引线框架和LED支架制造业属于计算机、通信和其他电子设备制造业C396。 二、行业的监管体制 引线框架和LED支架制造业所属的行业主管部门是国家发展改革委员会、中国环境保护部及中国工业和信息化部。国家发改委主要负责本行业发展政策的制定;中国环境保护部负责环境污染防治的监督管理,制定环境污染防治管理制度、标准和技术规范并组织实施;中国工业和信息化部负责制定我国电子元器件行业的产业规划和产业政策,对行业的发展方向进行宏观调控。 引线框架和LED支架制造业的行业自律性组织是中国电子材料行业协会(以下简称“行业协会”),该协会是由从事电子材料生产、研制、开发、经营、应用、教学的单位及其他相关企、事业单位自愿结合组成的全国性的行业社会团体,为政府对电子材料行业实施行业管理提供帮助,同时也是政府部门和企业单位之间的桥梁纽带。行业协会主要在电子材料行业自律、技术培训、信息交流、国内外交流与合作等方面广泛开展工作,为行业的进步和发展起到了促进作用。行业协会下设集成电路分会、半导体分立器件分会、半导体封装分会、集成电路设计分会和半导体支撑业分会等5个分会。 三、封装材料行业基本概况 (1)引线框架概念及应用领域 引线框架是一种用来作为芯片载体的专用材料,借助于键合丝使芯片内部电

路引出端(键合点)通过内引线实现与外引线的电气连接,形成电气回路的关键结构件。在半导体中,引线框架主要起稳固芯片、传导信号、传输热量的作用,需要在强度、弯曲、导电性、导热性、耐热性、热匹配、耐腐蚀、步进性、共面形、应力释放等方面达到较高的标准。 (2)LED支架概念及应用领域 LED是“Light Emitting Diode”的缩写,中文译为“发光二极管”,是一种可以将电能转化为光能的半导体器件,不同材料的芯片可以发出红、橙、黄、绿、蓝、紫色等不同颜色的光。LED的核心是由p型半导体和n型半导体组成的芯片,而LED支架就是芯片的承载物,担负着机械保护,提高可靠性;加强散热,降低芯片结温、提高LED性能;光学控制,提高出光效率,优化光束分布;供电管理,包括交流/直流转变、电源控制等作用。 (3)半导体封装材料产业链结构 ①引线框架产业链结构 引线框架的上游行业主要是铜合金带加工企业和生产氰化银钾的化工企业,由于铜基材料具有导电、导热性能好,价格低以及和环氧模塑料密着性能好等优势,当前已成为主要的引线框架材料,其用量占引线框架材料的80%以上。 公司引线框架产业的下游行业是集成电路和分立器件封装测试行业。一般的封装工艺流程为:划片→装片→键合→塑封→去飞边→电镀→打印→切筋和成型→外观检查→成品测试→包装出货。引线框架主要是在装片步骤中,作为切割好晶片的基板,是封装过程中所需的重要基础材料。 公司引线框架产业处于产业链中游,随着电子信息技术的高速发展,对集成电路的性能要求越来越多样化,对集成电路封装测试行业的要求也越来越高。公司将会充分发挥创新优势,致力于研发多样化和高性能的引线框架。 ②LED支架产业链结构 LED支架的主要原材料为铜合金带、氰化银钾和PPA,铜合金带属于金属加工产品,氰化银钾属于化工产品,而PPA则是塑料制品,因此,公司的上游产业主要是金属加工企业、化工企业和塑料制品企业。 LED支架主要应用在电子和照明领域,主要产品有汽车信号灯、照明灯、家用电器、户外大型显示屏、仪器仪表等光电产品。LED支架主要是作为LED

基带电路原理图

FLASH电路 FLASH信号作用描述 数据总线:ED0-ED15,共16根数据线,用于传输数据。 地址总线:EA00-EA23,共24根地址线,用于存储单元寻址。控制总线: ERD:写控制信号; EWR:读控制信号; /WATCHODG:复位信号,用于FLASH的软件复位; /CE_F1、/CE_F2:FLASH存储区域选择信号; /ECS1_PSRAM:PSRAM片选信号; /ELB、/EUB:PSRAM存取区域选择信号; 电源供电信号:VMEM。

照相电路

主屏LCD显示电路 SIM卡电路

马达电路 PWM2_VIB_EN经过PMIC转换后变成马达的驱动信号VIB_DRV,R409为限流电阻,马达可以和键盘灯通过调整限流电阻R或者调整

占空比调整背光亮度一样调整马达的震感。马达电路上的二极管 D403是由于马达为线圈,运作时会产生反向电动势,若无二极管反 向电动势无法消耗,会影响马达的寿命,二极管可以在马达停震后 把反向电动势消耗掉而保护线圈。 MIC电路 MICBIASP和MICBIASN为MIC电路的正负两路偏置电压,一般为2.4V-2.7V左右的电压。C204,C205主要为滤除射 频信号的干扰。如果有GSM900MHZ的干扰则使用33PF的 电容,如果有DCS1800MHZ的干扰可以使用12PF的电容,如果有WIFI 2.4GHZ的干扰则使用8.2PF的电容。C206主 要是抑制共模信号。C201,C202为100NF电容,主要作用 为隔直通交,防止直流电使PA饱和,产生信号偏移,主要 滤除100HZ一下的电流。B201,B202为磁珠,主要滤除 高频部分的干扰。MIC偏置电流流向为从MICBIASP----

2014年电子封装材料行业简析

2014年电子封装材料行业简析 一、行业管理 (2) 1、行业监管体制 (2) 2、行业的主要法律法规及政策 (3) (1)法律法规 (3) (2)国家相关政策 (3) 二、行业发展概况 (4) 1、电子材料产业体系初步形成 (4) 2、电子材料产业规模 (4) 3、我国电子材料产业总体发展水平与发达国家的差距 (5) 三、行业上下游之间的关联性 (5) 1、上下游行业之间的关联性 (5) 2、行业上游 (6) 3、行业下游 (6) 四、影响行业未来发展趋势的因素 (7) 1、有利因素 (7) (1)行业前景向好 (7) (2)产业政策支持 (7) 2、不利因素 (7) (1)自主创新能力有待提高 (7) (2)行业相关国家标准缺失 (8) 五、行业主要障碍 (8) 1、资金壁垒 (8) 2、品牌认可度 (9) 3、技术工艺和人才壁垒 (9)

一、行业管理 1、行业监管体制 电子元器件封装材料,包括环氧粉末包封料、塑封料及粉末涂料,该行业作为化工电子材料基本上遵循市场化的发展模式,各企业面向市场自主经营,政府职能部门进行产业宏观调控,行业协会进行自律规范。 行业宏观管理职能由国家发展与改革委员会、国家商务部承担,工业和信息化部负责制定产业政策,指导技术改造。国家通过不定期发布《产业结构调整指导目录(2011 年本)》、《当前优先发展的高技术产业化重点领域指南》等,对本行业的发展进行宏观调控。 行业引导和服务职能由中国电子材料行业协会、中国电子元件行业协会承担,主要负责产业及市场研究、对会员企业的公众服务、行业自律管理以及代表会员企业向政府部门提出产业发展建议等。

电子封装材料

高硅铝电子封装材料及课堂报告总结 摘要 关键词 Abstract Keyword 目录

第一章高硅铝电子封装材料 1.1应用背景 由于集成电路的集成度迅猛增加,导致了芯片发热量急剧上升,使得芯片寿命下降。温度每升高10℃,GaAs或Si微波电路寿命就缩短为原来的3倍[1,2]。这都是由于在微电子集成电路以及大功率整流器件中,材料之间热膨胀系数的不匹配而引起的热应力以及散热性能不佳而导致的热疲劳所引起的失效,解决该问题的重要手段即是进行合理的封装。 所谓封装是指支撑和保护半导体芯片和电子电路的基片、底板、外壳,同时还起着辅助散失电路工作中产生的热量的作用[1]。 用于封装的材料称为电子封装材料,作为理想的电子封装材料必须满足以下几个基本要求[3]: ①低的热膨胀系数,能与Si、GaAs芯片相匹配,以免工作时,两者热膨胀系数差异热应力而使芯片受损; ②导热性能好,能及时将半导体工作产生的大量热量散发出去,保护芯片不因温度过高而失效; ③气密性好,能抵御高温、高湿、腐蚀、辐射等有害环境对电子器件的影响; ④强度和刚度高,对芯片起到支撑和保护的作用; ⑤良好的加工成型和焊接性能,以便于加工成各种复杂的形状和封装; ⑥性能可靠,成本低廉; ⑦对于应用于航空航天领域及其他便携式电子器件中的电子封装材料的密度要求尽可能的小,以减轻器件的重量。 1.2国内外研究现状 目前所用的电子封装材料的种类很多,常用材料包括陶瓷、环氧玻璃、金刚石、金属及金属基复合材料等。国内外金属基电子封装材料和主要性能指标如表1-1。 表1-1常用电子封装材料主要性能指标[1,4] 材料密度(ρ) g/cm3 导热率(K) Watts/m·k 热膨胀系数 (CTE) ×106/K 比导热率 W·cm3/m·K·g Si 2.3 135 4.1 5.8 GaAs 5.3 39 5.8 10.3 Al2O3 3.9 20 6.5 6.8 BeO 3.9 290 7.6 74.4 AlN 3.3 200 4.5 60.6

手机基本电路工作原理

第一章 第一节T18机型逻辑电路原理 T18是一款支持双卡单待,实现G网双号转换待机,可以自由选用号码拨打电话,电路采用MTK 6226方案平台。(图1) (图1) 由于T18是采用MTK方案,在电路上原理有很多是与前期MTK电路相似,在这里不再一一讲解,具体介绍一下双卡待机电路的原理。 1、双卡电路工作原理电路 T18的双卡待机是指由用户选择性进行手动进行切换两张不同的SIM卡,其与前期A280双卡双待不同的,T18只有一个射频一个基带电路,其双卡转换主要是由软件和SIM转换控制器来完成,具体电路见图2

(图2) 其工作原理: 当手动切换时,控制中心会发出一个SIM-SWITCH的转换开关指令给到U505转换芯片,经内部的电子开关把VSIM与VSIM1、VSIM2,IO-SIM与SIMDA1、SIMDA2,CLK-SIM与SIMCLK1、SIMCLK2,RST-SIM与SIMRST1、SIMRST2进行转换连接,实现控制SIM卡的数据总线来控制SIM卡的正常工作。 2、充电电路 当外部充电器接到DC 插孔时,CHANGE电源分三路提供,第一路经R12、R14分压取得ADC3-VCH充电检测信号,第二路提供给U400的第1脚,第三路提供给U401经R413到电池正极。 其工作原理:当CPU检测到连接充电模式时候,CPU会输送CHG-CNTL控制信号给电源管理模块U400,电源管理模块从2# GATEDRV输出控制信号,控制充电控制管的导通,充电电压将通过R413限流给电池正极充电,同时CPU通过提供的ADC0-、ADC1+电量反馈信号,经电源管理模块U400(4#)ISENSE检测实现对充电过程进行监控,经U400(6#)CHRDET送到CPU,当检测充电完成后,CPU 将撤销U400(5#)CHG-CNT的控制信号,从而导致充电管U401截止,停止充电。关机充电和开机充电原理相同,只是在关机状态下,CPU未执行其它程序,使手 机仍处于关机状态。如图3

金属基电子封装材料进展

金属基电子封装材料进展 刘正春 王志法 姜国圣 (中南大学) 摘 要:对照几种传统的金属基电子封装材料,较详细地阐述了W Cu、M o Cu、SiC/Al等新型封装材料的性能特点、制造方法、应用背景以及存在的问题。介绍了金属基电子封装材料的最新发展动态,指出国际上近年来的研究与开发主要集中在净成型技术、新材料体系探索以及材料的集成化应用等方面。最后,文章对金属基电子封装材料的发展趋势进行了展望,作者认为,未来的金属基电子封装材料将朝着高性能、低成本、轻量化和集成化的方向发展。 关键词:电子封装;复合材料;膨胀系数;热导率 中图分类号:T F125.7,T G139 文献标识码:A 文章编号:1004—244X(2001)02—0049—06 金属基电子封装材料具有强度高、导电导热性能好等优点。因此,它们与陶瓷基、树脂基封装材料一样,一直是电子工程师所青睐的热沉和支承材料,广泛地应用于功率电子器件(如整流管、晶闸管、功率模块、激光二极管、微波管等)和微电子器件(如计算机C PU、DSP芯片)中,在微波通讯、自动控制、电源转换、航空航天等领域发挥着重要作用[1-6][9][13]。 作为一种理想的电子封装材料,必须满足这么几个基本要求[4]:一是材料的导热性能要好,能够将半导体芯片在工作时所产生的热量及时地散发出去;二是材料的热膨胀系数(C TE)要与Si或Ga As 等芯片相匹配,以避免芯片的热应力损坏;三是材料要有足够的强度和刚度,对芯片起到支承和保护的作用;四是材料的成本要尽可能低,以满足大规模商业化应用的要求。在某些特殊的场合,还要求材料的密度尽可能地小(主要是指航空航天设备和移动计算/通信设备),或者要求材料具有电磁屏蔽和射频屏蔽的特性。 1 传统的电子封装材料 传统的金属基电子封装材料,包括因瓦合金(Inv ar)、可伐合金(Kova r)、W、Mo、Al、Cu等,这些材料可以部分的满足上面所提到的要求,然而,它们仍然存在许多不尽人意之处。表1列出了几种常规电子材料的性能。 表1 Si、GaAs及几种传统封装材料的性能[4][7]材 料 C TE ppm/K 热导率 W/(m·K) 密度 /(g·cm-3) Si 4.1135 2.3 Ga As 5.839 5.3 Invar0.4118.1 Kovar 5.9178.3 W 4.417419.3 M o 5.014010.2 Cu17.74008.9 Al23221 2.7环氧树脂600.3 1.2 Inva r、Kov ar的加工性能良好,具有较低的热膨胀系数,但导热性能很差;M o和W的热膨胀系数较低,导热性能远高于Inva r和Kov ar,而且强度和硬度很高,所以,Mo和W在电力半导体行业得到了普遍的应用。但是,Mo和W价格昂贵,加工困难,可焊性差,密度大,况且导热性能比纯Cu要低得多,这就阻碍了其进一步应用。Cu和Al的导热导电性能很好,可是热膨胀系数过大,容易产生热应力问题。 2 新型电子封装材料 现代电子技术的飞速发展,使得电子元器件能够具有更高的集成度、更快的运行速度和更大的容 第24卷 第2期 2001年 3月 兵器材料科学与工程 ORDNANCE M ATERIAL SC IEN CE AND EN GIN EERING V o l.24 No.2  M ar. 2001 收稿日期:2000-06-02  资助项目:国家高新工程重点资助项目  作者简介:刘正春,中南大学材料科学与工程系,长沙,410083

高硅铝合金轻质电子封装材料研究现状及进展

本文由446251256贡献 pdf文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 高硅铝合金轻质电子封装材料研究现状及进展甘卫平子 高硅铝合金轻质电子封装材料研究现状及进展 甘卫平 陈招科 杨伏良 , 周兆锋 中南大学材料科学与工程学院长沙 摘要关锐词 蛛合比杖了现有电子封装材朴的性能及其在航空航天领城中的应用现状杖详细地阐述了高硅铝合金 , 、 电子封装材料的性能特点制备方法及研究现状指出了高硅铝合金轻质电子封装材料的发展方向 , 。 电子封装 轻质 高硅铝合金 喷射沉积 , 氏 , 而 , 垃 , , , 而 , , 前官 由于集成电路的集成度迅猛增加导致了芯片发热量急剧 , , 以及用做基片的 刃 。一 、 等陶瓷材料其热膨胀系数 。

值处于 其 之间而具有高导热系数的 一‘ , 和 值却高达 , 会导致不能接受的大的热应 。一 上升 , 使得芯片寿命下降据介绍温度每升高 , ℃ , 或 力而这些热应力正是集成电路和墓板产生脆性裂纹的一个普 , 徽波电路寿命的缩短就为原来的 倍〔 , ,一们 这都是由于在徽 遍原因可伐合金 , 一种 一 合金和因瓦合金 , 电子集成电路以及大功率整流器件中材料之间热膨胀系数的不匹配而引起的热应力以及散热性能不佳而导致的热疲劳所引一种 一 合金的热膨胀系数低与 , 和 、 相近但 , 、 这两种材料热导率 差密度高刚度低

。、 , 起的失效 、 解决该问题的重要手段即是进行合理的封装 、 作为航空电子封装材料是不适宜的特别是小型电子封装器件密度高热 、 所谓封装是指支撑和保护半导体芯片和电子电路的基片底板外壳同时还起着辅助散失电路工作中产生的热 , 集中不易扩散对于封装材料是致命的缺点钥钨 、 、 的作 , 以及随之发展的钨铜相铜铜因瓦铜铜相铜合金在热传导方 、 用 、 。 用于封装的材料称为电子封装材料作为理想的电子封装 幻 面优于可伐合金但其重量比可伐合金大也不适合应用于航空 , , 材料必须满足以下几个羞本要求 , , , , ①低的热膨胀系数能与 电子封装材料 。 芯片相匹配以免工作时两者热膨胀系数差异热应力 , , 轻质电子封装材料 在航空航天飞行器领域使用的电子系统中在满足电子封 , 而使芯片受损②导热性能好能及时将半导体工作产生的大量 热量散发出去保护芯片不因温度过高而失效③气密性好能 抵御高温高湿腐蚀辐射等有害环境对电子器件的影响 , ④强 、、 装材料的其它基本要求的同时轻质低密度是最首要的问题因 , 。

智能手机基带处理器电路原理

智能手机基带处理器电路原理 在普通手机中,通常将MCU(Micro Control Unit,微控制电路)、DSP( (Digital Signal Processing,数字信号处理)、ASIC(Application Specific Integrated Circuit,专用集成电路)电路集成在一起,得到数字基带信号处理器;将射频接口电路、音频编译码电路及一些ADC(模拟至数字转换器)、DAC(数字至模拟转换器)电路集成在一起,得到模拟基带信号处理器。 在智能手机中,一般是将数字基带信号处理器和模拟基带信号处理器集成在一起,称为基带处理器。不论移动电话的基带电路如何变化,它都包MCU 电路(也称CPU 电路)、DSP电路、ASIC 电路、音频编译码电路、射频逻辑接口电路等最基本的电路。 我们可以这样理解智能手机的无线部分,我们将智能手机无线部分电路再分为两部分,一部分是射频电路,完成了信号从天线到基带信号的接收和发射处理;一部分是基带电路,完成了信号从基带信号到音频终端(听筒或送话器)的处理。这样看来,基带处理器的主要工作内容和认为就比较容易理解了。 以基带处理器电路PMB8875 为例,框图如图1所示。 图1 基带处理器电路PMB8875 框图 1、模拟基带电路

模拟基带信号处理器(ABB)又被称为话音基带信号转换器,包含手机中所有的ADC与DAC 变换器电路。 模拟基带信号处理器包含基带信号处理电路、话音基带信号处理电路(也称音频处理电路)、辅助变换器单元(也被称为辅助控制电路)。 (1)基带信号处理电路 基带信号处理电路将接收射频电路输出的接收机基带信号RXIQ 转换成数字接收基带信号,送到数字基带信号处理器DBB。 在发射方面,该电路将DBB 电路输出的数字发射基带信号转换成模拟的发射基带信号TXIQ,送到发射射频部分的IQ 调制器电路。 基带信号处理电路是用来处理接收、发射基带信号的,连接数字基带与射频电路——射频逻辑接口电路,在基带方面,通过基带串行接口连接到数字基带信号处理器;在射频方面,它通过分离或复合的IQ 信号接口连接到接收I/Q 解调与发射I/Q 调制电路。 接收基带信号处理框图如图2所示。 图2接收基带信号处理框图 发射基带信号处理框图如图3所示。 图3发射基带信号处理框图

先进微电子封装工艺技术

先进微电子封装工艺技术培训 培训目的: 1、详细分析集成电路封装产业发展趋势; 2、整合工程师把握最先进的IC封装工艺技术; 3、详细讲述微电子封装工艺流程及先进封装形式; 4、讲述微电子封装可靠性测试技术; 5、微电子封装与制造企业以及设计公司的关系; 6、实际案例分析。 参加对象: 1、大中专院校微电子专业教师、研究生;; 2、集成电路制造企业工程师,整机制造企业工程师; 3、微电子封装测试、失效分析、质量控制、相关软件研发、市场销售人员; 4、微电子封装工艺设计、制程和研发人员; 5、微电子封装材料和设备销售工程师及其应用的所有人员; 6、微电子封装科研机构和电子信息园区等从业人员 【主办单位】中国电子标准协会培训中心 【协办单位】深圳市威硕企业管理咨询有限公司 课程提纲(内容): Flip Chip Technology and Low Cost Bumping Method l What is Flip Chip l Why Use Flip Chip

l Flip Chip Trend l Flip Chip Boding Technology l Why Underfill l No Flow Underfill l Other Key Issues Wafer Level Packaging l What is IC packaging? l Trend of IC packaging l Definition and Classification of CSP l What is wafer level packaging? l Overview Technology Options —Wafer level High Density Interconnections —Wafer level Integration —Wafer Level towards 3D l WLP toward 3D l Wafer level Challenges l Conclusion 讲师简介: 罗乐(Le Luo)教授 罗教授1982年于南京大学获物理学学士学位,1988年于中科院上海微系统与信息技术研究所获工学博士学位。1990年在超导研究中取得重大突破被破格晋升为副研究员,1991—199

电子封装的现状及发展趋势

现代电子信息技术飞速发展,电子产品向小型化、便携化、多功能化方向发展.电子封装材料和技术使电子器件最终成为有功能的产品.现已研发出多种新型封装材料、技术和工艺.电子封装正在与电子设计和制造一起,共同推动着信息化社会的发展 一.电子封装材料现状 近年来,封装材料的发展一直呈现快速增长的态势.电子封装材料用于承载电子元器件及其连接线路,并具有良好的电绝缘性.封装对芯片具有机械支撑和环境保护作用,对器件和电路的热性能和可靠性起着重要作用.理想的电子封装材料必须满足以下基本要求: 1)高热导率,低介电常数、低介电损耗,有较好的高频、高功率性能; 2)热膨胀系数(CTE)与Si或GaAs芯片匹配,避免芯片的热应力损坏;3)有足够的强度、刚度,对芯片起到支撑和保护的作用; 4)成本尽可能低,满足大规模商业化应用的要求;5)密度尽可能小(主要指航空航天和移动通信设备),并具有电磁屏蔽和射频屏蔽的特性。电子封装材料主要包括基板、布线、框架、层间介质和密封材料. 基板 高电阻率、高热导率和低介电常数是集成电路对封装用基片的最基本要求,同时还应与硅片具有良好的热匹配、易成型、高表面平整度、易金属化、易加工、低成本并具有一定的机械性能电子封装基片材料的种类很多,包括:陶瓷、环氧玻璃、金刚石、金属及金属基复合材料等. 陶瓷

陶瓷是电子封装中常用的一种基片材料,具有较高的绝缘性能和优异的高频特性,同时线膨胀系数与电子元器件非常相近,化学性能非常稳定且热导率高随着美国、日本等发达国家相继研究并推出叠片多层陶瓷基片,陶瓷基片成为当今世界上广泛应用的几种高技术陶瓷之一目前已投人使用的高导热陶瓷基片材料有A12q,AIN,SIC和B或)等. 环氧玻璃 环氧玻璃是进行引脚和塑料封装成本最低的一种,常用于单层、双层或多层印刷板,是一种由环氧树脂和玻璃纤维(基础材料)组成的复合材料.此种材料的力学性能良好,但导热性较差,电性能和线膨胀系数匹配一般.由于其价格低廉,因而在表面安装(SMT)中得到了广泛应用. 金刚石 天然金刚石具有作为半导体器件封装所必需的优良的性能,如高热导率(200W八m·K),25oC)、低介电常数、高电阻率(1016n·em)和击穿场强(1000kV/mm).从20世纪60年代起,在微电子界利用金刚石作为半导体器件封装基片,并将金刚石作为散热材料,应用于微波雪崩二极管、GeIMPATT(碰撞雪崩及渡越时间二极管)和激光器,提高了它们的输出功率.但是,受天然金刚石或高温高压下合成金刚石昂贵的价格和尺寸的限制,这种技术无法大规模推广. 金属基复合材料 为了解决单一金属作为电子封装基片材料的缺点,人们研究和开

电子封装材料典型应用

电子封装材料典型应用 电子封装材料是用于承载电子元器件及其互连线,并具有良好电绝缘性能的基本材料,主要起机械支持、密封保护、信号传递、散失电子元件所产生的热量等作用,是高功率集成电路的重要组成部分。因此对于封装材料的性能要求有以下几点:具有良好的化学稳定性,导热性能好,热膨胀系数小,有较好的机械强度,便于加工,价格低廉,便于自动化生产等。然而,由于封装场合的多样化以及其所使用场合的差异性,原始的单一封装材料已经不能满足日益发展的集成电路的需要,进而出现了许多新型的封装材料,其中一些典型材料的种类及应用场合列举如下。 1、金属 金属材料早已开发成功并用于电子封装中,因其热导率和机械强度高、加工性能好,因此在封装行业得到了广泛的应用。表1为几种传统封装金属材料的一些基本特性。其中铝的热导率高、质量轻、价格低、易加工,是最常用的封装材料。但由于铝的线膨胀系数α 与Si的线膨胀系数(α1为4.1×10?6/K)和GaAs 1 的线膨胀系数(α1为5.8×10?6/K)相差较大,所以,器件工作时热循环所产生的较大热应力经常导致器件失效,铜材也存在类似的问题。Invar(镍铁合金)和Kovar(铁镍钴合金)系列合金具有非常低的线膨胀系数和良好的焊接性,但电阻很大,导热能力较差,只能作为小功率整流器的散热和连接材料。W和Mo具有与Si相近的线膨胀系数,且其导热性比Kovar合金好,故常用于半导体Si片的支撑材料。但由于W、Mo与Si的浸润性不好、可焊性差,常需要在表面镀上或涂覆特殊的Ag基合金或Ni,从而增加了工序,使材料可靠性变差,提高了成本,增加了污染。此外,W,Mo,Cu的密度较大,不宜作航空、航天材料;而且w,Mo价格昂贵,生产成本高,不适合大量使用。

手机各电路原理_射频电路_内容详细,不看后悔

本次培训内容:
手机各级电路原理及故障检修
1,基带电路
发话电路、受话电路、蜂鸣电路、耳机电路、 背光电路、马达电路、按键电路、充电电路、开 关机电路、摄像电路、蓝牙电路、FM电路、显示 电路、SIM卡电路、TF卡电路
2,射频电路
接收电路、发射电路

一、手机通用的接收与发射流程
天线:ANT 声表面滤波器:SAWfilter 低噪声放大器:LNA 功放:PA

手机通用的接收与发射流程
1、信号接收流程: 天线接收——天线匹配电路——双工器——滤波(声 表面滤波器SAWfilter)——放大(低噪声放大器 LNA)——RX_VCO混频(混频器Mixer)——放大 (可编程增益放大器PGA)——滤波——IQ解调(IQ 调制器)——(进入基带部分)GMSK解调——信道均 衡——解密——去交织——语音解码——滤波—— DAC——放大——话音输出。

手机通用的接收与发射流程
2、信号发射流程: 话音采集——放大——ADC——滤波——语音编
码——交织——加密——信道均衡——GMSK调制—— (进入射频部分)IQ调制(IQ调制器)——滤波—— 鉴相鉴频(鉴相鉴频器)——滤波——TX_VCO混频 (混频器Mixer)——功率放大(PA)——双工器—— 天线匹配电路——天线发射。

手机通用的接收与发射流程
3、射频电路原理框图:

二、射频电路的主要元件及工作原理
天线:ANT 声表面滤波器:SAWfilter 低噪声放大器:LNA 功放:PA

电子封装材料研究进展

微电子封装与其材料的研究进展 微电子集成电路中,高度密集的微小元件在工作中产生大量热量,由于芯片和封 装材料之间的热膨胀系数不匹配将引起热应力疲劳,封装材料的散热性能不佳也会导 致芯片过热,这二者已成为电力电子器件的主要失效形式[2]。 从根本上说,电子封装的性能、制作工艺、应用及发展等决定于构成封装的各类材料,包括半导体材料、封装基板材料、绝缘材料、导体材料、键合连接材料、封接 封装材料等。它涉及这些材料的可加工成型性,包括热膨胀系数、热导率、介电常数、电阻率等性能在内的材料物性,相容性及价格等等。 新世纪的微电子封装概念已从传统的面向器件转为面向系统,即在封装的信号传递、支持载体、热传导、芯片保护等传统功能的基础上进一步扩展,利用薄膜、厚膜 工艺以及嵌入工艺将系统的信号传输电路及大部分有源、无源元件进行集成,并与芯 片的高密度封装和元器件外贴工艺相结合,从而实现对系统的封装集成,达到最高密 度的封装。从器件的发展水平看,今后封装技术的发展趋势为: (1)单芯片向多芯片发展; (2)平面型封装向立体封装发展; (3)独立芯片封装向系统集成封装发展。 焊球阵列封装(BGA) BGA封装的I/O端子以圆形或柱状焊点按阵列形式分布在封装下面,BGA技术的优点是I/O引脚数虽然增加了,但引脚间距并没有减小反而增加了,从而提高了组装成 品率;虽然它的功耗增加,但BGA能用可控塌陷芯片法焊接,从而可以改善它的电热 性能;厚度和重量都较以前的封装技术有所减少;寄生参数减小,信号传输延迟小, 使用频率大大提高;组装可用共面焊接,可靠性高。③BGA的节距为1.5mm、 1.27mm、1.0mm、0.8mm、0.65mm和0.5mm,与现有的表面安装工艺和设备完全 相容,安装更可靠;④由于焊料熔化时的表面张力具有"自对准"效应,避免了传统封 装引线变形的损失,大大提高了组装成品率;⑤BGA引脚牢固,转运方便;⑥焊球引 出形式同样适用于多芯片组件和系统封装。 这种BGA的突出的优点:①电性能更好:BGA用焊球代替引线,引出路径短,减少了引脚延迟、电阻、电容和电感;②封装密度更高;由于焊球是整个平面排列, 因此对于同样面积,引脚数更高。 芯片尺寸封装(CSP)

微电子封装技术

第一章绪论 1、封装技术发展特点、趋势。(P8) 发展特点:①、微电子封装向高密度和高I/O引脚数发展,引脚由四边引出向引出向面阵列排列发展;②、微电子封装向表面安装式封装(SMP)发展,以适合表面安装技术(SMT);③、从陶瓷封装向塑料封装发展;④、从注重发展IC芯片向先发展后道封装再发展芯片转移。 发展趋势:①、微电子封装具有的I/O引脚数将更多;②、应具有更高的电性能和热性能;③、将更轻、更薄、更小;④、将更便于安装、使用和返修;⑤、可靠性会更高;⑥、性价比会更高,而成本却更低,达到物美价廉。 2、封装的功能(P19) 电源分配、信号分配、散热通道、机械支撑和环境保护。 3、封装技术的分级(P12) 零级封装:芯片互连级。 一级封装:将一个或多个IC芯片用适宜的材料(金属、陶瓷、塑料或它们的组合)封装起来,同时在芯片的焊区与封装的外引脚间用如上三种芯片互连方法(WB、TAB、FCB)连接起来使之成为有实用功能的电子元器件或组件。 二级封转:组装。将上一级各种微电子封装产品、各种类型的元器件及板上芯片(COB)一同安装到PWB或其它基板上。 三级封装:由二级组装的各个插板或插卡再共同插装在一个更大的母板上构成的,立体组装。4、芯片粘接的方法(P12) 只将IC芯片固定安装在基板上:Au-Si合金共熔法、Pb-Sn合金片焊接法、导电胶粘接法、有机树脂基粘接法。 芯片互连技术:主要三种是引线键合(WB)、载带自动焊(TAB)和倒装焊(FCB)。早期有梁式引线结构焊接,另外还有埋置芯片互连技术。 第二章芯片互连技术(超级重点章节) 1、芯片互连技术各自特点及应用 引线键合:①、热压焊:通过加热加压力是焊区金属发生塑性形变,同时破坏压焊界面上的氧化层使压焊的金属丝和焊区金属接触面的原子间达到原子引力范围,从而使原子间产生引力达到键合。两金属界面不平整,加热加压可使上下金属相互镶嵌;加热温度高,容易使焊丝和焊区形成氧化层,容易损坏芯片并形成异质金属间化合物影响期间可靠性和寿命;由于这种焊头焊接时金属丝因变形过大而受损,焊点键合拉力小(<0.05N/点),使用越来越少。②、超声焊:利用超声波发生器产生的能量和施加在劈刀上的压力两者结合使劈刀带动Al丝在被焊区的金属化层表明迅速摩擦,使Al丝和Al膜表面产生塑性形变来实现原子间键合。与热压焊相比能充分去除焊接界面的金属氧化层,可提高焊接质量,焊接强度高于热压焊;不需要加热,在常温下进行,因此对芯片性能无损害;可根据不同需要随时调节 键合能量,改变键合条件来焊接粗细不等的Al 丝或宽的Al带;AL-AL超声键合不产生任何化合 物,有利于器件的可靠性和长期使用寿命。③、 金丝球焊:球焊时,衬底加热,压焊时加超声。 操作方便、灵活、焊点牢固,压点面积大,又无 方向性,故可实现微机控制下的高速自动化焊接; 现代的金丝球焊机还带有超声功能,从而具有超 声焊的优点;由于是Au-Al接触超声焊,尽管加 热温度低,仍有Au-Al中间化合物生成。球焊用 于各类温度较低、功率较小的IC和中、小功率晶 体管的焊接。 载带自动焊:TAB结构轻、薄、短、小,封装高 度不足1mm;TAB的电极尺寸、电极与焊区节距均 比WB大为减小;相应可容纳更高的I/O引脚数, 提高了TAB的安装密度;TAB的引线电阻、电容 和电感均比WB小得多,这使TAB互连的LSI、VLSI 具有更优良的高速高频电性能;采用TAB互连可 对各类IC芯片进行筛选和测试,确保器件是优质 芯片,大大提高电子组装的成品率,降低电子产 品成本;TAB采用Cu箔引线,导热导电性能好, 机械强度高;TAB的键合拉力比WB高3~10倍, 可提高芯片互连的可靠性;TAB使用标准化的卷 轴长度,对芯片实行自动化多点一次焊接,同时 安装及外引线焊接可实现自动化,可进行工业化 规模生产,提高电子产品的生产效率,降低产品 成本。TAB广泛应用于电子领域,主要应用与低 成本、大规模生产的电子产品,在先进封装BGA、 CSP和3D封装中,TAB也广泛应用。 倒装焊:FCB芯片面朝下,芯片上的焊区直接与 基板上的焊区互连,因此FCB的互连线非常短, 互连产生的杂散电容、互连电阻和电感均比WB 和TAB小的多,适于高频高速的电子产品应用; FCB的芯片焊区可面阵布局,更适于搞I/O数的 LSI、VLSI芯片使用;芯片的安装互连同时进行, 大大简化了安装互连工艺,快速省时,适于使用 先进的SMT进行工业化大批量生产;不足之处如 芯片面朝下安装互连给工艺操作带来一定难度, 焊点检查困难;在芯片焊区一般要制作凸点增加 了芯片的制作工艺流程和成本;此外FCB同各材 料间的匹配产生的应力问题也需要很好地解决 等。 2、WB特点、类型、工作原理(略)、金丝球焊主 要工艺、材料(P24) 金丝球焊主要工艺数据:直径25μm的金丝焊接 强度一般为0.07~0.09N/点,压点面积为金丝直 径的2.5~3倍,焊接速度可达14点/秒以上,加 热温度一般为100℃,压焊压力一般为0.5N/点。 材料:热压焊、金丝球焊主要选用金丝,超声焊 主要用铝丝和Si-Al丝,还有少量Cu-Al丝和 Cu-Si-Al丝等。 3、TAB关键材料与技术(P29) 关键材料:基带材料、Cu箔引线材料和芯片凸点 金属材料。 关键技术:①芯片凸点制作技术②TAB载带制作 技术③载带引线与芯片凸点的内引线焊接技术和 载带外引线的焊接技术。 4、TAB内外引线焊接技术(P37) ①内引线焊接(与芯片焊区的金属互连):芯片凸 点为Au或Ni-Au、Cu-Au等金属,载带Cu箔引线 也镀这类金属时用热压焊(焊接温度高压力大); 载带Cu箔引线镀0.5μm厚的Pb-Sn或者芯片凸 点具有Pb-Sn时用热压再流焊(温度较低压力较 小)。 焊接过程:对位→焊接→抬起→芯片传送 焊接条件:主要由焊接温度(T)、压力(P)、时 间(t)确定,其它包括焊头平整度、平行度、焊 接时的倾斜度及界面的侵润性,凸点高度的一致 性和载带内引线厚度的一致性也影响。 T=450~500℃,P≈0.5N/点,t=0.5~1s 焊接后焊点和芯片的保护:涂覆薄薄的一层环氧 树脂。环氧树脂要求粘度低、流动性好、应力小 切Cl离子和α粒子含量小,涂覆后需经固化。 筛选测试:加热筛选在设定温度的烘箱或在具有 N2保护的设备中进行;电老化测试。 ②外引线焊接(与封装外壳引线及各类基板的金 属化层互连):供片→冲压和焊接→回位。 5、FCB特点、优缺点(略,同1) 6、UBM含义概念、结构、相关材料(P46) UBM(凸点下金属化):粘附层-阻挡层-导电层。 粘附层一般为数十纳米厚度的Cr、Ti、Ni等;阻 挡层为数十至数百纳米厚度的Pt、W、Pd、Mo、 Cu、Ni等;导电层金属Au、Cu、Ni、In、Pb-Sn 等。 7、凸点主要制作方法(P47—P58) 蒸发/溅射凸点制作法、电镀凸点制作法、化学镀 凸点制作法、打球(钉头)凸点制作法、置球及 模板印刷制作焊料凸点、激光凸点制作法、移置 凸点制作法、柔性凸点制作法、叠层凸点制作法、 喷射Pb-Sn焊料凸点制作法。 8、FCB技术及可靠性(P70—P75) 热压FCB可靠性、C4技术可靠性、环氧树脂光固 化FCB可靠性、各向异性导电胶FCB可靠性、柔 性凸点FCB可靠性 9、C4焊接技术特点(P61) C4技术,再流FCB法即可控塌陷芯片连接特点: ①、C4除具有一般凸点芯片FCB优点外还可整个 芯片面阵分布,再流时能弥补基板的凹凸不平或 扭曲等;②、C4芯片凸点采用高熔点焊料,倒装 再流焊时C4凸点不变形,只有低熔点的焊料熔 化,这就可以弥补PWB基板的缺陷产生的焊接不 均匀问题;③、倒装焊时Pb-Sn焊料熔化再流时 较高的表面张力会产生“自对准”效果,这使对 C4芯片倒装焊时的对准精度要求大为宽松。 10、底封胶作用(P67) 保护芯片免受环境如湿气、离子等污染,利于芯

相关主题
文本预览
相关文档 最新文档