当前位置:文档之家› 电动力学习题解答2

电动力学习题解答2

电动力学习题解答2
电动力学习题解答2

第二章 静电场

1. 一个半径为R 的电介质球,极化强度为2

/r K r P =,电容率为ε。

(1)计算束缚电荷的体密度和面密度: (2)计算自由电荷体密度; (3)计算球外和球内的电势;

(4)求该带电介质球产生的静电场总能量。

解:(1)P ?-?=p ρ2

222/)]/1()/1[()/(r K r r K r K -=??+??-=??-=r r r

)(12P P n -?-=p σR K R r r /=?==P e (2))/(00εεεε-=+=P P E D 内

200)/()/(r K f εεεεεερ-=-??=??=P D 内

(3))/(/0εεε-==P D E 内内

r

r f

r

KR

r V

e e D E 2002

00

)(4d εεεεπερε-=

=

=

?外

外 r

KR

r

)(d 00εεεε?-=

?=?∞r E 外外

)(ln d d 0

0εε

εε?+-=

?+?=??∞r R K R

R r

r E r E 外内内

(4)???∞-+-=?=R R r

r

r R K r r r K V W 42200222022202d 4)(21d 4)(21d 21πεεεεπεεεE D 2

0))(1(2εεεεπε-+=K R

2. 在均匀外电场中置入半径为0R 的导体球,试用分离变量法求下列两种情况的电势:

(1)导体球上接有电池,使球与地保持电势差0Φ; (2)导体球上带总电荷Q 解:(1)该问题具有轴对称性,对称轴为通过球心沿外电场0E 方向的轴线,取该轴线为

极轴,球心为原点建立球坐标系。

当0R R >时,电势?满足拉普拉斯方程,通解为

∑++

=n

n n n

n n P R b R a )(cos )(1

θ? 因为无穷远处 0E E →,)(cos cos 10000θ?θ??RP E R E -=-→ 所以 00?=a ,01E a -=,)2(,0≥=n a n

当 0R R →时,0Φ→?

所以 010

1000)(cos )(cos Φ=+-∑+n n

n n

P R b P R E θθ? 即: 002010000/,

/R E R b R b =Φ=+?

所以 )

2(,0,),(30

010000≥==-Φ=n b R

E b R b n ?

??

?≤Φ>+-Φ+-=)()

(/cos /)(cos 00

02

3

0000000R R R R R R E R R R E θ?θ??

(2)设球体待定电势为0Φ,同理可得

??

?≤Φ>+-Φ+-=)()

(/cos /)(cos 00

02

3

0000000R R R R R R E R R R E θ?θ??

当 0R R →时,由题意,金属球带电量Q

φθθθ?θε?εd d sin )cos 2cos (d 2

000

00000

R E R E S n

Q R R ??+-Φ+

=??-== )(40000?πε-Φ=R

所以 00004/)(R Q πε?=-Φ

??

?≤+>++-=)(4/)

(cos )/(4/cos 000

023

00000R R R Q R R R R E R Q R E πε?θπεθ?? 3. 均匀介质球的中心置一点电荷f Q ,球的电容率为ε,球外为真空,试用分离变量法求

空间电势,把结果与使用高斯定理所得结果比较。 提示:空间各点的电势是点电荷f Q 的电势R Q f πε4/与球面上的极化电荷所产生的电势的迭加,后者满足拉普拉斯方程。 解:(一)分离变量法

空间各点的电势是点电荷f Q 的电势R Q f πε4/与球面上的极化电荷所产生的电势的迭加。设极化电荷产生的电势为?',它满足拉普拉斯方程。在球坐标系中解的形

式为:

)()(内θ?cos 1

n n

n n

n n P R b R a ∑++

=' )

()(外θ?cos 1n n

n n n n P R d

R c ∑++=' 当∞→R 时,0→'外

?,0=∴n c 。 当0→R 时,内

?'为有限,0=∴n b 。 所以 )

(内

θ?cos n n

n n P R a ∑=' , )(外θ?cos 1n

n

n n

P R

d ∑+=' 由于球对称性,电势只与R 有关,所以

)1(,0≥=n a n )1(,0≥=n d n

0a ='内

?, R d /0='外? 所以空间各点电势可写成R Q a f πε?40+=内

R Q R d f πε?40+=外

当0R R →时,由 外内??= 得: 000/R d a = 由 n n

??=??外

内?ε?ε

得:20

002002044R d R Q R Q f f

επεεπ+=,)1

1(400εεπ-=f Q d 则 )11(

4000εεπ-=

R Q a f

所以 )

(内εεππε?1

14400-+=R Q R Q f f )(外εεππε?1

1440-+=R Q R Q f f R

Q f 04πε=

(二)应用高斯定理

在球外,R>R 0 ,由高斯定理得:f p f Q Q Q Q d =+==??

总外s E 0ε,(整个导体球的束缚电荷0=p Q ),所以 r f

R Q e E 2

04πε=

外 ,积分后得:

R Q dR R

Q d f

R R f 02

044πεπε???∞∞

==?=R E 外外 在球内,R

s E 内ε,所以

r f R Q e E 2

4πε=

内 ,积分后得:

R

Q R Q R

Q d d f f f R R R

00

4440

0πεπεπε?+

-

=

?+?=??∞

R E R E 外内内 结果相同。

4. 均匀介质球(电容率为1ε)的中心置一自由电偶极子f p ,球外充满了另一种介质(电

容率为2ε),求空间各点的电势和极化电荷分布。

解:以球心为原点,f p 的方向为极轴方向建立球坐标系。空间各点的电势可分为三种电

荷的贡献,即球心处自由电偶极子、极化电偶极子及球面上的极化面电荷三部分的贡献,其中电偶极子产生的总电势为3

14/R f πεR p ?。所以球内电势可写成:

314/'R f i i πε??R p ?+=;球外电势可写成:31o o 4/'R f πε??R p ?+=

其中i '?和o '?为球面的极化面电荷激发的电势,满足拉普拉斯方程。由于对称性,i '?和o '?均与φ无关。考虑到0→R 时i '?为有限值;∞→R 时0'o →?,故拉普拉

斯方程的解为:

)(cos 0R R P R a n n

n n i ≤='∑)

(θ? )(cos 01o

R R P R

b n

n n n

≥='∑+)(θ? 由此 )(cos 4/031R R P R a R n n

n

n f i ≤+?=∑)

(θπε?R p (1)

)(cos 4/013

1o R R P R

b R n n n

n f ≥+?=+-∑)

()

(θπε?R p (2) 边界条件为:0

o

R R R R i

===?? (3)

o 2

1

R R R R i

R

R

==??=???ε?ε (4)

将(1)(2)代入(3)和(4),然后比较)cos θ(n P 的系数,可得:

)1(0

,0≠==n b a n n

3

211211)2(2/)(R p a f εεπεεε+-= )2(2/)(211213

011εεπεεε+-==f p R a b

于是得到所求的解为:

)()2(2)

(4)2(2cos )(403

021121313

211213

1R R R R R R p R

f f f f i ≤?+-+?=+-+

?=

R p R

p R p εεπεεεπεεεπεθ

εεπε?

)

()2(43)2(2)(4)2(2cos )(403

213211213

122112131o R R R

R R

R p R f f f f f ≥+?=

?+-+?=+-+?=εεπεεπεεεπεεεπεθεεπε?R p R p R p R p 在均匀介质内部,只在自由电荷不为零的地方,极化电荷才不为零,所以在球体内部,

只有球心处存在极化电荷。

f

p ρεεεε

εεεεερ)1/()1(][])[(101010101-=??-=-?-?=-?-?=?-?=D D E P

所以 f p p p )1/(10-=εε

在两介质交界面上,极化电荷面密度为

o 020121)()()(E e E e p p e ?--?-=-?=r i r r p εεεεσ

o 0201)

()

(R R i

R

R

??-+??--=?εε?εε

由于0

o 2

1

R R i R

R

??=???ε?ε,所以

θεεπεεεε??εσcos )2(2)(3)(

30

211210o

00R p R R f R i p +-=??-??= 5. 空心导体球壳的内外半径为1R 和2R ,球中心置一偶极子p 球壳上带电Q ,求空间各点的电势和电荷分布。

解:以球心为原点,以p 的方向为极轴方向建立球坐标系。在1R R <及2R R >两均匀区域,电势满足拉普拉斯方程。通解形式均为

)()(θcos 1n n

n n

n

n P R b R a ∑++

当∞→R 时,电势趋于零,所以2R R >时,电势可写为

(θ?cos 1o n n n n P R

b

∑+= (1) 当0→R 时,电势应趋于偶极子p 激发的电势:

20304/cos 4/R p R f πεθπε=?R p

所以1R R <时,电势可写为

)(θπεθ?cos 4cos 2

0n n

n

n i P R a R p ∑+=

(2) 设球壳的电势为s ?,则

s n n

n n

R P R b ?θ?==∑

+)(cos 12

o 2

(3) s n n

n n R i

P R a R p ?θπεθ?=+=∑)

(cos 4/cos 12101

(4) 由(3)得: 20R b s ?= ;)0(0

≠=n b n

由(4)得: s a ?=0 ;3

1014/R p a πε-= ;)1,0(0

≠=n a n

所以 R R s /2o ??= (5)

310204/cos 4/cos R pR R p s i πεθ?πεθ?-+= (6) 再由 Q R R R

R s S

==????2220o 0

4d π?ε?εS 得: 204/R Q s πε?= (7)

将(7)代入(5)(6)得:

R Q 0o 4/πε?= )(2R R >

)(414cos 44cos 31

2303

102020R R Q R R pR R Q R p i R p R p ?-+?=-+=πεπεθπεπεθ? 在2R R =处,电荷分布为:

2

2

o

42

R Q

R D R n π?εσ=

??-== 在1R R =处,电荷分布为:

3

10

4cos 3'1

R p R

D R i n πθ

?εσ-

=??=-=

6. 在均匀外电场0E 中置入一带均匀自由电荷f ρ的绝缘介质球(电容率为ε),求空间各

点的电势。

解:以球心为原点,以0E 的方向为极轴方向建立球坐标系。将空间各点的电势看作由两

部分迭加而成,一部分1?为绝缘介质球内的均匀自由电荷产生,另一部分2?为外电

场0E 及0E 感应的极化电荷产生。前者可用高斯定理求得,后者满足拉普拉斯方程。由于对称性,2?的形式为

)(cos )()1(θn n

n n n n

P R b R a

∑+-+

对于1?,当0R R >时,由高斯定理得:

23013/R R D f ρ= , 203

013/R R E f ερ=

当0R R <时,由高斯定理得:

3/2R D f ρ= , ερ3/2R E f =

1?的球外部分: ??+=0

2

03

1o )3/(d )3/(R R

R f f dR R R R R ερερ?

ερερερ6/3/3/2

0020030R R R R f f f --= (1)

1?的球内部分: ερερ?6/)3/(d 20

021R dR R R E f R

f R

i -==?=?? (2)

对于2?,当∞→R 时,θ?cos 02R E -→,所以

)(cos cos 010o2R R P R

b R E n n

n n

>+-=∑

+)(θθ? 当0→R 时,2?为有限,所以

)(cos 02R R P R a n n

n n i <=∑)

(θ?

边界条件为:0R R =时,2o2i ??=,0

22

o 0

R i R R

R

??=???ε

?ε。即:

??

???=+--=+-∑∑∑∑-+-+-)(cos )(cos )1(cos )(cos )(cos cos 1

0)2(0

0000)1(000θεθεθθθθn n n n n n n n n n

n n n n n n P R na P R b n R E P R a P R b R E 比较)(cos θn P 的系数,解得:

)2/(30001εεε+-=E a

)2/()(03

0001εεεε+-=R E b

)1(0

≠==n b a n n

所以 )()2/(cos )(cos 02

030000o2R R R

R E R E >+-+-=εεθεεθ? (3)

)()

2/(cos 300002R R R E i <+-=εεθε? (4)

由(1) (2) (3) (4)得:

???

?

???≤+-

-≥+-+-++-

=)

(2cos 36)

()2(cos )(cos 3)21

1

(300

002

02

03

000003

020

R R R E R R R R R E R E R R R f f f εεθεερεεθεεθερεερ?

7. 在一很大的电解槽中充满电导率为2σ的液体,使其中流着均匀的电流J f 0。今在液体中

置入一个电导率为1σ的小球,求稳恒时电流分布和面电荷分布,讨论21σσ>>及

12σσ>>两种情况的电流分布的特点。

解:本题虽然不是静电问题,但当电流达到稳定后,由于电流密度J f 0与电场强度E 0成正比(比例系数为电导率),所以E 0也是稳定的。这种电场也是无旋场,其电势也满足拉普拉斯方程,因而可以用静电场的方法求解。

(1)未放入小球时,电流密度J f 0是均匀的,由J f 002E σ=可知,稳恒电场E 0也是一个均

匀场。因此在未放入小球时电解液中的电势0?便是均匀电场E 0的电势。放入小球后,以球心为原点,E 0的方向为极轴方向,建立球坐标系。为方便起见,以坐标原点为电势零点。在稳恒电流条件下,0/=??t ρ,所以:

0=??J (1)

由(1)式可推出稳恒电流条件下的边界条件为:

0)(12=-?J J n (2) 设小球内的电势为1?,电解液中的电势为2?,则在交界面上有:

21R R ??= (3)

02

211

R R R R R R ==??=???

σ?σ (4) 将E J σ=及?-?=E 代入(1),得:

0)(2=?-=??=???σσE J

可见?满足拉普拉斯方程

考虑到对称性及∞→R 时0E E →,球外电势的解可写成:

)(cos cos 01

20

2R R P R b R J n n

n n

f >+-

=∑

+)(θθσ? (5) 其中利用了020E J σ=f 。

考虑到0→R 时电势为有限值,球内电势的解可写成:

)(cos 01R R P R a n n

n n <=∑)

(θ? (6) 因为选0=R 处为电势零点,所以00=a ,将(5) (6)代入(3) (4)得:

)()(θθθσcos cos cos 010

020

n n n

n n

n n n f P R a P R b R J ∑∑

=+-

+ (7) )

()(θσθθσσcos ]cos )1(cos [10120

202n n n n n n n n f P R na P R b n J ∑∑-+=+-- (8) 由(7)(8)两式可得:

)2/(32101σσ+-=f J a , 22130

0211)2/()(σσσσσ+-=R J b f )1(0

,0≠==n b a n n

所以: )2/(3)2/(cos 32102101σσσσθ?+?-=+-=R J f f R J (0R R ≤)

22213

0021202)2/(cos )(/cos R R J R J f f σσσθσσσθ?+-+-=

322103

02120)2/()(/R R f f σσσσσσ+?-+?-=R J R J (0R R ≥)

由此可得球内电流密度:

)2/(3)2/()(32101210111111σσσσσσ?σσ+=+??=?-==f f J R J E J

电解液中的电流密度为: 22222?σσ?-==E J

]

)(3[)2()(3050213

210R R R f f f J R R J J -?+-+=σσσσ

(2)两导体交界面上自由电荷面密度

)()(12012E E e D D e -?=-?=r r f εω)//(11220σσεJ J e -?=r

2

210021)2/(cos )(3σσσθεσσ+-=f J

(3) 当21σσ>>,即球的电导率比周围电解液的电导率大的多时,

1

)2/()(2121≈+-σσσσ ,

3

)2/(3211≈+σσσ

所以, 013f J J ≈

]/)(3)[/(02033

002f f f R R R J R R J J J -?+≈ 2

00/cos 3σθεωf f J ≈

当21σσ<<时,同理可得:

01≈J

]/)(3)[2/(02033

002f f f R R R J R R J J J -?-≈ 2

002/cos 3σθεωf f J -≈

8. 半径为0R 的导体球外充满均匀绝缘介质ε,导体球接地,离球心为a 处(a >0R )置

一点电荷f Q ,试用分离变量法求空间各点电势,证明所得结果与电象法结果相同。 解:以球心为原点,以球心到点电荷的连线为极轴建立球坐标系。将空间各点电势看作由两部分迭加而成。一是介质中点电荷产生的电势

θπε?cos 24/221Ra a R Q f -+=,

二是球面上的感应电荷及极化面电荷产生的2?。后者在球内和球外分别满足拉普拉斯方程。考虑到对称性,2?与φ无关。

由于0→R 时,2?为有限值,所以球内的2?解的形式可以写成

∑=n

n n n i P R a )(cos 2θ? (1)

由于∞→R 时,2?应趋于零,所以球外的2?解的形式可以写成

+=n

n n n

P R b )(cos 1

2o θ? (2) 由于

∑=-+n

n n P a R a Ra a R (cos))/()/1(cos 222θ

∑=n

n n

f P a R a Q (cos))/()4/(1πε? (3)

当0R R ≤时,21i ???+=内

∑∑+=n

n n n n

n n f P R a P a R a Q )(cos (cos))/()4/(θπε (4)

当0R R >时,21o ???+=外

∑++=n

n n n

n

n n f P R b P a R a Q )(cos (cos))/()4/(1

θπε (5) 因为导体球接地,所以 0=内? (6)

00

==R R 内外?? (7)

将(6)代入(4)得: 1

4/+-=n f n a Q a πε (8)

将(7)代入(5)并利用(8)式得: 11

20

4/++-=n n f n a R Q b πε (9)

将(8)(9)分别代入(4)(5)得:

)(00R R ≤=内? (10)

]/cos 2)/(cos 2[

4120

2

2

2

02

2

a

RR a R R a Q R Ra a R Q f

f

θθ

πε

?++-

-+=

外,

)(0R R ≥ (11)

用镜像法求解:设在球内r 0处的像电荷为Q ’。由对称性,Q ’在球心与Q f 的连线上,根据边界条件:球面上电势为0,可得:(解略)

a R r /200=, a Q R Q f /'0-=

所以空间的电势为

]/cos 2)/(cos 2[41)'(4120220202221a

RR a R R a Q R Ra a R Q r Q r Q f f f θθπεπε?++--+=+=外 )(0R R ≥

9. 接地的空心导体球的内外半径为1R 和2R ,在球内离球心为a 处(a <1R )置一点电荷Q 。

用镜像法求电势。导体球上的感应电荷有多少?分布在内表面还是外表面? 解:假设可以用球外一个假想电荷'Q 代替球内表

面上感应电荷对空间电场的作用,空心导体球接

地,球外表面电量为零,由对称性,'Q 应在球

心与Q 的连线上。 考虑球内表面上任一点P ,边界条件要求:

0'/'/=+R Q R Q (1)

式R 为Q 到P 的距离,R’为'Q 到P 的距离,因此,对球面上任一点,应有

=-=Q Q R R /'/'常数 (2)

O Q '

Q 1R R 'R P

只要选择'Q 的位置,使OPQ P OQ ??~',则

==a R R R //'1常数 (3)

设'Q 距球心为b ,则a R R b //11=,即a R b /2

1= (4) 由(2)(3)两式得: a Q R Q /'1-=

]/cos 2//cos 2[412124121220a

R R a R R a Q R Ra a R Q θθπε?-+--+=

导体内电场为零,由高斯定理可知球面上的感应电荷为Q -,分布于内表面。 由于外表面没有电荷,且电势为零,所以从球表面到无穷远没有电场,0=外?。 10. 上题的导体球壳不接地,而是带总电荷0Q ,或使具有确定电势0?,试求这两种情况的

电势。又问0?与0Q 是何种关系时,两情况的解是相等的?

解:由上题可知,导体球壳不接地时,球内电荷Q 和球的内表面感应电荷Q -的总效果是

使球壳电势为零。为使球壳总电量为0Q ,只需满足球外表面电量为0Q +Q 即可。因此,导体球不接地而使球带总电荷0Q 时,可将空间电势看作两部分的迭加,一是Q 与内表面的Q -产生的电势1?,二是外表面0Q +Q 产生的电势2?。

]/cos 2//cos 2[

4121

2

41

2

12

2

1a

R R a R R a

Q R Ra a R Q

θθπε?-+-

-+=

内,)(1R R <

01=外

?, )(1R R ≥; 20024/)(R Q Q πε?+=内, )(2R R <;

R Q Q 4/)(πε?+=, )(R R ≥,所以 )

(4/)()

(4/)(21200200R R R R Q Q R R R Q Q ≤≤+=≥+=πε?πε?

)(]/cos 2//cos 2[

4112

2124121220

R R R Q Q a

R R a R R a

Q R Ra a R Q

≤++

-+-

-+=

,θθ

πε?由以上过程可见,球面电势为200。

若已知球面电势0?,可设导体球总电量为0'Q ,则有:

02004/)'(?πε=+R Q Q ,即:20004/)'(R Q Q ?πε=+

????

?

????≤+-+--+≤≤≥=)(]/cos 2//cos 2[41

)()(/10

2124121220210220R R a

R R a R R a Q R Ra a R Q R R R R R R

R ?θθπε???

当0?和0Q 满足20004/)(R Q Q πε?+=时,两种情况的解相同。 11. 在接地的导体平面上有一半径为a 的半球凸部(如图),半球的球心在导体平面上,点电荷Q 位于系统的对称轴上,并与

Q

θ

Q b a -Q b a Q

-R

P

O

平面相距为b (b >a ),试用电象法求空间电势。

解:如图,根据一点电荷附近置一无限大接地导体平板和一点电荷附近置一接地导体球两

个模型,可确定三个镜像电荷的电量和位置。

Q b a

Q -=1,z b a e r 21=;Q b

a Q =2,z

b a e r 22-=; Q Q -=3,z b e r -=3,所以

)

,2

0(,

]cos 2cos 2cos 21

cos 21

[

42

2

422

242

22220a R R b a

b

a R

b a

R b a b

a R

b a

Rb b R Rb b R Q ><≤-+

+

+++

++-

-+=

πθθθ

θθ

πε? 12. 有一点电荷Q 位于两个互相垂直的接地导体平面所 围成的直角空间内,它到两个平面的距离为a 和b , 求空间电势。 解:用电像法,可以构造如图所示的三个象电荷来代替两导

体板的作用。

--+-+-=

2

2200

)()()(1

[

4b z a y x x Q πε?

2

220)

()()(1

b z a y x x ++-+--

)0,(,])

()()(1

)

()()(1

2

2

2

02

2

2

0>++++-+

-+++--

z y b z a y x x b z a y x x

13. 设有两平面围成的直角形无穷容器,其内充满电导率为σ的液

体。取该两平面为xz 面和yz 面在),,(000z y x 和),,(000z y x -两点分别置正负电极并通以电流I ,求导电液体中的电势。 解:本题的物理模型是,由外加电源在A 、B 两点间建立电场,使

溶液中的载流子运动形成电流I ,当系统稳定时,属恒定场,即0/=??t ρ,0=??J 。对于恒定的电流,可按静电场的方式处理。于是在A 点取包围A 的高斯面,则

ε/Q d =??S E ,

由于??=S j d I ,E j σ=,所以

εσ//Q I =

可得:σε/I Q = 。

同理,对B 点有: Q I Q B --=σε/ 又,在容器壁上, 0=n j ,即无电流穿过

容器壁。

)

,,(0b a x Q )

,,(b a x Q --(0Q

)

,,(0b a x Q -a

b y

z

)

,,(000z y x A )

,,(000z y x B -z

x

y

o

σ

)

,,(000z y x Q )

,,(000z y x Q --z

x

o

)

,,(00z y x Q -)

,,(000z y x Q -),,(000z y x Q --)

,,(000z y x Q ---),,(000z y x Q ---)

,,(000z y x Q ----

由E j σ=可知,当0=n j 时,0=n E 。

所以可取如右图所示电像,其中上半空间三个像电荷Q ,下半空间三个像电荷 -Q ,

容器内的电势分布为:

∑=???

? ??=

8

141

i i i r Q πε?202020)()()(1[4z z y y x x I -+-+-=πσ202020)()()(1z z y y x x ++-+--2

02020)()()(1

z z y y x x -+++-+

202020)()()(1z z y y x x ++++--2

02020)()()(1

z z y y x x -+++++

202020)()()(1z z y y x x +++++-2

02020)()()(1

z z y y x x -+-+++

])

()()(1

2

02020z z y y x x ++-++-

14. 画出函数dx x d /)(δ的图,说明)()(x p δρ??-=是一个位

于原点的偶极子的电荷密度。

解:(1)?

??=∞≠=0,0

,0)(x x x δ

x

x x x dx x d x ?-?+=→?)

()(lim

)(0δδδ 1)0≠x 时,0/)(=dx x d δ

2)0=x 时,a ) 对于0>?x ,-∞=?∞

-=→?x dx

x d x 0lim )(0δ

b ) 对于0

-=→?x dx

x d x 0lim )(0δ

图象如右图所示。

)()///()()(x x p δδρx p x p x p ??+??+??-=??-=

dV x p x p x p

dV dV x x x x x x x p x ?????+??+??-=??-=)()///()()(332211

δδρ

()3213322113211

1

11

)()()()()]()[(dx dx dx x x x x x x x p dV x p x x e e e x x ++??

-=??-??δδδδ 32133221132111

))(()()(dx dx dx x x x x x x x p x e e e ++??-=?δδδ?-=11

1111)

(dx dx x d x p x δe 应用()dt t d t t dt t t d )()()(δδδ+=,即())()()(t dt

t t d dt t d t δδδ-=,可得: =-?111111)

(dx dx x d x p x δe ()??+-11111111)()(dx x p x x d p x x δδe e

dx

x d )(δx

o

11111111)(x x x p p x x p e e e =+-=δ (x =0)

同理可得另外两项分别为22x p e 及33x p e ,所以,

p x =?dV ρ,即 p 是一个位于原点的

偶极子的电荷密度。

15. 证明:(1)a x ax /)()(δδ= )0(>a ,(若0

(2)0)(=x x δ

证明:1) 显然,当0≠x 时,a x ax /)()(δδ=成立;又

a

ax d ax a a ax d ax dx ax 1

)()(1)()

()(===???+∞∞-+∞

-+∞

∞-δδδ 1)(=?

+∞

-dx x δ

所以a x ax /)()(δδ=在全空间成立。 若0

a

a ax d ax dx ax dx ax 1

)()

()()(-=---=-=???

+∞

-+∞∞

-+∞

-δδδ 即,a x ax /)()(δδ-=

所以a x ax /)()(δδ=在全空间成立。 2) 由)(x δ的选择性证明。

0)()(≥=x x x x δδΘ

,而0)(0

==?+∞

∞-=x x

dx x x δ

0)(=∴x x δ ,进而0)(=x x δ

16. 一块极化介质的极化矢量为)'(x P ,根据偶极子静电势的公式,极化介质所产生的静

电势为??=V

dV r '4)'(3

0πε?r

x P ,另外根据极化电荷公式)'('x P ?-?=p ρ及P n ?=p σ,极化介质所产生的电势又可表为???+??-=S V r d dV r 0

04'

)'('4)'('πεπε?S x P x P ,试证明以上

两表达式是等同的。

证明:由第一种表达式得

??

??

?

????=

?=

V

V

dV r dV r '1')'(41

')'(41030

x P r x P πεπε? ??? ????+??=??? ????r r r 1''11'P P P Θ

???

??

???? ????+??-=∴??V V dV r dV r ')'('')'('410x P x P πε? ??

????????

??+??-=

??')'(')'('410S x P x P d r dV r S V πε, 所以,两表达式是等同的。

实际上,继续推演有:

??

?????+=???

?????+??-=

????''41'')'('4100dS r dV r dS r dV r S p V p S V σρπεπε?n P x P 刚好是极化体电荷的总电势和极化面电荷产生的总电势之和。

17. 证明下述结果,并熟悉面电荷和面偶极层两侧电势和电场的变化。 (1)在面电荷两侧,电势法向微商有跃变,而电势是连续的。

(2)在面偶极层两侧,电势有跃变012/ε??P n ?=-,而电势的法向微商是连续的。 (各带等量正负面电荷密度±σ而靠的很近的两个面,形成面偶极层,而偶极矩密度l P σσ0

lim →∞

→=l )

证明:1)如图,由高斯定理可得:0/2εσS S E ??=??,

02/εσ=∴E ,

0)2/()2/(0012=-=-z z εσεσ??

即,电势是连续的,但是 01112//εσ?z n n e E ==??,02222//εσ?z n n e E -==??

02211///εσ??=??-??∴n n φ1 +σ 即,电势法向微商有跃变 n E l

2)如图,由高斯定理可得:0/εσz E e = φ2 σ 00

12/lim lim εσ??l n l E ?=?=-∴→→l l z

0/εP n ?=

又 E =??n /1?,E =??n /2?

0//21=??-??∴n n ??,即电势的法向微商是连续的。 18. 一个半径为R 0 的球面,在球坐标2/0πθ<<的半球面上电势为0?在πθπ<<2/的

半球面上电势为0?-,求空间各点电势。

提示:?+-=-+1

01

1112)

()()(n x P x P dx x P n n n ,1)1(=n P ,

??

?

??=?????-?????-==偶数)(奇数)

(n n n n P n n ,642)1(531)1(,0)0(2/ 解:由题意,球内外电势均满足拉普拉斯方程:02

=?内?;02=?外?

球内电势在0→r 时为有限,球外电势在∞→r 时为0,所以通解形式为:

∑=n n n n P r a )(cos θ?内 ,∑+=n

n

n n P r b

)(cos 1θ?外 。 在球面上,0

0R r R r ===外内??,即 ???≤<-<≤===)

2/(,)

2/0(,)(000πθπ?πθ?θ?f R r E E

S

?x z

σ1

?2

?

将)(θf 按球函数展开为广义傅立叶级数,∑=

n

n n

P f

f )(cos )(θθ

则 n n n n n f R b R a ==+-)

1(0

0,下面求n f 。 ??+=+=

θθθ?θθθ011sin )(cos 2

12cos )(cos )(2120d P n d P f n f n R n n ]sin )(cos sin )(cos [2122

02

00??-+=πππθθθ?θθθ?d P d P n n n

])()([212100010??--+-=dx x P dx x P n n n ??])()([21

210100??-++=dx x P dx x P n n n ?

由于)()1()(x P x P n n

n -=-,所以

???++-++=-++=101

0101100)(])1(1[2

12])()1()([212dx x P n dx x P dx x P n f n n n n n n ??

当n 为偶数时,0=n f ; 当n 为奇数时,1

11012)()(]11[212+-++=-+n x P x P n f n n n ?1

0110)]()([x P x P n n -+-=?

)12()

1(642)

2(531)1()]0()0([210110++?????-?????-=+-=--+n n n P P n n n ??

==n n n R f a 0/)12()1(642)2(531)1(2

10

0++?????-?????--n n n R n n

? )1(0+=n n n R f b )12()

1(642)2(531)1(211

00++?????-?????--+n n n R n n ?

至此,可写出球内外的电势为

)为奇数,内002

1

0(,)(cos ))(12()1(642)2(531)

1(R r n P R r

n n n n n n <++?????-?????-=-∑θ??

)(,)(cos ))(12()1(642)

2(531)

1(0102

1

0R r n P r

R n n n n n n >++?????-?????-=+-∑为奇数,外θ??

Love is not a maybe thing. You know when you love someone.

郭硕鸿《电动力学》课后答案

郭硕鸿《电动力学》课后答案

第 40 页 电动力学答案 第一章 电磁现象的普遍规律 1. 根据算符?的微分性与向量性,推导下列公式: B A B A A B A B B A )()()()()(??+???+??+???=?? A A A A )()(2 2 1??-?=???A 解:(1))()()(c c A B B A B A ??+??=?? B A B A A B A B )()()()(??+???+??+???=c c c c B A B A A B A B )()()()(??+???+??+???= (2)在(1)中令B A =得: A A A A A A )(2)(2)(??+???=??, 所以 A A A A A A )()()(2 1 ??-??=??? 即 A A A A )()(2 2 1??-?=???A 2. 设u 是空间坐标z y x ,,的函数,证明: u u f u f ?=?d d )( , u u u d d )(A A ??=??, u u u d d )(A A ? ?=?? 证明: (1) z y x z u f y u f x u f u f e e e ??+??+??= ?)()()()(z y x z u u f y u u f x u u f e e e ??+??+??=d d d d d d u u f z u y u x u u f z y x ?=??+??+??=d d )(d d e e e (2) z u A y u A x u A u z y x ??+ ??+??=??)()()()(A z u u A y u u A x u u A z y x ??+??+??=d d d d d d u z u y u x u u A u A u A z y x z z y y x x d d )()d d d d d d (e e e e e e ??=??+??+???++=

电动力学试题库十及其答案

简答题(每题5分,共15分)。 1.请写出达朗伯方程及其推迟势的解. 2.当你接受无线电讯号时,感到讯号大小与距离和方向有关,这是为什 么? 3.请写出相对论中能量、动量的表达式以及能量、动量和静止质量的关 系式。 证明题(共15分)。 当两种绝缘介质的分界面上不带面电荷时,电力线的曲折满足: 1 21 2εεθθ= t a n t a n ,其中1ε和2ε分别为两种介质的介电常数,1θ和2θ分别为界面两 侧电力线与法线的夹角。(15分) 四. 综合题(共55分)。 1.平行板电容器内有两层介质,它们的厚度分别为1l 和2l ,介电常数为1ε和 2ε,今在两板上接上电动势为U 的电池,若介质是漏电的,电导率分别为1 σ和2σ,当电流达到稳恒时,求电容器两板上的自由电荷面密度f ω和介质分界面上的自由电荷面密度f ω。(15分) 2.介电常数为ε的均匀介质中有均匀场强为0E ,求介质中球形空腔内的电场(分离变量法)。(15分)

3.一对无限大平行的理想导体板,相距为d ,电磁波沿平行于板面的z 轴方向传播,设波在x 方向是均匀的,求可能传播的波型和相应的截止频率.(15分) 4.一把直尺相对于∑坐标系静止,直尺与x 轴夹角为θ,今有一观察者以速度v 沿x 轴运动,他看到直尺与x 轴的夹角'θ有何变化?(10分) 二、简答题 1、达朗伯方程:2 2 022 1A A j c t μ??-=-? 222201c t ?ρ?ε??-=-? 推迟势的解:()()0 ,,, , ,44r r j x t x t c c A x t dV x t dV r r ρμμ?π π ?? ?? ''-- ? ?? ?? ? ''= =?? 2、由于电磁辐射的平均能流密度为222 3 2 0sin 32P S n c R θπε= ,正比于2 sin θ,反比于 2 R ,因此接收无线电讯号时,会感到讯号大小与大小和方向有关。 3 、能量:2 m c W = ;动量:),,m iW P u ic P c μ?? == ??? ;能量、动量和静止质量的关系为:22 22 02 W P m c c -=- 三、证明:如图所示 在分界面处,由边值关系可得: 切线方向 12t t E E = (1) 法线方向 12n n D D = (2) 1 ε

电动力学复习总结电动力学复习总结答案

第二章 静 电 场 一、 填空题 1、若一半径为R 的导体球外电势为b a b r a ,,+=φ为非零常数,球外为真空,则球面上的电荷密度为 。 答案: 02a R ε 2、若一半径为R 的导体球外电势为3 002cos cos =-+E R E r r φθθ,0E 为非零常数, 球外为真空,则球面上的电荷密度为 . 球外电场强度为 . 答案:003cos E εθ ,303[cos (1)sin ]=-+-v v v r R E E e e r θθθ 3、均匀各向同性介质中静电势满足的微分方程是 ;介质分界面上电势的边值关系是 和 ;有导体时的边值关系是 和 。 答案: σφ εφσφεφεφφερφ-=??=-=??-??=- =?n c n n ,,,,1122212 4、设某一静电场的电势可以表示为bz y ax -=2φ,该电场的电场强度是_______。 答案:z y x e b e ax e axy ? ??+--22 5、真空中静场中的导体表面电荷密度_______。 答案:0n ? σε?=-? 6、均匀介质部的体极化电荷密度p ρ总是等于体自由电荷密度f ρ_____的倍。 答案: -(1- ε ε0 ) 7、电荷分布ρ激发的电场总能量1 ()() 8x x W dv dv r ρρπε''= ??v v 的适用于 情 形. 答案:全空间充满均匀介质 8、无限大均匀介质中点电荷的电场强度等于_______。 答案: 3 4qR R πεv 9、接地导体球外距球心a 处有一点电荷q, 导体球上的感应电荷在球心处产生

的电势为等于 . 答案: 04q a πε 10、无电荷分布的空间电势 极值.(填写“有”或“无”) 答案:无 11、镜象法的理论依据是_______,象电荷只能放在_______区域。 答案:唯一性定理, 求解区以外空间 12、当电荷分布关于原点对称时,体系的电偶极矩等于_______。 答案:零 13、一个外半径分别为R 1、R 2的接地导体球壳,球壳距球心a 处有一个点电荷,点电荷q 受到导体球壳的静电力的大小等于_______。 答案:212014() R q a R a a πε- 二、 选择题 1、泊松方程ε ρ φ- =?2适用于 A.任何电场 B. 静电场; C. 静电场而且介质分区均匀; D.高频电场 答案: C 2、下列标量函数中能描述无电荷区域静电势的是 A .2363y x + B. 222532z y x -+ C. 32285z y x ++ D. 2237z x + 答案: B 3、真空中有两个静止的点电荷1q 和2q ,相距为a ,它们之间的相互作用能是 A .a q q 0214πε B. a q q 0218πε C. a q q 0212πε D. a q q 02132πε 答案:A 4、线性介质中,电场的能量密度可表示为 A. ρφ21; B.E D ? ??21; C. ρφ D. E D ??? 答案:B 5、两个半径为12,R R ,124R R =带电量分别是12,q q ,且12q q =导体球相距为a(a>>12,R R ),将他们接触后又放回原处,系统的相互作用能变为原来的 A. 16,25倍 B. 1,倍 C. 1,4倍 D. 1 ,16倍 答案: A

电动力学期末考试试题库word版本

第一章 电磁现象的普遍规律 1) 麦克斯韦方程组是整个电动力学理论的完全描述。 1-1) 在介质中微分形式为 D ρ??=r 来自库仑定律,说明电荷是电场的源,电场是有源场。 0B ??=r 来自毕—萨定律,说明磁场是无源场。 B E t ???=-?r r 来自法拉第电磁感应定律,说明变化的磁场B t ??r 能产生电场。 D H J t ???=+?r r r 来自位移电流假说,说明变化的电场D t ??r 能产生磁场。 1-2) 在介质中积分形式为 L S d E dl B dS dt =-??r r r r g g ? , f L S d H dl I D dS dt =+??r r r r g g ?, f S D dl Q =?r r g ?, 0S B dl =?r r g ?。 2)电位移矢量D r 和磁场强度H r 并不是明确的物理量,电场强E r 度和磁感应强度B r ,两者 在实验上都能被测定。D r 和H r 不能被实验所测定,引入两个符号是为了简洁的表示电磁规律。 3)电荷守恒定律的微分形式为0J t ρ ??+ =?r g 。 4)麦克斯韦方程组的积分形式可以求得边值关系,矢量形式为 ()210n e E E ?-=r r r ,()21n e H H α?-=r r r r ,()21n e D D σ?-=r r r ,() 210n e B B ?-=r r r 具体写出是标量关系 21t t E E =,21t t H H α-=,21n n D D σ-=,21n n B B = 矢量比标量更广泛,所以教材用矢量来表示边值关系。 例题(28页)无穷大平行板电容器内有两层线性介质,极板上面电荷密度为f σ±,求电场和束缚电荷分布。 解:在介质1ε和下极板f σ+界面上,根据边值关系1f D D σ+-=和极板内电场为0,0 D +=r 得1f D σ=。同理得2f D σ=。由于是线性介质,有D E ε=r r ,得

电动力学试题库十及其答案

电动力学试题库十及其答案 简答题(每题5分,共15分)。 1 .请写出达朗伯方程及其推迟势的解. 2 .当您接受无线电讯号时,感到讯号大小与距离与方向有关,这就是为什 么? 3. 请写出相对论中能量、动量的表达式以及能量、动量与静止质量的关系式。 证明题(共15分)。 当两种绝缘介质的分界面上不带面电荷时,电力线的曲折满足:史宜w,其中i与2分别为两种介质的介电常数,1与2分别为界面两tan 1 1 侧电力线与法线的火角。(15分) 四、综合题(共55分)。 1. 平行板电容器内有两层介质,它们的厚度分另U为11与12,介电常数为1与2,今在两板上接上电动势为U的电池,若介质就是漏电的,电导率分别为1与2,当电流达到稳包时,求电容器两板上的自由电荷面密度f与介质分界面上的自由电荷面密度f。(15分) 2. 介电常数为的均匀介质中有均匀场强为E。,求介质中球形空腔内的电场(分离变量法)。(15分) 3. 一对无限大平行的理想导体板,相距为d,电磁波沿平行丁板面的z轴方向传播,设波在x方向就是均匀的,求可能传播的波型与相应的截止频率.(15分)

电动力学试题库十及其答案 4.一把直尺相对丁坐标系静止,直尺与x轴火角为,今有一观察者以速度v 沿x轴运动,她瞧到直尺与x轴的火角' 有何变化? (10分)二、简答题r、 (2v) 1、达朗伯万程:A i 2A c t2 ,八v v 推退势的 解:A x,t v,t v,t x,t —dV v 2、由于电磁辐射的平均能流密度为S32 2 c3R2 sin2音,正比于 sin2,反比于R2, 因此接收无线电讯号时,会感到讯号大小与大小与方向有关。 2 3、能量:W :m。:. i u2c2 m 。 ,1 u2c2 v u,ic V iW …,一… P,—;能重、动重与静止 c 质量的关系为:P2W 2 c 2 2 m b c 三、证明:如图所示 在分界面处,由边值关系可得 切线方向 法线万向 v v 又DE 由⑴得: E i sin i 由⑵(3)得: i E i cos E it D in E2t D2n E2sin i 2 E2 cos (5) 由⑷(5)两式可得:

电动力学试题

1、(15分)一半径为a的不接地导体球的中心与坐标原点重合,球上总电荷为零,两个电量均为q的点电荷置于x轴上,处(b,c均大于a),求:球外空间的电势;x=b处的电荷所受到的作用力。 2、(15分)两个无限大,相互平行的平面上均有面电流流动,其面电流密度大小均为K,且方向相反。求全空间的磁矢势A和磁感应强度B. 3、(20分)长和宽分别为a和b的矩形波导管内电磁波的群速度可定义为,其中W为单位时间内通过横截面的电磁能量的周期平均值,P为单位长度波导管内的电磁能量的周期平均值。如管内为真空,对波(m n均大于零),求W和P并由此求出。 4、(15分)电磁场存在时的动量守恒定律可表示为,其中g为电磁场,T为动量流密度张量。由该等式导出相应的角动量守恒定律的表达式,并给出角动量流密度张量的表达式。 5、(20分)位于坐标原点的电偶极距为的电偶极子,以匀角速度ω绕通过其中心的z轴在x-y平面转动,求辐射场E,B,辐射场能流密度的周期平均值和平均辐射功率。 6、(15分)在惯性系S中观测到:两个宇宙飞船A和B分别在两条平行直线上匀速运动,起速度大小均为c/2,方向相反,两平行线相距为d,飞船的大小远小于d,当两飞船相距为d时,由飞船A以3c/4的速度(也是在S系测量的)沿直线抛出一小球,问: 从飞船A上的观察者来看,为使小球正好与飞船B相遇,小球应沿什么方向抛出? 在飞船A上的观察者来看,小球的速率是多少? 文章来自:人人考研网(https://www.doczj.com/doc/455975654.html,)更多详情请参考:https://www.doczj.com/doc/455975654.html,/html/kaoyanshiti/201004/21-32447.html 一)考试内容 考试范围为理科院校物理系《电动力学》课程的基本内容。以郭硕鸿著《电动力学》(第二版)(高等教育出版社)为例,内容涵盖该教材的第一至六章,麦克斯韦方程、静电场、静磁场、电磁波的传播、辐射、狭义相对论均在其中。试题重点考查的内容: 一、静电场 1.拉普拉斯方程与分离变量法 2.镜象法 3.电多极矩 二、静磁场 1.矢势 2.磁标势 3.磁多极矩 三、电磁波的传播 1.平面电磁波 2.谐振腔 3.波导

电动力学期末考试试卷及答案五

判断以下概念是否正确,对的打(√),错的打(×)(共15分,每题3分) 1. 库仑力3 04r r Q Q F πε??'=表明两电荷之间作用力是直接的超距作用,即电荷Q 把作用力直接施于电荷Q '上。 ( ) 2. 电磁场有能量、动量,在真空中它的传播速度是光速。 ( ) 3. 电磁理论一条最基本的实验定律为电荷守恒定律,其微分形式为: t j ??=??/ρ? 。 ( ) 4. 在介质的界面两侧,电场强度E ?切向分量连续,而磁感应强度B ? 法向分 量连续。 ( ) 5.在相对论中,粒子能量,动量以及静止质量的关系为: 4 2022c m c P W += 。 ( ) 一. 简答题(每题5分,共15分)。 1.如果0>??E ρ ,请画出电力线方向图,并标明源电荷符号。 2.当你接受无线电讯号时,感到讯号大小与距离和方向有关,这是为什么? 3.以真空中平面波为例,说明动量密度g ρ,能流密度s ρ 之间的关系。

二. 证明题(共15分)。 多普勒效应被广泛应用,请你利用洛伦兹变换证明运动光源辐射角频率 ω与它的静止角频率0ω的关系为:) cos 1(0 θγωωc v -= ,其中 122)/1(--=c v γ;v 为光源运动速度。(15分) 四. 综合题(共55分)。 1.半径为a 的无限长圆柱形导体,均匀通过电流I ,设导体的磁导率为μ,导体外为真空,求: (1)导体内、外空间的B ?、H ? ; (2)体内磁化电流密度M j ? ;(15分)。 2.介电常数为ε的均匀介质中有均匀场强为0E ? ,求介质中球形空腔内的电势和电场(分离变量法)。(15分) 3.两频率和振幅均相等的单色平面电磁波沿z 轴方向传播,一个沿x 方向偏振,另一个沿y 方向偏振,且其相位比前者超前2 π 。求合成波的偏振。若 合成波代表电场矢量,求磁场矢量B v 以及能流密度平均值S v 。(15分) 4.在接地的导体平面有一半径为a 的半球凸部,半球的球心在导体平面上,如图所示。点电荷Q 位于系统的对称轴上,并与平面相距为b (a b >)。试用电像法求空间电势。(10分) Q a b ?

电动力学试题及其答案(3)

电动力学(C) 试卷 班级 姓名 学号 题号 一 二 三 四 总 分 分数 一、填空题(每空2分,共32分) 1、已知矢径r ,则 ×r = 。 2、已知矢量A 和标量 ,则 )(A 。 3、一定频率ω的电磁波在导体内传播时,形式上引入导体的“复电容率”为 。 4、在迅变电磁场中,引入矢势A 和标势 ,则E = , B = 。 5、麦克斯韦方程组的积分形 式 、 、 、 。 6、电磁场的能流密度为 S = 。 7、欧姆定律的微分形式为 。 8、相对论的基本原理 为 , 。 9、事件A ( x 1 , y 1 , z 1 , t 1 ) 和事件B ( x 2 , y 2 , z 2 , t 2 ) 的间隔为 s 2 = 。

10、位移电流的表达式为 。 二、判断题(每题2分,共20分) 1、由j B 0 可知,周围电流不但对该点的磁感应强度有贡献,而且对该点磁感应强度的旋度有贡献。( ) 2、矢势A 沿任意闭合回路的环流量等于通过以该回路为边界的任一曲面的磁通量。( ) 3、电磁波在波导管内传播时,其电磁波可以是横电波,也可以是横磁波。( ) 4、任何相互作用都是以有限的速度传播的。( ) 5、由0 j 可知,稳定电流场是无源场。。( ) 6、如果两事件在某一惯性系中是同时同地发生的,在其他任何惯性系中它们必同时发生。( ) 7、平面电磁波的电矢量和磁矢量为同相位。( ) 8、E 、D 、B 、H 四个物理量中只有E 、B 为描述场的基本物理量。( ) 9、由于A B ,虽然矢势A 不同,但可以描述同一个磁场。( ) 10、电磁波的亥姆霍兹方程022 E k E 适用于任何形式的电磁波。( ) 三、证明题(每题9分,共18分) 1、利用算符 的矢量性和微分性,证明 )cos()]sin([00r k E k r k E 式中r 为矢径,k 、0E 为常矢量。 2、已知平面电磁波的电场强度j t z c E E )sin(0 ,求证此平面电磁波的 磁场强度为 i t z c c E B )sin(0 四、计算题(每题10分,共30分) 1、迅变场中,已知)(0t r k i e A A , ) (0t r k i e ,求电磁场的E 和B 。 2、一星球距地球5光年,它与地球保持相对静止,一个宇航员在一年

太原理工2014《电动力学》试卷B

第 1 页 共 8 页 考试方式: 闭 卷 太原理工大学《电动力学》试卷B 一. 判断题(每小题3分,共15分;正确的打√,错误的打×,将正确答案填入下面的表格内。) 1. 在两种不同介质的分界面上,电场强度的切向分量不一定连续; ( ) 2. 麦克斯韦方程组与洛伦兹力公式是电动力学的理论基础; ( ) 3. 严格地说,电磁波具有波粒二象性。因此,用经典电磁理论研究微观电磁现象问题是不完善的。 ( ) 4. 均匀平面电磁波在金属导体内传播时,仍然是等幅(振幅无衰减)的均匀平面波 ;( ) 5. 不论是静态场还是时变电磁场,磁力线总是闭合曲线; ( ) 二. 选择题(每小题3分,共15分;将正确答案的字母填入下面的表格内。) 1. 一载有电流为I 的无限长的通电直导线处于磁导率为μ的介质中,若电流沿z 方向, 则距离该直导线任一位置处的矢势A ( ) A . 方向沿z e ; B . 方向沿?e ; C . 方向沿r e ; D . 以上都不对. 2.一角频率为ω的电磁波其电位移矢量为x t e E D ωεi 00e -=,则位移电流密度为( ) A. x e E 00i ωε; B . x t e E ωωεj 00e i -; C. x t e E ωωεi 00e i -- ; D. x t e E ωωi 0e i -.

第 2 页 共 8 页 3. 角频率为ω的电磁波电场强度矢量的亥姆霍茲方程形式为 ( ) A. 022=-?E E μεω; B. 022=+?E E μεω; C. 02=+?E E ωμε; D. 0222=??-?t E E με. 4. 某一角频率的微波在b a ?的矩形波导中传播,则21T E 模的截止波长为( ) A 2 2 2b a ab +;; B 2 2 42b a ab +;C 2 2 42b a ab +; D 2 2 b a ab +. 5. 真空中,洛仑兹规范的条件式为 ( ) A 0=??A ; B 02222 c 1ερφφ-=??-?t ; C A t A A 02222 c 1μ-=??-? ; D 0c 12=??+??t A φ . 三. 填空题(每小题2分,共10分;将正确答案填入下面的空格内。) 1. _________________; 2. _________________; 3. _________________; 4. _________________; 5. _________________。 1. 空气中一无限大的金属平板位于4x =处,一点电荷Q 位于(6,3,0)点处,假设该金属平板的电势为零,则像电荷的位置为 ; 2. 若0)()()(≠'-+'-+'-=z y x e z z e y y e x x r ,则=??r _______________; 3. 相对介电常数4=r ε 、磁导率1=r μ的理想介质中有一均匀平面电磁波斜入射到 另一种相对介电常数2=r ε 、磁导率1=r μ的理想介质中,则发生全反射时临界角大小为_________________; 4. 狭义相对论的基本原理有 和 原理。 5. 空气中一根无限长载流直导线沿z 轴放置,其内通有恒定电流I ,电流方向为坐标轴正向,则任一点处的磁感应强度为_________________;

电动力学习题解答

第二章 静电场 1. 一个半径为R 的电介质球,极化强度为2 /r K r P =,电容率为ε。 (1)计算束缚电荷的体密度和面密度: (2)计算自由电荷体密度; (3)计算球外和球的电势; (4)求该带电介质球产生的静电场总能量。 解:(1)P ?-?=p ρ2 222/)]/1()/1[()/(r K r r K r K -=??+??-=??-=r r r )(12P P n -?-=p σR K R r r /=?==P e (2))/(00εεεε-=+=P P E D 内 200)/()/(r K f εεεεεερ-=-??=??=P D 内 (3))/(/0εεε-==P D E 内内 r r f r KR r V e e D E 2002 00 )(4d εεεεπερε-= = = ?外 外 r KR r )(d 00εεεε?-= ?=?∞r E 外外 )(ln d d 0 0εε εε?+-= ?+?=??∞r R K R R r r E r E 外内内 (4)???∞-+-=?=R R r r r R K r r r K V W 42200222022202d 4)(21d 4)(21d 21πεεεεπεεεE D 2 0))(1(2εεεεπε-+=K R 2. 在均匀外电场中置入半径为0R 的导体球,试用分离变量法求下列两种情况的电势: (1)导体球上接有电池,使球与地保持电势差0Φ; (2)导体球上带总电荷Q 解:(1)该问题具有轴对称性,对称轴为通过球心沿外电场0E 方向的轴线,取该轴线为 极轴,球心为原点建立球坐标系。 当0R R >时,电势?满足拉普拉斯方程,通解为 ∑++ =n n n n n n P R b R a )(cos )(1 θ? 因为无穷远处 0E E →,)(cos cos 10000θ?θ??RP E R E -=-→ 所以 00?=a ,01E a -=,)2(,0≥=n a n 当 0R R →时,0Φ→? 所以 010 1000)(cos )(cos Φ=+-∑+n n n n P R b P R E θθ? 即: 002010000/, /R E R b R b =Φ=+?

电动力学试卷

一、填空题(每小题4分,共40分): 1、稳恒电磁场的麦克斯韦方程组为: ; ; ; 。 2、介质的电磁性质方程为: ; ; 。 3、一般情况下电磁场法向分量的边值关系为: ; 。 4、无旋场必可表为 的梯度。 5、矢势A 的物理意义是: 。 6、根据唯一性定理,当有导体存在时,为确定电场,所需条件有两类型:一类是给定 ,另一类是给定 。 7、洛伦兹规范的辅助条件为: 。 8、根据菲涅耳公式,如果入射电磁波为自然光,则经过反射或折射后,反射光为 光,折射光为 光。 9、当用矢势A 和标势?作为一个整体来描述电磁场时,在洛仑兹规范的条件下,A 和?满足的微分方程称为达朗贝尔方程,它们分别为: 和 。 10、当不同频率的电磁波在介质中传播时,ε和μ随频率而变的现象称为介质的 。 二、选择题(单选题,每小题3分,共18分): 1、一般情况下电磁场切向分量的边值关系为:< > A: ()210n D D ?-=;()210n B B ?-=; B: ()21n D D σ?-=;()210n B B ?-= ; C: ()210n E E ?-=;()210n H H ?-=; D: ()210n E E ?-=;()21n H H α?-=。

2、微分方程?×J+ =0?t ρ ?表明:< > A :电磁场能量与电荷系统的能量是守恒的; B :电荷是守恒的; C :电流密度矢量一定是有源的; D :电流密度矢量一定是无源的。 3、电磁场的能流密度矢量S 和动量密度矢量g 分别可表示为:< > A :S E H =?和0g E B ε=?; B :S E B =?和00g E B με=?; C :0S E H μ=?和g E B =?; D :0S E B ε=?和g E H =?。 4、用电荷分布和电势表示出来的静电场的总能量为:< > A: 012W dV ερ?= ?; B: 212 W dV ρ?=?; C: 212W dV ρ?=?; D: 1 2 W dV ρ?=?。 5、在矩形波导中传播的10TE 波:< > A :在波导窄边上的任何裂缝对10TE 波传播都没影响; B: 在波导窄边上的任何裂缝对10TE 波传播都有影响; C :在波导窄边上的任何纵向裂缝对10TE 波传播都没影响; D :在波导窄边上的任何横向裂缝对10TE 波传播都没影响; 6、矩形谐振腔的本征频率:< > A :只取决于与谐振腔材料的μ和ε; B :只取决于与谐振腔的边长; C :与谐振腔材料的μ、ε及谐振腔的边长都无关; D :与谐振腔材料的μ、ε及谐振腔的边长都有关。 三、计算(证明)题(共42分) 1、(本题8分)设u 为空间坐标x,y,z 的函数。证明: ()df f u u du ?= ? 2、(本题8分)试用边值关系证明:在绝缘介质与导体的分界面上,在静 班 级: 姓名: 学号: 密 封

电动力学题库

1.半径为R的均匀磁化介质球,磁化强度为,则介质球的总磁矩为 A. B. C. D. 0 答案:B 2.下列函数中能描述静电场电场强度的是 A. B. C. D.(为非零常数) 答案:D 3.充满电容率为的介质平行板电容器,当两极板上的电量(很小),若电容器的电容为C,两极板间距离为d,忽略边缘效应,两极板间的位移电流密度为: A. B. C. D. 答案:A 4.下面矢量函数中哪一个不能表示磁场的磁感强度式中的为非零常数 A.(柱坐标) B. C. D. 答案:A 5.变化磁场激发的感应电场是 A.有旋场,电场线不闭和 B.无旋场,电场线闭和 C.有旋场,电场线闭和 D. 无旋场,电场线不闭和

6.在非稳恒电流的电流线的起点.终点处,电荷密度满足 A. B. C. D. 答案:D 7.处于静电平衡状态下的导体,关于表面电场说法正确的是: A.只有法向分量; B.只有切向分量 ; C.表面外无电场 ; D.既有法向分量,又有切向分量 答案:A 8.介质中静电场满足的微分方程是 A. B.; C. D. 答案:B 9.对于铁磁质成立的关系是 A. B. C. D. 答案:C 10.线性介质中,电场的能量密度可表示为 A. ; B.; C. D.

11.已知介质中的极化强度,其中A为常数,介质外为真空,介质中的极化电荷体密度 ;与垂直的表面处的极化电荷面密度分别等于 和。答案: 0, A, -A 12.已知真空中的的电位移矢量=(5xy+)cos500t,空间的自由电荷体密度为答案: 13.变化磁场激发的感应电场的旋度等于。答案: 14.介电常数为的均匀介质球,极化强度A为常数,则球内的极化电荷密度为,表面极化电荷密度等于答案0, 15.一个半径为R的电介质球,极化强度为,则介质中的自由电荷体密度 为 ,介质中的电场强度等于. 答案: 22. 解: (1)由于电荷体系的电场具有球对称性,作半径为的同心球面为高斯面,利用高斯定理 当 0<r<时,

电动力学二章答案

习题二 1.将一个位于真空中的带电导体球切成两半,求它们之间的排斥力.设球的半径为 0R ,球的电势为0V . 答案: .?2 2 00z e V F πε= 解:0 004R q V πε= , 0004V R q πε=,.0 0R V εσ= z z e V e R F ?2 ?22002 002πεπεσ=?= 2.内外半径分别为a 和b 的无限长圆柱形电容器,单位长度荷电为f λ,板间填充 电导率为σ的非磁性物质. ⑴证明在介质中任何一点传导电流与位移电流严格抵消.因此内部无磁场. ⑵求f λ随时间的衰减规律. ⑶求与轴相距为r 的地方的能量耗散功率密度. ⑷求长度为l 的一段介质总的能量耗散功率,并证明它等于这段的静电能减少率. ⑵;0t f e ε σλλ-= ⑶2 2??? ? ??r f πελσ; ⑷.ln 22 2a b l f πε λσ 解:⑴r f e r D ?2πλ= ,.?2r f e r D E πελε== .?2r f f e r E J πεσλσ= = .?21r f D e t r t D J ??=??=λπ 对两式求散度,并且由 f D ρ=?? ,0=??+??t J f f ρ

得 f f t λε σ λ- =??,所以 0=??+t D J f 。 因为介质是非磁性的,即H B μ=,故任意一点,任意时刻有 000=??? ? ????+=??=??t D J H B f μμ ⑵由 f f t λε σ λ- =??,解这个微分方程得 ()t f e t ε σ λλ-=0 ⑶()2 22/r E E J p f f πελσσ==?= ⑷长度为l 的一段介质耗散的功率为 .ln 222222 a b l rldr r f b a f πελσππελσ=??? ? ??? 能量密度()2 2/, 21r t w D E w f πελσ-=???= 长度为l 的一段介质内能量减少率为 .ln 2222a b l rldr t w f b a πελσπ? =??- 3.一很长的直圆筒,半径为R ,表面上带有一层均匀电荷,电荷量的面密度为σ.在 外力矩的作用下,从0=t 时刻开始,以匀角加速度α绕它的几何轴转动,如图所示. ⑴试求筒内的磁感应强度B ; ⑵试求筒内接近内表面处的电场强度E 和玻印廷矢量S ; ⑶试证明:进入这圆筒长为l 一段的S 的通量为??? ? ??2022B l R dt d μπ. 答案: ⑴ωσμ R B 0=; ⑵ωασμe e Rr E r ??21 0?= ; r e r R S ?2 1 2320ασμ-= .

《电动力学(第二版)》(郭硕鸿)第二章习题

第二章 习 题 1. ε ε0 R (1) 2 2 323222323211r K r K r r K r K r r K r K r K r K P -=-?--=-?--=??-??? ? ???-=??? ????-=?-?=r r r r r P ρ ()2 P R K K R R σ∧ ∧ =?=?=r P R n r (2) E E P 0001εεεεχ??? ? ??-==e ()2 K r εε=ε= =ε-εε-ε00P r D E () 2r K f 0r D εεερ= ??-=??= (3) R r <<0 ()r K r E d r 2 2 4? ??-==?εεεπε0S D ()r K E 0εε-= R r > ()r K r E d R 2 2 04???-==?εεεπε0S D ()2 00r KR E εεεε-= ()()r KR dr r KR r out 002 00 εεεεεεεε?-=-=? ∞ ()()()()??? ? ??+??? ??-= ? ? ? ??-+-=-+-=??∞ 000000200ln ln εεεεεεεεεεεεεεεε?r R K r R K K dr r K dr r KR R R r in (4) ()()()()2 000202002 0200202 02 00212ln ln 2ln ln 2ln 24ln 2121 ? ??? ??-???? ? ?+=???? ??++--=???? ? ?++--= ???? ? ?+??? ??-= ???? ??+??? ??--== ??????εεεεπεεεεεπεεεεεπεεεεεπεπεεεεεεε?ρK R R R R R R R K dr R r K dr r R K dr r r R K r K dV W R R R in f e 0 2. (1) 边界条件:设未放置导体球时,原点电位 为0?,任意点电位则为 ?-=?-=z R E d 0 0001cos θ???0l E 球外空间0=ρ,电位?满足拉普拉斯方程 02=?? 解为:()∑∞ =+??? ? ? +=01cos n n n n n n P R b R a θ? 放入导体球后:01, ??→∞→R

电动力学期终总复习及试题

总复习试卷 一.填空题(30分,每空2分) 1. 麦克斯韦电磁场理论的两个基本假设是( )和( )。 2. 电磁波(电矢量和磁矢量分别为E 和H )在真空中传播,空间某点处的能流密度 =S ( )。 3. 在矩形波导管(a, b )内,且b a >,能够传播TE 10型波的最长波长为( ); 能够传播TM 型波的最低波模为( )。 4. 静止μ子的平均寿命是6 102.2-?s. 在实验室中,从高能加速器出来的μ子以0.6c (c 为真空中光速)运动。在实验室中观察,(1)这些μ子的平均寿命是( )(2)它们在衰变前飞行的平均距离是( )。 5. 设导体表面所带电荷面密度为σ,它外面的介质电容率为ε,导体表面的外法线方向 为n 。在导体静电条件下,电势φ在导体表面的边界条件是( )和( )。 6. 如图所示,真空中有一半径为a 的接地导体球,距球心为d (d>a )处有一点电荷q ,则 其镜像电荷q '的大小为( ),距球心的距离d '大小为( )。 7. 阿哈罗诺夫-玻姆(Aharonov-Bohm )效应的存在表明了( )。 8. 若一平面电磁波垂直入射到理想导体表面上,则该电磁波的穿透深度δ为( )。 9. 利用格林函数法求解静电场时,通常根据已知边界条件选取适当的格林函数。若r 为源 点x ' 到场点x 的距离,则真空中无界空间的格林函数可以表示为( )。 10. 高速运动粒子寿命的测定,可以证实相对论的( )效应。 二.判断题(20分,每小题2分)(说法正确的打“√”,不正确的打“”) 1. 无论稳恒电流磁场还是变化的磁场,磁感应强度B 都是无源场。 ( ) 2. 亥姆霍兹方程的解代表电磁波场强在空间中的分布情况,是电磁波的基本方程,它在任 何情况下都成立。 ( ) 3. 无限长矩形波导管中不能传播TEM 波。 ( ) 4. 电介质中,电位移矢量D 的散度仅由自由电荷密度决定,而电场E 的散度则由自由电 荷密度和束缚电荷密度共同决定。 ( ) 5. 静电场总能量可以通过电荷分布和电势表示出来,即dV W ρ??=21,由此可见ρ? 21的 物理意义是表示空间区域的电场能量密度。 ( ) 6. 趋肤效应是指在静电条件下导体上的电荷总是分布在导体的表面。 ( ) 7. 若物体在S '系中的速度为c u 6.0=',S '相对S 的速度为c v 8.0=,当二者方向相同时, 则物体相对于S 的速度为1.4c 。 ( ) 8. 推迟势的重要意义在于它反映了电磁作用具有一定的传播速度。 ( )

电动力学复习题

电动力学复习题 填空题 1.电荷守恒定律的微分形式可写为0=??+??t J ρ 。 2.一般介质中的Maxwell 方程组的积分形式为???-=?S l S d B dt d l d E 、 ???+=?S f l S d D dt d I l d H 、f s Q S d D =?? 、?=?S S d B 0 。 3.在场分布是轴对称的情形下,拉普拉斯方程在球坐标中的通解为 ()().cos ,01θθψn n n n n n P r b r a r ∑∞ =+??? ? ? +=。 4.一般坐标系下平面电磁波的表示式是()() t x k i e E t x E ω-?= 0,。 5.在真空中,平面电磁波的电场振幅与磁场振幅的比值为光速C 。 6.引入了矢势和标势后,电场和磁场用矢势和标势表示的表达式为 ,A B A t E ??=??--?=和?. 7. 核能的利用,完全证实了相对论质能关系。 8.洛仑兹规范条件的四维形式是 0=??μ μx A 。 9.真空中的Maxwell 方程组的微分形式为t ??- =??、 ε ρ = E ??、0=B ??、t J ??+=B ??εμμ000。 10.引入磁矢势A 和标量势Φ下,在洛伦兹规范下,Φ满足的波动方程是 02 222 1ερ- =?Φ?-Φ?t c 。

11.电磁场势的规范变换为t A A A ??- ='→?+='→ψ???ψ 。 12.细导线上恒定电流激发磁场的毕奥-萨伐尔定律可写为()??=3r r l Id x B . 13.介质中的Maxwell 方程组的微分形式为 t B E ??-=?? 、 f D ρ =?? 、0=??B 、t D J H f ??+=?? 。 14.时谐电磁波的表达式是()()t i e x E t x E ω-= ,和()()t i e x B t x B ω-= ,。 15.在两介质界面上,电场的边值关系为()f D D n σ=-?12 和 ()01 2 =-?E E n . 16.库仑规范和洛伦兹规范的表达式分别为 0=??A 和012 =??+??t c A ? 。 17.狭义相对论的二个基本原理分别是狭义相对性原理和光速不变原理。 18.狭义相对论的质速关系是 2 2 1c v m m -= 。 19.真空中位移电流的表达式可写为t E J D ??= 0ε。 20.在场分布球对称的情形下,拉普拉斯方程在球坐标中的通解为().,?? ? ??+=r b a r θψ 21.满足变换关系νμνμV a V ='的物理量称为相对论四维矢量。 22.揭示静电场是保守力场的数学描述是?=?=??0,0l d E E 或者。 23.介质中的Maxwell 方程组的边值关系为()012=-?E E n 、()α =-?12H H n 、 ()σ=-?12D D n 、()012=-?B B n 。 24.介质的极化现象是当介质置于外电磁场中,分子中的电荷将发生相对位移,分

电动力学习题集答案

电动力学第一章习题及其答案 1. 当下列四个选项:(A.存在磁单级, B.导体为非等势体, C.平方反比定律不精确成立,D.光速为非普 适常数)中的_ C ___选项成立时,则必有高斯定律不成立. 2. 若 a 为常矢量 , r (x x ')i ( y y ')j (z z ')k 为从源点指向场点的矢量 , E , k 为常矢量,则 ! (r 2 a ) =(r 2 a ) (r a 2r a , )a ) ddrr r a 2r r r 2 r i j — k (x x ') (y y ') (z z ') i j k — ! 2(x x ') (x x ') ,同理, ? x (x x ') 2 (y y ') 2 (z z ') 2 / r 2 (x x ')(y y ')(z z ') (y y ') (x x ') ( (y y ') 2 (z z ') y (x x ') 2 (y y ') 2 (z z ') # 2 , z 2 2 (z z ') r 【 r e e e x x x ! r (x-x') r (y-y') y (z-z') 3 z , ' x y z x x ' y y ' z z ' 0, x (a r ) a ( r ) 0 , : ) r r r r r r r 0 r rr ( r 1 1 r 《 a , , ( ) [ a (x -x' )] [ a (y - y')] … j [a (z -z')] a r i k x y z * r r r r 1 r 1 r … r 3 r 2 3 r , ( A ) __0___. r r , [E sin(k r )] k E 0 cos(k r ) __0__. (E 0e ik r ) , 当 r 0 时 , ! (r / r ) ik E 0 exp(ik r ) , [rf (r )] _0_. [ r f ( r )] 3f (r )r # s 3. 矢量场 f 的唯一性定理是说:在以 为界面的区域V 内, 若已知矢量场在V 内各点的旋度和散 度,以及该矢量在边界上的切向或法向分量,则 在 内唯一确定. f V 0 ,若 J 为稳恒电流情况下的电流密度 ,则 J 满足 4. 电荷守恒定律的微分形式为 — J t J 0 . 5. 场强与电势梯度的关系式为, E .对电偶极子而言 ,如已知其在远处的电势为

电动力学答案

2.一平面电磁波以045=θ从真空入射到24=ε的介质。电场强度垂直于入射面。求反射系数和折射系数。 解:由 1 122sin sin εμεμθθ = ' ' 1r 2r 12sin sin εεεεθθ=='' 1 2 s i n s i n 450= ''∴θ 解得 030=''θ 由菲涅耳公式: θ εθεθεθε''+''-=' sin sin sin sin E E 2121 = =+= 3 12cos cos cos 2E E 211+= ''+=' 'θεθεθε 由定义:

3 2323131E E R 2 2 +-=? ??? ??+-='== 3 2321 22 223312cos cos E E T 2 1 22 +=???? ??+=''''= = εεθθ 7.已知海水的1 1m 1s ,1-?==σμ,试计算频率ν为50,9 61010和Hz 的三种电磁波在海 水中的透入深度. 解: ωμσ α δ2 1 = = , 72m 1 1042502 7 50 =????= -=ππδ γ , 5m .01 1042102 7610 r 6 =????= -=ππδ 16mm 1 1042102 7 910r 9 =????= -=ππδ

2. 设有两根互相平行的尺,在各自静止的参考系中的长度均为,它们以相同速率v 相对于某一参考系运动,但运动方向相反,且平行于尺子。求站在一根尺上测量另一根尺的长度。 解:根据相对论速度交换公式可得2'∑系相对于1'∑的速度大小是 )/1/(2'22c v v v += (1) ∴在1'∑系中测量2'∑系中静长为0 l 的尺子的长度为 220/'1c v l l -= (2) 将(1)代入(2)即得: )/1/()/1(22220c v c v l l +-= (3) 此即是在1'∑系中观测到的相对于2'∑静止的尺子的长度。 3. 静止长度为l 0的车厢,以速度v 相对于地面S 运行,车厢的后壁以速度u 0向前推出一个小球,求地面观察者看到小球从后壁到前壁的运动时间。 解:根据题意取地面为参考系S ,车厢为参考系S ’,于是相对于地面参考系S ,车长为 220/1c v l l -=, (1) 车速为v ,球速为 )/1/()(200c v u v u u ++= (2) 所以在地面参考系S 中观察小球由车后壁到车前壁 l t v t u +?=? 所以 )/(v u l t -=? (3) 将(1)(2)代入(3)得:2 2 0200/1)/1(c v u c v u l t -+= ? (4) 4. 一辆以速度v 运动的列车上的观察者,在经过某一高大建筑物时,看见其避雷针上跳起一脉冲电火花,电光迅速传播,先后照亮了铁路沿线上的两铁塔。求列车上观察者看到的两铁塔被电光照亮的时刻差。设建筑物及两铁塔都在一直线上,与列车前进方向一致。铁塔到建筑物的地面距离都是l 0。 解:取地面为静止的参考系∑,列车为运动的参 考系'∑。 取 x 轴与 x ′轴平行同向,与列车车速方向一致,令t=0时刻为列车经过建筑物时,并令此处为∑系与'∑的原点,如图。 在∑系中光经过c l t /0=的时间后同时照亮左 右两塔,但在'∑系中观察两塔的位置坐标为 ) /1(/1/1'2 2 02 2 0c v c v l c v vt l x --=--=右 )/1(/1/1'2 20 220c v c v l c v vt l x +--= ---= 左 即:)/1(/1'220c v c v l d --=右,)/1(/1'2 20 c v c v l d +--=左 时间差为 2220 /12''c v c vl c d c d t -= -= ?右左 5. 有一光源S 与接收器R 相对静止,距离为0l ,S-R 装置浸在均匀无限的液体介质(静止折射 率n )中。试对下列三种情况计算光源发出讯号到接收器收到讯号所经历的时间。 (1)液体介质相对于S-R 装置静止;

相关主题
文本预览
相关文档 最新文档