当前位置:文档之家› 自由基聚合

自由基聚合

自由基聚合
自由基聚合

自由基共聚

自由基共聚 1.一两种单体共聚为例,说明无规共聚、交替、嵌段、接枝共聚物的结构有什么差异?在 这些共聚物名称中,对前后单体的位置有什么规定? 解:无规共聚物:聚合物中两结构单元M1、M2无规排列,而且M1、M2连续的单元数不多。名称中前一单体为主单体,后一单体为第二单体。 交替共聚物:聚合物中两单元M1、M2严格相间呈交替排布,名称前后单体互换也可。 嵌段共聚物:有较长的M1链段和另一较长链段M2构成的大分子,每一链段可以长达几百到几千结构单元,缩写通式PM1-b-PM2。名称中前后单体常代表单体加入次序。 接枝共聚物:主链由一种单元组成,支链则由另一种单元组成,缩写通式为PM1-g、-PM2。名称中前单体为主链,后单体为支链。 2.推导二元共聚合物组成微分方程的基本假设有哪些?由此得到什么结论?他与推导自 由基均聚物动力学的基本假设有什么异同? 解:二元共聚物组成的微分方式是: d[M1]/d[M2]=[M1]/[M2]×{r1[M1]+[M2]}/{r2[M2]+[M1]} 该方程式是在以下假设条件下推导出来的: 1)活性链的活性与链长无关; 2)活性链的活性仅取决于末端单元结构; 3)聚合反应为不可逆; 4)共聚物的聚合度很大,引发和终止对共聚物的组成无影响; 5)两种活性链相互转变的速率相等。 满足以上假设条件的二元共聚反应可用于上述共聚物组成微分方程计算投料组成和瞬间形成的共聚物组成之间的关系。出自由基聚合外,阴离子或阳离子共聚时,原则上也可用上述共聚物组成也能够微分方程进行计算。但是,对于有解的二元共聚、有前末端效应的共聚以及多活性种的二元共聚。 应该强调指出的是,这个方程仅反映了共聚物瞬时组成与单体组成之间的关系。通常仅适用于低转化率。这是因为两单体的竞聚率不同,随着工具反映的进行,投料比不断发生变化,只有低转化率时所得的共聚物组成才近似与起始投料组成相对应。 3.何谓竟聚率和单体的相对活性? 解:竞聚率是单体均聚链增长和共聚链增长速率常数之比。 即r1=k11/k12,r2=k22/k21;单体相对活性是指两种单体对同一链自由基反应(增长)速率常数之比,即M1的相对活性为1/r2,M2的相对活性为1/r1. 4.说明竞聚率r1与r2的意义并说明如何用r1、r2来计算单体的相对活性? 解:M1的竞聚率是r1=k11/k12,他表达的是链自由基~M1·与单体M1反应时的速率常数和他与单体M2反应时速率常数之比;M2的竞聚率是r2=k22/k21,即链自由基~M2·与单体M2反应时的速率常数和他与单体M1反应时速率常数之比。 竞聚率的倒数1/r1= k12/ k11,1/r2= k21/ k22表示同一自由基和异种单体的交叉增长率速率常数之比,因此单体M1的相对活性应为1/r2,单体M2的相对活性应为1/r1。 5.理想共聚和理想恒比共聚的区别是什么? 解:理想恒比共聚是指共聚物组成和单体组成完全相同的共聚,其共聚物组成曲线为对角线。而理想共聚却是共聚物组成与单体组成成简单比例关系,其共聚物组成曲线不予恒比对角线相交。 6.解释下列名词: ⑴均聚合与共聚合,均聚物与共聚物; 解:一种单体进行的聚合反应成为均聚合,产物为均聚产物。有两种或两种以上单体进行

自由基聚合

自由基聚合及实施方法 一、解释概念: 1、引发剂效率和引发剂半衰期 2、动力学链长及其表达式 3、链自由基的等活性理论 4、自动加速现象/ 自动加速效应 / 自由基聚合的凝胶效应 5、配位聚合、阴离子聚合、阳离子聚合 6、自由基聚合的双基终止,歧化终止、偶合终止 7、阻聚、缓聚、阻聚剂、分子量调节剂 8、链转移常数的定义及表达式 二、回答下列问题: 1、自由基聚合是由哪些基元反应组成的,其中决定聚合反应的速率的基元反应是什么?决定大分子链结构的基元反应是什么?决定聚合物分子量的两对竞争反应是什么与什么的竞争? 2、试总结自由基聚合反应特征。引发剂分解、链增长反应是放热反应还是吸热反应? 3、引发剂有哪些种类?在无引发剂的情况下是否能发生自由基聚合?如何引发? 4、试总结自由基聚合有哪些链转移反应,这些反应对聚合度有何影响?写出自由基聚合产物聚合度的表达式。 5、推导自由基聚合速率方程时作了哪四条基本假设?试写出链引发、链增长、链终止反应的速率方程式。并推导自由基聚合速率方程式。 6、试回答动力学链长与聚合度之间的关系,在无链转移反应时,写出其关系式。 7、试从动力学的角度解释自由基聚合的凝胶效应。对聚合速率及分子量的影响。 8、使引发剂引发效率降低的原因主要什么? 9、在自由基聚合反应中,影响反应速度因素有哪些?如何影响?这些因素对最终产物的分子量有何影响? 10、在自由基聚合反应中和,逐步聚合反应中,单体转化率与时间、产物聚合度与时间的关系是什么?各自延长反应时间的目的是什么? 11、典型乳液聚合的基本组份有哪些?其中乳化剂用量和聚合反应速度、产物分子量有何关系?简述乳液聚合的机理,为什么乳液聚合时,在恒定的引发速率下可同时提高聚合速率和分子量? 12、写出下列物质在高分子合成中的用途:偶氮二异丁腈(AIBN),过硫酸钾,十二烷基硫酸钠,BPO,丁基锂,Lewis酸、正丁硫醇、苯醌。 13、在引发剂引发的自由基聚合、阳离子聚合、阴离子聚合中,其聚合机理的特征是什么?(引发、增

第三章__自由基聚合

第三章自由基聚合 思考题3.2 下列烯类单体适用于何种机理聚合?自由基聚合、阳离子聚合还是阴离子聚合?并说明原因。 (1)CH2——CHCl (2)CH2=CCl2(3)CH2=CHCN (4)CH2=C(CN)2 (5)CH2=CHCH3(6)CH2=C(CH3)2(7)CH2=CHC6H5 (8)CF2=CF2(9)CH2=C(CN)COOR (10)CH2=C(CH3)-CH=CH2 答可以通过列表说明各单体的聚合机理,如下表:

思考题3.3 下列单体能否进行自由基聚合,并说明原因。 (1)CH2=C(C6H5)2(2)CH3CH=CHCOOCH3(3)CH2=C(CH3)C2H5 (4)ClCH=CHCl (5)CH2=CHOCOCH3(6)CH2=C(CH3)COOCH3 (7)CH3CH=CHCH3(8)CF2=CFCl 答(1) CH2=C(C6H5)2不能进行自由基聚合,因为l,1-双取代的取代基空间位阻大,只形成二聚体。

(2) CH3CH=CHCOOCH3不能进行自由基聚合,因为1,2-双取代,单体结构对称,空间阻碍大。 (3) CH2=C(CH3)C2H5不能进行自由基聚合,两个取代基均为供电基团,只能进行阳离子聚合。 (4)ClCH=CHCl不能进行自由基聚合,因为1,2-双取代,单体结构对称,空间阻碍大。 (5)CH2=CHOCOCH3能进行自由基聚合,因为-COCH3为吸电子基团,利于自由基聚合。 (6) CH2=C(CH3)COOCH3能进行自由基聚合,因为l,1-双取代,极化程度大,甲基体积小,为供电子基团,而-COOCH3为吸电子基团,共轭效应使自由基稳定。 (7) CH3CH=CHCH3不能进行自由基聚合,因为1,2-双取代,单体结构对称空间阻碍大。 (8) CF2=CFCl能进行自由基聚合,F原子体积小,Cl有弱吸电子作用。 思考题3.7为什么说传统自由基聚合的机理特征是慢引发、快增长、速终止?在聚合过程中,聚合物的聚合度、转化率,聚合产物中的物种变化趋向如何? 答自由基聚合机理由链引发、链增长、链终止等基元反应组成,链引发是形成单体自由基(活性种)的反应,引发剂引发

第三章自由基共聚合(1)分析

第三章自由基共聚合 一、课程主要内容 ⒈自由基共聚合反应概述:共聚物的分类与命名;研究自由基共聚合反应的意义。 ⒉二元共聚物组成与原料组成的关系:共聚物组成微分方程的推导及讨论;共聚类型及共聚物组成曲线。 ⒊共聚反应的竞聚率的测定:直线交点法;截距斜率法;积分法。 ⒋控制共聚物组成的方法:调节起始单体配比的一次投料法;连续补加活泼单体的投料法;连续补加混合单体的投料法。 ⒌单体的相对活性和自由基的活性:单体的相对活性和自由基的活性;影响单体活性和自由基活性的因素;Q-e概念。 通过学习第三章,掌握共聚物的分类与命名,两单体共聚的倾向,截距斜率法测定竞聚率;熟练掌握二元共聚物组成与原料组成的关系,控制共聚物组成的方法;而对单体的相对活性和自由基的活性,Q-e概念作一般了解。 二、试题与答案 本章试题有基本概念题、填空题、选择填空题、简答题和计算题。 ㈠基本概念题 ⒈自由基共聚合反应:两种或两种以上单体混合物,经引发聚合后形成的聚合物大分子链中含有两种或两种以上单体单元的聚合过程,称为自由基共聚合反应,简称自由基共聚。 ⒉无规共聚物:共聚物大分子链中两种单体单元毫无规律排列。M1、M2连续的单元数不多; ⒊交替共聚物:共聚物大分子链中两种单体单元严格相间排列的共聚物。 ⒋嵌段共聚物:由较长的M1链段和另一较长的M2链段构成的共聚物; ⒌接枝共聚物:接枝共聚物主链由一种(或两种)单体单元构成,支链由另一种(或另两种)单体单元构成的共聚物。 ⒍共聚合和共聚物:两种或两种以上单体混合物,经引发聚合后,形成的聚合物其大分子链中,含有两种或两种以上单体单元的聚合过程,称为共聚合反应,。大分子链中含有两种或两种以上单体单元的聚合物称为共聚物。 ⒎共聚物组成:共聚物大分子链中单体单元的比例即为共聚物组成。 ⒏竞聚率:均聚链增长反应速率常数与共聚链增长反应速率常数之比。 ⒐竞聚率r1、r2的物理意义:r1是单体M1均聚链增长反应速率常数与M2共聚链增长反应速率常数之比。r2是单体M2均聚链增长反应速率常数与M1共聚链增长反应速率常数之比。r1、r2表征两种单体的相对活性。 ㈡填空题 ⒈根据共聚物大分子链中单体单元的排列顺序,共聚物分为无规共聚物、交替共聚物、嵌段共聚物和接枝共聚物。

自由基聚合机理以及四种常见共聚物

自由基聚合机理 烯类单体的加聚反应多属连锁聚合,连锁聚合反应由链引发、链增长、链终止等基元反应组成,各步的反应速率和活化能相差很大。连锁聚合链引发形成活性中心(或称活性种),活性中心不断与单体加成而使链增长(单体之间并不反应),活性中心的破坏就是链终止。自由基、阳离子、阴离子都可能成为活性中心引发聚合,故连锁聚合又可分为自由基聚合、阳离子聚合、阴离子聚合和配位聚合等,其中自由基聚合产物约占聚合物总产量的60%。 热力学上能够聚合的单体对聚合机理的选择是有差异的,如氯乙烯只能自由基聚合、异丁烯只能阳离子聚合、MMA可以进行自由基聚合和阴离子聚合、苯乙烯则可按各种连锁机理聚合。 自由基聚合产物约占聚合物总产量60%以上,其重要性可想而知。高压聚乙烯、聚氯乙烯、聚苯乙烯、聚四氟乙烯、聚醋酸乙烯酯、聚丙烯酸酯类、聚丙烯腈、丁苯橡胶、丁腈橡胶、氯丁橡胶、ABS树脂等聚合物都通过自由基聚合来生产。本节将对自由基链式聚合反应作较详细的讨论。 自由基聚合的基元反应 烯类单体的自由基聚合反应一般由链引发、链增长、链终止等基元反应组成。此外,还可能伴有链转移反应。现将各基元反应及其主要特征分述如下。 1 链引发 链引发反应是形成单体自由基活性种的反应。用引发剂引发时,将由下列两步组成:(1)引发剂I分解,形成初级自由基R?; (2)初级自由基与单体加成,形成单体自由基。 单体自由基形成以后,继续与其他单体加聚,而使链增长。 比较上述两步反应,引发剂分解是吸热反应,活化能高,约105~150kJ/mo1,反应速

率小,分解速率常数约10-4~10-6s-1。初级自由基与单体结合成单体自由基这一步是放热反应,活化能低,约20~34kJ/mo1,反应速率大,与后继的链增长反应相似。但链引发必须包括这一步,因为一些副反应可以使初级自由基不参与单体自由基的形成,也就无法继续链增长。 有些单体可以用热、光、辐射等能源来直接引发聚合。这方面的研究工作不少,苯乙烯热聚合已工业化;紫外光固化涂料也已大规模使用。 2 链增长 在链引发阶段形成的单体自由基,仍具有活性,能打开第二个烯类分子的π键,形成新的自由基。新自由基活性并不衰减,继续和其他单体分子结合成单元更多的链自由基。这个过程称做链增长反应,实际上是加成反应。 为了书写方便,上述链自由基可以简写成,其中锯齿形代表由许多单元组成的碳链骨架,基团所带的独电子系处在碳原子上。 链增长反应有两个特征:一是放热反应,烯类单体聚合热约55~95kJ/mol;二是增长活化能低,约20~34KJ/mol,增长速率极高,在0.01~几秒钟内,就可以便聚合度达到数千,甚至上万。这样高的速率是难以控制的,单体自由基一经形成以后,立刻与其他单体分子加成,增长成活性链,而后终止成大分子。因此,聚合体系内往往由单体和聚合物两部分组成,不存在聚合度递增的一系列中间产物。 对于链增长反应,除了应注意速率问题以外,还须研究对大分子微观结构的影响。在链增长反应中,结构单元间的结合可能存在“头-尾”和“头-头”或“尾-尾”两种形式。经实验证明,主要以头-尾形式连接。这一结果可由电子效应和空间位阻效应得到解释。对一些取代基共轭效应和空间位阻都较小的单体聚合时头-头结构会稍高,如醋酸乙烯酯、偏二氟乙烯等。聚合温度升高时,头-头形式结构将增多。

自由基共聚合练习题

自由基共聚合练习题 一、填空题: 1、根据共聚物大分子链中单体单元的排列顺序,共聚物分为_______、______、 ______和______。 2、共聚中控制聚合物平均组成的方法_____、_____。 3、竞聚率的物理意义是____,对于r1=r2=1的情况,称为__,r1=r2=0,称_____,而r1<1和r2<1时,共聚组成 曲线存在恒比点,恒比点原料组成公式为__。 4、从竞聚率看,理想共聚的典型特征为_____。 5、M1-M2两单体共聚, r1=0.75,r2= 0.20。其共聚曲线与对角线的交点称为_____。若f10=0.80,随共聚进行到某一时刻,共聚物组成为F1,单体组成为f1,则f1_____f10,F1____F10(大于或小于)。 6、单体的相对活性习惯上用_____判定,自由基的相对活性习惯上用_____判定。在 Q—e值判断共聚行为时,Q代表_____,e代表_____。 二、选择题: 1.下列单体中,与丁二烯(e=1.05)共聚时,交替倾向最大的是() A.PS(e=-1.08) B.马来酸酐(e=2.25) C.醋酸乙烯(e=-0.22) D.丙烯腈(e=1.2) 2.一对单体工具和的竞聚率r1和r2的值将随() A.局和时间而变化 B.局和温度而变化 C.单体配比不同而变化 D.单体的总浓度而变化 3.已知一对单体在进行共聚合反应时获得了恒比共聚物,其条件必定是() A、r1=1.5,r2=1.5 B、r1=0.1,r2=1.0 C、r1=0.5,r2=0.5 D、r1=1.5,r2=0.7 4.在自由基聚合中,竞聚率为()时,可得到交替共聚物。 A 5.下列共聚中,理想共聚是(),理想恒比共聚是(),交替共聚是() A.r1r=1 B.r1=r2=1 C.r1=r2 D.r1=r2=0 6.当r1>1 r2<1时,若提高聚合反应温度,反应将趋向于() A 交替共聚 B 理想共聚 C嵌段共聚 D恒比共聚 7.当两种单体的Q.e值越接近则越() A.越难共聚 B。趋于理想共聚 C.趋于交替共聚 D.趋于恒比共聚 8.两种单体的Q和e值越接近,就( ) A.难以共聚 B.倾向于交替共聚 C.倾向于理想共聚 D.倾向于嵌段共聚 9.有机玻璃板材是采用( ) A、本体聚合 B、溶液聚合 C、悬浮聚合 D、乳液聚合 三、概念题: 1、共聚物 2、自由基共聚合反应 3、竞聚率 4、理想恒比共聚 5、Q,e概念

2.自由基聚合

2.自由基聚合 能否进行自由基聚合的判断位阻效应 判断:1,1—二取代易聚合,除大取代基如—C6H5外 1,2—二取代,除取代基为F以外都难聚合 双键上电荷密度大,不利于自由基进攻—烯丙基单体 取代基吸电性太强也不利于自由基聚合,如CH2=C(CN)2,CH2=CH(NO2) 3.(1)链引发: CH3C N CN C· CH3 CH3 CH3 N CH3 CN C CH32 CN +N2 CH2 CHCl CHCl · CN CH3 CH3C·+CH2 CH3 C CH3

(2)链增长: (3)链终止: 偶合: 歧化: 4.自由基聚合时转化率和分子量随时间变化的特征:转化率随时间逐步提高,中间有自加速现象,分子量随时间变化甚小(短时间后变化很小).与反应机理决定,连锁聚合时RM ·→Mn ·时间极短,没有中间停留阶段。 5.引发剂(1)偶氮二异丁腈(AIBN )、(2)偶氮二异庚腈(ABVN )、(3)过氧化二苯甲酰(BPO )、(4)过氧化二碳酸二乙基己酯(EHP )、(6)过硫酸钾-亚硫酸盐体系、(7)过氧化氢-亚铁盐体系的分解反应式见书本的P26~29,(5)异丙苯过氧化氢的见下面: 其中(1)~(5)为偶氮类和有机过氧类,属于油溶性引发剂常用于本体、悬浮和溶液(有机溶剂)聚合,(6)(7)为水溶性氧化-还原体系,适合于水溶液和乳液聚合。 CH 2CHCl CHCl ·CH 2 CH 3 CN C CH 3CHCl ·CH 3C CH 3+CH 2CH 2CHCl CHCl CH 3C CH 3CH 2n-1CH 2CHCl · CH 2CHCl CH 3C CH 3CH 2CHCl CH 3CN C CH 32n 2CHCl CH 3 CN C CH 3CH 2n-1 CH 2CHCl ·2CHCl CH 3C CH 3CH 2n-1CH 2CHCl · CHCl CH 2n-1CH 2CH 3C CH 3CH 2Cl CHCl CH 2n-1CH 3CN C CH 3CH CHCl +COOH CO · ·OH CH 3 C CH 3CH 3C CH 3+

自由基本体聚合过程

3.1 自由基本体聚合过程 3.1.1 自由基本体聚合概述 1、定义:单体在有少量引发剂(甚至不加引发剂而是在光、热、辐射能)的作用下聚合为 高聚物的过程。 2、本体聚合的分类 依据生成的聚合物是否溶于单体分为均相与非均相本体聚合。均相本体聚合指生成的聚合物溶于单体(如苯乙烯、甲基丙烯酸甲酯)。非均相本体聚合指生成的聚合物不溶解在单体中,沉淀出来成为新的一相(如氯乙烯)。 根据单体的相态还可分为气相、液相和固相本体聚合。 3、工业上采用自由基本体聚合生产的聚合物品种 高压法聚乙烯、聚苯乙烯、聚甲基丙烯酸甲酯,及一部分聚氯乙烯。 3.1.2 自由基本体聚合的特点 1、优点:组分简单;工艺过程较简单(转化率高时,可免去分离工序,得到粒状树脂);设备利用率高;产品纯度高。 2、缺点:体系粘度大,聚合热不易排出;自动加速现象严重,工艺难控,易爆聚。 3.1.3 自由基本体聚合工艺过程及其特点 1、预聚合:聚合初期,转化率不高;体系粘度不大,反应釜内设置搅拌,聚合热易排出;反应温度相对较高,总聚合时间缩短,提高生产效率;体积部分收缩、聚合热部分排除,利于后期聚合。 2、聚合:聚合中期,转化率较高;反应温度低、时间长,有效利用反应热,使反应平稳进行。 聚合反应是放热反应,本体聚合使无其他介质存在,所以聚合设备内单位质量的反应物料与有反应介质存在的其他聚合方法比较,相对说放出的热量大,并且单体和聚合物的比热小,传热系数低,所以正赛聚合反应热的散发困难。因此物料温度容易升高,甚至失去控制,造成事故。工业上为了解决此难题,在设计反应器的形状、大小时,考虑传热面积等。此外还采用分段聚合即进行聚合达到适当转化率,或于单体中添加聚合物以降低单体含量。从而降低单位质量物料放出的热量。由于本体聚合过程中反应温度难以控制恒定,所以产品的分子量分布宽。 单体在未聚合前是液态,少数为气态,易流动、粘度低。聚合反应发生以后,多数情况下生成的聚合物可溶于单体,则形成粘稠溶液,聚合程度越深入,即转化率越高,物料越粘稠。一聚苯乙烯-苯乙烯物料体系为例,粘度与聚合物含量的关系见图3-2. 因而反应产生黏胶效应。单体反应不易进行完全,残存的单体应进行后处理除去。 3.1.2.2 聚合反应器 自由基本体聚合反应器大致分为以下类型。 1.形状一定的模型 适用于本体浇铸聚合,如甲基丙烯酸甲酯经浇铸聚合以生产有机玻璃板、管、棒材等。 模型的形状与尺寸根据制品要求而定,但要考虑这种反应装置无搅拌器,其聚合条件应根据聚合热传导条件而定。如以水作为散热介质即模型放在水箱中进行聚合,散热条件较好,聚合时间可缩短,但反应末期须进行加热以使反应近于完全时,加热最高温度为100℃。如在烘箱中进行聚合则散热条件较差,聚合时间较在水箱中更长,但末期加热可超过100℃,单体反应较为完全。 浇铸用模型反应器厚度一般不超过2.5cm,因为过厚时,反应热不易散发,内部单体可能过热而沸腾,因而造成塑料浇铸制品内产生气泡而影响产品质量,由于单体转变为聚合物后体积收缩。因此作为模型的反应器如版型反应器,两层模板之间应具有适当弹性,避免聚

自由基共聚-习题

自由基共聚课后习题 1. P170:根据大分子微观结构,共聚物可分为:无规、交替、嵌短、接枝共聚物四种。 2. P172-175: 3. [] []= 2 1 M d M d[] []? 2 1 M M[][] [][] 2 2 1 2 1 1 M r M M M r + + = 1 F 2 2 2 2 1 2 1 1 2 1 2 1 1 2f r f f f r f f f r + + + 4.

5. [][]=21M d M d [][]?21M M [][][][]221211M r M M M r ++ =1F 2 2 221211212 112f r f f f r f f f r +++ 示意图: 6. 7. 注意:课后习题中为方便计算,r 1改为2.0。 所用公式: 221r r -= α ; 111r r -=β ; ()()2121111r r r r - --=γ ; 2 12 21r r r ---=δ 因转化率大与10%,只能用积分公式计算 式 中 15 .015 .0122=-=-= r r α ; 22 12 111-=-=-= r r β ; ()()0) 5.01()2.01(5 .021*******=-?-?-=---= r r r r γ ; 15.05.05.0225.0121212-=-=---=---= r r r δ 又因C%=50%,f 10=0.5,f 20=0.5

8. 由于在共聚反应中,两单体的共聚活性不同,其消耗程度就不一致,故体系物料配比就不断改变,所得共聚物的组成前后不均一。所以要获得组成均一的共聚物,主要控制方法有: 9. r 1=0.02<1,r 2=0.3<1,r 1 r 2=0.006,所以为有恒比点的理想共聚。 恒比点处: ()=c F 1()= c f 121221r r r ---=42.068 .17 .03.002.023.01==--- 而初始投料比f 10= 47.054 5353475347 =+ 初始投料比在恒比点附近,因此用这种比例一次投料时,在高转化率下停止反应时,可得到均一性较好的共聚物。 又如下例:

自由基聚合题库

? 1. 目前,悬浮聚合发主要用于生产( )。
A. PVC、PVDC C. PE
正确答案:A.
B. PS D. PP
? 2. 下列单体中可进行自由基、阴离子、阳离子聚合反应的是( )。
A. 氯乙烯 B. 苯乙烯 C. 乙烯 D. 醋酸乙烯 正确答案:B.
? 3. 聚乙烯醇的单体是( )。
A. 乙烯醇 B. 乙醇
C. 乙醛
D. 醋酸乙烯酯
正确答案:D.
? 4. 典型乳液聚合中,主要引发地点是在 ( )。
A. 单体液滴 B. 胶束 C. 水相 D. 单体液滴和胶束 正确答案:B.
? 5. 过硫酸钾引发剂属于( )。
A. 氧化还原引发剂 B. 水溶性引发剂 C. 油溶性引发剂 D. 阴离子引发剂 正确答案:B.
? 6. 在自由基聚合中,若初级自由基与单体的引发速度较慢,则最终聚合速率与单体浓 度呈( )级关系。
A. 1 C. 2
正确答案:B.
B. 1.5 D. 不能确定
? 7. 苯醌是常用的分子型阻聚剂,一般用单体的( )就能达到阻聚效果。
A. 1.0%一 0.5% C. 2.0%一 5.0% 正确答案:D.
B. 1.0%一 2.0% D. 0.1%一 0.001%
? 8. ( )的自由基是引发聚合反应常见的自由基。

A. 高活性 B. 低活性 C. 中等活性 D. 无活性 正确答案:C.
? 9. 某工厂用 PVC 为原料制搪塑制品时,从经济效果和环境考虑,他们决定用( )聚合 方法。
A. 本体聚合法生产的 PVC C. 乳液聚合法生产的 PVC
正确答案:C.
B. 悬浮聚合法生产的 PVC D. 溶液聚合法生产的 PVC
? 10. 自由基链转移反应中,不可能包括活性链向( )的转移。
A. 高分子 B. 单体 C. 引发剂 D. 溶剂
? 1. 对于自由基聚合,在其他条件保持不变的前提下升高聚合温度,得到的聚合物的分 子量将( )。
A. 减小 B. 增大 C. 不变 D. 不一定 正确答案:B.
? 2. 在乙酸乙烯酯的自由基聚合反应中加入少量苯乙烯,会发生( )
A. 聚合反应加速 C. 相对分子量降低 正确答案:B.
B. 聚合反应停止 D. 相对分子量增加
? 3. 传统自由基聚合的机理特征是( )。
A. 慢引发,快增长,速终止 C. 快引发,快增长,难终止
正确答案:A.
B. 快引发,慢增长,不中止 D. 慢引发,慢增长,速终止
? 4. 合成丁基橡胶的主要单体是( )。
A. 异丁烯+丁二烯 C. 异丁烯
正确答案:B.
B. 异丁烯+异戊二烯 D. 丁二烯
? 5. 合成橡胶通常采用乳液聚合反应,主要是因为乳液聚合( )。
A. 产品较纯净
B. 易获得高分子量聚合物
C. 不易发生凝胶效应 D. 聚合反应容易控制

第三章 自由基聚合生产工艺

第三章自由基聚合生产工艺 本章主要内容: 3.1 自由基聚合工艺基础和本体聚合生产工艺 3.2 悬浮聚合生产工艺 3.3 溶液聚合生产工艺 3.4 乳液聚合生产工艺 重点:自由基聚合工艺基础 难点:无 3.1 自由基聚合工艺基础和本体聚合生产工艺 3.1.1 自由基聚合工艺基础 自由基聚合反应定义 单体借助于光、热、辐射、引发剂的作用,使单体分子活化为活性自由基,再与单体连锁聚合形成高聚物的化学反应。 ?单体类型: 主要是乙烯基单体、二烯烃类单体 ?聚合物特点:碳-碳为主链的线形高聚物、无定形聚合物;T g低于室温的常温为弹性体用作橡胶;T g高于室温的常温为塑性体(合成树脂)用作塑料、合成纤维、涂料。 自由基聚合反应的特点 ①整个聚合过程分为链引发、链增长、链终止,各步反应速率和活化能相差很 大; ②高分子瞬间形成,而产品的相对分子质量不随时间变化; ③体系内始终由单体和高聚物组成,产物不能分离; ④反应连锁进行,转化率随时间的延长而增加; ⑤反应是不可逆的。 自由基聚合反应的分类

按参加反应的单体种类分为: 自由基均聚合:只有一种单体参加的自由基聚合反应。常见的有:LDPE、PMMA、PVC、PV AC、PS等 自由基共聚合:两种以上单体同时参加的自由聚合反应。常见的有:乙丙橡胶、丁苯橡胶、丁腈橡胶、SBS 、ABS等 自由基聚合反应的重要地位 最典型;最常见;最成熟;经自由基聚合获得的高聚物产量占总产量的60%以上,占热塑性树脂的80% 自由基聚合反应的实施方法 本体聚合、乳液聚合、悬浮聚合、溶液聚合; 聚合方法的选择主要取决于根据产品用途所要求的产品形态和产品成本。 自由基聚合引发剂 除了苯乙烯本体聚合是热引发聚合,其他单体在工业上都是在引发剂引发聚合。 ?引发剂种类 主要有三大类:过氧化物类、偶氮化合物类、氧化还原引发体系 过氧化物类: 通式R-O-O-H 或R-O-O-R,R——为烷基、芳基、酰基、碳酸酯基、磺酰基。分子中含有—O—O—键,受热后断裂成相应的两个自由基,初级自由基主要用来引发单体,成为单体自由基,此外,还发生副反应。 偶氮类: 偶氮二异丁腈(AIBN)、偶氮二异庚腈(A VBN) 氧化还原引发体系: 特点:氧化-还原体系产生自由基的过程是单电子转移过程,即一个电子由一个

自由基聚合反应的定义

自由基聚合反应的定义;是烯烃单体借助于光、热、辐射、引发剂的作用,使单体分子活化为活性自由基,再与单体连锁聚合形成高聚物的化学反应。 链转移;链自由基与其他分子作用,链自由基失去活性成为稳定高分子链,其它分子转变为新自由基,并能继续进行链增长的过程。 体型缩聚的定义;是指某一双官能度单体与另一官能度大于2的单体一起缩聚时,先进行支化而后形成交联结构的三维体型缩聚物的缩聚过程 反应程度;缩聚反应中,已参加反应的官能团数目占起始官能团数目的百分比,反应程度越大,产物平均聚合度越大 凝胶化和凝胶点;体型缩聚反应的特点是当缩聚反应进行到一定程度时,反应体系的粘度突然增加,出现不熔不溶的弹性凝胶现象,称为凝胶化,该反应程度为凝胶点 本体聚合;在不加溶剂以及其它分散剂的条件下,只有单体本身在引发剂或光、热、辐射作用下其自身进行聚合反应的一种方法 手性碳原子;当碳原子成键时所连的四个原子或基团都各不相同,称为手性碳原子或不对称碳原子 自由基型乳液聚合;是指在用水作介质的乳状液中按胶束机理进行的聚合反应,体系由单体。水。乳化剂及水溶性引发剂组成 热塑性塑料;成型后再加热可重新软化加工而化学组成不变的一类塑料。其树脂在加工前后都为线性结构,加工中不发生化学变化,具有可溶可熔的特点 热固性塑料;成型后不能再加工软化而重复加工的一类塑料。其树脂在加工前为线性预聚物,加工中发生化学交联反应使制品内部称为三维网状结构,具有不熔不溶的特点 1加聚反应,延长时刻;增大单体转化率率随T增大而增大,单体分子量随T增大而影响不大 ⑴聚合过程可分为链引发,链增长,链终止 ⑵单体分子量在瞬间的形成随后不随时间的变化而变化 ⑶单体转化率随时间延长而增加 ⑷反应速率快 2缩聚反应,延长时刻;相对分质量增加单体转化率不因T的增长而变化 ⑴产物相对分子质量是随时间增长而增长 ⑵反应初期单体转化率大 ⑶每步反应产物都可以单独分离 ⑷大多数为可逆反应 ACE----玻璃态高弹态黏流态普通弹性形变高弹性形变不可逆弹性形变(可塑性) 运动单元;玻璃态---测基与链接的运动 高弹态---链接运动 黏流态---整个高分子链的运动 塑料纤维物理学状态----玻璃态温度范围Tb—Tg 橡胶---高弹态Tg—Tf Tg使用意义;塑料使用时的耐热温度,橡胶使用的耐寒温度 Tf;橡胶使用的最高温度,非晶态高聚物成型加工的最低温度 Td;高聚物材料成型加工不能超过的温度

聚合反应实施方法1

第二章聚合反应的工业实施方法 第一节连锁聚合反应的工业实施方法 工业实施方法主要有:本体聚合、悬浮聚合、溶液聚合、乳液聚合等。 一、本体聚合——适用于自由基、离子型聚合反应 1.定义:在不加溶剂或分散介质情况下,只有单体本身在引发剂(有时也不加)或光、热、辐射的作用下进行聚合反应的一种方法。 基本组成:单体、引发剂。有时也加入增塑剂、抗氧剂、紫外线吸收剂和色料等。 2.分类 (1)根据单体与聚合物相互混溶的情况可分为:均相、非均相聚合(或沉淀聚合)两种。 均相聚合反应:凡单体与所形成的聚合物能相互混溶,在聚合过程中无分相现象发生的反应。 沉淀聚合反应:单体与所形成的聚合物不能相互混溶,在聚合过程中,聚合物逐渐沉析出来的反应。 (2)根据参加反应的单体的状态,可分为气相、液相、固相本体聚合,其中液相本体聚合应用最广泛。 (3)工业上分,间歇法、连续法。 3.特点: (1)聚合方法简单,生产速度快,产品纯度高,设备少。 (2)易产生局部过热,致使产品变色,发生气泡甚至爆聚。 (3)反应温度不易恒定,所以反应产物的相对分子质量分散性较大。 (4)产品容易老化。 1

4.主要产品: PS树脂、PMMA树脂、PE树脂、PVC树脂等。 5.主要影响因素: (1)单体的聚合热 会放出大量的热量,如何排除是生产中的第一个关键问题。 工业生产中:一般采用两段式聚合 第一段在较大的聚合釜中进行,控制10%~40%以下转化率;第二 段进行薄层(如板状)聚合或以较慢的速度进行。 (2)聚合产物的出料 是本体聚合的第二个问题,控制不好不但会影响产品的质量,还会造成生产事故。 解决办法:根据产品特性,选出料方式 浇铸脱模制板材或型材, 熔融体挤出造粒, 粉状出料。 6.优点;产物纯净,适于生产板材、型材等透明制品,也可生产电绝缘材料和医用材料。 7.应用:实验室研究(如单体聚合能力、动力学研究、竟聚率测定。 二、溶液聚合 1.定义:将单体和引发剂溶解于适当溶剂中进行聚合反应的一种方法。 基本组成→单体、引发剂、溶剂 2.类型: (1)根据溶剂与单体和聚合物相互混溶的情况分为:均相、非均相溶液聚合(或沉淀聚合)两种。 均相聚合反应:凡溶剂与单体和聚合物能相互混溶,得到的产物为高聚物溶液

什么是自由基聚合

1.什么是自由基聚合、阳离子聚合和阴离子聚合? 解:自由基聚合:通过自由基引发进行链增长得到高聚物的聚合反应。 阴离子聚合:由阴离子引发并进行增长的聚合反应。 阳离子聚合:由阳离子引发并进行增长的聚合反应。 2.以偶氮二异丁腈为引发剂,写出苯乙烯、醋酸乙烯酯和甲基丙烯酸甲酯自由 基聚合历程中各基元反应。解:

3.在自由基聚合中,为什么聚合物链中单体单元大部分按头尾方式连接? 解:可从以下两方面考虑:(1)从位阻上看,自由基与含取代基一端靠近时会产生较大位阻,反应能垒较头-尾方式高;(2)从生成的自由基的稳定性看,通过头-尾方式生成的自由基在带有取代基的碳上,这样取代基可起共轭稳定作用。 4..自由基聚合时,单体转化率与聚合物相对分子质量随时间的变化有何特征? 与聚合机理有何关系? 解:自由基聚合时,引发剂是在较长时间内逐渐分解释放自由基的,因此单体是逐次与产生的自由基作用增长的,故转化率随时间延长而逐渐增加。而对产生的一个活性中心来说,它与单体间反应的活化能很低,kp值很大,因此瞬间内就可生成高聚物。因此,从反应一开始有自由基生成时,聚合物分子量就很大,反应过程中任一时刻生成的聚合物分子量相差不大。 5.解释引发效率、诱导分解和笼蔽效应 引发效率:引发剂分解后,只有一部分用来引发单体聚合,将引发聚合部分的引发剂占引发剂分解或消耗总量的分率称为引发效率,用f表示。 诱导分解:指自由基向引发剂的转移反应,反应结果为自由基总数不变,但白白消耗一个引发剂分子,使f下降。 笼蔽效应:由于聚合体系中引发剂的浓度低,引发剂分解生成的初级自由基处于溶剂分子的包围中,限制了自由基的扩散,导致初级自由基在笼内发生副反应,使f下降。 6.聚合反应速率与引发剂浓度平方根成正比,对单体浓度呈一级反应各是哪一 机理造成的? 解:Rp与[I]1/2成正比是双基终止造成的,Rp与[M]成正比是初级自由基形

第3章自由基聚合生产工艺

第3章自由基聚合生产工艺 3.1 自由基聚合工艺基础 ◆自由基聚合反应是当前高分子合成工业中应用最广泛 的化学反应之一 ◆自由基聚合反应适用单体:乙烯基单体、二烯烃类单体 ◆自由基聚合产物: 合成橡胶(Tg <室温):常温下为弹性体状态 合成树脂(Tg >室温):常温下为坚硬的塑性体,主要用作塑料、合成纤维、涂料等的原料 高分子合成工业中自由基聚合反应的四种实施方法:本体聚合、乳液聚合、悬浮聚合、溶液聚合 合成树脂可用四种聚合方法进行生产。乳液聚合方法是目前唯一的用自由基反应生产合成橡胶的工业生产方法。 聚合方法的选择主要取决于根据产品用途所要求的产品形态和产品成本。 高聚物生产中采用的聚合方法、产品形态与用途以及工艺特点分别见下表1、表2。

表2 四种聚合方法的工艺特点 3.1.1 自由基聚合引发剂 引发剂是自由基聚合反应中的重要试剂。 除少数单体(如St)的本体聚合或悬浮聚合可以受热引发以外,绝大多数单体的聚合反应在工业上都是在引发剂的存在下实现的。 引发剂应具备的条件:①在聚合温度范围内有适当的分解速度常数;②所产生的自由基具有适当的稳定性。引发剂用量:一般仅为单体量的千分之几 1.引发剂种类 (1) 按引发剂的溶解性能分 油溶性引发剂:本体、悬浮与有机溶剂中的溶液聚合 水溶性引发剂:乳液聚合和水溶液聚合 (2) 按化学结构分 过氧化物:大多数是有机过氧化物 偶氮化合物: 氧化-还原引发体系: ① 过氧化物类 通式:R-O-O-H 或 R-O-O-R (R 可为烷基、芳基、酰基、碳酸酯基、磺酰基等) 特点:分子中均含有-O-O-键,受热后-O-O-键断裂而生成相应的两个自由基 有机过氧化物分解产生的初级自由基的副反应 重要的有夺取溶剂分子或聚合物分子中的H 原子,两个初级自由基偶合,本分子歧化或与未分解的引发 剂作用产生诱导分解作用 CH 3CH 3CH 3C O O H CH 3CH 3CH 3C O OH CH 3CH 3CH 3C O CH 3 CH 3CH 3C O CH 3CH 3CH 3C O 2RO CH 2C X CH 3CH CH 3C C CH 3CH 3本分子岐化

自由基聚合

第三章自由基聚合 思考题 2、下列烯类单体适于何种机理聚合?自由基聚合、阳离子聚合还是阴离子聚合?并说明原因。 CH2=CHCl CH2=CCl2CH2=CHCN CH2=C(CN)2CH2=CHCH3CH2=C(CH3)2 CH2=CHC6H5CF2=CF2CH2=C(CN)COOR CH2=C(CH3)-CH=CH2 答:CH2=CHCl:适合自由基聚合,Cl原子是吸电子基团,也有共轭效应,但均较弱。 CH2=CCl2:自由基及阴离子聚合,两个吸电子基团。 CH2=CHCN:自由基及阴离子聚合,CN为吸电子基团。 CH2=C(CN)2:阴离子聚合,两个吸电子基团(CN)。 CH2=CHCH3:配位聚合,甲基(CH3)供电性弱。 CH2=CHC6H5:三种机理均可,共轭体系。 CF2=CF2:自由基聚合,对称结构,但氟原子半径小。 CH2=C(CN)COOR:阴离子聚合,取代基为两个吸电子基(CN及COOR) CH2=C(CH3)-CH=CH2:三种机理均可,共轭体系。 3、下列单体能否进行自由基聚合,并说明原因。 CH2=C(C6H5)2ClCH=CHCl CH2=C(CH3)C2H5CH3CH=CHCH3 CH2=CHOCOCH3CH2=C(CH3)COOCH3CH3CH=CHCOOCH3CF2=CFCl 答:CH2=C(C6H5)2:不能,两个苯基取代基位阻大小。 ClCH=CHCl:不能,对称结构。 CH2=C(CH3)C2H5:不能,二个推电子基,只能进行阳离子聚合。 CH3CH=CHCH3:不能,结构对称。 CH2=CHOCOCH3:醋酸乙烯酯,能,吸电子基团。 CH2=C(CH3)COOCH3:甲基丙烯酸甲酯,能。 CH3CH=CHCOOCH3:不能,1,2双取代,位阻效应。 CF2=CFCl:能,结构不对称,F原子小。

第二章自由基链式聚合反应

第 二 章 自由基链式聚合反应 2.1 链 式 聚 合 反 应 概 述 2.1.1 一般性特征 逐步聚合反应是由单体及不同聚合度中间产物之间,通过功能基反应来进行的。链式聚合反应则是通过单体和反应活性中心之间的反应来进行,这些活性中心通常并不能由单体直接产生,而需要在聚合体系中加入某种化合物,该化合物在一定条件下生成聚合反应活性中心,再通过反应活性中心与单体加成生成新的反应活性中心,如此反复生成聚合物链。其中加入的能产生聚合反应活性中心的化合物常称为引发剂。引发剂(或其一部分)在反应后成为所得聚合物分子的组成部分。(以乙烯基单体聚合为例) 增长链聚合物链 链式聚合反应的基本特征 a. 聚合过程一般由多个基元反应组成; b. 各基元反应机理不同,反应速率和活化能差别大; c. 单体只能与活性中心反应生成新的活性中心,单体之间不能反应; d. 反应体系始终是由单体、聚合产物和微量引发剂及含活性中心的增长链所组成; e. 聚合产物的分子量一般不随单体转化率而变。(活性聚合除外)。 单体转化率 产物平均聚合度 根据引发活性种与链增长活性中心的不同,链式聚合反应可分为自由基聚合、阳离子聚合、阴离子聚合和配位聚合等。 I R R* +H 2C CH X R CH 2CH*X 链增长活性中心 引发剂分解或离解

2.1.2 烯类单体的聚合反应性能 单体的聚合反应性能(适于何种聚合机理)与其结构密切相关。乙烯基单体(CH2=CHX)的聚合反应性能主要取决于双键上取代基的电子效应。 (1)为给(推)电子基团 因此带给电子基团的烯类单体易进行阳离子聚合,如X = -R, (2) X为吸电子基团 由于阴离子与自由基都是富电性的活性种,因此带吸电子基团的烯类单体易进行阴离子聚合与自由基,如X = -CN,-COOR,-NO2等;但取代基吸电子性太强时一般只能进行阴离子聚合。如同时含两个强吸电子取代基的单体:CH2=C(CN)2等 AA 自由基:2A CH=CHX A CH2CH X AB 阳离子 CH=CHX A CH2 H C X A+B- δ+B δ- AB 阴离子 CH=CHX A CH2 H C X A-B+ δ+ B δ- H2C CH 2 H H2C CH R CH 2 C H

自由基聚合生产工艺

第三章自由基聚合生产工艺 本章主要内容: 3.1自由基聚合工艺基础和本体聚合生产工艺 3.2悬浮聚合生产工艺 3.3溶液聚合生产工艺 3.4 乳液聚合生产工艺 重点:自由基聚合工艺基础难点:无 3.1自由基聚合工艺基础和本体聚合生产工艺 3.1.1自由基聚合工艺基础—自由基聚合反应定义 单体借助于光、热、辐射、引发剂的作用,使单体分子活化为活性自由基, 再与单体连锁聚合形成高聚物的化学反应。 ?单体类型:主要是乙烯基单体、二烯烃类单体 ?聚合物特点:碳-碳为主链的线形高聚物、无定形聚合物;Tg低于室温的常温为弹性体用作橡胶;Tg高于室温的常温为塑性体(合成树脂)用作塑料、合成纤维、涂料。 自由基聚合反应的特点 整个聚合过程分为链引发、链增长、链终止,各步反应速率和活化能相差很 大; 高分子瞬间形成,而产品的相对分子质量不随时间变化; 体系内始终由单体和高聚物组成,产物不能分离; 反应连锁进行,转化率随时间的延长而增加; 反应是不可逆的。 自由基聚合反应的分类

按参加反应的单体种类分为: 自由基均聚合:只有一种单体参加的自由基聚合反应。常见的有:LDPE、PMMA、 PVC、PVAC、PS 等 自由基共聚合:两种以上单体同时参加的自由聚合反应。常见的有:乙丙橡胶、 丁苯橡胶、丁腈橡胶、SBS、ABS等 —自由基聚合反应的重要地位 60%最典型;最常见;最成熟;经自由基聚合获得的高聚物产量占总产量的以上,占热塑 性树脂的80% —自由基聚合反应的实施方法 本体聚合、乳液聚合、悬浮聚合、溶液聚合; 聚合方法的选择主要取决于根据产品用途所要求的产品形态和产品成本。 —自由基聚合引发剂 除了苯乙烯本体聚合是热引发聚合,其他单体在工业上都是在引发剂引发聚 合。 ?引发剂种类 主要有三大类:过氧化物类、偶氮化合物类、氧化还原引发体系 过氧化物类: 通式R-O-O-H或R-O-O-R,R――为烷基、芳基、酰基、碳酸酯基、磺酰基。 分子中含有一O—O—键,受热后断裂成相应的两个自由基,初级自由基主要用来引发单体,成为单体自由基,此外,还发生副反应。 偶氮类:

相关主题
文本预览
相关文档 最新文档